

VOLUME IX ISSUE VIII • Devoted to the 68XXX User • August 1987
The Grandiather of "Deskilop Publishingm"

GESPAC Gives You 68000 Performance a 8 8-bit Prices.

Introducing another Price / Performance breakthrough from GESPAC: A complete 68000 CPU module for $\$ 395$ unit price. The GESMPU-4B.

Wherever you thought of using an 8 -bit microprocessor to do a job, you can now use the 16/32-bit GESMPU-48 instead. It will do the job, better, faster, and best-of-all for the same money.

On a single height Eurocard, we have packed an 8 MHz 68000 microprocessor (16 MHz optional), four sockets for up to 64 Kilobytes of zero-wait-states CMOS RAM and up to 128 Kilobytes of EPROM, one RS-232 serial port, and three 16 -bit timers.

The GESMPU-4B is fully expandable through the standard G-64 bus, to accommodate up to 16 Megabytes of external memory. You con add any of more than 300 I/O modules available from GESPAC and a growing numbers of independent G-64 bus vendors.

To make your programming tasks easier, GESPAC supports the GESMPU-4B with the OS-90 and PDOS ${ }^{\text {® }}$ real-time, multi-tasking operating systems and most popular high level languages and software development tools.

If you too like the ideo of getting more for less, contact us today to receive information on the GESMPU-48 and the G-64 bus concept from GESPAC-the leader in single Eurocard microcomputer products worldwide.

Call Toll Free 1-800-4-GESPAC or Call (602) 962-5559.

IN USA - CANADA
50A West Hoover Ave. Mesa, Arizono 85202 Tel. (602) 962-5559
Telex 386575

INTERNATIONAL

3, chemin des Aulx CH-1228 Geneva Tel. (022) 713400
Telex 429989

[^0]

SBC ACCESSORY PACKACE (RRO-AP)....... 81690.00
The package includes a $P C$-style cabinet with a custom backpanel, a Xebec 1410A hard disk controller, a 25 Megabyte (unforeatted) hard disk a 5 1/4" DSDD 80 track floppy disk drive, a 150 witt power supply, cooling fan, panel counted reset and abort switches and all necessary internal cabling BACK PANR PI.ATE (EPPPC) FOR Above....... 44.00 2nd 5" 80 FLOPPY \& CABES FOR RROAP, AOD.. 250.00 SECOND 25NG HARD DISK \& CAR ES, AOD....... 3780.00 TO SUBSTINTE \&SNB HD FOR 25RA' 10 , ACO....s1800.00

1/0 EXPAUSION BOAPCOS

16 PORT SERIAL CAPD ON.Y (SEC-16S)......... 9335.00 The SEC-16S extends the I/O capabilities of the GHX Micro-20 68020 Single-board Conputer by adding sixteen asynchronous serial $1 / 0$ ports. By using two SBC-16S boards, a total of thirty-six serial ports are possible.
RS232 Adapter (SAR-25, SAR-90 or RJ-45)..... 8165.00
The board provides level-shifting between m level and standard RS-232 signal levels for up to 4 serial l/O ports.

60 LINE PARRUE I/O CAPD (S -609)....... 8390.00 The Cax S8C-60P uses three 68230 Parailel Interface/Timers (PI/Ts) to provide up to forty-eight parallel $1 / 0$ lines. The $1 / 0$ Iines are buffered in six groups of eight lines each, with separate buffer direction control for each group. Buffer direction can be fixed by hardware junpers, or can be softwre programable for bidirectional applications.

PROTOTYPING BOAFD (SBC-NI)................... 975.00
The SBC-vin provides a neans of developing and testing custon $1 / 0$ interface designs for the Gax Micro-20 68020 Single-board Computer. The board provides areas for both DIP (D al Inline Package) and PGA (Pin Grid Array) devices, and a pre-wired aenory area for up to 512 K bytes of dynanic mam.
1/O BUL ADAP TER (SEC-BA) .$\$ 195.00$
The SBC-BA provides an interface between the OAX Hicro-20 68020 Single-board Computer and the Motorola Input/Output Channel (I/0 bus). With the 1/0 bus, up to sixteen off-the-shelf or custom peripheral devices ($1 / 0$ eodules) can be connected to the GWX Micro-20.

ARDET LAN board w/o Software (SBC-AW).... $\$ 475.00$
The SBC-AN provides an interface between the anx Micro-20 68020 Single-board Conputer and the AROET modified token-Dassing Local area Metwork (LNN) originally developed by Datapoint orp. The ARDET is a baseband network with a data transaission rate of 2.5 hegabits/second. The standard transmission eedia is a single 93 ota RG-62/U coaxial cable. Fiber optic versions are available as an option.

059 UAN SOftwre Drivers for SBC-AN........s 120.00

GHX MICRO 20 SOTMWRE

O2O QUG UPDATE - PRONS \& MALSA............. $\$ 150.00$
THESE bOO20 OPERATING SYSTEAS ARE PRICED WEN PRR OHASED WITH THE MICRO-20. PEASE ACO $\$ 150.00$ IF PRDAREE LAIER FOR THE UPDATED PRONS AD MOVAS.

059

PASCRL COPILER.................................. $\$ 500.00$

UNIFLEX

UniFLEX (when ordered with Board)........s 450.00
UniFLEX WITHREL-TIKE ENHWOENTS......s1000.00
Other Softwre for UniFLEX
Uniflex basic w/pri owiler.................. 8300.00
UniFLEX C COPILER. 8350.00
UnifLEX C080 COPILER.......................... $\$ 750.00$
UnIFLEX SCREPH DITOR. 150.00
UniFLEX TEXT PRILESSUR. 200.00
UniFLEX SORT/RERGE DAOUGE. $\$ 200.00$
UnifLEX USAM GOULE. $\$ 100.00$
UniFLEX UTILITIES PACKAGE 1.................. 200.00
UniFLEX PARTIK SORCE LICESÉ............... 81000.00
GMX EXCLUSIVE VERSIONS, CUSTONIZED FOR TIE MICRO-20, OF TEE BEION LONGAGES ANO SUTURE AEE RLSO ANAILARLE FROM GNX.

BSOFT FORTRAN (UniFLEX)....................... . 81500.00
SOLPTOR (specify UnifLEX or 059).......... Sis. 00
FORTH (059).. . 858.00
DHACREC Ispecify UnifLEX or 059).......... $\$ 300.00$
GAX OOES NOT GUPPANTEE PRPGPANCE OF ANY CNX SYSTEMS. BOARDS OR SUTUMFE WEN USED WITH OIKER MANIFACTURES PRODUCT.

ALL PRICES APE F.O.B. CHICACO

GMX, Inc. reserves the right to change pricing, teres, and products specifications at any tiee without further notice.

TO ORIDP BY MAIL: SEO OECX OR NUNY CPOER OR USE YOA VISA OR MASIER CHATEE. Please allou 3 weeks for personal checks to clear. U.S. orders add $\$ 5$ handling if under $\$ 200.00$.
Foreign orders add $\$ 10$ handling if order is under $\$ 200$. ©0. Foreign orders over $\$ 200.00$ vill be shipped via Enery. Air Freight COUECT. and we vill charge no handling. All orders must be prepaid in U.S. funds. Please note that foreign checks have been taking about 8 weeks for collection so ve would advise wiring money, or checks draun on a bank account in the U.S. Our bank is the Continental Illinois Mational Bank of Chicago, 231 S . LaSalle Street, Chicago, IL 60693, account nueber 73-32030.

CONTACT GMX FOR MORE IFOFAATION ON DE AGOVE RTUOCTS
GMX STILL SELLS OIMIX SSO RUS SVSTESS, BOMPOS \& PARTS. CONTACT GAX FOR OUNEIE PRICE LIST.

A Member of the CPI Family

68 Micro Journal
10 Years of Dedication to Motorola CPU Users

68006809680006801068020

The Originator of "DeskTop Publishing"w

Publlsher

Don Williams Sr.
Executive Editor
Larıy Williams
Production Manager
Tom Williams
Office Manager
Joyce Williams

Subscriptions

Kristi Hart

Contribuling \& Associate Edilors

Ron Anderson
Ron Voights
Doug Luric

Dr. E.M. "Bud" Pass
Art Weller
Dr. Theo Elbert
\& Hundreds More of Us

"Contribute Nothing - Expect Nothing" dmw 1986

68 MICRO JOURNAL Computer Publishing Center 5900 Cassandra Smith Road PO Box 849

Hixson, TN 37343
Phone (615) 842-4600 Telex 510 600-6630
Copyrighted © 1987 by Computer Publishing, Inc.
68 Micro Journal is the original "DeskTop Publishing" product and has continously published since 1978 using only micro-computers and special "DeskTop" software. Using fust a kit buill 6800 micro.computer, a modified "ball" typewriter, and "home grown" DeskTop Pub. lishing software. None was commercially available at that time. For over 10 years we have becon doing "DeskTop Publishing"! We originoted what has become tr aditional "DestTop Publishing"! Today 68 Micro Journal is aclonowled ged as the "Grandfather"of"DeskTop Pub. lishing" technology.

68 Micro Journal is published 12 (mes a year by Computer Publishing Inc. Second Class Postage pa dISSN 0194-5025 al Hixson, TN. and additional entries. Postmaster: send form 3597 to 68 Micro Journal, POB 849. Hixson, TN 37343.

Subscription Rates

1 Year \$24.50 USA. Canada \& Mexico \$34.00 a ycar. Others add $\$ 12.00$ a year surface, $\$ 48.00$ a year Airnail, USA funds. 2 years $\$ 42.50,3$ years $\$ 64.50$ plus additional postage for each addilional year.

Items or Articles for Publication

Articles submitted for publication must include authors name, ad. dress. telephone number, date and a statement that the material is origital and the property of the author. Articles submitted should be on diskette, OS-9. SK*DOS. FLEX. Macintosh or MS-DOS. All printed items should be darts type and satisfactory forphoto-rcproduction. No blue inkl No hand written aricles - please! Diagrams o.k.
Please - do not formet with spaces any tex inderts, chauts, etc. (source lising o.k.). We will edis in allformaling. Ter should fall fushlef and use a carriage return only to indicate a paragraph end. Please write for free authors quide.

Letters \& Advertising Copy

Letlers to the Editor should be the original copy, signed! Leaers of grip as well as praise are exegpesble. We reserve theright toreject any letter or advertising material. for any reason we deem advisable. Advertising Rates: Commercial please contact 68 Micro Joumal Advertising Department. Classified advertising must be non-commercial. Minimum of $\$ 15.50$ for first 15 words. Add $\mathbf{S . 6 0}$ per word thereate. No classiifeds ecopped by telephone.

OS-9 ELECTRONIC MAIL

Iflash your message on Blectronic Mail Mail is a screen- or line-oriented program that runs un your OS 9/680X0 systems or over OS 9/NET. You can use distributed mailing lists or consecutive mailing list to get your message delivered. And received mail can be sent directly to your printer for immediate printout, spooled on a multiuser system or saved to a tile. Mail features on-line help and complete, easy to understand ducumentation.
Kiectronic Mail \$150.00.

PRINT SPOOLER

Spool it and Print it! Sumesne beat you tu the printer? Don't blow your top while you cool your heels--get the OS-9/68000 Print Spooler and relax. The full featured Print Spooler automatically routes and monitors the status of your devices and the output files to be spooled. Now you can have a complete print spouling management system atan affordable price.
OS 9 Print Spooler $\$ 150.00$

FORTRAN

Crunch It! with Our New FORTRAN 77 Compiler Nuw you have a powerful new tool to take full advantage of the 68000 family of microprucessors. With Microware's FORTRAN 77 Compiler you can generate code that uses system-wide modules instead of linking redundant copies of the standard library to each program. Result: less memory, less disk space, faster loading and external updating!
HORTRAN 77 Compiler $\$ 750.00$

OS-9/ST

NKW for your Alari ST! Now you can have the power of os 9 on your Atari 520 or 1040 ST. ^ true multitasking environment for professional real-time results. OS 9/S'l' is available in two configurations: l'ersonal and lrufessional. Choose either version for true multi-user support... And all at a price that puts UNIXUshame.

P'ersonal OS 9/S'I' combines the power of OS 9 with an interactive, structured Basic. \$150.00

Professional OS 9/ST has a powerful ^ssembler, linker and User Iebugger and the tools to turn your Atari ST into a full C i,anguage workstation. $\$ 600.00$

OS-9/68020 C COMPILER

NEW "epeed demon" C Compiler! Now you can get your hands on a highly optimized C language power (un)l-the ()S 9/68020 C Compiler. When coupled with the MC68881 math co processor, this compiler will let you'll blast through complex math functions in the blink of an eye. All compiler/assembler/linker options are controlled thy an intelligent compiler executive that spares you from memorizing compiler options and module-calling sequences. And the compiler includes library functions for memory management and system events, and much, much more! The new OS 9/68020 C Compiler is included with the Professional US 9/68020 System Software Package,
New C Ianguage Compiler $\$ 750.00$

I'o order these exciting NIEW products or for mure infurmation.

CALL TODA Y!

Microware Systems Corporation
1900 N.W. 114th Street *)es Muines, lowa 50322
Phone 515.224-1929 *'l'eles 910-520-2535

West Cosol Office

4401 Great American Parkway * Suite 220
Santa Clara, California 95054

Microware Japan. I.td.

41. 19 lloncho 4 Chome, runabashi City * Chiba 273,

Japan * Phone 0473 (28) 4493*Telex 781-299-3122

Vivewey Lid.	Microprocessor Consultants	Microdate Soff
36-38 John Streel	92 Bynya Road	97 bis, rue de Colombes
uton, Bedlordshire, LU1 2JE	Paim Beach 2108	92400 Courbevoie
United Kingdom	NSW Australia	France
Phone: (0582) 423425	Phone: 02-919-4917	Phone 1-788-80-80
Telex: 825115		Telex 615405

Microdata Soh
97 bis, rue de Cotombes
92400 Courbeno 92400 Courbevore
France
Phone Telex 615405

Microware is on the move. We have openings fur 'Vechnical and Marketing Professionals.
Send your resume (in confidence) today and find out more about these exciting opportunities.
 Under $\$ 5000$ "SUPER MICRO".

The MUSTANG-020m

MUSTANG-020.

The MUSTANG. 02068020 SBC provides a powerful, compact, 32 bit computer system featuring the "state of the art" Motorola 68020 "super" micro-processor. It comes standard with 2 megabyte of high-speed SIP dynamic RAM, serial and parallel ports, floppy disk controller, a SAS1 hard disk interface for intelligent hard disk controllers and a battery backed-up time-of-day clock. Provisions are made for the super powerful Motorola MC68881 floating point math co-processor, for heavy math and number crunching applications. An optional network interface uses one serial (four (4) standard, expandable to 20) as a $125 /$ bit per second network channel. Supports as many as 32 nodes.

The MUSTANG-020 is ideally suited to a wide variety of applications. It provides a cost effective alternative to the other MC68020 systems now available. It is an excellent introductory tool to the world of hi-power, hispeed new generation "super micros". In practical applications it has numerous applications, ranging from scientific toeducation. It is already being used by government agencies, labs, universities, business and practically every other critical applications center, worldwide, where true multi-user, multi-tasking needs exist. The MUSTANG. 020 is UNIX C level V compatible. Where low cost and power is a must, the MUSTANG-020 is the answer, as many have discovered. Proving that price is not the standard for quality!

As a software development station, a general purpose scientific or small to medium business computer, or a super efficient real-time contsoller in process control, the MUSTANG020 is the cost effective choice. With the optional MC68881 floating point math co-processor installed, it has the capability of systems costing many times over it's total acquisition cost.

With the DATA-COMP "total package", consisting of a heavy duty metal cabinet, switching power supply with $f /$ line by-passing, 5 inch DSIDD 80 track floppy, Xebec hard disk controller, 25 megabyte winchester hard disk, four serial RS-232 ports and a UNIX C level V compatible multi-tasking, multi-user operating system, the price is under $\$ 5000$, w/12.5 megahertz system clock (limited time offer). Most all popula high level languages are available at very reasonable cost. The system is expandable to 20 serial ports, at a cost of less than $\$ 65$ per port, in multiples of 8 port expansion options.

The system SBC fully populated, quality tested, with 4 serial ports pre-wired and board mounted is a vailable for less that $\$ 3000$. Quantity discounts are available for OEM and special applications, in quantity. All that is required to bring to complete "system" standards is a cabinet, power supply, disks and operating system. All these are available as separate items from DATA-COMP.

A special version of the Motorola 020BUG is installed on each board. 020-BUG is a ROM based bebugger package with facilities for downloading and executing user programs from a host system. It includes commands for display and modification of memory, breakpoint capabilities, a powerful assembler/dicassemble and numerous system diagnostics. Various 020 BUG system routines, such as 1/O handlers are available for user programs.

Normal system speed is $3-4.5$ MIPS, with burst up to 10 MIPS, at 16.6 megaheriz. Intelligent 1/O available for some operating systems.

Hands-on "actual experience sessions", before you buy, are available from DATA. COMP. Call or write for additional information or pricing.

Mustang-020 Mustang-08 Benchmarks

PAT FROM S. E. MEDIA -- A FULL FEATURED SCREEN ORIENTED TEXT EDITOR with all the best of PIE. For those who swore by and loved PIE, this is for YOU! All PIE features \& much more! Too many features to list. And if you don't like ours, change or add your own. C source included. Easily configured to your CRT terminal, with special configuration section. No sweat!

68008-68000-68010-68020 OS-9 68K \$229.00

PATIJUST

 Special \$249.00

 Special \$249.00 JUST

JUST from S. E. MEDIA - - Text formatter written by Ron Anderson; for dot matrix printers, provides many unique features. Output formatted to the display. User configurable for adapting to other printers. Comes set-up for Epson MX80 with Graflex. Up to 10 imbedded printer control commands. Compensates for double width printing. Includes normal line width, page numbering, margin, indent, paragraph, space, vertical skip lines, page length, centering, fill, justification, etc. Use with PAT or any other text editor. The ONLY stand alone text processor for the 68XXX OS-9 68K, that we have seen. And at a very LOW PRICE! Order from: S.E. MEDIA - see catalog this issue.

An Ace of a System in Spades！The New MUSTANG－08／A

Now with 4 serial ports standard \＆speed increase to 12 Mhz CPU＋on boand battery

 backup and includes the PROFESSIONAL OS－9 package－including the $\$ 500.00$ OS－9 C compller！This offer won＇t last forever！
NOT 128K，NOT 512K FULL 768K No Wait RAM

The MUSTANG－08 ${ }^{\text {TM }}$ system took every hand from all other 68008 sysems we tested，running OS－9 68 KI

The MUSTANG－08 indudes OS $9-68 \mathrm{~K}^{\mathrm{TM}}$ and／or Peter Stark＇s SK•DOS．SK＇DOS is a single user，single tasking system that takes up where＊FLEX ${ }^{\text {M }}$ left off．SK＇DOS is actually a 68XXX FLEX type system（Not a TSC product．） The OS－9 68K system it a full blown multi－user，multi－
tasking 68 XXX system．All the popular 68000 OS 9 softwa runs．It is a speed whiz on disk 10 ．Fact is the MUSTANG－O8 －is faster on disk access than some other $68 \times X \times$ systems ate Non menjory cache access，Now，that is fastl And that is justa ＇smatl part of the story！See benchmarks．
Systern Includes OS－9 68K or SK•DOS－Your Cholce Specifications：

CPY	MCOS008	12 Mzz
RAM	768%	256 K Chips
	No Wax Slates	
PORTS	4－RS232	MOE8881 OUART
	2－8 bit Partal	MCos21 PA
ClOCK	MK48TCO	Reel Tinu Cloch bat BuJ
EPROM	16K，33X or 64K	Seledable
FLOPPY	WOITT2	5144 Dines
HARD OSK	Wrereme Pon	W01008 Baard

Now more serial ports－faster CPU Bat－

 tery B／U－and \＄850．00 OS－9 Profes－ sional with C complier included！${ }^{5} \$ 400.00$

See Mustang－02 Ad－page 5 for trade－in details

Now even faster！
with 12 Mhz CPU

C Compile times：OS 968 K ．Hand Disk MUSTANGOB 8 mec CPU $0 \mathrm{mln}-32 \mathrm{sec}$ Other popular sexce orstan $\quad 1 \mathrm{~mm}-05 \mathrm{sec}$ MUSTANG－020 $0 \mathrm{~min}-21 \mathrm{sec}$

25 Megabyte

 Hard Disk System \＄1，998．90Complete with PROFESSIONAL OS9 includes the $\$ 500.00$ C compiler，PC style cabinet，heavy duty power supply． 5＂DDDS 80 track floppy－Ready to Rum

Unlike other 68008 systems there are several significant diferences．The MUSTANG－08 is a full 12 Megahert system．The RAN uses NO wail states，this means full bore MUSTANG type performance．
Also，allowing for addressable ROMPPROM the RAM is the maximum alowed for a 68008 ．The 68008 can only address a botal of 1 Megabytes of RAM．The design aliows all the RAM space（for all practical purposes）to be utilized．What is not available to the user is required and reserved for the system．
A RAM disk of 480 K can be easily configured，leaving 288 K free for prograntsystem RAM space．The RAM DISK can be configured to any size your appication requires（system must have 128K in addition to its other requirements）．Leaving the remainder of the original 768 K for program use．Sutficient source inciuded（drivers，etc．）
FLEX is a trademark ofTSC MUSTANG－O8 is a tredemark of CPI

Data－Comp Division

$$
\text { Computer Publishing, Inc. } 5900 \text { Cassanda Smith Road }
$$ Teleotione 615 842－4601－Telex 5106006630 Hason，Tn 37343

＂Bose with SWIPC Hodensty REX 5＂Cal for spectal info．

By: Dr. E. M. 'Bud' Pass 1454 Latta Lane N.W. Conyers, GA 30207 404 483-1717/4570

INTRODUCTION

This chapter continues the discussion of the conversion of Technical Systems Consultants BASIC and Microware BASIC09 programs into C programs begun in the previous chapter.

CONVERTING BASIC PROGRAMS TO C

Expressions

The table below presents a list of the TSC BASIC operators. in decreasing hierarchical order:

```
() parentheses
    fun() functions
    ^ exponenation
    - + unary negative/positive
    * / multiplication/division
    + - addition/subtraction
    + string concatenation
    <- >- <> < > - relational
    comparlsons
NOT logical complement
```

The table below presents a list of the BASIC09 operators, in decreasing hierarchical order:

```
( ) parentheses
fun() functions
    - + NOT unary negatlve/positive.
            logical complement
* ** exponenation
* / multiplication/division
+ - addition/subtraction
            relational comparisons
AND logical conjunction
OR logical disjunction
xOR logical exclusive disjunction
```


A Tuforial Series

The table below presents a list of the standard ($K \& R$) set of C language operators, in decreasing hierarchial order:

TSC BASIC and BASICO9 allow Boolean expressions to be used in arithmetic contexts. returning non-zero for TRUE and zero for FALSE. All implement logical operators as bitwise, rather than TRUE/FALSE. They have somewhat different operator hierarchies. They interpret a binary '+' operator in a string context to represent concatenation. All evaluate expressions involving operators of equal precedence on a left to right basis, except for those involving exponentiation, which are evaluated right to left.

The diflerences in arithmetic operator hierarchies. as indicated in the tables above. may cause subtle problems in terms of incorrectly calculated C expressions which are correctly calculated by BASIC. Such problems are minor in most programs and may always be solved by manually forcing expression evaluation order with parentheses. although the required modifications may be tedious and error-prone. Such changes should be performed before conversion, not afterward, whenever possible, to be able to ensure that the program is correct before the changes represented by the conversion are attempted.

Essentially any expressions involving BASIC string variables will require modifications in the C program which cannot be performed until after the low-level conversions are performed. since they have no corresponding BASIC statements and expressions.

Strings

An area of potential major conversion problems concerns the differences in the handling of strings. TSC BASIC supports dynamic allocation of strings of arbitrary content and length of zero to 32767 bytes. The current length and pointer to the string are explicitly stored, assoclated with the string varlable, vector, or matrix. BASIC09 supports a fixed allocation of strings of length zero to 65535 bytes. The contents are not arbitrary. since the hex-fi character code represents the end of the string. The maximum length and pointer are explicitly stored, but the current length is only implicitly determined as the length of the string up to but not including the hex-If. or the maximum length, whichever is less.

C normally provides a fixed length allocation of strings, with the maximum length implicitly determined by a hex-00 character code. This may have an espectally serious effect on the logic of programs using large string arrays, since BASICO9 and C programs normally allocate the maximum length for each string in the array, whereas TSC BASIC allocates only the necessary length for each string, and performs automatic allocation and deallocation for the programmer.

One solution would be to recode every reference to a BASIC string as a C function call. This would provide the same string format and string processing environment avallable in the original BASIC program. However, since the string format and string processing environment of the C compller and libraries will not agree with the user's. additional overhead would be introduced in translating
formats between the two sets of functions.
Environment-Dependent Operations
BASIC09 supports the PEEK and ADDR functions and the POKE statement. TSC BASIC supports the DPEEK, PEEK, and PTR functions and the DPOKE and POKE statements. These operations are all highly dependent upon their environment and should not be expected to be easily converted to any other language or environment.

If they are to be maintained at all. the TSC BASIC functions DPEEK and DPOKE should be changed to PEEK and POKE functions before the conversion process is attempted. DPEEK(n) is the same as the following:

(CPEEK $(n) \ll 8)$ OR PEEFI $(n+1))$

and DPOKE n.m is the same as the following:

```
POKE n. (m >> 8): POKE (n + 1),m AND 255
```

The uses of the (D)PEEK functions and (D)POKE statements are very dependent upon the hardware and software configuration under which the program is expected to run. They may be used to inspect and modify locations in a BASIC interpreter to modify its internal operations; such uses are obviously incorrect when using a C compiler. Another common use of PEEK and POKE is to perform I/O operations on memory-mapped 1/O locations; such code may or may not perform the expected operations in another environment on the same type of computer and almost certainly will fall on another type of computer.

The PTR function is used to obtain the address of a string descilptor or a variable. and the ADDR function is used to obtain the address of a string or variable. The length and format of a BASIC floating point or integer number are different from the length and format of a C floating point or integer number. Thus. any BASIC program logic involving the ADDR or PTR function probably must be rewritten during the conversion of the program to the C language.

Input/Outprst

I/O file numbers are used in similar manners in TSC BASIC and in BASICO9. although there are several differences in interpretation. They are used in the OPEN. CLOSE, INPUT. PRINT, GET. PUT. FIELD, and DIM statements and in the INCH $\$$ function in TSC BASIC to designate the logical channel from which data is to be read or to which data is to be written.

A difference between the versions of BASIC concerns file number zero. TSC BASIC interprets file number zero to be the user's terminal. unless the file is opened for output. in which case it is interpreted to be a printer, or unless the file is opened for input. in which case the input prompts to the terminal are deleted.

BASIC09 interprets file number zero to be the standard input file (normally the user's keyboard). file number one to be the standard output file (normally the user's screen). and flle number two to be the standard error output file (normally the user's screen). These files need not be opened; however. they may be closed and redirected to another device. if required. This usage is consistent with the use of low-level file descriptors in the C language.

The OPEN statement in TSC BASIC accepts as a file number a constant or a variable containing a value. The OPEN and CREATE statements in BASICO9 place a file number into a variable. Thus. all BASICO9 file numbers used in statements and functions should be variables. unless they reference file numbers zero. one, or two. in which they may be constants or varlables.

File-Naming

A difference between the systems discussed here concerns file-naming conventions. Flie naming rules are generally more dependent upon operating system requirements than upon BASIC conventions, and may cause problems in conversion of programs from one operating system to another. even when using the same language.

TSC BASIC FLEX file specifiers reference disk flles. They are composed of an optional drive number (0-3). a file name of 1 to 8 characters. and an optional suffix of 1 to 3 characters. The file name and suffix must start with a letter and may be composed of letters. digits, and certain special characters. The drive number. if present. is separated from the fle name with a period. The suflix. if present. is also separated from the file name with a period. Letter case is significant. If drive number is omitted, the default work drive is assumed. If file number zero is opened for output. the fille name is assumed to be a printer driver. Other than file number zero, this usage is compatible with C compllers under FLEX.

TSC BASIC UNIFLEX file specifiers reference any device. They are composed of an optional path name and an optional file name. The file name should start with a letter and may be composed of letters, digits, and certaln spectal characters. Letter case is signincant. Not both path name and file name may be omitted. If the path name is omitted, the current default directory is used. This usage is compattble with C compilers.

BASIC09 OS-9 flle specifiers reference any device. They are composed of an optional path name and an optional flle name. The file name should start with a letter and may be composed of letters. digits. and certain spectal characters. Letter case is not signtificant. Not both path name and fie name may be omitted. If the path name is omitted. the current default data directory is used. This usage is compatible with C compilers.

This discussion is continued in the next chapter.

ERAMPLE C PROGRAM

Following is this month's example C program; it paginates a listing of a list of files.

```
1Include <stdio.h>
Include <ctype.i>
|fnclude <time.n>
File -inour:
unslgned char *argt. ch, 1lsa[256]. "p, date[135];
uns!gned form(64){512], Easc[2561(0]:
long t1mex:
shore int &. j. k, &, 11les, 1lsas, pages, q, r, &f, de. po - 59:
short int asis, td, {1, trunc, recl = 70, escape, escflolize);
maln{argc,argu)
Int argc:
unslgnod char **argu:
|
        for {arge - argv: - (D - - (arge + Jl) -0 .-'; )
        M,+flles:
        M,+flles:
```

```
        M,flles:
        M,flles:
        1
        ++{1108:
            +18:
            +18:
            -
            -
            roak:
            roak:
            }
```



```
    case '\r':
    case '\n'
        corm(1)[1++1 = '\n':
        form(1++1)(1) = '\0'
        1f (1 = k = 1)
            corm|\l(0) = 0x20:
        break:
    case '\t':
        1f 109 ** '\0'}
            form[1][1]++1 = 'ln':
            form[1][j] - '10':
            return 1:
        do
        do
            1f (x+4>0 recl)
                forms(1)[J++1 = '\n',
                    form(1++|{1)= '\0':
                12()
                        corm[1][0] = 0x20:
                break:
            )
                Gorm[1|[}+4] - 0x20:
        J
        H11e (k 6 0x07):
        break:
    case '।':
        1f (asts || (loscape) 1! {!(m - -q|))
            goto passthru:
        p=0++:
        lf {m=0.1!)
            goto passthru:
        1f (!(escilo(m) = !escilg(m)))
            m1-128:
        for (r - seac(m): *r: +tr)
            {orm(1)(j++| = "E;
        break;
        case '\b':
            k -- 2;
        default:
passthru:
                    form{l|[1++] * *D:
            1f (k++ >- recl)
                                    if (*Q66 (*Q |= * (b'))
                                    form(1)[j++1)= 'In':
                                    form[1++][}] - '\0':
                                    11 (g = k = 1)
                                    {0rm{1]{0} - 0x20:
                                    I
        1
1
f0u[x(8, lop)
register char es.
reglsrer FILE 100:
l
    register int c;
    whlle (c - *gt+)
l
        putc(c, lop):
        1% {{c l= '\n'} 6G {c l= '\r'}}
        Ch = C;
I
1
    ROF
```


EXAMPLE C PROGRAM

This example C program provides an interactive ille inquiry and modification faculity. It should work with any C compller supporting a linear FSEEK function. Depending upon the compiler, the MODER and MODEW defines may require specification to provide binary read and binary update capabllitles.

```
!"
%
```

linclude <stdio.h>
|include <etype.h>
llendel motir
tolerline mooer -r
tondt

tol ine
tendif
FILE einput, soutpat:
char "p, ${ }^{\circ}$ q, hold [256]. loc1(256];
long there, lac:
shore int offs, $c, 1,1,1, m_{0} n, s, v, v, x, 2 t$
maln(argc, $\quad 20 \mathrm{gr})$
ohort int arge;
char eargvil!
prinef($\left.{ }^{\circ} \backslash n \backslash n^{\circ}\right)$;

if (erge < 2)
?
printf("0aege: is [-n) fileoliatin", arov(0))

exit (0):
1
for (1 - $1 ; 1$ < arge: $t+1$)

tor (1) = 1; 1 < arge: $++j$)
1
$18(1<1)$
11 learguill - - -
cont lnue:
1) 1:(1nput - lopen (argv 19), Man(2)))
12 (!n)

J
ptintef("\ncannot fird ta.a, azoulj)) s
ffluan(st dout):
If ($(!n) 52$ (!fgets (hold, 256, staln)))
f-argit
continue;
t
Cor (where = 0L, v =-1: : Were $+=256 \mathrm{~L}$)
lor
printf("\n\n*s:*, $\operatorname{argv}(\mathrm{J})$)
if (v)
17

if (m)
dapchr(loci|v)is
-1se
1se putchar (locl (v)) :
11 iv seo 0)
primef(*) tound at $\left.1 x^{*}, 10 c\right)$ j
2180
prinef(")* not lound-) ;
1
purchar (${ }^{\circ}$ nn')
daplat ((lat) (1where >> 161 (0xffffl):
printf(") 00 Ot 020304050603 -1:
printfieos og 0s Ob oc od oe of -1 ;
printef(-01234567asabadivin")
printer")

printf($\left.{ }^{\circ}-\ln ^{\bullet}\right)$;

ofts < 256: offs - -16)
1
dapcht (z);
dapanrloffa)
putcher('1'))
hold - 0 i
if $((x-26)$ of $\{x=$ (raedihold. 1. 16, irout))
1

Dedicated to the serious OS-9 user. The fastest growing users group world-wide!

$$
6809-68030
$$

A Tutorial Series

By: Ron Voigts
2024 Baldwin Court
Glendale Heights, IL

CRACKING THE OS-9 SPIEL

This month I was thinking. what should I write about? This question can sometimes be answered instantly. Occasionally, it takes thought. Many times I page through the manuals looking for an idea. Other times it comes to me like a flash. This month it hit me. Eggs! Now you think, he has gown off the deep end. The job has finally gotten to him. But there is something that OS-9 has in common with an egg. They are both surrounded by a shell.

There is a difference between the egg and OS-9. (Besides the obvious!) The egg's shell is there to protect it from the environment. The OS-9 shell is there to make it accessible to the environment. It prompts you for input. It executes command lines you enter. It allocates memory. It handles multitasking. It redirects input and output. It even has a number of built in commands. Without it, not much would be accomplished.

Many fumes If find myself referring to things that the shell does as OS -9. But in reality the shell is special program that reads and processes command lines. It brings the OS -9 system to our finger tips. The shell does this by simply printing the familiar OS-9 prompt.

059:

We input things like commands. programs and procedure files. With these we add parameters that we want to pass to the executing program. And we can append certain modifiers to be used by the shell.

The first thing entered after the prompt is the verb. This is some command or program that we want to execute. It can be any of the standard OS-9 commands. Or it can be
program we want to execute. The shell will run it as new process. It will then walt until the process is finished. It will print another prompt and walt for the next request. For such a useful program. it spends most of its time waiting.

The shell uses $\mathrm{F} \$ \mathrm{FORK}$ to create a new process. A copy of the parameter area is made. The X register is pointing to the module name in the command line. The shell appends a carriage return character to the line. The Y register contains the parameter area size. And U has the beginning of the parameter area. A call is made to $\mathrm{F} \$ \mathrm{FORK}$ and a new process is created. It is the "child" of the shell that created it. The shell or "parent" deactivates itself, going into a WAIT state.

To test this out. enter "SHELL" a few times to the OS-9 prompt. You should have at least three shell existing. The one you are in is a child of the previous shell or the "grandchild" of the the first one. (if you have entered the shell command more then twice, the lineage could go way back.) To see this enter.

OBS: ROCS

If you have a level 2 system something like the following will appear.

Notice the last shell in the list. It is process ID \#5. Its parent is \#4. the previous shell. ID \#4's parent is \#3. who also is the grandparent to \# 5. Now level I users will have a listing that looks like this.

Usr	id pty sta mem pri mod				
0	4	0	act	6	Shell
0	3	0	wal	6	Shell
0	2	0	wal	6	Shell
0	1	0	wal	1	sysGo

This listing is a little more brief, then the last one. Se how three shells have created. Again the child is \# 4. Its parent is \#3. And finally the grandparent is \#2. The previous two shells are in a WAIT state. Entering the escape twice will kill off the two youngest shells.

CUSTOMIEING INPUT LINES

Parameters may also be passed to the process that the shell started for you. Take a look at the following line.
cc test.c $-\mathrm{m}=4 \mathrm{k}$
This line has for its verb. " cc^{\prime}. This is the module that starts the C compller. Two parameters have been passed to it. They are the file to be compiled, which is "test. c" and ". $m=4 \mathrm{k}^{n}$. which tells the compller to add 4 K to the stack space. This method makes for simple program execution. For example if I am using SMO word processor. I would use a line like.

stylo column

Stylo would then execute and load the file "column". What could be easter? I have worked with other word processors that require executing them, selecting from a menu the LOAD command, and finally specifying a flename. I prefer the flest method. (By the way. Stylo will still let you select from the menu (f you like.)

In the C compller example, I redirected the error output to a flle called "errors". I/O redirection is one of the many modiflers available from the shell. Here is a more complete list.
! Pipes and Olters
\# Specify memory slze
: Command separator
\& Concurrent exccution
> Redirect standard output
< Redirect standard Input
>> Redirect eiror output

I covered pipes and filters in a previous column. But it never hurts to review. The ! is used to plpe the output of one process to another. This can be very useful, especially with filters. Here a simple example.
list mylle ! strip
The LIST command usually display the @le to the terminal screen. However, in this example, "myffle" is channeled to a process called STRIP. It removes unwanted. nonprintable characters. STRIP prints to the standard output path. So "myfile" is pirinted to the screen. minus nulsance characters.

The memory size specifter is handy for changing a process' memory allocation. All OS-9 executable modules specify the amount of memory they need. But in many cases it is a minimal amount. This modifier is useful. since it lets the shell change the amount of memory used. Take the COPY command. It uses 4 K of memory by default. Now imagine doing a single drive copy of a 20 K long file. It would require at least 6 passes, which is more work than I care to do. Append a $\# 20 \mathrm{k}$ on the line. Now it takes only two passes. Even If you have two drives, glving it more memory will definitely speed things up.

Another modifier is redirection of I/O. The standard output can be redirected to another path wilh the>. If you entered.
list myfile
the file called "myflle" in the current working directory would list to your terminal screen. However, entering it this way:
list myfile $>/ p$
will send the same flle to the printer. The standard output redirection is perhaps the most used.

The other two can prove useful also. Redirecting the standard input path can be done. It uses the symbol <. What do you thenk this line does?

solve </dO/instiuctions

It will start a process, running the debugger. "solve". Instead of taking instiuctions from the keyboard, they will come from the file "Instructions" located on /dO. If you use a trick like this remember to place something at the
end of the flle to terminate the process. The last line of the flle used by SOLVE is " 8 ". If you don't do this, the process may be run forever or untll you turn things off.

The \gg is used to redirect the error output path. Normally you want to see the errors generated on the terminal screen. But many times it ts more convenient to have error go somewhere else. When running the C compller. I will start it with a line like:

cc program.c >>eirors

When the compilation is Inished, 1 can check for errors in the file "errors". This much easler then trying to take notes as the errors scroll by.

The command separator is the semicolon. With it multiple commands can be entered on a single line. This line:
copy /dO/§el /dl/file2 : del /dO/flel ; list /dl/fle2
will copy a file from one drive to another. It will delete the original. And it will list the new one. Everyihing is executed concurrently. The shell starts the first process and goes into a WAIT state. When it is finished, it starts the next one. This continues until the entire line is processed.

BUILT-IN COMTAANDS AND OTHER USEFUL IIEAS

The shell has few built in commands. Unllke the other OS-9 commands, these won't be found in the commands directory. If you execute MDIR, you won't see them in the module directory either. They can be thought of as pseudo commands since they are really part of the shell.

Two of them were touched on in last months column. They are CHD and CHX. These allow you to change working data directorles and execution directorles. Let us say you wanted to change disks and use a different execution directory. After inseiting the new disk into the drive you would enter:

CHX /DO/CMDS

To change working directories enter:

CHD /DO

This would place you in the top directory level on the disk in drive /DO. As a rule when first booting up the system is placed into default directories. They are usually on drive /DO, although this can vary. Users with a hard disk may find themselves on /HO.

Another item the shell provides is EX. This command will EXecute a program. But it causes a process to be created without have an extra process hanging around. Here is an example. If you entered:

basic09

The shell would create the process and then go into a wait state. Now it is sitting there using up valuable memory. I you are running Level 1. your are expectally aware of the value of memory. Now execute the same using
ex basic09
This time the shell starts the process. BASIC09 and then it dies. There is small disadvantage. When exiting the process that was executed, there will be no walting shell. A new shell will be created. The new shell will be as firesh as if you just rebooted the system.

By the way. If the shell is part of your OS-9 boot. then using EX removes the shell as a process, but still leaves it in the system memory. For level 1 this means, you'll probably get back only the allocated data area. In level 2 the process area is being returned. whizh means an extra 64 K . But then again. you most likely have more memory at your disposal and are not overly concerned with the issue.

This bring us to the next built-in command. It is a very final sounding one, KILL! What it does is send an "abort" signal to specilied process. I find this one useful when I have something running as a background task that 1 want to terminate. Usually I use PROCS to get the process ID number. For example, If the process ID is 5 . I would enter:
kill 5
Process \#5 would then die. There are two things to keep in mind. First. only the user who started the process can lill it. If you're on a system by yourself, you don't need to worry about this. Second, the process will not die immediately if there is a pending $1 / 0$ operation. Say your program has gone amok and is wildly writing to the disk drive, using KlLl may not be sufficient to stop it! But in most cases. things can be stopped.

SEIPR is the last built command. It permits the changing of a process' priority. In the last example, we killed the process \#5. Maybe we only wanted to slow it down. We used PROCS and saw that it has the priority \#128. Entering:
setpr 5120
will reduce its priority. Processes with higher status will get CPU time first. I usually find things to go along a decent rate, even when multi-tasking. So I rarely change the priorities. But if you find something is bogging down the works, try changing a few processes' priorities. See what happens!
There are a few other items of interrest. They are:

```
W wait for any process to terminate
* text comment line
X abort on error
-X do not abort on error
P turn prompt and messages on
-p turn prompt and messages off
T all input lines are copled to output
-T input lines are not copied to output
```

The shell comes up in certain default modes. Normally. it will abort on an error. It prompts with the "OS9:" and prints messages. Input lines are not copied to the output. This last one means that when a line is inputted, you see it as it typed without it being reechoed.
Using these items from the list can come in handy. Consider creating procedure files. Many times a procedure file will be carrying out some simple, but otherwise boring task. For example. you might have a procedure flle that is copying the files of one directory to another. What if an error occurs? Everything after it would not get done. Toss in a - X at the start of the procedure file and things will continue on course. You might want a T at the beginning too! Then everything being done will get echoed to the terminal screen. By the way. don't forget to undo things when nnished. I will not go into any great depths on these for now. Play around with them, next time you are creating a procedure fille. See what they can do.
I considered retitling this months column. "Everything You Want To Know About The OS9 Shell, But Was Arrald To Ask." I covered it in great detall. My intention was to show how much you can do with the shell. Many times I refer to the things that OS-9 can do. In reality the OS-9 provides the means. but the shell makes them accesible. The systems has things like PIPE. PIPER, and PIPEMAN, but the shell creates the pipes for you. The system provides multitasking. The shell will set up tasks to run simutaneously. I could on, but the point is. the shell brings OS-9 to you.

DOUBLE STRKKE

This month I put together a simple filter that you might want to add to your commands directory. This filter takes a listing sent to the printer and causes it to be printed twice. The second printing of the line is done over the
printer and causes it to be printed twice. The second printing of the line is done over the first. So the line is intensified. If your ribbon is in good shape. you'll find the line is darker than the usual printing. For a finsihed copy. it will look a lot better. If you have a printer that does not have a double strike mode built in, you might find this one useful. Even if it does have double strtke, you might like this filter. My printer has a double strike mode. but I find certain other features are lacking when I use it. For example. I cannot use subscripts or super scripts. Plus, when the ribbon gets old. this will liven up the copy.

The filters in the listings are written in C. They are simple enough that they could easly be translated into assembly code and complled Into a object file. I chose C (and will do so more often), because it is universal. The code in these listings can compiled on a OS-9 level 1 or 2 system. They can easlly be used on the OS-9 68K system. In fact, any system that is capable of using filters could probably use these programs. Obviously machine dependencies and differences in compilers should be taken into acccount. If you thought a assembler to be a necessary part of your system, then a C compller should included too. More and more C will be used. Not just here. but in other areas as well.

Listing 1 shows the first attempt at double strike. It is more obvious approach. It inputs a line from the standard input path. It prints it to the standard output path. does a carige return and prints it agatn. Finally it does a carrlage return and a line feed. You must have a printer than can respond to carriage returns and linefeeds separately. If your printer desciptor has been set to execute a linefeed with a carriage return, then this must changed. This can be done with:
x mode /p-If
There are three characters of interest here. They are:

In EOL
Ir camage return
11 linefeed
It turns out that the \ln and $\backslash r$ are equivalent in OS-9. But I chose to use the more correct version. Should this be used on some other system, it should work correctly. The line:

\%os \r \%os \r \I

passed to "printf". prints the line. does a carriage return, prints the line again, does anther carnage return and a linefeed.

I got feeling gullty about the iller. It required a partcular printer. Your printer may or may not be conigurable as I have just described. So. after giving it some thought. I present the second version of the double strike program in Llsting 2. This one does not use the carnage return as before. Rather it simulates it by generating back spaces according to the number of characters in the line. This one should work on all types of printers. I used the ascil representation for backspace (Octal 10). If you printer uses something else you will have to change this.

That brings us to the end of another month of BASICALLY OS-9. I hope I have helped some of you, elightened others and given inspiration to the rest. If you have any questions. comunents or gripes send them my way. I answer all letters. But please include a self addressed stamped envelope. Untll next time, have fun!

```
LISTING 1
```



```
00002
00003 Name: Double.c
00004 Date: 2-MAY-87
00005 Author: R. D. Volgts
00006
00007 **************************
00008
0 0 0 0 9 ~ V e r s i o n ~ 1 . 0 0 ~ 2 - M A Y - 8 7 ~
0 0 0 1 0 ~ O r i g i n a l ~ v e r s i o n . ~
00011
00012
00013
00014
0 0 0 1 5 ~ T h i s ~ i s ~ a ~ f l l t e r ~ f o r ~ c r e a t i n g ~
00015 This 1s a fllter for creating
0 0 0 1 7 ~ p r i n t e r . ~
00018 Usage:
00018 Usage:
00020
00021 ligt aflle ! double >/p
00022
00023 ************************** */
00024
00025 Include <stdio.h>
0 0 0 2 6 ~ d e f l s e ~ L E N G T H ~ 8 1 ~
00027
00028 char 11ne(LENGTH);
00029
0 0 0 3 0 ~ m a l n ( )
0 0 0 3 1
00032 whilef getg(line) !- NULL )
00032 whilef getg(line) != NULL )
l1ne 1:
00034 )
00010
00022 llst ar1le-. double >/p
```

LISTING

```
0 0 0 0 1
00002
00003 Name: Double.c
0 0 0 0 4 ~ D a t e : ~ 2 - M A Y - 8 7 ~
00005
00006
00007
00008
00009
00010
00011
00012
00013
0 0 0 1 0
00015
00016
00017
00017
00018
00019
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
0 0 0 5 4
00055
00056
00057
00058
00059
|include <stdio.n>
fdeIIne LENGTH 81
|deline BS "\010" /* back space */
char line(LENGTH):
maln()
i
    while( getg(line) != NULL ) {
        printf("&g", llлe):
        backup(strler(11ne)):
        printf("%s\n", line ):
    )
1
ノ゙***************************
    Function:
    Prints backspaces according
    to the passed argument.
    ************************** */
    backup(1)
    1nt 1:
    l
    regigter int }f\mathrm{ :
    for ( j-0: j<1: j++1
        printf("*g", BS ):
)
```

ROF

Reserved as a

 A place for your thoughts
And ours....... Mac-Watch

Though underpowered, the original 128 k Mac bought gasps of amazement because of the new capabilltles it brought to to "the rest of us". One of the more exclung of those capabilltes was the ablity to easily combine text and graphics on the same page. Soltware producerssaw the appeal of text-graphics integrathon capabilltes and reacted with ever improving soltware. Graphics programs (like SuperPaint) now have better text handling capabilltles, and word processor programs (like WriteNow) contaln better graphics handling capabilltes.

Ready, Set, Go! $3^{\text {mu }}$ and its competltors cany this trend a step further by providing a package of powerful tools for easily integrating text and Imported graphics Into an attractuve page design for newsletters, bulleUns. advertisements. and similar publicatlons. The task performed by such soltware is labeled -desktop publishing". Ready. Set. Gol ts one of the two best sellers in this field. along with PageMakerns: and for the moment at least. has more power than its closest competution.

RSG3 provides for the design of pages to Include designated text and graphles areas, llow of text from column to column in anyorder throughout the document. Importing and precisely placing graphics with automatic text llow-around. text editing, and control of text aesthetles.

Page Layout

In beginning the design process, the user designates the number of rectangular grids to be shown to ald In page layout. For example, a 3×3 grad might be used for a simple 3column page of text. while an 8×8 grid might be used for a more complex page with headings and graphics.
Blocks are then placed on thls grid and designated to recelve text or graphics, or to remain as white space. An optlonal snap-to-grid feature allows layout blocks to be placed quickly and vety preclsely. The spacing between text columns or text and graphics is automatlcally set.

If the gild arrangement is not preclse enough for some users. the Speciflcation option may be used to set the exact location of text or graphics blocks in points, inches, or centimeters.
As or igfnally set up. the varlous text block are totally Independent. but RSG3 provides for linking then so that text flows from column to column. around pletures and from page-to-page in any deslred order. Text can even be made to sklp columns and/or pages or flow to earller pages. All this is accomplished merelyby clicldngon each text block with a "linker tool" In the order that text flow is to occur.

RSG3 documents may be viewed in actual size, half size, 75% size. double size or may be sized to fit the screen. Editing and rearranging of page layout may be accomplished in any view with the results if the change being instantlyvistble. Addltlonally. lacing pages may be viewed together but changes are not possible while in this view.

Filling in the Blocks...

Having designed the basic layout of the document. It's time to add text agraphics. Text can be generated using RSG3's built-In word processIng capabilities, or prepared externally. RSG3 reads documents created by Microsoft Wordm. McWrite ${ }^{\text {nh }}$, or any document saved In text (ASCII) format. This ts accomplished by selecting Get Text from the menu, then double clickIng the chosen text Dle. The text then llows throughout the RSG3 document around graphics windows, between columns, and between pages in accordance with the predetermined linkages.

Importing graphics is just as easy. The graphles window is clicked to make It active, then Get Picture is chosen from the menu. The desired graphics ille. when cllcked. Instantly appears in posttion on the RSG page. The cropping tool can be used to reposition the graphles in the graphics whidow. Also. the window can be resized to display
more or less of the chosen graphics. To add a ininshing touch, several styles and welghts of llnes may be used to separate headers, footers, and columns. Also, graphics or text areas can be enclosed in circles. boxes, or boxes with rounded corners in various line widths. Various patterns are provided for the lines. clrcles, and boxes and for tilling in the interior of graphic objects.

The real surpilse is how little time this process takes. If you know In advance how a four-pagenewsletter is to be formatted and have text and graphlcs nles ready. you can easlly set up the formulated RSG pages. import text and graphics, and add nnlshing touches in much less than 10 minutes.

Word Procesalng

RSG3 Includes fulty competent word processing capabilltles. While not as full-featured as some dedlcated word processing programs luke Word, RSG3 can easlly handle generation and editing of small to moderate documents. Features like use of clipboard and scrapbook, selecting text. deleting text. moving text. copying text. Ifnd and replace. and font and style selectlon work essenttally as they do in McWitte.

In addition to above baslc word processing lealures, RSG3 includes a 65,000 word spelling checker and a glossary function. Where thls program really shines. however. is the near-complete control over text aesthetlcs. RSG has a real-tume hyphenation function which when combined with the "Justify" option can result In very smooth text margins. While hyphenation in accordance with a table of rules occasionally results in errors, RSG compensates by proulding a hyphenation exception dictlonary. The user may putasmanywordsinthis dictionary as he likes.

RSG prourdes for right. lef. center. or Justilled format. The spacing between lines and between paragraphs can be precisely set. The tightening of spacing between letterskerning) can be accomplished automatlcally or under user control. The cursor keys on the MacPlus keyboard can be used to adjustkerning pointat a time. The
kerning function may be used on an entre heading or on as little as two selected letters. Letters may be spaced apart (the opposite of kerning) in essentlally the same manner and with the same level of control as for keming. Selected text can be shifted up or down from the baseline position by a chosen number of points. This may be accompllshed through use of a dialogue box or through use of a MacPlus keyboand. RSG prouldes for thiee styles of paragraph indentation. Each style can be set as to the number of points the allected line is ofliset.

Some roughness was encountered In the use of the word processing features. On a number of occaslons difliculty was experlenced In InsertIng the text tool into exdsting text for editing, particularly at the beginning of lines. Also, in selecting text which is partilly off-screen, the scroll function would sometimes work only in scrolling from right to left. If an Insertion point were chosen to the left of the target text. that portion of the text that is ofl-screen would not always be selected. On occasion the scroll function seemed slow and jerky compared to McWrite. These klnks will not present any major hinderence to most users since text will usually be prepared In other dedicated word processing programs with only light editing beling done in RSG3.

Revialone

Rare Is the composition that will not get revised a number of times before printing. RSG allows the user to make layout changes and Instantly see the results. Ifyou do not like the posituon of a graphics box. simply select it and move li. Not enough white space around the picture? Easy to @xd Just select the graphlcs block handle and resize it. Note that as the change occurs In the above cases, the text automatically llows around the graphics block in accordance with its new positlon or size. Pages can be Inserted or deleted. The linkage of text flow between columns and pages can be changed. If that 2.000 -word article lacks an Inch flling the deslgnated text block, the text block can be approprlately reslzed and other iller materlal put in the blank space.

The Manual

The RSG3's manual is a slick publicatlon which is more like a magazine than a typical software users' guide. The bare basles are adequately covered through a tutortal and varlous reference sectlons. The RSG3 disk contains text and graphics nles to support the user In setting up a the sample document for practice. After presenting the Introductory materlal in stylish manner, the utulity of the manual drops off significantly. and the discussions of more advanced program capabllites are quite sketchy. The 4 -page chapter on Iayout Basics is especially lacking. Most users will be diaapointed with this manual.

Printing

RSG3 supports printing on the Imagewriter, the Laserwiter, or any other typesetter or printer that understands PostScript. Programming directly in PostScript is also supported.

Will It Fit Your Mac?

RSG3 will run on any Mac with at least 512 k . With dumculty. It can be made to work on systems with only one disk drive. The spelling checker cannot be used with single disk systems. RSG3 is not copy protected.

Should You Buy It?

RSG3 is a hlghty competent desktop publlshing program with enough power to fully meet most users' needs. The power is complemented nicely by its ease of use. For those needing a desktop publishing program which they can learn In a weekend and use to turn out truly professlonal results right away. RSG3 will be a good cholce.

James Law

1806 Rock Bluif Rd.
Hixson. IN 37343
(615) 842-5471

A Tutorial Series

By: R. D. Lurie 9 Linda Street Leominister, MA 01543

A PROGRAMMING PHILOSOPHY

I used to wander why I never heard much about long and complex programs being witten in FORIH. Well, I think that I now know the reacon Of course. large appllcation programs have been, and are being written in FORIH, but it is usually not necessary for the average task to be such a big deal.

In cuntrast to most other languages FORIH, by its very nature, encourages you to write short. onncise programs which you can later chain together to acoumplish sarne majos undertaking I guess that C is the nearest onventional language to FORTH in maldnig it easy to chatn short progams by the use of plpes. etc. FORIH doesn't have the plpes of C. but it doesn't really need thern

As an example of what I mean, consider the following case hustory. I have been rewiting ny spelling checkes in FORIH. canveruing it from assembly language. The dictionary consists of 14 lists of words in strict alphabetical order. Each list holds words of only one length. such that "RaM" and "ROM" are in the same list. but "key" and "keys" are not in the came list. I found that I could search the fastest In the least amount of RAM by using thls dictionasy structure.

In malding thls comversion. I have modified the dictionary staucture by removing all of the awhite space" from within each list of words. Sometmes. the white space was a blank and sometimes it was a carrage return. I could have removed any of these with an editor. but the obvious way to do ft was write a program to do so.

I also needed to count how many words there were in each list beginning with each letter of the alphabet. Alter urying to do it by reading the screen and getting a diflerent count each time. I wrote another progran'strictly for this purpose.

I needed to make several other changes and notations about each lise. so I wrote a litte program to do each one separately, as I needed the infonnation.

All of this could have been combined mto one progam which was much shorter than the sum of the lengths of each of these ilttle qutlity' pio-
grams: but it would have talen me much longer to write and debug tt than all of the short ones did. Bestes, I now have several additions to my toolbax ready the next unne I need to do some odd-ball job.

In summation nty FORIH proyrmming phllosopty is to witie several shoit programs rather than one long prugram whenever passible. Furthemore. I never throw away anty debugged deflnituon, since I will surely lind more use for it in the future.

TWO USEPR UTITIIRS

I would like to share with you a couple of onescreen utillies that I And moysels using quitt a lot. QX

The Orst one is called $Q X$ and is shown in screen \#62. This was inspired by the QX utlity supplied by LMI in their Z-80 FORIH: however I have made a couple of changes in tit which make it fit more comfortably inlo my progranoning habtls. QX stands for Quick indeX and produces a sureen index in a compressed form. Figure 1 is an example of its use with the program $\mathrm{NO}<\mathrm{SP}>$, which I will describe later.

One of nry matn uses for QX is in Onding the Orst empty sureen in a block of screens that I am wording on. If I am wrting a long program. I make a habit of reserving blocke of screens for specinc job calagortes, such as lle 1/O and help screens I need to know the nexd avallable sureen in a block when I am ready to add another help sureer etc. $Q X$ is very quick at doing that and usually does not cause something useful to scroll aff the screen while it ts warking Of course, QX does the tradt thanal jobs that INDEX does, just in less space.

QX is called in the tradmanal FORIH manner.
cirst-screents <last-screen\#> QX

Since the algorithm may not be immedintely obvous from the lisung (screen \#62). I will spend
some ture oplaining tt. The inttal CR simply forces printing to begin on a fresh line. This foroes everything to line up in neat columns, which makes the display easter to read.

Une \#2 may be the most confusing part of the defnition The initial 0 seves to inlualter the colunin counter, which never leaves the Data Stack The definition probably would have been easier to follow if a VARIABLE had been assigned for the counter, but I wrote the definttian long before I ever thought that it might became the subject of a descipulan in 68' MJ. Beardes, this is a good place to lllustrate a Data Stack position being used to hold a curnter.

The ROT ROT in the rest of line \#2 stmply shults the vanous numbers so that the 0 (counter) winds up at the bottoon of the Data Stack

The phrase $1+$ SWAP adds on to the value of the last screen number and then exchanges the two numbers so that they are in the proper order for the DO ... LOOP .

By setting the DO ... LOOP tinits in this way, the loop tridex. I assumes the number value of the destred screen Therefore. I can be printed with a formatting statement 4 R so that it ahtoys occuples 4 spaces, might justund. SPACE skips one space as a further ald in farmatting.

The real work is done in line \#5. I BLOCK loads the proper screen into RAM and leaves its starting address on the Data Stack This address is used wth the 14 (as the count) as the parameters for the TYPE crrmand The count of 14 is not truly arbtrary. strice it produces the mest infonnation in four cahmms on and 80 -character screen If you change th, be sure to adjust the number of columms printed: otherwise. you can get quite a jumbled mess for you display which you will not be able to read.

Unes \#6-木9 act as a column counter. I needed this because one of my printers cannot be made to do a carrage-return without an explict instructhon if you use an 80-columen display and a printer which autconatically returns afer printing 80 columns. then you do not need these lines.

DUP makes a copy of the cohrmin ounter. which is now at the top of the Data Stack 4 MOD divides the count by 4 and saves the cemainder on the top of the stack The romainder is incremenied by 1 and comprared to 4, the desred number of cohmms. Rermember, the resulis of 4 MOD must range 0-3. I put in the $1+$ so that I could maie the comparionn diracly to the destred number of columms. so that I would understand the algonthm several months later (llke now, for instance).

I any case if the incrmented counter does equal 4, the IF parion of the ornditional phrase is exented. This coristres of sending a CR to the display. dropping the ald value for the counter. and staring a new count at 0 .

Othenwise, the ELSE part of the omiditional phrase is exacuted. In this case, the column count is tnatenented by 1. and a SPACE is sent to the display for formatting purposes

The TBRK and RUEAVE are sornewhat tmplemensation dependent. th that they are not anmon to all versors of FORIH TBRK tests the keyboand for a key-press, and TLEAVE extls the DO ... LOOP if one is detected. These two are not neamsary, but do provide a corvenient panicbutton

DKOP clears the no longer needed counter from the Data Stack and CR forces a new line, again in the interest of neatnese.

gr

This utlity was onginally witten as a means for getting the madmum number of pograming lines displayed an the screen or printed on a page without having to male a specially edited oopy of consecutive sertens. QL (shown in screen \#61) produces the type of output shown in Fgure 2. Essentially, 8L strips all blank lines from a screen This makes it harder to read and understand but it cuts way down on the number of lines requlred to show a group of screens Nomally. I prefer to have only one deinition on a screer and this results in a lot of ermely lines. QL gets rid of these and glves me a nloely candensed Quick Ist.

As with 8L QX uses the tradimanal FORTH crrmand line:

<frst-screen\#> <last-screen\#> QL

Une \#l seves to print a heading which contatrs the current date. .SYS-DATE is smmar enough to .DATE ($68^{\circ} \mathrm{MJ} .11 / 86$) that I will not take the space to describe it here.

Lne \#2 sets up the "outside" DO ... LOOP which has the screen numbers as its parameters. Some of you may And it confusing that the same loop undex is called I in line \#3 and J in line \#5. This is the FORIM comvenmon that the index for the currently executing DO ... LOOP is called I . and the tndex for the next outer DO ... LOOP is called J. Same versions of FORIH do not have access to this outer bop counter, so you will have to keep it in a separate variable. On the other hand some FORIHs, such as PF9 allow one mare level of nesting avallability by having a K. By the way, this has nothing to do wth the actual number of DO ... LOOP is which can be nested: ti just refers to how many indices that can be calied from withen a given DO ... LOOP .

The screen rumber is pitnted in line \#3 in the purely corventional manner.

The DO ... LOOP in line \#4 is set up to print a maxtmum of 16 lines. Al least. it will certalnly look at 16 lines, even if none are printed.

J BIOCK bads the current screen into RAM buffer from disk and leaves the starting address of line fo on top of the Data Stack I is the curient line number, so I 64° mulliplies the line number by the length of a line, and + adds this number to the buffer address atready on the Data Stack. In thls way, each tteratlon of the inner DO ... LOOP places the starting addriss of the cursent line onto the top of the Data Slack

The 64 -TRAIIING tells the computer to start counting back from the address on the stack plus 64 untll the Arst non-blank is encountered. When this happens, leave the number of rematning characters in the line as a count on the top of the Data Stack it is a pecullartly of -TRAIUNG that the address which was already on the Data Stack is not lost. which is an ecceppion to the nommal actulty of a FORIH ward

DUP males a copy of the count lell by -TRAL ING to be used as a Dag for the following IF ... ELSE ... THEN condrional. Strice 0 is (denitical to FALSE, and non-0 is idenlical to TRUE, the count. itself, can be used as the lag. This is considered gaod FORIH practice but can be confusing to begrmers We needed to duplicate this number. since it is to be used as the count for a TYPE onrmand later on

If the count was greater than 0 . line $\# 7$ prints a formatted line number as three spanes, dight jusuned. A SPACE is then printed as part of the output formatting. TYPE then purns the charac ters which were previously found. A CR fintshes the output for this lune of text.

Had the count been 0. the ELSE branch of the condminal would have used 2DROP to clear the address and count for this line from the Data Stack.

Rerember that two DO ... LOOP 's were nested, so we need to end the defintitn with LOOP LOOP ;

NO-<SP>

I won't spend a bot of time with a detalled desuiption of NO- $\langle S P\rangle$, since virtually all of the defintions have been desertied in a prevous cahmen Howeve, I do want to point out the major features of the program and give a short descripthon of the algorthm.

As I mentloned prevlously, the purpase of NO. <SP> was to remove all whitespace" from a list of words, but, of course, it would woik with any text file.

The program reads the me into RAM for proc-
escing. This is easy, because I have plenty of unused RAM with this short program

I need two pointers and two counters. RPONTER is the read pointer and W-POINTER is the wate-polnter. TALLY counts the total number of characers and DROP-TALLY counts the whitespace characters as they are sldpped. A character is read at R-POINTER and R-PONTER is וncremented. The character is checked for whutespace" and gnared if it is a $\langle S P\rangle$ or a $\langle C R\rangle$, and DROP-TALLY is Incremented.

If the character is not a <SP> or a $\angle C R$, it is stored at W- PONTER and W-PONTER is incremented.

Notbe that R-POINIER gradually drifts away fram W-POINTER by the count storal in DROPTALLY. This difference is eventually used by CLEAR-SURPUUS to erase the surphis characters left after NO-<SP> has done the IIrst part of its job.

Finally, the intsied lile is writien back to disk

Thls month we will enter the example program given last month and debug It . followed by making a binary fle that can be run as a command from the shell.

Change to a directory that you wish to use for this example and enter the editor by typing :
\$ se
This will start the editor and proulde you with a blank screen, enter:
new exl
You will now glven a line number of one (in half brightness if your terminal supports this) and the cursor will be at the first position of the llne. Start typing the first line of the program, terminated by a carrlage return. If you have ever used Stylograph then you should pick up the use of this editor quite quickly. as they share many of the same features. You can refer to the reference sheet for the editor to learn the editing commands. you can also use the built In help facility if you forget what control key to use.

You can Indent the program as shown, or use any other method you feel comfortable with. Many people put reserved words in upper case. but it does not matter to the compller.

When you have ilnished typing in the program, go back to command mode. A smart first step is to save the program, simply enter :
\mathbf{s}
\mathbf{s}
Which ofll save the program under the default name of "ex1". To check for syntax errors (such as typos), enter :

$\$ p \mathrm{c}$ - ${ }^{\text {(18) }}$

This will compile the program in the edit buffer (thats what the "©" means) but will not generate object code or a llsting. If the compiler finds any errors. it will show where the error is (pointing to It's best guess of the Item In error) and lell you what the error is. You can continue with the compllation by entering any character other than " Q " (or " q "). Aiter the end of the compllation, or if you enter g after any error, you will be returned to the editor with the cursor pointing to the location of the last error. You can now make the necessary changes and then enter control N to move the cursor to the prevjous error in the file until there are no more errors in the stack. Both the compiler and the assembler can stack up to 20 error locations in this manner.

When you can complie the program with no errors. you are ready to move to the testing stage. On your successful compllation. note the value it shows for "stack" at the end of the compllation. Save the corrected version of the program and exit the editor by entering save and quit :

In order to take advantage of the Integrated package it is necessary to setup a control ille that contains all the information needed to complle, assemble, debug, and link your program. The linkage creator is the program that produces this control flle. Enter the ilnkage creator by entering :
\$ lc exl
The linkage creator will tiy to open the complled relocatable object code for the program "exl" to tiy to determine the stack size required. Since we haven't actually produced this ile. It will inform you that it can't determine the stack slze. No problem, since you remembered the value from 2 paragraphs above, ilght?

There are two main modes. automatle setup. which is designed for programs that will run under OS-9, and the second mode. which is designed for stand-alone programs. This program is to run under OS-9. so we select automattc mode. In the example program there are no buflers that might need to be expanded, so we can set a ilxed stack size. Other prograns, especially those that use the heap. need to have a way to specify the stack/heap size when they are run. This is done using the " 2 " command line option, as is done for many of the programs in the pascal package. Since we do not need this flexdbility, we will answer NO when asked if we want to handle the 2 optlon. We will next be prompted for the stack, heap, and vartb size to allocate, since the compller sald that we needed $\$ 2 \mathrm{FC}$ bytes, lets specify $\$ 400$ bytes to leave room for operating system calis and such (do not enter the " $\$$ ". It is assumed).

We are next prompted for the librasy directory to use. If Instalied as suggested, we would spectly "/dd/". We are next prompted if we want to load other pascal modules. for modular programs. This example is very small and only needs the main program, so we answer with a cannage return. The linkage creator allows up to 40-80 character lines to spectfy modules. which should handle even the largest project. In a simular manner we are prompted for additional assembly language files, we have none, so we answer witb a carrlage return. Next, additional librarles can be specified, this would Include such tiems as graphics or floating point processor llbrarles. We don't have any, so we answer with a cannage return.

We next are asked for linker command line options, lets say we want the load map to be written to disk, all we need to do is specify the fle name as the command

Une optlon. answer wilh "exl .mp". "Map optlons" allows us to spectify the fornat of the load map. lets use " F " for a full map. Next we are prompted for Include flles, we aren't using any, so answer with a carrlage return.

Next we have a prompt for debugger command llne optlons, the small example should not require any speclal memory handling. so we answer with a carrlage return. The next prompt is for the target debugger. which we will not be using. so just answer with a carrlage return.

The next two prompts allow multiple options, one option set per line. The first is for the compller, thls is used to provide us with a menu of standard options when compiling from the pascal shell. We know we will want to compile the example for use with the debugger. so lets make the first line "-d".

Later, we want relocatable object code so we can generate a loadable OS-9 module, so make the second line "-r". We would also like a listing, so we might have something llke "-lp62ftw96/p". wlth varlances due to your pilnter specificatlons, of course. We can combine generating code and listing of course. Into something like "-dlp62flw96/p". When you are done putting in optlons (10 maxdmum), just enter a canlage return. The same procedure is used for the assembler, with likely options of "-o". "-lp62flw96/p", and "-olp62ftw96/p". Last. we are prompted for screen editor options. normally the only time this is done is for large modules that need additional screen editor bulfer space, enter a carriage return for this example.

The linkage creator now writes out the control ile. called a "shell fle", which has a sumx of ".sf" and the same fle name as the pascal source "exl.sf". It also writes an assembly language source fle that is used to run the pascal program from OS-9. This file has a sufluc of ".ps". If we were writing a sland alone program the code from the compiler is the same, only this assembly language nle ts changed to operate under the different environment. we will cover that another month. The file "exl.ps" is then assembled into "exl.pa". ready for Unking when we get to that step.

As a sumnary of what was entered for the linteage creator:
OmegaSoll Unkage Creator Version 1.21
Copyright 1987 by Ceituled Software Corporation
Clobal stack slze not deternined
auto sety? y
Process 2 command line option 7 n
Stack, heap, and Varlb slze : 400
Lbrasy directoryname : /dd/
Other pascal nles:
Other assembly files :
Other Ubrary nles :
Unker command line Info: exl.mp
Mapopttons: f
Include illes :
Debugger options :
Target debugger optlons :
Compller options:-d
Compiler options : - r
Compller options: -lp62ftw96/p
Compller optlons : -dlp62лw96/p
Compller options :
Assembly optlons : -o
Assembly optlons: - Ip62tw96/p
Assembly options : -olp62fw96/p
Assembly options :
Editor optlons :

OmegaSoll 68000 Assembler version 1.21
Copyright 1987 by Certlled Soflware Corporation
Errors : 0 Code: 00AN Data: 0000 Varib: 0000 Table 14 of 944

Code assembled
$\$$
The next step is the Pascal Shell program which can be started by entering:

\$ps exl

It lirst reads the "shell Ile" to build a list of pascal. assembly, and include files. This is a menu driven program with the following options:

Edit module
 Complle module(s)
 Assemble module(s)
 Debug
 Link
 Run Chaln
 Background chain Idle
 Exit Pascal Shell
 Target debug
 Execute linked program
 Beep on termination
 Restart
 Review
 Abort background
 Pass command line to shell

You use the same keys for cursor movement as you did for the editor (setup during Installation). Hit a carrlage return to make a selection from the menu. Rather than getting stralght down to business, lets spend some tume learning what each of the selectlons will do for us.

Edit module - you will be shown a list of files that can be edited. These will Include pascal source, assembly source, and Include Ales, which were specifled In the linkage creator. The nornal cursor control keys are used to move fiom one nle to another. Enter a carriage return to exd back to the main menu. Enter a " S " to edit the selected Ile.

Pascal Nles will have a "P-" In front of them. llkewise. "A-" for assembly, and " f -" for include and misc. nles. When you are done ediung the selected ilie, you will be back In this menu. you can enter "F" to flag the nle as modilled, which will change the " $x-$ " to " x "". There ts also an automatic mode that will flag files that have been modifled since the last "chain". or based on the update ume of a nle, olrnilar to a "make" utlity function.

Complle module - you will be shown a llst of pascal source itles, for each nle you can sklp It, or enter " S " to select It for compllation, or " $\mathrm{R}^{\prime \prime}$ to reset It so It will not be complled. You can also enter "A" which will set all flagged files for compllation. These compllations will be queued and done In the "chaln".

Assemble module - same as compile, except you are shown a list of assembly source nles.

Debug - Puts the debug command Into the queue so you will enter the debugger afler the selected illes have been complled/assembled. You can use the default command line optlons, speclfy new ones, or cancel queuling of this command.

Link - stmilar to debug, will run the linking loader after compilation and assembly.

Run Chaln - This is a mulliple step operatlon. It Irat complles all selected pascal source flles. then assembles all selected assembly language files, and then does the link, debug, or target debug tf they were selected. If at any step an error occurs. It will stop and retum to the maln menu. You can then ©x the erior, and run the chain agaln. It will restart at the step that caused the error.

Background Chaln - Thls will do compllations and assemblles in background. allowing you to do further ediung on other flies in foreground. Like the foreground chaln. if an error occurs. it will stop and display an "error status". When it is done, you will find on RAM disk (or wherever you want (t) a nle that contalns all of the slgn-ons and error messages (If any) generated by the compllations and assemblles. This tile name will show up on the edit file menu If you need to Inspect it.

Ext Pascal Shell - returns to OS-9.
Target Debug - simllar to debug, will run the target debugger afer compllation and assembly.

Execute linked program - will execute the linked program, you will be prompted for a command line to use.

Beep on termination - allows enabling of a "reminder beep" at one second Intervals once the chaln has terminated.

Revlew - shows what will occur when the chaln is run (compllations, assemblles, etc.).

Restart - resets all queues and re-reads the shell ille. Useful after you edit the shell @le for any reason.

Abort Background - stops the background chaln once It has Antshed the step it is doing.

Pass command line to shell - allows you to run OS9 commands from withln the pascal shell (directory listings. etc.)

Our flrst step will be to complle the example program for use with the debugger. Position the cursor to "complle module" and enter camage retum (CR). You will be shown the default opllons, move the cursor to "$\mathrm{d}^{\prime \prime}$ and hit carnage return, thls will move you to the lile selection menu. The cursor will be posilloned to "exl". enter a " S ". Enter a CR to exdt back to the matn menu.

Position the cursor to "debug and enter CR. We will use the default command line optlon. so enter CR. Posillon the cursor to "Run chaln" and enter CR The compilation will be done. and then the debugger will be started and the fle loaded. Al this point we will be In the debugger "Oler" mode. Enter "pr" followed by CR to enter "pascal" mode.

Since thls program uses the standard input and output paths only, running it is veiy simple. Just enter " C " and a carriage return. As a slmple test. enter :
test: do.b $\$ 400$. fll out the buffer
It will then print :
test ds.b $\$ 400$ - flll out the bulier
Enter:
end
followed by a control Z and then carrlage return. Thls will generate an EOF which will stop the program. To have it do something useful, we need to redirect the standard Input and output paths. this is done with the "set command llne" command, enter :
$P>\mathrm{sc}$
\$> </dd/dels/funcs.a >/dd/pde[/funcs
Thls will convert the funcs.a defs nle Into a RA compatible Include file called funcs In the pascal defniltion directory "PDEF". Enter " $\mathrm{G}^{\prime \prime}$ agaln followed by a carrfage return. It will then run the program, but you will not see what is golng on since the output is redirected to a fle.

There are many powerful debugging capabillties avallable, both at the pascal and assembly language levels. we will go over some of these next month. Next, enter Q with a CR to ext the debugger. which retums us to the Pascal Shell maln menu. Co back and select compllation agaln for ille exl. except select the option ".r". this will generate relocatable object code. Then. Instead of selecling debug. select link. Run the chaln. It will complle the example program generating relocatable object code. and then link it with the stack setup code (exl.ps) and the runtime librarles to generate Ile file "exl.lo" In the current data directory.

You will then be back in the maln pascal shell menu. To try the linked version of our example. select "execute Inked program", and when prompted for the command line, enter : "</dd/defs/lo.a >/dd/pdef/lo" so we will convert the lo.a ille. After thls is done. you might want to add this little utllity to your commands directory. Select "pass command ..." and enter :

Soopy exl.lo /dd/cmds/exl

You can then run thls program any time you want by using the name "exl". You can now exdt the pascal shell by positlonlng the cursor to "Exdt Pascal Shell" followed by a carrlage return.

Note that the file lo.a contalns two symbols with the same spelling. PD_NAME and PD_Name. thls does not cause a problem in R68 because it follows the "C" convention of treating upper and lower case as different. This will not work for RA because it uses the Pascal conventlon of treatIng upper and lower case as the same (except in string literals). I suggest changing PD_Name to PD_NameP.

Omegasoft is a regtstered trademark of Certlled Software Corporatton, OS.9 and OS-9/68000 are trademarks of Microware Systems Corporation.

EOF

The following is the beginning of a continuing serics. Most of you will remember Bob from his series of letters ar XBASIC. If you like it or want more. let Bob or us know. We wast to give you - what you mass!

PREFACE

Be of good Cheer

The Mathematical Design of Digital Control Circuits

By: R. Janes
Micronics Research Coup.
33383 Lynn Ave, Abbotsord, B.C.
Canada V2S 1E2
Copyrighted \bigcirc by R. Jones \& CPI
The major part of this tutortal is based on a series of lectures I began in the early 60s. These 2 -hour lectures (covering a period of 25 or 26 weeks) were delivered to groups composed of a mix of engineers, technicians and non-technical persons, some with veiy litile knowledge of mathematics and others with an extensive grasp of the deepest aspects of the subject. And yet, because the "math" of digital logic is so unlike ordinary mathematics. It could truly be sald that they all started off on an equal fooling.

Therefore to those of you who may be wondering whether you'll be able to master the lessons to come. I would say "Be of good cheer! If you can count to 100 or so, and have a fairly logical mind, you can do it." Just be sure NEVER, EVER, to move ahead untll you have mastered each stage, and above all - and I cannot stress thls too strongly - DO the exercises and self-tests I shall be providing along the way.

The trouble with "logic" is that very often the subject-matter is so logically apparent that the student tends to say to him/herself "Yes. I see that. It's so obviousl" and to skip giving a point the deep attention it really deserves. Words are treacherous - so examine each statement carefully before accepting it as "logically so".

For example. let's take a look at the following set of logical statements. They also happen to be mathematical, but let's concentrate on the "logic" :

Example

1. Tom has 95 marbles.
2. Dick has 4 more marbles than Tom.
3. Therefore Dick has 99 marbles.

Now, If we know for sure that Statement 1 ls TRUE, and that Statement 2 is TRUE. then no-one will deny that Statement 3 MUST also be true. Obvious? Take a second look before saying "Yes". If we're all agreed, let's move on. Most folks would also concede that the whole stiucture of this set of statements is consistently and logically TRUE. In that we don't necessarily have to relate to Torn and Dick. We could replace Tom' with 'Mary'. 'Dick' with 'Santa Claus' and 'marbles' with 'toys', and our logical conclusion would stlll be TRUE. Or how about :

1. Uncle Fred has 95 dollars.
2. Aunt Minnle has 4 more dollars than Uncle Fred.
3. Therefore Aunt Minnie has 99 dollars.

Again. provided that Statements 1 and 2 are TRUE. then It follows that Statement 3 MUST also be true. As long as the substitution of 'Uncle Fred' for Tom', 'Aunt Minnie' for 'Dick' and so on, is consistently carried out, the logical conclusion remains TRUE.

Sculptor

THESCULPTORSYSTEM Suthor combires a powertd iovirth genernton

 productity Wibs Sculpert you 1 find that what uned to taice t a lew houn
AN ESTABL ISHED LEADER
Sculptor was developed by profensionald who needed a soltwore developenent too wish cappotilites that were not
sualable in the software market It was liunched in 1981 and avalable in the software market itwas lunched in 1981 and whce then, weth heedtbach from an ever increauing cuatomer one of the most adaptable. fast and above al triable sytems an the market today
SYSTEM INDEPENDENCE
Sulpor is avalable on mary diferent mactiones and for Most operating yytems. includingMS DOS Unow Xeria and VMS fie ecemive lit of supported hastware ranges fom umal personal computers, trough malt uner mikion up to porled to newe matema
APPLLCATION PORTABILTTY
Mobly of sothuare between diferent entronnent is oneol Scultor imapr adventopes You can devilop applasions progams - nin them on a large milt uver sviem For witware warters dian means thear their products cat reach a under markeplace than ever belore It lis fie whem rakes Sculptor so appealing to value added reseler. arothene manutacturen and sothuare developers of all

SPEED AND EFFICIENCY

Sculptor uses a fast and ptoven indesing techrique whikh provide intant vetrieval of data from eve the lerpest of tien culptor s fourth geneeration language is conpled to a compent.

INTERNATIONALIY ACCEPTED
By uing a ingle contgarabon viliy, Scupece can prowni

THEPACKAGE

A A pericil that mower sene
O A periock nownither a Reper gomerator Mens sytum
g Sury futily pron
0 Sample proprami
For revile prox
nominal cort
Facts Features

Full OFM \& Dealer Discounts Available!

MUSTANG-020 Users - Ask For Your Spectal Discount!
Tandy CoCo III Special - Reg. \$595 * Special \$389 *

	*	**	***		*	**	***
MUSTANG-020	\$995	\$199	\$595	PC/XT/AT MSDOS	\$595	\$119	\$595
OS/9 UniFLEX 6809	،	"	"	AT\&T 3B1 UNIX	"	"	"
IBM Compatibles	"	"	"	SWTPC 68010 UniF	\$1595	\$319	\$797
Tandy CoCo III	Special \$389.00			SWTPC 68010 UNIX	\$1990	\$398	\$995

> ... Sculptor Will Run On Over 100 Other Types of Machines ... Call for Pricing ...
> !!! Please Specify Your Make of Computer and Operating System !!!

- Full Developement Package
- Rus Time Only
*•C Key File Librart

*OS-9 is a Trademark of Microware and Motorole-*FLEX and UnIFLEX are Tradernarks of Technical Systems Consultants-*SK*DOS is a Trademark of Star-K Software Sytems Corp.

DISASSEMBLERS

SUPER SLELTIH fron Computer Systems Consultants Interactive Diesssembler, extremely POWERFUL! Disk File Binaty/ASCII Examine/Range. Absolute or FULL Disessembly. XREF Gencrator. Iabel "Nane Chinger". and Files of "Sundard Labed Nemes" for different Operating Systems.

Color Computer SS.SO Bur (all w/ A.L. Source)
CCO (32 K Req'd) Obj. Only \$A9.00
F, S, $\$ 99.00$ - CCF, Obj. Only $\$ 50.00$ U, $\$ 10000$
CCF, wSonce $\$ 99.00$ O. $\$ 10100$
CCO, Obj. Only $\$ 5000$
OS9 68K Obj. $\$ 10000$ whSource $\$ 20000$
DYNAMITE + . Excellat standard "Batch Mode" Disassembler. Includes XREF Cenerator and "Siandard Iabel" Files. Special OS-9 options w/ OS.9 Version.

CCF, Obj. Onty \$10000-CCO, Obj. \$ 59.95
F. S. " $\$ 100.00$ - O. object only $\$ 15000$
U.* * $\$ 30000$

PROGRAMMING LANGUAGES

PI/9 from Windrush Miaro Systans -- By Gaten Troa. A combination Editor Compiler Debugger. Direat cource-to-object compilation delivering fast, compact, re entran, ROM-able, PIC. 8 \& 16 -bil Integers \& 6.digit Real numbers for all real-world problems. Direct ansol over AIL System recources, including internups. Cosprehasive libray suppon: simple Muchine Code interfsce; appty-step race for inslash debugging. 5000 page Manull with tulorial guide.

$$
\text { F, S. CCF - } \$ 19800
$$

PASC from S.8. Media - A FLEX9. SK•DOS Compiler with a definite Pusal "flavor". Anyone with a bia of Pescal exprience chould be able to begin using PASC wo good effect in short order. The PASC package cones complete with three sample progems: ED (a syntax or structure editor). EDITOR (a simple, public domain, screen edizor) and CHESS (a simple chess program). The PASC package come complate with source (written in PASC) and dooumentation

FUX. SK•DOS $\$ 9500$
WIIIMSICAL from S.E. MEDIA Now supports Real Numbers. "Structured Progrumming" WITHOOIJT losing the Speed and Control of Assembly I anguagel Single-pass Compiler features unified, user.defined VO; produces RDMable Code; Procedures and Modules (including precompiled Modules); many Types" up to 32 bit Integers, 6-digii Real Numbers, unlimited sived Anays (vecon ouly), Incernsp handling: Iong Varibble Nemes; Variable Initialization; Include dirsaive: Canditional compiling: disect Code inserions convol of the Suck Pointer, exc. Run-Tume subrovaines insered us called during curpilation Normally produces 10% less code than PU9.
F. S and CCF . \$195.00

KANSAS CITY BASIC from S.E. Medin - Basic for Color Compuler OS. 9 with many new commands and sub-functions added. A full implementation of the IF-THEN-ELSE logic is includod, allowing necting to 255 levels. Strings are suppored and a subset of the usual string funaions such as LEF7\$. RIGHI S. MIDS. STRINGS, etc. are included. Variables are dynamically allocared Also included are additional fealures sucti as Preek and Poke. A must for any Color Compuser user ruming OS-9.

CoCo OS. 9539.95
C Complier from Windrust Mlaro Systems by James MoCoah. Full C for FLEX, SK ${ }^{\bullet}$ DOS excepe bil-fields, including an Assembler. Requires the 7SC Relocaling Aesembler if user desires to implement his own Libraries.
F, S and CCF . $\$ 295.00$
C Complier from Introd - Full C excepe Doubles and Bit Fields, streandined for the 6809. Reliable Compiler. FAST, efficient Code. More UNDX Compauble than mosl
FLEX, SK*DOS, CCF, OS. 9 (Level I/ ONLY), U . $\$ 57500$
PASCAL Compller from Lucldate .- ISO Based P.Code Compiler. Designed eppecially for Microornputer Systems. Allows linkage to Assembler Code for maximum flexibility.

F, S and CCF 5". $\$ 99.95$ F, S 8". $\$ 99.95$
PASCAL Complter from OmegaSon (now Cenified Softwarc) -- For the PROFESSIONAL: ISO Based, Native Code Connpiler. Primarily for Real-Tirse and Prooess Control applications. Powerful; Flexible. Requires a "Motorols Compatible" Relo. Asmb. and Linking loseder.
F. S and CCF - $\$ 42500$ - One Year Mains. $\$ 100.00$ OS. 968000 Version. $\$ 90000$
KBASIC - from S.B. MEDIA - A "Nalive Code" BASIC Compiler which is now Fully TSC XBASIC compatible. The compiler compiles to Assembly Language Sonce Code A NEW, streandined, Assembler it now included allowing the ascembly of LARGE Compiled K-BASIC Programs. Conditional assembly raduces Run-time package.
FLEX, SK ${ }^{\circ}$ DOS, CCF, OS. 9 Compiler IAssembler $\$ 99.00$
CRUNCH COBOL from S.E. MEDIA - Suppone large subse of ANSU Level 1 COBOL with many of the uscful I evel 2 features. Full FLEX. SK*DOS File Strucrures, including Rendon Files and the ability to process Keyed Files. Segment and link large programs at runsime, or implemented as a set of overlays. The Syatem requires 56K and CAN be run with a single Disk Systern. A very poputar producl.

FLEX, SK ${ }^{\circ}$ DOS, CCF - $\$ 99.95$
FORTH from Stearn Electronks - A CoCo FORTH Programming Language. Tailored to the CoCol Supplied on Tepe, transferable to disk. Writuen in FAST MD. Many CoCo fundions (Gıaphies, Sound, ac.l. Includes an Editor, Trace, ele. Providea CPU Cary Flag eccessibiliy, Fast Tad Muhiplexing, Cen Intemupt Manding, at. for the "Pro". Excollere "Laming" sooll Color Conpuce ONLY - 558.95

FORTHBUILDER is a stand-alone targa compiler (crosscompiler) for producing custom Forih systems and application programs. Alf of the 83 -standird defining words and control siructures are recognized by FORTHBUILDER.
FORTRIBUILDER is designed to behave as much as possible like a resident Forth interpicter/compiler, so that most of the established techniques for witing Forth code can be used without change.
Like compilers for other languages, FORTIIBUILDER can operate in "batch mode".
The compiler recognizes and emulates utget names defined by CONSTANT or VARIABLE and is readily extended with "compite-time" defmitions to cmulate specific target words. FORIHBUILDER is supplied as an execuable connmend file configuied for a specific host system and target processor. Object code produced from the accompanying model source code is royalty-free to licersed users.
F. CCF, S - $\$ 99.95$

DATABASE ACCOUNTING

XDMS from Westchester Applied Buslness Systans
FOR 6809 FLEX.SK ${ }^{\bullet}$ DOS($5 / 8^{\text {¹ })}$
Up to 32 groupstields per record Up to 12 character filed namel Up to 1024 byie records! User defined scroen and print coniroll Process siles! Form files! Conditional executionl Process chainingl Upward/ Downward file linking! File joining! Randon file vinua! paging! Builh in utilitiesl Buile in tex: line editarl Fully session orientedl Enhanced formsl Boldface, Double widh, lialics and Undenline supported Writeon in compact stuctured assembierl Insegrated for FAST execution]
XDMS-IV Data Management Systen
XDMS-5V is a brand new approach to data management. It not only permits users to Cescrite, enter and rett eve data, but also to proceas enkise files producing customized reports, screen displays and file output. Processing can consist of any of a set of standand high level furctions including record and ficid selection, sorting and aggregation. lookups in other files, special processing of reaord subsets, custom repor formating, tocaling and subtrating, and presentation of up to three related fites as a "database" oll user defuned output repons.
POWERFUL COMMANDSI
XDMS-IV combines the functionality of many popular DBMS sofiware systems with a new easy to use command set into a single integrated package. We've included many new features and commands including a set of genesal file utilities. The processing cornmands are Input-Process-Oviput (IPO) oriene which allows almost instant implementation of a process design.

SESSION ORIENIEDI
XDMS-IV is session oriented. Enter "XDMS" and you are in iustant command of all the features. No more waiting for a comenand to load in from diskl Many commands are immediaic. such as CREATE (file definition), UPDATE (file editor), PURGE and DELETE (utilities). Oihers are process commands which are used to create a user process which is executed with a RUN command Either may be entered into a "process" file which is executed by an EXECUTE sIatement Processes may execute other processes, or thenselves, either conditionally or unconditionally. Menus and screen prompts are easily coded, and entise user applications can be rin without ever leaving XDMS-IV
ITS EASY TO USEI
XDMS-IV keeps dala management simplel Rather than design a complex DBMS which hides the true nature of the dala, we kept XDMS.IV file oriented. The user view of data relationships is presented in reports and screen output, while the actual data resides in easy to maintain files. This aspect permits customized presentation and reports without complex redefinition of the database files and slrucuure. XDMS.IV may be used for a wide range of applications from simple record managernent systems (addresses, inventory ...) 10 integrated database systems (order entiy, accounting...)
The possibitities are unlimited...
FOR 6809 FLEX-SK ${ }^{\bullet}$ DOS(S/8 ${ }^{\boldsymbol{n})}$
$\$ 249.95$

ASSEMBLERS

ASTRUK09 fron S.E. Media -- A "Siructured Assembler for the 6809" which requites the TSC Mocro Assembler. F, S, CCF . $\$ 99.95$
Macro Assembler forTSC .- The FLEX, SK*DOS STANDARD Assanbler.

Special .. CCF \$35.00; F.S $\$ 5000$
OSM Execnded 6809 Mecro Assernbler from Woyd INO. - Provides local labeis. Motorola S-records, and Intel Hex reaords: XREF. GeneOtate OS-9 Memory modules under REX, SK*DOS.

FLEX, SK*DOS, CCF. OS 9599.00
RelocatIng Assembler/Línkling Loader from TSC. -- Use with many of the C and Pascal Compilers.
F.S.CCF $\$ 150.00$

MACE, by Gaham Trout from Windrush Micro Systams - Co-Resident Editor and Assembler: fast interactive A.L. Programming for small to medium-sized Programs.

F, S, CCF . $\$ 75.00$
XMACE -- MACE w/Cross Assembler for $680011 / 2 / 3 / 8$ F, S, CCF - $\$ 98.00$

OS.9, U1niFLEX, ${ }^{\text {FLEX, }}$ SK* ${ }^{*}$ DOS

UTILITIES

Batc09 XRef from S.E. Medis - This Basic09 Cross Reference Utility is a Basic09 Progrem which will produce a "pretly pinted" listing with eech line numbered. followed by a complete cross referenced linting of all variables, external procedures, and line numbers called. Also includes a Progrom List Utility which outputs a fast "prety printed" listing with line numbers. Requites Basid09 or RuniB.

O \& CCO obj. only -. 539.95; w Source - $\$ 79.95$
BTree Routines. Complete sa of routises to allow simple implementation of keyed files - for your prograns - nunning under Basic09. A real time saver and chould be a part of every seious programer tool-box.
$0 \&$ CCO obj. only. $\$ 89.95$
Lucidata PASCAL UTILITIES (Requires Pascal ver 3)
XREF - produce a Cross Reference listing of any teal; oriented to Pascal Source.
INCLUDE - Include ather Files in a Sourve Text. including Binary . urlimited nerting.
PROFILER - provides an Indented, Numbered, "Structogram" of a Pascal Source Text File; view the overall structure of large programs, program integrity, elc. Supplied in Pascal Source Code: requires compilation.

F, S, CCF ... EACH $5^{\prime \prime}-51000,8^{\prime \prime} .550 .00$
DUB fram S.B. Media - A UnIFI,EX BASIC decomplier Re-Cieate a Source Listing fran UaifLEX Canpiled basic Prognms. Works w/ ALL Versions of 6809 UniFLEX basic.
U. $\$ 219.95$

LOW COST PROGRAM KITS from Southeard Media The following kits are avaijable for FLEX, SK "DOS on either $5^{\prime \prime}$ or $8^{"}$ Disk.

1. BASICTOOL-CHEST $\$ 29.95$

BUSTERCMD: praty pinter
UNEXREF.BAS: line cross-referancer REMPAC.BAS, SPCPAC.BAS, COMPAC.BAS: revove supernuous code
SIRP.BAS: supertluous line-numbers stripper
2. F2,EX, SK`DOS UTILITIES KIT $\mathbf{\$ 3 9 . 9 9}$

CATS. CMD: alphabetically-sorted diroctory listing
CATD.CMD: date-goned directory isting
COPYSORT.CMD: file copy, alphabevieally
COPYDATECMD: file copy, by dele-order
FILEDATE.CMD: change file cratios date INFO.CMD (\& INFOGMX.CMD): calls disk auributes \&contents RFLONK.CMD (\& REL.DNK82): reorders fiagmented free chain
RESQ.CMD: undeleves (ecoven) a deleted file SECIDRS.CMD: show sector order in free chain XLCMD: super text tister
3. ASSE:M13L,ERS/DISASSFMBLERS ƯTILITIES $\$ 39.95$
LINEFEED.CMD: "modularise' disassembler output MATII.CMD. decinal, hex, binary, octal conversions st lables
SKIP.CMD: column unipper
4. WORD . PROCFSSOR SUPIORT UTILITIES $\$ 19.95$
FULLSTOP.CMD: cheoks for capitalization
BSTYCIT.BAS (.BAC): Stylo to dot-matim pintert NECPRINT.CMD: Siylo to dot-malitix printer tilter code
5. UTILTTIES FOR INDEXING $\$ 49.95$

MENU.BAS: selects iequised program from list below INDEX.BAC: word inder
PIIRASES.BAC: phrase inder
CONTENT.BAC: Lable of eoreents
INDXSORT.BAC: fast alphabetic son routine
FORMATER.BAC: produces a 2 -column formatted index APPEND.BAC: append any number of files CIHAR.BIN: line reader
BASIC09 TOOLS consist of 21 subroutines for Basio09.
6 were wriven in C language and the remainder in assembly.
All the routines are compiled down to rative machine code which makes them fast and compact.
I. CFILL - fills a sting with characacrs
2. DPEEK - Double peek
3. DPOKE - Double poke
4. FPOS - Curment lile position
5. FSIZE -- File size
6. FTRIM \sim removes lending opeces fram a string
7. GETPR - retums the current process ID
8. GETOPT - gets 32 byte optian cection
9. GETUSR - gets the user ID
10. GTIME - gets the time
11. INSERT -o insen a stuing into another
12. LOWER - convers a sting into lowercase
13. READY - Checks for available inpur
14. SETPRIOR .. changes a process prionity
15. SETUSR - changes the user ID
16. SEГОРГ - set 32 byte eption packet
17. STIME - sets the time
18. SPACE - adde spec- to a string
19. SWAP - swaps any iwo variables
20. SYSCALL - system call
21. UPPER -. convens a suing to uppercase

For OS-9 - \$44.95 - Includes Sourte Code
See Review in Janurry 1987 issue of 68 Micro Journal
*OS-9 la a Trademark of Mkroware and Motorola-*FLEX and UnIFLEX are Trademarks of Technlcal Systems Consultants-*SK*DOS Is a Trademark of Star-K Soffware Systems Corp.

OS-9, UniFLEX, $\mathcal{F L E X}, \mathcal{S K}{ }^{*} \mathcal{D O S}$

SOFTOOLS

The following progrms are included in object form for immediate application. PLS source code available for customization.

READ.ME Complete instructions for initial set-up aud operation. Can even be printed our with the included lext procescor.
CONFTG one time syatem condiguration.
CHANGE changes words, characters, ecc. globally to any text type file.
CLEANTXT convens text files to s1andard FLEX, SK*DOS files.
COMMON compare iwo text files and reports differroces.
COMPARE another chack file that reports mis-matchod lines.
CONCAT similar to FLEX. SK *DOS append but cen also list files to scren.
DOCUMENT for PLS9 source files. Very useful in examining parameter passing aspecis of procodures.
ECHO echos to either screor or file.
FIND an improve find connand with "pauem" malching and wildcards. Very useful.
HEX dumpe files in both bex and ASCII.
INCLLDE a file copy program that will accept "includes" of other disk Tes.
KWIC allows notating each woid, on each line to the beginning. Veiy useful in a son program. ecc.
LISTDIR a directoty listing program. Nos super. but benes than CAT.
MEMSORT a high.speed text file soner. Up to 10 fields may be somed Vay fase. Very useful.
MULTICOL widit of pege, number of columns may be specified. A MUSTI
PAGE similar to LIST but allows for a page header, page with and depth. Adjust for CRT screen or printer as set up by CONFIG. A vely smart prind dr.ver. Allows printer control covernads.
REMOVE a fast file deleter. Cerfill no promptr issuod Zap, and its gonel
SCREEN a sored listing utility. Word wripe text to fir sooer Soten depth may be altered at run time.
SORT i super version of MEMSORT. Ascending/decoending order, up to 10 keys, case over-ride, sort on nth word and son on characiers if file is amall enough, sons in RAM. If large file, sort is constrained to size of your largest disk capacity.
TPROC a amall but sice lext formatuer. This is a complete fomater and has functions not found in other formatuers.
TRANSLIT sons a file by x keyfields. Checks for duplications. Up to lokey files may be used.
UNROTATE used with KWIC this progras reads an input file and unfolds it a line at a tine. If the file has boen sonted each word will be presored in soquence.
WC a word count uility. Can count words, characters or lines.
NOTE: this set of utilities consista of $65-1 / 4^{m}$ dister or $28^{\prime \prime}$ diskes, w/ source (PL9). $35.1 / 4^{n \prime}$ disks or I 8^{n} disk w/o source.
Complete sel SPECIAL JNTRO PRICE:
5.1/4" w/souroe PEX - SK*DOS - $\$ 129.95$
w/o source - $\$ 79.95$
87 w/cource . $\$ 79.95$ - who source $\$ 49.95$

FULL SCR EEN FOR MS DISPLAY from Canputer Sysiems Consultants -- TSC Estended BASIC piogram suppons any Serial Temminal with Cursor Consral or Mernory-Mapped Video Displays; substansially extends the eapabilities of the Prugnem Designer by providing a table-driven method of describing and using Full Scruan Display.
F. S and CCF. U . 525.00 , wh Source - 550.00

SOLVE from S.E. Media - OS-9 Levels I and II only. A Symbolic Objec保ic Vexification \& Examine debugger. Incuding inline debugging, disassemble and assemble. SOLVE IS THE MOST COMPLETE DEBUGGER we have ceen for the 6809 OS-9 series 1 SOLVE does it alll With a r.ch selection of monitor, assembler. disassembler, environmental, execution and cether miscellmeouss commands, SOLVE is the MOST POWERGUL tool-kit jitem you can own Yel, SOLVE is simple to usel With complese documentation, a mop! Everyone who has ordered this package has raved) See revicw - 68 Micro Journal - Decenber 1985. No blindr debugging here, full screen displays, rich and complete in information presented Since review in 68 Mino Joumal, this is our fareat moverl

Levels / \& II ondy - OS.9 \$69.95

DISK UTILITIES

OS-9 VDisk from S.E Modia -- For Level I only. Use the Extanded Mernory capubilisy of your SWTPC or Gimix CPU card (or similar format DAT) for FAST Program Compiles, CMD exealion, high opeed inter-process convounications (widrout pipe buffers), etc. . SAVE than System Memory. Virmal Disk size is variable in 4 K incoroments up w 960K. Some Assembly Requind.

Lovel/ OS.9 obj. 579.95 ; wh Source 5149.95
O.F from S.E. Medie -- Wrillen in BASIO09 (with Sowre), includes: REFORMAT. a BASIC09 Program that reformats a chosen mount of an OS. 9 disk to PEX, SK*DOS Format so it can be used nomally by FLEX, SK•DOS; and FLEX, BASICO9 Program tha does the actual read or write function to the special O-F Trassfer Disk; user-friendly menu driven Read the FLEX. SK ${ }^{\bullet}$ DOS Directory, Delete FLEX, SK`DOS Files, Copy both directions, etc. FLEX, SK•DOS users use the special disk just like any orher FLEX. SK ${ }^{*}$ OOS disk
O. 6809168000 $\$ 79.95$

LSORT from S.E. Media - A SORT/MERGE package for OS. 9 (Level 1 \& II arly). Sons records with fixed lengith or variable lengths. Allows for either escending or descending sor. Souting can be done in either ASCII sequence or altemate collating sequence Right, left or no justificationo of dour fields available. LSORT inchudes a full ser of comments and errois messages.

OS.9 585.00

HIER from S.E. Media - MIER is a madern hienarchal storoge sotem for users under FLEX. SK ${ }^{\bullet}$ DOS. It answers the noeds of those who have hard disk capabilitics on their syatems, or many liles on one disk - any size. Using HIER a regular (any) FLEX, SK ${ }^{-}$DOS dist (8.5 - hard disk) can have sub divectories. By this method the problons of assigning unique names to files is less burdensame Different files with the erna same neme may be an the seme disk. as long as they are in different direacies. For the wincherer user tbis beames a must. Sub-disectories are the modem day solution that all currens lage syrtems use. Each directory looks to FLEX, SK *DOS 3ike a regular file, except they have the extension '.DIR'. A full set of directory handling prognms are included. making the opention of HIIRR simple and siraig hiforward. A opecial incull peckage is inchuded to install HIER to your perticulas version of FLEX, SK ${ }^{\bullet}$ DOS. Some assembly required. Insind indicates each byre or reference change needed Typically - 6 byse chingea in sourre (fumished) and one ascembly of HIER is all that is required. No programming required!

FLEX - SK•DOS 579.95
COPYMULT from S.E. Media - Copy LARGE Disks to reveral smaller disks. FLEXX, SK ${ }^{\circ}$ DOS ut litiei allow the backup of ANY size disk to any SMALII.ER size disketses (lard Disk to floppies, $8^{\text {n }}$ $10 S^{\prime \prime}, e a c$) by simply inserting diskeres as requested by COPYMULT. No fooling with directory deletions, eic. COPYMULT.CND undenuand nomml "copy" cyini and keeps up with files copied by animerining directories for borh how and reoziving dist syotem. Also includes BACKUP.CMD to downlond any bite "rendom" type file; RESTORE.CMD to rerruaure copiod "randon" files for copping, or reogyying back to the host system; and FREELINK.CMD as a "bonus" utility that "relinks" the free chain of floppy or hard disk, eliminating fragmentation.
Completely docwnented Assembly Lang noge Sowce fles included. ALL \& Prograns (FLEX. SK ${ }^{*}$ DOS. 8^{*} or 5°) $\$ 99.50$
COPYCAT from Lucidata - Parcal NOT required. Allows reading TSC Mini-FLEX, SK•DOS, SSB OOS68, and Digital Researah CP/ M Disks while operaing under SK•DOS , PEXI.O, FEEX 2.O, or FLEX 9.0 with 6800 or 6809 Systeme. COPYCAT will oor perform miscles, but, between the prognm and the manual, you sund a good clance of ecoompliching a transfer. Also includer same Úilities to help out. Programs aupplied in Modular Source Code (Asicmbly Language) to help solve unusual problems.
F. S and CCF 5" . 550.00 F. $58^{\prime \prime}$ - 565.00

VIRTUAL TERMINAL from S.E. Media - Allows one cerninal to do the work α several. The user may stan as many as eight rask on one terminal, under VIRT UNL TERMPNRL and swich back and forth between rusk at will. No need to exit eact one; just jump back and forth. Complete with configurat on progrm. The best way to keap up with those background programs.

O \& CCO - obj. only - \$49.95

FLEX, SK•DOS DISK UIILITIES from Computer Sysicms Consultants -- Eight (8) different Assembly language (w/ Source Code) FLEX. SK•DOS Utilities for every FL.EX, SK•DOS Users Toolbox: Copy a File with CRC Error; Test Disk for errors; Compare two Disks; a fast Disk Backup Progrm; Edit Disk Secton: Linearise Free-Chain on the Disk: pirin Disk Idenniliention: and Sort and Replace the Disk Direatory (in sored order). -- PLUS - Ten XBASIC Prograns ivcluding: A BASIC Resequencer with EXIRAs over "RENUM" tike check for missing label definitions. processes Disk to Disk instead of in Memory, etc. Other prograns Compare, Merge, or Generate Updates between iwo BASIC Programs, eheck BASIC Sequence Numbeis, compare iwo unsequenced liles, and 5 Programs for esublishing a Master Direciory of several Disks, and soring, eelecing, updating, and printing paginsted listings of these files. A BASIC Cross-Reference Progren, wituen in Assembly Language, which provides in X-Ref Lising of the Variables and Reserved Words in TSC BASIC. XBASIC, and PRECOMPIIER BASIC Programs.
AlL Usiluies include Source2 (either BASIC or AL. Sowrce Code). F. S and CCF . $\$ 50.00$

BASJC Usilities ONLY for UniFLEX -- $\$ 3000$

COMMUNICATIONS

CMODEM Telecanmunications Prognm fron Corpputer Systens Caroultanis, Inc. - Menu-Dijven: supports Dumb-Terminal Mode. Upload and Download in non-prococol mode, and the CP/M "Modont" Chrisumen prococol mode 10 anable communication capabilitier for almost any requirament. Writuen in "C".

FLEX, SK•DOS, CCF, OS.9. UniFLEX, $68000 \& 6809 \mathrm{~h}$ Source $\$ 100.00$ - wishour Soucce $\$ 5000$

X-TALK from S.E. Media - X-TALK consists of two disks and a cpecial cable, ute thoutup arables a 6809 SWTPC compuier to dannp UniFLEX siles diroaly to the UnipLEX MUSTANG-020. 1 his is the ONLY currently available meihod to stensfer SWIPC 6809 UniFLEX files to a 68000 UniFLEX gyons. Gimix 6809 users may dump a 6809 UniFLEX file to a 6809 UniflEX five inch disk and it is readable by the MUSTANG-020. The cable is specially prepared with internal corvections to match the non-sundard SWTPC SO/9 IO D62S connecers. A special SWTPC S+ cable set is also available. Users should specify which SWIPC system hed she wistes to curropunicate with the MUSTANG.020. The XTALK software is fumistred on two disks. Ooceight inch disk contains S.E. Modia modem program C.MODEM (6809) and the ather disk is a MUSTANG. 020 five irch disk with C-MODEM (68020). Text and binaly files may be direaly ıransferred beaween tbe iwo systens. The C-MODEM programs are unalieied and perform as excellent modem programs also. X-TALK can be purchased with or withoul the special cables, but this specinl price is available to registered MUSTANG-O20 users orty.
X.TARX Complese (coble. 2 dists) 599.95
X.TALX Sofiware (2 disks only) $\$ 69.95$

X-TALK wish CMODEM Sownce \$149.95

OS-9, UniFLEX, $\mathcal{F L E X}, \mathcal{S K}{ }^{*} \mathcal{D O S}$

XDATA from S.E. Mediz - A COMMUNICA1ION Package for the UniFLIDX Operating Sysiem. Use with CPM. Main Frame, ather UniFLEX Systems, etc. Verilies Trasmission using chectsum or CRC: Re-Tranonits bad blocks. elc. U. $\$ 299.99$

EDITORS \& WORD PROCESSING

Jist from S.E. Medin - Texi Formatrer developed by Ron Anderson: for Dot Matrix Pisiters, provides many unique features. Oitput "Formutred" Text to the Display. Use the FPRINT.CND supplied for producing multiple copies of the "Fomaned" Text on the Printer INCLUDING MBEDDED PRINTER COMMANDS (veiy useful at other time also, and worth the price of the program by itself). "User Covigurable" for adapting to other Printers (canes set up for Epson MX. 80 with Giafirax)t, up to ten (10) imbedded "Pijnuer Control Conumands". Campensates for a "Double Withh" prinuod line. Includes the nonnal line width, margin, indent, paragraph, space, venical skip liner, page lengit, pege numbering, centaring. fill. justitication, eic. Use with PAT or any ouher editor.

- Now supplied as a iwo disk sel:

Disk H1: JUST2.CMD object file,
JUS72.JXT PL9 source:FLEX, SK•DOS - CC
Disk 12: JUSTYC objecs and source in C:
FLEX, SK•DOS OS9 . CC
The JTSC and regular JUST C source are iwo separite progenens. JTSC compiles to a version that expects TSC Word Processor type commands, (.pp .sp .ce eic.) Creas for your older text fles. The C source campiles to a standand synexx JUST.CMD object file. Using JUST grater ($\mathrm{p}, \mathrm{0}, \mathrm{y}$ etc) With all JUSY freacions plus coveral additional pininer formenting functions. Referance uhe JUSTSC C source. For those wanting an excellent BUDGET PRICED word processor, with features nowe of the others have. This is it!

Disk (1) - PL9 FLEX onfr-F.S \& CCF . \$49.95 Disk Sel (2) . F, S\& CCF \& OS9 (C version) . 569.95 OS. 968 KOOO complete wish Sowce . $\$ 79.95$
PAT from S.E. Media - A full licature screen oriented TEXT EDITOR with all the best of "PIEN". For those who swore by and loved only PIE, this is for youll All PIE features and much morel Tcomany features to list. And if you don't like these, change or add your own. PL. 9 sourve fumished "C" source available soon. Easily configured to your CRT, with spocial corlfig section

Regular FLEX, SK ${ }^{\circ}$ DOS $\$ 129.50$

- SPECIAL INTRODUCTION OFFER * $\$ 79.95$

SPECIAL PATIJUST COMBO (wlsource) FLEX, SK•DOS 599.95
OS. 9 68K Version $\$ 22900$
SPECIAL PATIJUST COMBO 68K 5249.00
Nole: JUST in "C" sousce avoilable for OS. 9

CEDRIC from S.E. Modis - A crreen oriented TEXT EDITOR with availability of 'MENU' aid. Macro delinitions, cooligurable 'promancat definable MACROS' - all standard features and the featest 'global' fumetions in the west. A simple, autanatic terminal config program makes this a real ho hassel" produci. Only 6 K in size, leaving the average system over 165 sectors for text buffer. appr. 14.000 plus of free memory! Extra fine for programming as well as texi.

FLEX, SK•DOS 569.95
Bns.EDIT' from S.E. Media - A TSC BASIC or XBASIC ecreen aditor. Appended to BASIC or XBASIC. BAS-EDIT is tansparunt to normal BASICNBASIC operation. Allows editing while in BASICXBASIC. Supports the following futctions: OVERLAY. INSERT and DUP LDNE. Make editing BASICXBASIC programs SMPLEI A GREAT time and effor saver. Prognmmers love it! NO more reapping ensires lines, etc. Compleat with over 25 differant CRT terminal conliguration overiays.

FLEX, CCF. SK*DOS 539.95
SCR EDITOR III from Windruch Micro Systans - Powerful ScreerOrimiod Editor/Word Processor. Abmors 50 different curvinends; over 300 pager of Documanation with Turorid. Features MultiColumn display and editing. "decimal aligı" columns (AND add them up autanatically), multipte keysuoke macros, evenlodd page hesders and footers, imbedded pinter control codes, all justificatians. "help" suppor, store comman command seijes on disk, exc. Use supplied "set-ups", or remap the keyboald to your needs Except for proportional piniting, this package will DO IT AU!
6800 or 6809 FLEX, SK ${ }^{\circ}$ DOS or SSB DOS, OS-9 . 517500
SPELLB "Compiner Diacionary" from S.E. Media - OVER 150,000 words! Look up a word from within your Editer or Word Processor (with the SPH.CMD Uitity which operater in the FLEX, SK•DOS UCS). Or check and update the Text after envy; ADD WORDS to the Dicionaly. "Flag" questionable words in the Tere. "View a word in context" before changing or ignoring, ec. SPELLB firm orecks a "Comunon Word Dictionary", then the normal Dictionaly, then a "Personal Word List", and finally, any "Special Word Lisi" you may have specilied. SPELLB also allows the use of Small Disk Stonge systems.
F. S and CCF - \$129.95

STYLO-GRAPH from Grea Plains Computer Ca - A full-soren orianted WORD PROCESSOR - (uses the 51×24 Display Scrsens on CoCo FLEXSK•DOS, or PBJ Wordpak). Full serem dirplay and ediling; suppone the Daisy Wheed proporionsl printers.

NEW PRICES 6809 CCF and CCO . S99.95,
F. S or O . S179.95, U . $\mathbf{\$ 2 9 9 . 9 5}$

STYLO-SPELL fun Giers Pling Comperer Co. - Fast Computer Diaionary. Complemeres Siylograph. NEW PRICES 6809 CCF and CCO . S69.95, F. S or O - S99.95، U - S149.95

STYLO.MERGE from Greas Plains Compurer Co. .- Merge Mailing List to "Form" Lener, Print multiple Files, etc., through Stylo. NEW PRICES 6909 CCF and CCO - 559.95. F. S or O . $579.95, U$ - $\$ 129.95$

STYLO.PAK - Graph + Spell + Merge Package Dealll F. S or O . 3329.95 , U - 3549.95 0. $68000 \$ 595.00$

MISCELLANEOUS

TABULA RASA SPREA OSHEET from Computer Syatems Consultants - TABULA RASA is similar to DESKTOP/PLAN; provides use of ubular computation echeroes used for analysis of business, sales, and comonnic conditions. Menu-driven: extensive repor-genertion eqpabilijies. Requites TSCs Extended BASIC. F. S and CCF, U . \$50.00, w Sonce - $\$ 100.00$

DYNACALC .- Elecronic Spread Sheen for the 6809 and 68000 . F. S. OS .9 and SPECIAL CCF - $\$ 200.00$. U . $\$ 395.00$ OS-9 68K - 359500
FULL SCREEN INVENTORY/MRP from Computer Systams Consuliants - Use the Full Screer Inventory Symen/Matesials Requirement Plaraing for mainlaining inventories. Keeps item field rite in alphabesical order for casier inquiry. locate andfor print records matching panial or complate item. description, vendor, or attributes; find beckorder or below swok tzvels. Print-ours in item or vendor order. MRPP eqpability for the maintonance and analysis of Hierasabical assemblies of itans in the invasory file. Requires TSCs Extended BASIC. F.S and CCF. U - $\$ 50.00$, wh Sowre - $\$ 100.00$

FULL SCREEN MAILING LEST from Computer Systems Consulunts - The Full Sarean Meiling Lis System provides a mems of mainesining simple maling lists. Locue all recorde matching on partial or complete anme, city, state, zip, or auribuses for Listings or Labels, ev. Requires ISCs Extended BASIC.

F, S and CCF, U - $\$ 50.00$, w Sowre - $\$ 100.00$
DIET-TRAC Foremne from S.E. Medie - An XBASIC program that plans a dier in terms of either calories and pocertage of carbohydrates, proveins and fats (C P G\%) or grams of Cortohydrate. Prore in and Fat food exclanges of each of the six basic food groups (veganble, tred, mest, skim milk, fruir and fat) for a apaific individual. Sex, Age, Height, Premat Weight, Frane Size. Acivity I cuel and Besal Manbulis Rete for noral individual ere inten into cocoure. Ideal weighe and sustaining alories for any weight of the above individiul are calaklated. Provides number of days and deily calendor after weight goal and calorie plan is determined.
F.S . \$59.95, U . 889.95

CROSS ASSEMBLERS

TRUE CROSS ASSEMBLERS from Computes Systems Consulants Suppons 1802/5. 2-80, 6800/1/2ß/3/11/11C11, 6804, 6805/11C05/ 146805, 6809/00101, 6502 (8mily, 808015, 8000/1/2ß5/C35/39/ $40 /$ 48/C48/49/C49/508748/49, 8031/51/8751, and 68000 Syatems. Assembler and Listing formals same as target CPU's formal
Produces mactine independent Motorola S-Texl.
68000 or 6809. FLEX, SK* DOS, CCF. OS.9. UniFLEX
any object or source each . $\$ 5000$
any 3 objece or source each - $\$ 100.00$
Sel of NLL object $\$ 200.00$. Wsource $\$ 500.00$
XASM Cross Assetnblers for FLEX. SK•DOS from S.Is. MEDIA This set of $6800 / 1 / \beta / 5 / 8,6301,6502.8080 / 5$, and $Z 80$ Cross Assamblers uses the familiar TSC Macoo Assembler Cammend Line and Source Code fomm, Assembler options, esc., in providing code for use larget CPU's.

Complete sel, FLEX, SK•DOS only - $\$ 15000$
CRASMB from LLOYD IO -- Suppons Motorola's, Intel's, Zilog's, and ather's CPU syntux for these 8-Bil microprocessors: 6800, 6801, 6303, 6804, 6805, 6809, 6811 (all vatictica): 6502, 1800/5, 8048 family. 8051 family, $608085, \mathbf{2 8}, \mathbf{7 8 0}$, and TMS-7000 family. Has MACROS, Local Labels, Label X-REF. Label liength to 30 Chars. Object code formats: Motorola S-Records (lce1), Imel HEXRecorda (text), OS9 (binary), and FLEX, SK•DOS (binary). Writuen in Assembler ... eg. Yery Fast
CPU TYPE - Price each:

For:	MOTOROLA	INTEL	OTHER COMPLETE SET	
Fl.EX9	$\$ 150$	$\$ 150$	$\$ 150$	$\$ 399$
SK $20 S$	$\$ 150$	$\$ 150$	$\$ 150$	$\$ 399$
OS9/6809	$\$ 150$	$\$ 150$	$\$ 150$	$\$ 399$
OS9/68K	\ldots	\ldots	\ldots	$\$ 432$

CRASMB 16.32 fram UOYD VO - Supporv Motordais 68000, and tas same feamres as the 8 bit version. $059 / 68 \mathrm{~K}$ Object code Format allows thie croses masembler to be used in developing your programs for OS9/68K on your OS9/6809 compiner.

FLEX, SKDOS, CCF, OS-9/6809 \$249.00

GAMES

RAPIER - 6809 Cheas Program from S.E. Media -- Requires FLIEX, SK•DOS and Displays on Any Type Temminal. Features: Four levele of play. Swap side. Point scoring system. Two dipplay boards. Chage skill level. Solve Chodomate probters in 1-2-3-4 moves. Make move and swap sides. Play white or black. This ts one of the strongest CHESS programe running on any mloacoonputes, estimated USCF Rating $1600+$ (belter than most "club" players at higher levels)
F. S and CCF . 579 95

South East Media

Finry, U-UbIREX
COI Cotrin Onpume Os.s

5900 Cassandra Smith RA. Fixson, Tr. 37343

All agreed? Wowl! I almost got deafened by the chorus of 'Yes. Yes' from all you readers out therel Well. how about suboUtulng 'no cat' for Tom'. one cat' for 'Dick', and 'legs' for "marbles'? Now we have :

1. No cat has 95 legs.
2. One cat has 4 more legs than no cat.
3. Therefore one cat has 99 legs.

I think EVERYONE will agree that Statement 1 is TRUE, as is Statement 2. Let's ignore the odd cat which has had an accident and only has 3 legs!! Therefore. Statement 3 must also be TRUE. Agreed? Sony. but I didn't hear a chons of 'Yes' thls Umel What's the problem? I wamed you that words can be tieacherous. didn't I? I'd further venture to say that if "cat' had been replaced by 'xzirdl' (a sulicate life-form found only on the outermost moon of the planet Juplter), you'd have been more prepared to accept the "logic" of these statements. It's only because you know from experience that cats don't have 99 legs that you disagree. NOT because you detect a llaw in the "logic". Why then ts Statement 3 logically TRUE for Aunt Minnie and Uncle Fred, but not for cats???

You may reasonably ask what all this has to do with designing digital control circults. My main purpose is to demonsirate why we convert words to a mathematical form when we design control circults. 9 tines out of 10 . a set of wittien or verbal Instructions spelling out the way in which a machine has to behave can be deceptively "logical" (as we'll see later on in this senes). somellmes to the point where it's actually IMPOSSIBI.E to design the specified machine or circuit!

I'll let you ponder the cat problem untll you've got a blt more "logic" under your belts, but in the meantlme just imagine . - If it had Just ONE more leg our poor pussy-cat would be a cenUpede!!

Now we're ready OK. I think we're more or less ready now to begin explorallon of a strange new world, where $1+1$ is sometimes equal to 2 . at other times equal to 10 . and on occasion even equal to 1. But never fear, your trusty guide. Bob, (that's me) has been this way many times before, and will surely help you over any rough patches we come across during our travels.
Ill thy to keep the subject-matter as llght-hearted as possible, but don't be misled by my method - this is serlous stulf. and l'd like you to make every ellort to really grasp what I'm talking about.
Our equipment is no more than a pad of squared paper ($1 / 4$ Inch squares will do admirably) and a sharpened pencll (maybe with an eraser at the other end). So If we're all set. let's be on our way.

INTRODUCTION

The alm of this serles is to provide you with an understanding of the mathemalcal basls of control-circuit design, to the extent that you should be able to commence with an Inltial set of spectilicallons (written or verbal) setting out the intended function of the required machine. Then you'll convert these specs to a mathemallcal form which you'll manlpulate according to certain rules. and from the resulting expressions construct the circult diagram of the machine, using either relays or transistor loglcclrcults as the case may be.
Initially, we'll resirict our attention to control-clrcuits using relays only, untll we've become quite famillar with the vartous techniques, and then, and then only, shall we consider using transistor logic. It's MUCH easier to see whether a network of relaycontacts will conduct an electrical current than it ls to decide whether the equivalent "logic-circult" network will output a 'high' or "low" voltage for a given set of input condiUons.

The beginning of mathematical designs of digltal circuits - George Boole. \qquad

Mile "O" coming up

CONTROL CIR-

 CUITSBy the way. In case you've never thought about it before. they are called "logic" circuits because their design is based on the use of mathematical logic.

I must emphasize that the methods to be taught are, by and large. tools only, and It is entirely up to you how prollcient you become in their use. It stlll requires skill and experlence to become a good designer!

The story of the mathematical method of designing digital control circults really begins in 1847, when George Boole published his book "the Mathematical Analysis of Logic". Up to this time, the study of logic (word-logic, that is) tended to bog down In confusing masses of words, which, whth thelr attendant emotional content, only served to conceal the underlying logic of what was being said. All of which, translated, means that you are less likely to have a logical hang-up over 'xalrdls' than you are over 'cats' (with which you are quite famllar), and even less likely to get yourself confused with ' X or \boldsymbol{Y}^{\prime}. Noone could possibly get emotionally Involved with simple letters of the alphabet!

Several attempts had been made to develop a set of symbols for logical expression, together with the rules for manipulating these symbols, but his was the first really workable method. It became known as 8oolean algebra. However, It was not unt!| 1038 that C. E. Shannon observed that electrlcal-relay networks could also be expressed in Boolean algebra, and since that time lts study has proceeded at an accelerating pace. producing a variety of techniques for designing control circults, as well as for the analysis of already existing circuits.

Before we proceed further though. lel's explain the word "digital". Consider a volumecontrol on a radio - it can be turned down so low that we can hardly hear lt, or adjusted to any intermediate setting to give any desired volume. right up to the maximum of which the receiver ts capable. Thls is an "analog" control, as it can be adjusted through a continuous, Infinitely-close range of adjustments. But if our volume-control could only be "clicked" up in ten equal steps, increasing the volume by 10% at each step. It would be "digital". There would be no possibility of oblatning a sound-level of 15% for example, as this would be in between the 10% and the 20% "step". An ordinary roomlight is digital (either ON or OFFl but the accelerator-pedal in a car is analog.

So here we are at Mile O!
Control circuits fall into two distinct classes - "combinational" and "sequential". A combinational circuit (which is the type we'll be examining for the first few miles of our Journey) always produces the same effect for the same combination of controls. Our simple room-light is such an example. because whenever the switch is OFF the light is also OFF, and whenever the switch is ON the light ts also ON - unless, of course, It has broken down.

In the case of a sequentlal circuit, however, a control may produce different effects. depending on the past history of the device. A good example of this is a reading-lamp with a PUSH-ON/PUSH-OFF button-switch. Here, whether the light is ON or OFF does not directly depend on whether the push-button Is pressed or released. If the light is OFF right now, then pressing and releasing the bution will turn it ON. But if the light is presently ON, then EXACTLY the same action will turn it OFF.

RELAYS - ELECTRICAL SYMBOLS AND CIRCUIT DIA. GRAMS

I mentioned earller that we're going to learn a lot about relay control-circuits before we tackle transistors, so what better place to start than to take a look at the Ilt le monster right here?

(a)

(b)

System Control

Truth-Tables sets the condltlons

Diagram la shows the consinuction of a typical small relay. whlle Diagram lb gives the standard symbols for tts various parts. We have a "normally-closed" (NC) contact between A and a. through which current can flow when the relay coll is not energised, and a "nomnally-open" (NO) contact between B and b. through which no current can Ilow because of the gap between the contacts. If the coll of the relay is energised (that is. if current is caused to flow between C and c) a magnelic-field is created in the core of the coll. attracting towards itself the moveable contacts joined by the dolted line. Thls causes the NC-contact to open. and the NO-contact to close.

To the newcomer to this field of study it seems almost incredible that a network of such relays, connected logether in a spectilc way, can control a machine thsough the most intricate processes, even dolng its "thinking" for II. Some of the early computers were bullt up from such networks, and it's our purpose to llnd out how to do this to achleve any system of control that we desise.

Diagram 2

Iet's take a look at Diagram 2 for a moment! We see two vertical lines, and strung out between them like the rungs of a ladder are three hoizontal lines with some new symbols. In order to read and understand this diagram, we must Imagine electrical current coming in down the left vertlcal rall. and trying to Ilnd a path across to the right-hand vertical rall. In row-1 it is unable to reach the coll of relay- Y because the contact of push-button-X is open. In row-2 the current is unable to flow through light-Z1 because of the NO-contact y of relay Y. but in row- 3 current can llow through the NC-contact y' of relay Y. Note that the contacts bear the same designation as the relay to which they belong, but in lower-case, y being a NO-contact and y^{\prime} being a NC-contact. The NCcontact would normally be Indicated by a short bar over the contact-name, but as this could very easily be confused with an underline in the line of text above, we will use the alternative form, and indleate $1 t$ with a prime, thus $y^{\prime}, y 1^{\circ} . y 2^{\prime}$ and so on.

The fact that light-Z2 is ON tells us that relay-Y is NOT energised, or NOT operated, and so the name of the NC-contact. that is y '. Is read as "not-y". One could argue that the fact that light-Z1 is OFF also tells us that relay-Y is NOT energised, but this ain't necessarily so. The relay COULD be energised but the lamp ltsell be a dud. so from now on we'll not regard the ABSENCE of a signal as giving us reliable information.

We can readily see from our lit Lle circuit that if push-button X is depressed, current can now flow through the coll of relay-Y, as a result of whlch both of its contacts will operate. thus turning ON Ilght Zl and turning OFF light Z2. Aha, I almost forgot to mention that controls operated by humans (called primany controls) are usually given the name X , or X1. X2. etc: devices such as relays, tImers and so on (called secondary controls) are named Y : and the output devices being controlled. such as lights, heaters or motors are named \mathbf{Z}.

It's possible to draw up a table, known as a Truth-Table, settIng out the conditlons of this circult. as shown in Diagrain 3 :

Push-button X	Relay Y	y	y^{\prime}	z1	z2
0	0	0	1	0	1
1	1	1	0	1	0

Here is our first encounter with the is and Os which are going to become our friends along our journey. ' O ' ALWAYS implies a negative, or NOT condition, such as "NOF energised'. 'NOT lit', or even a simple 'NO', while 'l' ALWAYS implies the aflimative, such

Now we're for more compllcated circuit
as 'IS energised', 'IS lit', 'IS so' or just plain YES'. 'Ihus row 1 of Diagram 3 summarises the sltuation If X Is 'NOT pressed' - Y will NOT be energised. y will NOT be conducting current while y^{\prime} will be so conducting, Z 1 will be OFF and Z 2 will be ON. Conversely for row 2.

Now we're ready to look at a slightly more complicated clrcult in Dlagram 4. Here it's quite obvious that no current can flow through any of the rows. so nothing Is going to happen until a primary control Is operated. If push-button XI Is operated. we can see that relay Y 1 will become energised, both of its contacts y 1 will close, and light ZI alone will come on. Light $\mathrm{Z2}$ will stay OFF because there Is still an open y2 contact "in series with" the closed yl contact.

(Note that thls clrcult uses relays whlch have 2 normally-open contacts each). If pushbulton K 2 alone is operated. relay Y 2 alone will be energised. the y 2 contacts will close. and again only Light $Z 1$ will come on. The contacts yl and y 2 in sertes with Light Zl are sald to be "in parallel" with one another.

From the foregoing we can very easily see that if Xl and $X 2$ are operated together then both relays Y1 and Y2 will become energised and both lights Z 1 and Z 2 will light. We would say that the control expressions for Lights $\mathrm{Z1}$ and $\mathrm{Z2}$ are :

$$
\begin{aligned}
& \mathrm{Z} 1=\mathrm{y} 1 \text { OR } \mathrm{y} 2 \mathrm{OR} \text { both } \\
& \mathrm{Z} 2=\mathrm{y} 1 \text { AND } \mathrm{y} 2
\end{aligned}
$$

This little section will involve very little that you don't know already. because whether you've been aware of $1 t$ or not, you've learned most of them in the previous section. These are not ALL of the symbols of Boolean algebra. but they are all we need to know at this stage of our adventure, which. by the way. comes under the general heading of SWITCHING THEORY. This particular name needs no explanation from me, I'm sure. Anyway. let's take a look at the six symbols we're going to learn.

And that's It! The first four symbols you've already met, and the last two are needed so we can describe a circuit in a completely mathematical form. For example, to describe
the control network of Dlagram 4, we would wilte :

$$
21=y+y 2 \quad 22=y 1 y 2 \quad y 1=x 1 \quad y 2=X 2
$$

Given these 4 expressions, and the Information that the Xs are pushbuttons, It should be a VERYY simple matter for us to reconstruct the original circult-diagram. Let's pause a while here to check whether this is in fact tiue by tiying our hand at the following :

TEST ONE 1. Draw the following circuit-dlagrams, where Za are lights -
(i) $21=\mathrm{yly} 2 \mathrm{y} 3$
(ii) $\mathrm{Y} 1=\mathrm{y}^{2+\mathrm{Y}}{ }^{1}$
(iii) $23=X 1+y 1$.
(iv) $Y 2=\left(y 1+y^{2}\right) y^{3}$
(v) $\quad \mathrm{y}_{4}=\mathrm{y} 1+\mathrm{y}^{2} \mathrm{y}^{3}$
(vi) $22=\left(y 1+y 2^{\prime}\right)\left(y^{3}+y 4\right)$

In (iv) we understand that a yl contact is tn parallel with a y2 contact, and this little block is then in series with a y3 contact. Distinguish carefully between (iv) and (v), and watch out for those NOT signs, such as yl' etc.

HINT :

2. Write expressions for the following networks -

Well, here we are at Mile 1. and really, it feels so good resting here whlle you're all working away at these problems that I think I'll Just relax a while before we travel on to MLie 2 of our trip. Hope you've enjoyed the scenery along the way so far. It won't always be open country like this - sometlmes we'll have to hack a path through a little heavy undergrowth before we see daylight again. But keep in mind always that others have been this way before you, and to dale 1 haven't lost a single soul. Granted. some have ended up a little worse for wear, but all have somehow managed to survive. And so shall you!!

I almost forgot to mention that answers to all problems encountered on our journey will always be supplied before taking off along the next Mile.
"Mle 2 to be continued ${ }^{-}$

Bit-Bucket

Continued From Last Month

$X_{\text {basic }}$ Xplained

Things you won't find in the documentation

Copyright 1986 by
R. Jones, Micronics Research Corp., 33383 Lynn Avenue. Abbotsford, British Columbia, CANADA V2S 1E2
\& Computer Publishing, Inc. (CPI) © 1987

The material in this article is copyrighted by Micronics Research Corp. \& Computer Publishing, Inc. (CPI), and reproduction, in whole or in part, by any means is prohibited without the express written permission of the author and CPI.

LOGIC OPERATIONS - AND, OR \& NOT

Editor's Note: Due to typographical necessity the "overscore" is represented here as an "underscore" " -". We apologize for any inconvenience this may cause.

My friend Denis phoned me some time ago with a problem in one of his programs where he was experiencing difficulties in manipulating logic operators. XBASIC has three of them-AND, OR and NOT - which constitute a logically complete set, in that any logical statement can be expressed with them. In actual fact, though, because AND and OR are logically complementary, the set can be reduced to 2 operators, by using AND to represent OR, or, of course, OR to represent AND. Here the bar over AND or OR is read as 'NOT' - thus NOT AND or NOT OR. Readers already versed in the mathematics of digital logic will recognise NOT-AND as NAND, and NOT-OR as NOR, and also be aware that one of these operators alone is capable of expressing any Boolean logic function. However, let's take things one step at a time, and for the moment get back to our basic AND, OR and NOT! For the benefit of readers new to the game, perhaps I should mention that Boolean algebra is named after one George Boole, who is credited with being the first person to develop a truly consistent technique for manipulating English-language sentences in a mathematical form.

To begin with, I'll reproduce the essence of my friend's problem, and we'll just take it from there. Consider the following:

10 INPUT "Do you need instructions (Y or N)", Q\$
20 IF $\mathrm{Q} \$=$ "N" OR Q $\$=$ "n" GOTO 50
30 IF Q\$ \bigcirc "Y"OR Q\$ 0 "y"GOTO 10
40 EXEC, "LIST GAME.INF"
50 rest of program
His intention is quite clear, namely that a response of ' N ' (upper or lower-case) should bypass the LISTing of instructions by branching to Line 50. This leaves only "Y" or " y " as an alternative acceptable response, so at Line 30 the intent is that if the response is neither of these the program should loop back and repeat the request for input, otherwise it should fall through and LIST the instructions at Line 40 and then carry on with the rest of the program at Line 50.

To his surprise, he found that a negative response worked OK, branching him to Line 50, as did an invalid entry, which correctly retumed him to Line 10. But, and a big but it was, a response of " Y " or " y " also behaved as an invalid response and bounced him back to Line 10! There was just no way to get the Instructions to LIST. I recall having seen similar puzzling occurrences with other people, so perhaps some explanations are in order.

OK then, let's begin by pointing out that 'AND' is mathematically equivalent to '*' (multiply) and 'OR' to ' + ' (add), although Boolean logic expressions usually use '.' for AND, or omit it altogether. This is also true of normal algebraic operations, where $\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{c}$ (or a.b.c) is written as abc , or $2^{*} \mathrm{x}$ as 2 x . A further point to keep in mind is that, just as in ordinary arithmetic, where 'multiply' has priority over 'add', so too does 'AND' have priority over 'OR'. Thus $2+3 * 4$ is not simply executed from left to right to form 5*4 and thence $20 \ldots$ the part $3 * 4$ must be executed first, producing $2+12$ and thence 14 as the correct result. Another way of looking at this is to imagine a set of parens around the high-priority part, thus $2+(3 * 4)$. Obviously, if we wished the ' + ' to be executed first we would write our expression as $(2+3) * 4$, as parens have a priority even higher than that of '*'.

So too with AND and OR. The expression A AND B OR C is expressed in Boolean algebra as $A B+C$, which is quite different from $A(B+C)$. Let's consider $A B+C$ a little further, perhaps how to express its inverse, that is $\mathbf{A B}+\underline{C}$. This is performed by 'complementing' (please, not 'complimenting' as occurs all too often) everything under the NOT bar, including the implied AND between A and B ! It might seem that the result should be $\underline{5}$ OR \underline{B} AND \underline{C}, or $\underline{A}+\underline{B} \cdot \underline{C}$ in mathematical form, but this is not so, as we would be overlooking the fact that $A B$ form a 'tied' pair in the original expression (remember the imaginary parens around them, as in our example $2+$ 3* 4), and must retain that relationship in the transformed expression. Thus (A OR B) AND C, or $(A+B) \underline{C}$ is the correct answer.

One small final step, and we are ready to go back and re-examine the little program above. In spite of the fact that XBASIC (and several other BASICs too) have chosen the value ' -1 ' to represent TRUE, Boolean algebra uses the value ' 1 '. Everyone seems to have agreed on ' 0 ' to represent FALSE, however. Before going back to our initial problem, let's take one last look at the expression AB + C. Suppose A were TRUE, B were FALSE and C TRUE, would the complete expression evaluate as TRUE or FALSE? This now becomes very easy to decide by merely replacing the individual terms with their corresponding TRUTH values. So AB +C becomes $1.0+$ 1 , reducing to $0+1(1 * 0=0)$ and finally $1(0+1=1)$, or to perform the whole operation in one step we would say $\left(1^{*} 0\right)+1=1$, giving a truth-value of TRUE. In similar vein if A were FALSE, B were TRUE and C FALSE, we would say $\left(0^{*} 1\right)+0=0$, thus producing a result of FALSE for the complete expression. How much easier can this thing get?

One more important feature of Boolean algebra to remember, and that is that $1+1=1$. I won't go into the reasons for that right here, as it is really outside the scope of this auticle. Maybe in some future series, who knows?

Now to get back on line once more. First, let's use our new knowledge to check out Line 20 of our little program. If we assume a response of ' N ' then ' $\mathrm{Q} \$=$ " N "' would be TRUE and ' $\mathrm{Q} \$=" \mathrm{n}$ "" would have to be FALSE. Thus the complete logic expression becomes TRUE OR FALSE', that is $1+0$, which evaluates to 1 (TRUE), and so the program would branch to Line 50. The converse, ie an entry of " n ", produces $0+1=1$, which would also cause a branch to Line 50 .

How about Line 30? Suppose an entry of "Y" occurred. Why does the program not fall through to line 40 and produce a LISTing of the instructions? Let's examine it and find out! An entry of "Y" makes 'Q\$<>"Y"' FALSE, and makes 'Q\$<>"y"' TRUE, thus the complete expression equates to 'FALSE OR TRUE', or $0+1=1$. As the whole logic expression is TRUE the instruction to GOTO 10 would be carried out. If " y " were entered we would have the logic equation $1+0=1$, and if it were some other entry such as " X ", we would have $1+1=1$. Thus, any response (other than " N " or " n " in Line 20 which would bypass the problem line altogether) results in a truth-value of ' 1 ' and a retum to Line 10. Problem now is, how should Line 30 have been written?

Let's take another look at the intent of Line 30, and I'd suggest that this would be a good policy to adopt wherever 'negatives' are involved, and I classify '<>' as a negative (as it involves the use of the word NOT). What was intended was that if $Q \$=" Y$ " OR $Q \$=" y$ " then Line 40 should be executed, otherwise back to Line 10, ie back to line 10 if NOT($Q \$==4$ " OR $Q \$=" y$ "). In mathematical tenns this means complementing the stuff inside the parens, to produce 'Q\$<>"Y" AND $\mathrm{Q} \$ \propto$ " y "' ('<>' being the complement of $=$ ', and 'AND' the complement of 'OR'). Line 30 should therefore read :

$$
30 \text { IF Q } \$ \text { "Y" AND Q\$ } \diamond \text { "y" GOTO } 10
$$

Now an entry of " Y " will produce the Boolean algebra equivalent 0 * $1=0$, and an entry of " y " the Boolean equivalent $1^{*} 0=0$. Each expression therefore evaluates to FALSE and would cause a fall-through to Line 40, the desired response. On the other hand, an unacceptable entry of say ' X ' would produce 1 * $1=1$, evaluating to TRUE and causing a branch back to Line 10 . Note that I have here used the symbol *' to represent 'AND' simply to make my meaning clearer.

Summarising, the technique is to regard all ANDs as equivalent to '*' with an imaginary set of parens enclosing the terms on either side, and all ORs as equivalent to ' + '. The truth-value of each term is then evaluated, from which the truth-value of an entire logic expression can be deduced. So:

Condition-A AND Condition-B OR Condition-C AND Condition-D

is first transformed to $\left(A^{*} B\right)+\left(C^{*} D\right)$, or more correctly $A B+C D$. Now, by replacing A, B, C and D with any given set of truth-values composed of 'l's or ' 0 's, the truth-value of the complete expression can be very quickly arrived at. For instance if both Condition-A and Condition-B were TRUE and the others FALSE, we would have $1^{*} 1+0^{*} 0$, reducing to $1+0$, or 1. Thus the complete expression would evaluate as TRUE, and the program of which it forms part would behave accordingly.

In similar vein, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ etc represent conditional-expressions of the form ' $\mathrm{Q} \$=$ " Y "', 'A \%<=B\%', 'A\$>B\$' and so on, A AND B AND C OR D would be transformed into the equivalent Boolean expression $A B C+D$, or, for the purpose of calculating, as ($A * B * C$) + D. This expression is then evaluated by substituting ' 1 ' or ' 0 ' for $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D according to the truth-value of the individual conditional-expressions which they represent. Note that a single ' 0 ' appearing in a chain of ANDs causes the whole chain to evaluate to ' 0 ', so no time need be wasted on the remainder of the AND chain. Conversely, a single ' 1 ' in a chain of ORs causes the whole chain to evaluate to 1 .

Thus if ' A ' were equivalent to ' 0 ' in our example expression we would immediately equate ' ABC ' to ' 0 ' and move on to ' D ', as ' 0 * anything' evaluates to ' 0 '. Or, if the expression were reversed to $D+A B C$, and ' D ' were equivalent to ' 1 ', we wouldn't waste our time evaluating 'ABC', as ' $1+$ anything' evaluates to ' 1 '. Simple, isn't it?

Just be careful when complementing logic expressions, as I did earlier, to remember that the complement of ' $>$ ' is ' $<=$ ' and not simply ' $<$ '. That is, if ' A ' is NOT GREATER THAN it is LESS THAN OR EQUAL TO ' B '. The complement of ' $<>$ ' is ' $=$ '. And don't forget those 'implied ANDs' when complementing from the algebraic form - they should be complemented to 'OR's and the implied parentheses around a chain of them retained.

I hope this little discussion has helped make it easier to figure out which way your program is going to respond to logic expressions, without having to try out all combinations in actual test RUNs of your program.

ANOTHER WAY TO SHORTEN \& SPEED UP YOUR PROGRAMS

Some considerable time ago I suggested converting FP variables to Integers, SPLITting off instructions and also COMPILing programs as a means of opening up more memory for program space, in addition to speeding up program execution. Here is another technique for use in
programs which have a lot of DATA lines which the program at some stage READs and assigns to variables and/or arrays. When this situation occurs we would end up with two copies of all this stuff residing in memory at one and the same time. One set in the original DATA portion of the program itself, and another in the Stack-Registers which keep track of their ongoing values. Quite apart from the fact that, when popping in and out of subroutines or executing a GOTO, the program wastes time scanning through all these lines in order to locate its destination-line.

In such cases, just as we did with Game-Instructions, we would set about SPLITting off these DATA lines, removing the line-numbers and the actual word DATA, and renaming the resultant file to "GAME.DAT".

Now, somewhere near the beginning of our program we would add a line to the effect :

50 OPEN OLD "GAME" AS 1

Of course, if Channel 1 is already pre-empted for some other file, we would use the next available Channel-Number instead. Note that the extension '.DAT' is not necessary as this is XBASIC's default extension when opening up a Channel.

Now we would scan our program for all READ statements referencing DATA in our file, and replace the word 'READ' with 'INPUT \#1," - thus :

1000 INPUT \#1, A\%(1),A\%(2),A\%(3),X\$

But be careful to SPLIT off only those DATA items which are actually copied into an array, or assigned as initial values to selected variables, and be warned that you cannot RESTORE to a specific DATA item in the file. Though you can RESTORE to the beginning of the file by CLOSing Channel 1 and then re-OPENing it. Also don't forget to CLOSE the file once you've read in all the available DATA items, so :

2000 CLOSE 1

Where a scratch variable is used repeatedly, such as :

100 READ M\$: PRINT M\$: PRINT: READ M\$: PRINT M\$

it would not be feasible to SPLIT off the corresponding DATA messages, as they are brought into memory just one at a time for assignment to $\mathrm{M} \$$, so these occurrences should be left untouched. The example Line 100 would, of course, read into M\$ the DATA item currently pointed to by the internal DATA-pointer, PRINT it, then read the next DATA item into M $\$$ before PRINTing it too. For a fuller explanation of how to use these DATA files to your best advantage you can do no better than to read the appropriate section in the XBASIC article.

To be Continued Next Month

page 42
line 40 CHRT $>$ CHRS
aloo all references to CHRS\$ > CHRS

A PL/9 interface for

by Martin C. Gregorie
10 Sadtre Mead
Harlow, Essex U.K.

As soon as Joe Condon's ISAM package appeared in the Micro Journal I had to get a copy. A club malling list! look after needed a rewrite and I wanted to use some form of keyed access instead of the serial Ale dumps of an In-memosy table I'd been using. Well the package duly arrived and was Installed and checked out. No problems showed up except that It is really designed for use with BASIC. which I never use unless forced to. In any case the malling list was written in PL/9 and I wanted to reuse as much of it as possible. Only one answer - write an interlace for PL/9 - the library presented here.

The llbrary is designed to provide a set of malnframe database-like lile handiling 'verbs'. I have given it the 能vour of a CODASYL database such as IDMSX because that is what I use on malnframes. The alm was to provlde a set of record-level procedures whose names would not clash with fle handling procedure names within my norma! llbrarles, hence READY/FINISH in place of OPEN/CLOSE. I also wanted to create a set of procedures that would require only the minimum number of parameters for each. and would allow several ISAM flles to be open at once. This required the introduction of an 'ISAM Control Block' to ietaln the values of other parameters as well as the current error code for the fle. The ICB contalns a structure equivalent to the BASIC string array except that the record bufler is not Included in the ICB. though its length and a pointer to it is. I could have produced a much simpler interface consisting of just one procedure but. although it would have been much smaller, It would have also been harder to use.

Following sections of this article contain full documentation for ISAM.LIB. the interface library, the librasy code Itself, an exact PL/9 equivalent of Joe Condon's original demo program (LABEL.PL9), and an interface test program written in assembler (ISAMSIM.TXI). ISAMSIM is called just like ISAM. but all It does is to display the calling parameters and retum eimor code 123. You may want to use It for Initlal program checkout.

ISAM is used from PL/9 just as normal. Install ISAM and then run programs that call it. You can also complle and test programs under the debugger with ISAM Installed but beware that this will corrupt the last 4 bytes of the program being tested due to the necessity of planting link addresses at [MEMEND]-4. Thls has not yet crashed my system but does cause strange effects in the last statement of the test program. The actual call to ISAM is in the ASMPROC ISAM. This must be an ASMPROC as ISAM corrupts the Y-regtster which is also used by PL/9 as a global variables pointer. The actual call must preserve the Y-rexister - something which cannot be done withln PL/9. But for thls no GEN statements would be necessary.

A up for ISAM users. I have heard statements to the elfect that ISAM is slow - I dont find it any slower than I would expect a keyed Ille access system to be on a FLEX disk, but one sure way to DESTROY its performance is to let an ISAM nie get fragmented. The easy way to fragment the nle is to create it on an old, fragmented disk. The solution is to create ISAM Illes on newly formatted disks, and always back up disks by using the sequence:
a fommat a new disk
b copy the old disk onto the new one
c flie the old disk as your backup
d use the new disk as the working copy
Thls procedure will have the advantage of speeding up access to all flles on the disk by ensuring that all files are unfragmented.

IDMSX is a trademark of International Computers Limited

PL/ isan intertece Delinition

intrmanction

 library. Ine libeory has no orpadincles on orner arandure lihrariea. It contalas at of procpouzes that provide an interface to : swich whth flavour resmbiling that of cuodivi dotabeses.

Data space.
N ISNM Control Block (feb) 13 neatio for aech sean tlle to be accosed by che progral and e zecors bufter to conesin recordin read frem or uxlteen l.0 the lile. Jio zecord my conslat of eny combination of byen. crisios. infogeri, and reala. The followlng exaple vill be used in the colloving eraples:
procedure sert:
byte lebisol, fo ehe lcb i/
name 1301, ofeloe (301, on leave:
lnteger agef
mis declarea a control block and a record of 63 byted 1 angen conalating of:

> name a etiring of up co 29 cheracters
> ofelo (the koy creld)
> on_leave ala string of up to 29 onractore
> age ingle bre llag

Uelng the imerfaci.
The $15 A M$ peckege mate be losiad bafore the calling progran in run. Alcemntivaly the isamim program may be looded in fte pleoe - inle progran disphoys isN call paremetera a a debugging ald. allowing initlal ceating to carriot our without ribk of deenging the diet by weling IMN.CD.
The file bo creaced by cho call:
format (.1cb, 1, "teat f11e.1sa", 1000,63,30)
to ereste restrile. ish with 1000 recoras, each 53 bytes long witn a 30 byte key.
The file can have data loaded by the sequence:
ready1. 1cb, 1. "cose (110.1sa". 63, 30):
If chacetuel.lcbl ehan
beoln

 end:
"anlen (. 1em),

```
An entife 2110 ey be read alen the eopunem:
    rendyt.1ct, 1, "reste11e.19e", 53,301,
    lf cotatus(.1cb) =0 zhm
        bogln
            obtalol (.{ct, .flrst. . name):
            while descacual.1cb) -0
                bogln
                    10 dfoplay the record %/
                    obtalnt.lebs. noxf., .name),
                and:
            and:
elnlah(.1eto):
```

You amy position to any polnt in the flle:

$$
\begin{aligned}
& \text { 10 tare of ille } \\
& \text { /- bofora record }
\end{aligned}
$$

$$
\begin{aligned}
& \text { /: Gtare of ille } \\
& \text { /: befora recerd wieh opecilied xoy }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10 eno of e110 } \\
& \text { 10 prolston }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i. orser value da supplied for ch } \\
& \text { j. ecen parciecer, 0.9. nert }
\end{aligned}
$$

1. econd parcancer, e.0. .nerst

Tow way read any record in the lile:
obtalnt.10b. . 1 Irst, . nemelt
 10 Round does not matelt the key 1- but han a hlghar key fritesd. $\%$ It la utill relrieved though 10 If rine reply $10 x 0$ is la th 1- isw error
abealnl. Sct, last. . neol:
oblainl. les, naxt. naen), /o reads noxt record in 2110 obealnf. tces, carrent. . narel: \% rereada the current record

amares ean be added:
-
The last record ecceresed in the f110 may be eolliled:

$$
\text { madely } \text {. 1cb, . namel: }
$$

Or le may be deloted:
eracel.fob):
Modiy Is in lact e conventence furictian that celle atore after trase.
Quber that the reply code ahould be checked after overy ISM operation. mere are two possible exhode pesalble as all isw proceguree raluzn reply values. They are:

Dobkatua cay be called several times - the reply value la livic t11 the mext isah ection is called. If errora do ocrue thare are two procoduren to heip lis the pranemi Chay could bo used at folloust

```
tt dbatatuaf.1col>0 ERan
    bogin
        IInlams.\cbl! /% altmapt to cloac eha l110 %
        If dbatatud(.1cb) Emen /* [lx falled of
            begin
                    /" quras 2110 closed of
                zeorgn\mel.lCl: /* lorceably lix the qlie o/
            on:
        end:
```

Jids fo lurt on eanole, not a rect racion!
Pracmare definitlofil
promaces ap onfo sem vorts as followat

procedure	ISNA verb	comments
ready	OPEN	opere an 184M P1to
Pinles	close	closea an tsan plle
abort	ERITIALISE	forced isan Plle close
position		-te Plie poiltion ulethout raading any pacords
	PIRST	(.ande.elrat)
	Last	(.and-. (aat)
	stant	
abtain		reade the melluted record
	F18ST + NEDT	
	ust + Prencis	(lum . cos.1ast)
	START + NEXT	t. and. koy veiual
	TET	t.ond. mext
	creer	1.00-9astent
	pexvious	(.cman. Deerlous)
ctore	000	-toren the record la the 2510
-rase	peles	erosees tha gistent record
enelfy	custe + 200	replocea the arrient record
reorganiou	Recocunsp	1110 secovity after Amicit
fornat	crear	now ISM ISIo aetup
enstatua	-	retume the current reply

$$
\begin{aligned}
& \text { /. orrar action of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { position(.lcb, iflrat), } \\
& \text { positioni. \&0. "Martlo jo } \\
& \text { positioni.1ct..last): }
\end{aligned}
$$

All procedures return a reply value.
Parametera are:

Pareoter	Deactiplion
.cod	ille operation for position and oblain: one ol 3 flyat . lat . next . Curtent .previoue
	, key were the Dre area 'hey' holde the record roy to be lans
. 1 cb	1SN 211e control block reference
1 d	ISM 11la maber
klen	toy loupth iflert kjon chers in the ildes
, name	etrimg contalning the 1lle rean
.rec	raforume to the eligat fiold in the rwoord bulfe
rane	nuts of records in the ille
	cecard lencr

Procedures return standard 15NM reply codes plus:
Value Meaning
-100 The record returned by Gitain coosnt mater the glven key
ceerent to ues position in sucs a may thet recard would be read. 1. noe for jen verbe pirst, USY, or atary
The proceduren are:

```
abort(fnceger .l(b):
    Forcable close ene 1110 iny leave corrupe
    llag met|
```

abstatue (Interer. I Col):
peturn last raply coco prai a 1110
urese (integer . 1 (t) :
Delele the currene recora
1ntantlateger . lcol:
clan en Plis
Cormalifneger odeb. Ids byea, ramer
integer rank. rlen, hian);
creste a ney g110 an ld iname, nan containing
rens record acts rion bytea 1 ang , keyed on the
Plret klen byteol
odify(integer .1cts bye real) :
Orange the contents oif the current recosd. nowling
it in the rile es moceseery
obealn(lateger .icbs bye .cad,.rec):
Retilove record fra CBe Elie. The record is
Retilave byeord fra che liz.

Paltion tae record pointer oltern the ifle. The
poiltion is ate by che value of, ord
ready(integer .1-b, 1dt oyre , name: Integer rlaf.klen):
ogen tha tile raced in, ham of tan ldentier la.
longth in klen.
reorgandeeflncerer . Ichl:
neorgnils the plle.
atore(Integer .lebs bye .rec):
grore a nen record in kio alle.

PU, JUN Intertace control floek dofintion.
The ISM Controd mock la cesared aa a so byte areas
oye 1co(so):
 the files this capia that it ahould thercares ot Global cite or in the outernost presedurs to und inw plle Mandiling.

The block le regarded internally an an array of 25 Integers:

docation	Content:
40	Poincer to +13 (13NM Plle mutoll
+1	2
42	Poincer cossan mand etring
+3	cona lexph l2t
+4	
- 3	fength of 8110 neen tup to 14
-6	Pointer to e2t themrd alet
+7	2
08	Pointer to 23 (13AM 111 - alse in recorde)
+9	2

To be Continued Next Month

Worstesd Leboratories \&Reg Office North Walsham, Norloik NR28 9S

Tol: (0692) 404086 Ielen 975548 WMOCHO MAPCON eporoved consutents

DUAL PROCESSOR MDS RUNS FOUR OPERATING SYSTEMS

indrush wicro syilees liaited ire pleased so manse tho teapdiete and $8000 / 020$ mbs syatems mich

The mes systes to oosed an oscendard OU, igh reck mounsing systen plized into e beation onslosure. In this conifouration unraserteted iccess to ett syatem O"

The uger can choope beivean 6800, 60000, 60010 and 60020 procepmer cards and

 proceszer cords. Thie 6009 processor card supoorth ebe fiEx, OS-9/Level t ond 09+9/2vel it operating ayistes. Thi 08000 , 68010 and 68020 processor circt suppori the 0s-9/80k operat ing oystoo. Thie 68020 procespor cerd includet

Syaten peaturat inctude chate of processorg, 100 E Putly static zone
 ewo contronics parallet printer Dopts. 25 To funforastiods vincepiter and
 of the systemenables te to be custobised to individual reavifenents ef vert lo coss.
Prpical syitan costs are al pollons:

Model 6000/010 12.5 Whe 60010 processor, 256 kb semory, 05-9/बex B695.00
model s000/010/k 12.5 the 88010 processor, 1280 kte areory. 05-9/68K 26004.00

model 6000/020/x 16.67 the $68020 / 6688$, 1536 mbery, 05-9/80k 24607.00

Austin, Tras. Mey 11, 1987... Motorole's mos Masory producta Oiviaion ineratun \quad nev $4 \pi \times 4$ statio qNK, the worsz69. fabrleated uslog motorola'e eornos-genaration migh-pezfornano elifcon-gate cos (gows IIx) technology, this filly itetic deeign elialnates the need for external clocke or tiaing strabes. wille OeOs circuitry reduces power conowption and provides better reliability. Wlth a ract acoens time of 35nw, this cevice is autedele for cache and other cub-50ne applications.

Sledier in design to the Notorola NCN6268, the xaxter9 is fant chsp alect varaion faaturing eccman to data in $15 \pi=$ Maximus.

The ncat6269 is organized $4 \mathrm{~K} \times 4$ and oparateg under a eingle 5 V euppiy. The device haE lev Active ac power operation of 90Ω. maxtmum and 40 an Meximus under oc conditlone.

The 35na NCA6269 conforme to the JEDEC etanderd pinout. It ie evallable in e 20 lead pleselc dual-in-ilne package and te priced at 55.78 in 200 piece quantition. Order this device by spacleying meK6269p35.

For more information contact your local Motorola saleg opfice or authorized Motorala Dletributor.

3 EsP Electronic Specialists, Inc.

171 South Main Streat. Natick. Mass. 017E0 (817) 855-1532

UMATTENDED COMPUTER PROTECTION

Electronic Speciellges Ennounces expansion of thefr
Unatconded System Power Interiupter LIne. Daslgned to
protect Unactended cocputar and other systems frow vioient pover fluctuctons or outases, the Interrupters digconance AC power then treegularfties oceur.

Automattc and Kanval Reger modeis are now avallabia. It addftlon, straligh blade and tuist configuraclons for 13,20 and 30 amp circulta arm offered.

[^1]
NEW PRODUCT ANNOUNCEMENT

The PADC-DAC-8 RLAB"

URDA is pleased to announce the avilabilly α the PADC-DAC-8
 for the ParanonliABTM, or for any device with twin a hill parallet ports As a Notebook Computertin expansion. the A/D.O/A converter someg with a 3 ring mounting to fit conveniently into the P68000 $\mu \mathrm{LA} \mathrm{A}^{\text {TM }}$

The $\mu \mathrm{L} A \mathrm{~B}^{\mathrm{TM}}$ series is centered around popular mitaprocessori. e8. 68000. 8086, ete. and support chips witb operationg syatem cotivare. This combinating faciltates prigramming the miongricessm in its native (machinel language white providing easy mocess to the develop ment system hardvare so that lis gignals can be interisced to the rest of tbe verld and the mictoprocessor system can be used to observe and control parts of the real vorld.

As an example. the P68000 ala ATM is a $^{\text {a }} 68000$ mikroprocessor with keypad, L.ED displey, 4 K bylea SRAR, 8 K bytes of EPROM, cassette interface. softivare operating syatom. DOWas supply, instruction manual and Prosrammer's Reference Manual compjetely packased in $\mathbf{0}$ inch 3 ring binder, i.e., a Notebook Computer 7w. With in edueational and student price if $\$ 19790$, the onst harrier to providing indjviduatizad ingtruction on a microprocessor development system is broken.

Much of the world operates witb continuons analog gignals. To simplify leborsiory ezperjments and computer control, an optional socessory. Ibe PADC-DAC-8 aLAB ${ }^{14}$, provides 8 channelg of analop to digital comersion and 8 channels of digital to analog conversion botb wilb 8 bits per channel The PADC-DAC- B MLABTN , complete with power supply, instruction manual and motebook also selis for $\$ 197$ So.

The PADC-DAC- $8 \mu \mathrm{LAAM}$. pravides aconvenient interface between the miornproossenr and real usrid signals for eiperimentalion with the control of variety of electronic eleciro-mechnnical, etc., devices and systema. The doct is feee runains to give the latest available sample thus faclitating multiple sampliag frequencies aeross eisbt cbannels without complicated Itming schemes. The masimum samplins rate is afunction of the number of chanoels in use vith 1 marimum of $10 K$ Hertz

The control word provides for setection w: (1) inpu:/oulpul - I bil, (2) chansel selection - 3 bils for A/D and 3 bits for D/A, and (3) a single bit for simullanecuss D / A conversion.

The souble bulfered D/A sonverters wee aingle convert aigal to make it possible to precisely oulput signals for sampled data control

The tov cost $\$ 197 . \mathrm{SD}^{2}$. mates it possible to ure the PADC.UCA- 8 MLAB1M, with the P68000 $2 \mathrm{LAB}^{\text {TM }}$, as an educational loot for student proiects and one of a kind testing and experimentallon.

The PADC- DAC-R RLAATM reatures inctude:

- 8 channels Aralog/Digltal Conversion - 8 bitg
- 8 chande is Digital/A nalog Conver sion - 8 bils
- Convetslon rate is 10 X heriz for singla channel operation.

Additiosal channels will derate ecoor Aing to user sofivare

- Yoltige input compliance :, - 12 volts
- Vollage output compliance e.. 12 volts
- All output channelr double buffered to allow gimullaneous control oulpuls
- P68000 $\mu \mathrm{L}$. $\mathrm{AB}^{\text {TM }}$, interface
- Parallel Input/Outpul Inserface
- indivldually addressable chanoels

PADC-DAC- $8 \mu \mathrm{LABTM}$, Components

- Printed Circuit Board
- 3 RIng Notebook BInder
- User Manual
- IIS VAC 60 Hz Pover Adapter

The PAOC-DAC- 8 HLABTM Lists for $\$ 295.00$ vith a discount price of . $\$ 197$. So for Educatioesl institutions. Faculiy and Students. To order, contact

Quasitronics. Inc. 1-800-245-4192. in PA 412.745-2663
For lechnical infor mation, coniact URDA, Inc. 412-68.3-8732

${ }^{*}$ Microcomputer Division	5TOMN CONTACT: Antan 5 (e02) 3500
مO Bor 20012 Mos AS CuOM	\qquad

 2316 TO CMUEOE DEC - OOBKTOP WN TME OEN TECHNICAL CON~R SYSTEMS WARKT

 -

 perope to tua ovary

Edicor
68 MICRO JOURNAL
Computer Publishing Center
5900 Cassandra Smith Road
P.O. Bex 849

Nime. TN 87349
Deaf 8tr.
I woontly eart thie laller to Dr, B.M. Pane who writes the C maluons for your jouncl. H wroar, he had littla famliority with the Macintooh and. therefore. thoright I ahowd Ery the Mecintosh eaction of 88 Mico Joumal.

My quations centor around the use of the Mecintoek Plus as a amall number crunche doing acientific calculuctore as my dealstop (eg numerical solutiana to low dimensional ondicen difiorential equations ayglepol but I think mas y of them would apply to C pacing on 68000 computert ín general.
 and buggy. Program developmont is prinhl, compared to ayy fiveno as the VAX. Also, in cuneral, I am not fond of Porras. (hare recently begun to program in C (using Lisblap C , a very asoo Pactagu) and. allhougb I'matill a covio. I have found C to bo core "nalurd". own tor many adonlific computing aqultano It's a trme lagring with a lot of Doteotial. But there an come probame

Oo the Mec all C enane apperaply use the SNNE (Senndord Apple Nameric

 or all we ofles Cowle, hae ite orp Rating point routing built in. This wate

 Which un ecipotiet have come to $U \mathrm{Ne}$. array bounds checking, ovoroow alerta, passing variable di...... found at dend out hoy dol

My guestoon are cheos. I have haped it rumered (on a boal BR8) that thare ense a Motorola set of floating point routines which are fast. Do they or any others exist? Can C packages like mine make use of them? If so, how hard is it? Who would I contact? I recently saw a book titled C++ about an (AT\&T) extension to C which appeared to support many of the things I like about Fortran -things like, vectors, the Macintosh or is anything in the works for it? Are there C libraries of scientific the Macintosh or is anything in the works for it? Are there C libraries of scientinc (1900 didedist) far miseo a, tho Madoroib, in parsewler?

Thanks for taking the time to read this. I appreciate any answers to any of these questions. Many of the scientista I know have Macintoshes and would be very interested in the answers also. Some may be able to afford the Macll when it will have our Mac Pluses for some time to come. Even so, we feel that that little 68000 could do a lot of scientific calculating for us in the nest few years, if only 68000 could do a lot of scientific calculating for us in the next few years, if only w
could work around the above problems.

Editor's Note: Louis, thanks for the letter. Your observations are essensially correct, as concerns the Macintosh SANE routines.
I think your best bet is to look inso the Macintosh II, or one of the 68020168881 upgrades. The Mac 11 should be available sometime this summer. It has the math crunching 68881 and is driven by a 68020 . On modified Macs to thas configuration the speed up has been dramatic.
My personal opinion is that any HLL will be slower than assembler (even with a 68020168881 combo) so the use of C. or any other IILL is going to be degraded, in speed, 10 some degree or another. Even Fortran. To that end, assembler is still "King".
The "Lint" program is available from several C vendor for the Mac. Usually it is named something different (maybe for copyright reasons), you will have so check with vendors on that accown.
We use the Apple MPW sel of MLLs. This includes a very goad C (no Lint), siraighs Pascal and Object Pescal as well as all the other programming aids available 10 the Apple developer. This sotal package is aboul $\$ 600.00$. This price covers about everything available from Apple. If inserested, contact she Apple Developers Group - A.P.DA. - 206 2516548.

Maybe some of our readers will have more info for you. Good Luck.

DMW
MARION E. WOLFE, COMPUTER CONSULTANT
1030 end comono on
वrecule cuuronula il 202

Combuten publiahina cionte
CA MSCRO SOUANA
sgue CABestedr.e gmien
mo Oor tys
MInean. TN 373ムコ

 pector of the bee of the decimel evstea. als uinary prectione
 number of dipile to enc right of zire point.
 son.
 pector op bjnary base, his decienl frestion commi bo t mave - orobice mith mith thooe couruean nolo mi
 ionel Oiseftim. Munaing OV. level e. Mow joind that the
 with wh ointr terminal and orintor. I ment to letasn thet poeve. mon cen t det either see on ine istion orniner sosec on inv Cocos Thank you.

```
gincevelv
    Mava
Marion E. Wolfa
```


scpoce op chenceide ingreerm of prisinioh PTTSBRUROH. PENGYIVANIA 15361
 Gentlemen:

The University of Pitsburgh Conference on Modeling and Simulation is pleased to announce that we wil be sponsoring iwo short courses:

COURSE I - PROGRAMMING AND INTEREACING THE 68000 MIDMORROMESKOR

COURSE 2 - PRQGRAMMING AND INTEREACING THE 8086 MICROPROCTESSOB

SCHEDULE OF ACTIVITIES . BOTH COURSES

PIRST DAY
8:30 Coffee and Donule
9:00 J.ecture 01: Orerviem, Batic Archileciure. Number and Informallon Representasion, simple Progremming insiructions
10:00 LABORATORY UI: Visual Audio Response with the Pat000 $\mu \mathrm{LAB}$ n (or Plose HLABN).
12:00 LUNCHEON BUFFET (No Chage) .Optional continuing practice
1:00 LECTURE 2: Addreasing, Instructions. and 68000 (op 8086) Programming in Aceembly Lenguate and Native Mashice Code

2:00 LABORATORY 2t Reinfocment of Lecture - \& and 12 Concepla

4:30 QUESTION AND ANSWER PERIOD (Opilonal)
$0: 100$ UINNER (individual Inilislive)
7:000:0 SELF SIUDY

SECOND DAY

0:30 Coffee and Donuts
9:00 Lecture 13: Inicrfacing to the 60000 (or 2086) mierognuarecer and support chips.

10:00 LA 0 ORATORY 13: Enperiments invalving the lurning on of lights, running molors, and reading swich inpurs.

12:00 LUNCHEON BUFFET (No Charge) .. Optsonal continuing practice

1:00 LECTURE 44: Date communication and esaleznal contzol of the microprocesior (Incerrupts)
:00. Laboratory e4: Serial Communication from anc 60000 (or 8086) to saother 68000 for Rna6) using the RS3I2C imerface.
\& 11 UUESTIUN AND ANSWER PERIOD (Oplional)
6:00 DINNER (Individuel Initimive)
, imp.uans stilf sTUDY
TRIRD DAY
2 so Coffee and Donus
-00 Leciute es: Mutsiple processors, enprocessors and process control

10:00 Demanitrations using suppoet equipraent for the P680c0 MLABTM (or P10is HLABr). Assembiers. Cloied Loop Conlsol. Signal Ptoctising

Marlis M. Mictle. Profastor of Elecirieal Enginaesing. Uaiversity of Pletaburgh. Saveral sraduate asoistaats will also be available to essist in the taboratory sections.

REGISTRATION INFORMATION

Dates: As Listed in the Table Below
GorNo.Go Date: As Listed in the Table 8elow

PLACE: BENEDUM ENOINEERINO HMLS Unircrally of Pitusburgh. Pitisburgh. PA \$3261

REFISTTRATION FPR: SGOM (includry $\$ 360$ in equipment you tate home with you)
I)EPOSIT: $\$ 200$ (Nonrefundative ualeas courte Muren mok 路

The Registrition Fee of $\$ 600$ inctrides all nintes. P68000 (or PB086) μ LAB n microprocessor devetopment system and a FWWFA MLABN virc-misp expansion til including cables. connestop. chips and lools fintal hat peice of $\$ 380$). allendance al all lextures, taberstory setsions. discussions and demaniliations and two luncheon huffete. fitniviralion Fill be limiled to the copesity of nur lecture hall. Therefore, your deposil of $\$ 200$ is nonrafindable unlces a No-O0 decintion is mede in which cose your deposit will be ralurned. We muat receive your retistration and fow ceposit for the eome by the Gohlo. Oo date litued below. The beleace of $\$ 400$-lill be due on the firsi day of the course. Please being a chect or cash
TO REOISTER POR TNE SNOET COURSE, SEND YOUR NAME, MALDND ADORES AND A CRECK (MADE OUT TO UNIVERSITY OF PITISBURGR) POR A 52.00 DEPOSIT TO.
Marlin M. Mistle or Wilisem O. Voge Modeling and Simulation Conference. 348 Denedura, Engineering Mall, Univecsity of Pintabusth, Pimburgh. PA 15261. Tel Not 412 -624-9682 or 412.624 .9686

SCREDULE OF COURSE OFFERINGS
COURSE NŌ. INTERFACING THE 68000 MICROPROCESSOR

110	00000074	2F2EOOOC
111	00000078	EFOC
112	O000007A	6184
113		
134		
115		
116	0000007C	SOYF
117		
118	0000007E	$4 C 091800$
128	00000.	4ESE
120	00c0009	4E75
121		
	000000B5	

```
move.f count(ep),-(0p)
move.d count(ep);-(0, (0, m
donel exite; pleas adjumese atmek
mdd.4 M9, ep
```



```
res
-nal
```

 tiat uther omero of Sardio S1-2900 conoact cyu's mon't have as aci: trouble as I ile oettine on-line to SBS.
 level 1. Yothina iency, int eince in assenbly
lancuace, very fart. It as ritten by one of our canadian nelihoors, crec liorae. juet srite, SASB please, and I'll ive you the cetzily and address.
т
Fill Ched; $\mathrm{za}^{\circ} \mathrm{i}$
Route 2 Bo\% 102
Bet ilope, 2e. 28938

CONTACT: E. Xyle Tymer $1800.622-7627$
DOVE
COMPUTER CORPORATON

Oove Computer Corposation, manulacturer of productivity enhancement products for tie Macintosh and indusity teader in 1 megabir CMOS SIMM tecinology, has announced a special rebate program for dealers and distributors.

DOVE's Memoiy Products Division will offer trade-in credit 10 dealers and distributors lor the 256K SIMMs which are replaced and relurned to DOVE in conjunction with sales of their MacSnapn 1 megabil SIMM products. Credits will be allowed on a $1: 1$ basis versus MacSnap purchases.

According to Rick Greene, Vice President of Sales and Marketing, this program is intended to managed by the deafers and distributors to their desired advantage. "It affords our dealers and distributors the opportunity to offer an additional discount to the end purchaser and to increase their sales mafgin." Greene said. "And it eliminates the waste of 256 K SIMMs which were not being utitized atter a Macintosh Plus. SE or Macintosh II had been upgraded with our 1 Megabil CMOS SIMM producls."
We are always looking for ways to improve productivity and to make the most of resources available to us. We're excited about this program because if will benefit everyone-our dealers and distributors, the end users and DOVE COMPUTER.

DOVE COMPUTER CORPORATION, locaied in WIImington, North Casolina, designs. manufactures and markets memory. communications and software products for the Apple Maciniosh line of computers. The Company's products are used peimarijy in business applications and are sold through dealers.

Classifieds As sucminitod- No Guarantoos

DAISY WHEEL PRINTERS
Qurne Sprint 9- 9900 Qume Sprint 5-5800
HARD DISK 10 Megabyte Drlve - Seagate Model *412 $\$ 275$.

3 - Dual 8 " drive enclosure with power supply. New in box. $\$ 125$ each.

5-Siemens 8" Disk Drive. $\$ 100$ each.

Tano Outpost 11, 56K, 2 5" DSDD Drives, FLEX. MUMPS. 5495.

TELETYPE Model 43 PRINTER - will serial (RS232) interface and full ASCI keyboard . \$250 ready to run.

SWTPC S/09 with Motorola 128K RAM, 1-MPS2. 1-Paralell Port, MP-09CPU Card - $\$ 900$ complete.
(615) 842.4600 M.F 9AM to SPM EST

SWTPC 6809 system 5709 . dual $8^{\prime \prime}$ drives. 8212 terminal, 128K RAM. Okidata wide carriage with tractor feed . $\$ 2,000$ or best offer.
462-0551 or 536-0018.
-••
Have many 6800 and 6809 bare and working boards and manuals. Send SASE for list.
Ron Mauceri, 2037 Dewberry Cl.,Westlake Village. CA 91361

GMX 68020 Computer. Never used. 16.7 MHz .2 Meg Ram. floppy. 25 Meg HD. 4 serial. 1 par. With C. Uniflex OS. et. al.
\$5500 new. Only \$3995. Marc Talisman. (714) 582-9100. (714) 532-3466 eves.

!!! Subscribe Now !!! 68 MICRO JOURNAL

Subscription Rates
U.S.A.: 1 Year \$24.50, 2 Years \$42.50, 3 Years \$64.50
${ }^{*}$ Foreign Surface: Add $\$ 12.00$ per Year to USA Price.

- Foreign Airmail: Add $\mathbf{S A 8 . 0 0}$ per Year to USA Price.
- Canada \& Mexico: Add $\$ 9.50$ per Year to USA Price.
${ }^{*}$ U.S. Currency Cash or Check Drawn on a USA IBank !

68 Micro Journal

5900 Cassandra Smith Rd.
POB 849
Hixson. TN 37343

Telephone 615 842-4600
Telex 510 600-6630

OK, PLEASE ENTER MY SUBSCRIPTION
Bill My: Mastercand \square VISA
Card \# \qquad Exp. Date For 1 Year \qquad 2 Years \qquad 3 Years \qquad

Enclosed: \$ \qquad

Name \qquad
Street \qquad
City \qquad State \qquad Zip \qquad

My Computer Is: \qquad

$\mathrm{SK} * \mathrm{DOS}$

The Genenc DOS to for 68000 epplications in

- Incoustrisal Conrio
- Businass Uso
- Educationst Compuling
- Scientific Compulirig
- Number Ciunching
- Dedicated Systoms
- Turnkey System
- Single ooerd Computers
- Bus oriented Compuiers
- Graphicis Workstations
- Onool. - kind Systems
- Advanced Mobbyis Use

SK•OOS it a single user dish operasing syblem for computers using Motorole 32 bit CPUs ach es the 68008, 68000. 68010 and 68020 it provides the power al efull DOS, yat is ymole and easy so use, and will fun on cysems from 32 K to 16 megebytes. Becente SK eOOS is abuly implomented on a new orstern. we call it "The Generic DOS" wich bliows progere written for one system io be run on monv others.
SK. OOS comes with over 40 comnupids and sVisem proprams, includinge 6909 amulator whet allown 6BK SK \& DOS co run sppliction progrems and langiegen Gevitoped for 6809 SK \Rightarrow DOS and ottap systems. Aseembters, editors. and higiter teval langigep mupport ara available lioun third perty soliware vendors and through publif domainn soliware.

SK•DOS is available for single coov or cealer saler as well as OE M ticensing Singif acoies cost 5125 linguite as to wailabie sygterntl. Extiomely attractive OEM licendry terms wo alsa ovaiteble. An oprional Configurstion Kli conlalns a detailed Configutation monual and iwo diaks of source code for systam adeptatian. including source code for isystem monitor/debug ROM aid other proarams uselul for adepsting SK EOS to now sybiems.

SK*DOS
is available from
TAR-K
SOFTWARE SYSTEMS CORFORATION
P.O. Box 209 - MT. KısCO. NY 10548 914R410387 TELEX B1080:6T74

SOFTWARE FOR $680 \times$ AND MSDOS

SUPER SLEITH OSSASSEMBLERS

EACH \$99.FLEX $\$ 101$-OS/9 $\$ 100$.UNJFLEX OBJECT.ONLY verdiom: EACH SSO-FLEX.OSM,COCO interactively generate source on disk with labees, include xret, binary edining specify $6800,1,2,3.5,8,9 / 6502$ version or $280 / 8080,5$ version OS 9 version also processes FLEX format obiect fle under OS 9 7808000.5) only

ROOSS-ASSEMBLERS WTTH MACRO CAPABILTIIES
EACH \$50.FLEX,OS/9,UNIFLEX,MSDOS,UNIX 3/\$100 ALU $\$ 200$ spechy $180 \times .6502 .6001,0804,6805,6809,78.280,8048,8051.8085,68010,3000$
 soceces for adrational $\$ 50$ each, $\$ 100 \mathrm{hox} 3.5300 \mathrm{tor}$ th

DEBUGGING SIMULATORS FOR POPULAR B.BIT MICROPROCESSORS EACH \$75.FLEX $\$ 100$ OS/9 S80-UNFLEX OBJECT.ONLY verbiona: EACH \&SOCOCO FLEX.COCO OSO
 speoty lor 88001, (14)8805. 6508, 6809 059. 280 FLEX
ASSEMBLER CODE TRANSLATORS FOR 6502, 680011, 6809 6502 to 6809
s75.FLEX ses-Os9 s80.UNIFLEX
FULL-SCREEN XBASIC PROGRAMS with rursor conted
AVAILABLE FOR FLEX, UNIFLEX, AND MSOOS DISPLAY GENERATORIDOCUMENTOR MALLING LIST SYSTEM
INVENIORY WITHMRP $\$ 100 \mathrm{w}$ /source, $\$ 50$ without TABULA RASA SPPEAOSHEET $\$ 100$ wisource, $\$ 50$ without

DISK AND XBASIC UTHLTTY PROGRAM LIBRARY S50-FLEX $\$ 30$.UNIFI.EXMSDOS
 remequence scrive of all of BASIC proyon, wod BNSIC pogron ac

CMODEM TEUECDMNCATIONS PROGRAM \$100-FLEX,OS/9,UNIFLEX,MS.DOS,OS/9-6日K,UNIX OBJECT.ONLY versions: EACH $\$ 50$

INDUSTRIAL PASCAL FOR 68000 AND 6809

PCSK is a package that generates code for a 68000 series processor running on a 68000 development system, It includes the compiler. assembler, linker, hosi debugger, larget debugger, and screen editor. all integrated logether and controlled by a enu driven shell program. Source code is inctuded tor the runtime library and many of the utilities. Host operating systems supported are OS-9/68000 (Microware), PDOS (Eyring Research). and VERSAdos (Motorola).
PXK9 is a package thal generates code tor a 6809 processor running on a 68000 development system. Includes all of the leatures of the PCSK package above, except tor the host debugger. Host operating system is OS-9/68000

I WANT IT, WHERE DO I GET IT?
For more information on either ol these iwo products please contact Certitied Sollware, South East Media, or one of our European Licensees.

OEM LICENSEES

Gespac sa. 3. chemin des Aulx, CH-1228 Geneva / Plan-les-Quales. Swilz TEL \{022) 713400. TLX 429989

PEP Elektronik Systeme GmbH. Am Klosterwatd 4.
D-8950 Kaulbeuren, Wesi
Germany. TEL (08341) 8974. JLX 541233.

Ellec Elektronik GmbH. Gatileo-Galieei-Strasse. 6500 Malnz 42. Postlach 65, West Germany. TEL (06131) 50031. TLX 4187273.

DISTAIBUTORS

A.C. S. Microsystems Litd 141 Uxbridge Road. Hampion Hill. Middlesex. England. TEL 01-9792204. TLX 8951470
Dr. Rudolf Keil GmbH. Porphystrasse 15. D-6905 Schriesheim, West Germany. TEL O62 03/6741. TLX 465025 .
Elsoll AG, Zelgweg 12. CH-5405 Baden-Daellwil, Switzerland. TEL
$056 \cdot 833377$. TLX 828275.
Byie Sludio Borken, Bulenwall 14, 0.4280 Borken.
West Germany. TEL
02865-2147. TLX 813343.

CERTIFIED	616 CAMINO CABALLO. NIPOMO. CA 93444
SOFTWARE	TEL: $(805) 929-1395$ TELEX: 467013
CORPORATION	FAX: $(805) 929-1395$ (MID•8AM)

CORPORATION FAX: (805) 929.1395 (MID.8AM)

DISKETTES \& SERVICES

5.25" DISKETTES

EACH 10.PACK \$12.50-SSSDISSDDIOSDD

ADOITIONAL SERVICES FOR THE COMPUTING COMMUNITY CUSTOMIZED PROGRAMMING
wo wit asstrinize eny of the progans described in this eotraniegrem or in ow trocture tor specition crstoriz use of in cover now procescre; the clarpe

CONTRACT PAOGRAMMING

 popula brence of mbucienpilers, hat ding 860011. 6809. 280.8502.
 ranging in 42 b bon lage civivateriot to ence oowd conebiers.

CONSULTING

 seniners, dica, tining, end dacion on ary lople recteo to complest the cherce for conoing is norvity besed upon ine bevel and orpenex

Computer Syeteme Coneultante, Inc.
1454 I.atta Lane, Conyera, GA 30207 Telephone 404.483-4570 or 1717

We take orders at any time, but plan tong diecussiona after 6 , If possible.

Conlact ue about catalog, dealer, discounts, and services. Most programe in source: give computer, OS, disk aize. 25% ofl multiple purchases of seme program on one order. VISA and MASTER CARD accepted; US funde only, please.
Add GA salea tax (if in GA) and 5% shipplng.

תmega . . . The Desktop Mainframe

* 12.5 MHz MC68020 32-bit microprocessor \& MC68881 FPCP as standard.
* 1 megabyte of non-volatile, zero wait-state STATIC RAM and 128k/256k bytes ROM.
* 25.5 megabyte (unformatted) Winchester Hard disc as standard.
" 1.0 megabyte (unformatted) DS/DD 80 track floppy disc drive (specify $51 / 4^{\prime \prime}$ or $31 / 2^{\prime \prime}$).
* Five RS-232C serial ports (one may be configured as an RS-485 network node).
- One Parallel printer port and one 16 -bit bi-directional parallel port.
* Non-volatile clock calendar and power supply supervisor.
* OS-9/68K ${ }^{1 M}$ 'Professional' with full MC68881 FPCP support and 'C' compiler.

OMEGA12.5/OS	OMEGAw/12.5 MHz 020/881 \& OS-9/68K $\mathrm{K}^{\text {TM }}$	\$4750.00
OMEGA16.6/OS	OMEGA w/16.67 MHz 020/881 \& OS-9/68K ${ }^{\text {'M }}$	\$4950.00
OMEGA/1MB	1 megabyteadditional STATICRAM	\$ 895.00
OMEGASER9	9 port RS-232C serial expansion board	\$ 645.00
OMEGA/GRF	$640 \times 480 \times 4$ bits/pixel ACRTC graphics I/F	\$ 925.00

PRICES INDICATED INCLUDE SHIPPING AND APPLY TO U.S. CUSTOMERS ONLY

VISAMASTER CARD ORDERS ACCEPTED

OS-9 is a trademark of Microware Systems Corporation
NON-US. CUSTOMERS SHOULD CONTACT THE NEAREST DEALER FOR PRICE \& DELIVERY INFORMATION

NORTH \& SOUTH AMERICA
LLOYD I/O INCORPORATED
19535 NE GLISAN
P.O. Box 30945

PORTLAND, OR 97230 (USA)
TEL: (503) 666-1097
TLX: 9103805448 LLOYD I O

ALL OTHER ENQUIRIES
WINDRUSH MICRO SYSTEMS WORSTEAD LABS.
N. WALSHAM, NORFOLK NR28 9SA, ENGLAND TEL: \{0692) 404086 TLX: 975548 WMICRO-G

CONTINENTAL EUROPE

SNIJDER MICRO SYSTEMS SCHOOTEINDSEWEG 8a 5756 BD Vlierden
The NETHERLANDS
TEL: (0)4930-11975-13666

E-ZOn, E-ZOff

The LAB 6809 he!ps you prototype your design in less time, for less money. Easy to use and easy to modify, the LAB 6809 is the optimat development tool for 6809-based applicalions with high performance objectives.

Use as stand alone or system CPU C 68B09 jumper seteclable for 1 or $2 \mathrm{MHz} \square 2 \mathrm{MHz}$ LO wilhoul wait stales ior on board devices $\square 68850$ RS-232C serial port on board provisions for additional 6850,6840. 6821 , other $1 / O$ devices \square PICOBUG monitor provides 10 and debugging roulines 22 sq. in user wirewrap area gold- platedSS. 50 connectors \square compretrensive documentation
Put the LAB 6809 to work on your next project. \$395.
Shimeing and handing $\$ 10$ IUS). $\$ 20$ (outside US) Texas residents add sales tox. MaslerCard. VISA accemed Technical balletin availuble on request Deaier nownes invited

Make' Boschert

Sizar $10.5 \times 5 \times 2.5$ inchee - incluaing heavy mountas bactrea mid hearimit

Rating in 110200 volus ae (strap chagge) Oux: 130 wass
Ouque i $5 v-10$ acme
. 12r-4.0 вmp
$.12 v-20$ smp
$-12 v-0.5$ епро
Matins Commeor. Terminal strip Lasd Ramaiosis Amomatic shons cirseit socovery

Esch
SPECIAL: \$59.95
2 or more 49.95

Make: Boscben

Size: $10.75 \times 6.2 \times 225$ iaches
Raing 110220 ac (strap change) Ole 81 wans
Cutputs: . $5 v .80$ emp
$12 v-24$ amp
$612 v-24$ emp
-12v-21 emp
$-12 \mathrm{~V}-0 . A \mathrm{Emp}$
Mating Coantelore: Moles
Load Reaction: Autometic abort circuit recover
Each
SPICCIAL: S\$9.95
2 OR MORE 39.95

Add: \$7.50 S.H each

Savings to 50\%
And More!

All other items 10% off - Sale ends $7 / 31 / 87$ Add: $\$ 2.50 \mathrm{~S} / \mathrm{H}$ all sofware, each item.

CoCoros-9 BASIC Xref w/source 79.95
49.95

CoCorOS-9 BASIC Xref w/o source39.95 24.95

OSM - 6809 Assembler Loyd VO 99.95 49.95

Search \& Rescue - Loyd VO OS-935.00 24.95
C COMPILER - Windush REX 295.00195 .00
BZPACK Vairginia Co. FLEX
VIRTUAL TERMINAL COCOOS-9 49.9536 .95
COCO KANSAS CTTV BASIC $39.95 \quad 24.95$
LSORT OS.9 Sormerge I II $85.00 \quad 54.95$
BASEDT FLEX (TSC BASIC Ưi) 39.9519 .95
ASSEMBLERS Assoned Loyd VO discounted cal
K-BASIC Compiler compiles XBASIC - FLEX - OS-9
very popular BASIC compiler.. 199.9579 .95
DYNACALC Great spreadsheet $200.00 \quad 99.95$
DYNAMITE FLEX OS-9 COCo all varies 49.95
STVLO Word Pro CoCo OS-9 99.9549 .95
PL9 5" REX $198.00 \quad 129.95$
SCREDTOR III $5^{\prime \prime} \quad 175.00 \quad 119.95$

Ex	295.00129 .50
RRMac Great Plains PLEX	150.0074 .95
NFOMMAG Great Plains UniFLEX	395.0099 .50
SPEILING CHECKER FLEX	99.9549 .95
MALL MERGE FEEX	79.9539 .95
C Compiler Intol FLEX - OS.9	575.00295 .00
REL MACRO ASMB Misowar	9200.0099 .50
CHECK \& TAX Slar-Kits FLEX	50.0019 .95
STAR-DOS COCo	34.5019 .50
HUMBUG Star-Kits (apo)	40.959 .95
REMO-TERM COCo (lape) Remote	CRT ? 9.95
SPELL 'N FIX Star-Kis FLEX	89.2939 .9

ASSORTED TSC 6809 FLEX UniFLEX $40-75 \%$ off
Assorted items: (some new - some used working) SWITC SO-9 Computers 128K 3000.0075\% off Assorted Doaros, etc. tp to 90% oft - call

NOTE - STAR-DOSSK-DOS ñs same as REX

THE 6800-6809 BOOKS ..HEAR YE......HEAR

 OS-9"'

 OS-9"' User Notes User Notes

 FLEX ${ }^{\text {™ }}$

 FLEX ${ }^{\text {™ }}$

 USER NOTES

 USER NOTES}

By: Peter Dibble

The publiahers of 68' Micro Journal are proud to make available the publication of Peter Dibbles OS9 USER EOTES

Information for the BEGLints to the Pro. Eeguler or CoCo OS9

Balag OS9
hELP, HINTS, PROBLEMS, REVIEWS, SUCCESTIONS, COMPIAINTS, OS9 STANbARDS, Generating a New Bootstrap, Building © neu Syatem Drek, OS9 Users Ciroup, etc.

Progran Interfaciag to OS9
DEVICE DESCRIPTORS, DIRECTORIES, "FORKS", PROTECTION, "SUSPEND STATE", "PIPES", "INPUT/OUTPL:T SYSTEN", etc.

Prograc dag Lasguages
Asseably Lankuare Programs and Interfacing: Besic 09, C, Pascal, and Cobol reviews, prosiaas, and uses; ect.

Dreke Ieclude

Eo typdog all the Source Lotiags to. Source Code and, where applicable, easeabled or coaplled Operaciag Protrats. The Source and the Discussione in the Coluans can be used "as ia", or os a "Starting Point" for developing your OWM more pouerful prozrans. Programa cometime uee auleiple languages such es short Aaseably Longuage Routine for reading a Directory, which is then "plped" co Bsalc09 Routine for output formating, etc.

BOOK $\$ 9.95$
Typeser -- u/ Source Listings
(3-Hole Punched; 8×11)
Deluxe Mrder 5.50

All Source Listings on Disk
1-8" SS, SO OHak … - $\$ 14.95$
2-5" SS, DD D1ake $-\cdots \$ 24.95$

By: Ronald Anderson

. publlahera of 68 MICRO $\mathcal{S O U R N A L}$ are proud to aake available the publication of Ron Anderson's Tra OSER MOTES, in book fora. Thle popular monthly coluan has teen o rexular feature in 68° MICRO JOURNAL SINCE 1979. It has earned the reapect of thousands of 68 MICRO JOURNAL readera over the yearb. In fact. Ron's coluan hea been deacribed te the 'Bible' for 68xX uaera. by some of the vorld'a leadinf aicroprocessor profeasionale. The aoat needed and popular 68xx book available. Over the yeara Ron's coluan hae been one of the aoot popular in 68 MICRO JOURNAL. And of course 68 MICRO JOURNAL ia the moat popular $68 x X$ aagazine published.

Weted belou are efeu of the INT flles included in the book and on disketce.

All TEXT files in the took are on the disks

LOGOCI File load program to offsel memory - ASM PIC MEMOVECI DUMP.C1 SUBTESTCI TERMEMC2 MC2 PRint C3 MODEMC2 SCIPKGC1 UC4 PRINTC4 SET C5 SETBASI C5

Memory move program - ASM PIC
Printer dump program - uses LOGO - ASM PIC
Simulation of 6800 code to 6809. show differences - ASM
Modern onpul to disk (or other Don inpur to drisk) - ASM
Oulpul a file to modem (or another DOrt) - ASM
Parallel (enhanced) primier diver - ASM
TTL outpul to CRT and modem (or other port) - ASM Scientific math routines - PASCAL
Miri-monitor, disk residens. many uselul funcrions - ASM
Parallel prinler driver, withoul PFLAG - ASM
Sel printer modes - ASM
Sel printer modes - A.BASIC

NOTE: .Cl,.C2, etc.eChapter 1, Chapter 2, etc.
**Over 30 TEXT Elles included is ASM (aseeabler)-PASCALPIC (posicion independent code) TSC BASIC-C, EC.

Book only: $\$ 7.95+\$ 2.50 \mathrm{~S} / \mathrm{H}$
With disk: 5." \$20.90 + \$2.50 S/H
With disk: $8^{\prime \prime} \$ 22.90+\$ 2.50 \mathrm{~S} / \mathrm{H}$

Shlpping \& Handiling $\$ 3.50$ per Book 52.50 per Disk set Foreign Orders Add 54.50 Surface Mail os $\$ 7.00 \mathrm{Air} \mathrm{Mail}$
If peying by check - Please allow 4-6 weeks delivery

- All Curroncy in US. Dollars

Continually Updated In 68 Micro Journal Monthly Computer Publishing Inc. 5900 Cassandra Smith Rd. Hixson, TN 37343
"flex ts e erademark of Technical Syatean Conaultanta
"OS9 is a cratemark of Microware and Hotorole
"68' Micro Journal ia erademark of Computer Publiahing Inc.

OS-9"w
 sormane

LI UTILITY PAK_Contains all programs formerly in Filter kits 1 \& 2, and Hacker's kit 1 plus several additional programs. Complete "wild card" file operations, copies, moves, sorts, deI, MACGEN shell command language compiler, Disassembler, Disk sectoredit utility, new and improved editions, approx. 40 programs, increases your productivity. Most programs applicable for both level I \& II 6809 OS.9. \$49.95 (\$51.95)
Call or send Self Addressed Stamped Envelope for catalog of software for colorComputer OS-9 and other OS. 9 systems.
BOLD prices are CoCo OS-9 format disk, other formats (in parenthesis) specify format. All orders prepaid or COD, VISA and MasterCard accepted. Add $\$ 1.50$ S \& H on prepaid, COD actual charges added.
s5.50C MEMORY LIQUIDATION SALE!
(While Supply Lasis)
1 MEGABVTE RAM BOARD
Full megabyte of ram with disable options to suit any SS-506809 system. High reliability, can replace static ram for fraction of the cost. $\$ 399$ for 2 Mhz or $\$ 439$ for 2.25 Mhz board assembled, tested and fully populated.

2 MEGABYTE RAM DISK BOARD

RD2 2 megabytes dedicated ram disk board for SS-50 systems. Four layer circult board socketed for 2 Megabytes! Special sale price of $\$ 399.00$ includes only 256kof ram Installed (you add the rest), includes OS-9 level I and II drlvers for Ram disk, (note: you can reboot your system without losing ram.disk contents). (Add $\$ 6$ shipping and insurance.)
Please call for answers to your technical questions concerning these products.
D.P. Johnson, 7855 S.W. Cedarcrest St.

Portiand, OR 97223, (503) 244.6152
(For best service call between 9.11 am Pacific time.)
OS. 9 is a trademark of Mictowave and Motoroia Inc.
MS.DOS la a trademark of Microsott Inc.

COMPILER EVALUATION SERVICES

BY: Roe Anderion

The S.E. MEDU Dividan of Computer Pubeliting lac.
Is offertag the folowig SUBSCRIBER SERVICE:

COMPJLER COMPARISON AND EVALUATION REPOKT

Due to tive constant and rapid updating and enhancement of numerous compiless, and the different utility, appeal, speed, level of communication, memory usage, etc., of different compilers, the following services are now being offered with periodic updales.

This service, with updates, will allow you who are wary or confused by the various claims of compiler vendors, an opportunity to review comparisons, comments, benchmarks, elc., concerning the many different compilers on the market, for the 6809 microcomputer. Thus the savings could far offset the sonall cost of this service.

Many have purchased compilers and then discovered that the particular compiler purchased either is not the most efficient for their purposes of does not contain features oecessary for their application. Thus the added expense of purchasing sdditional compiler(s) or not being able to fully utilize the advantages of high level language compilers becomes loo expensive.

The following COMPILERS are reviewed initially, more will be reviewed, compared and beachmarked as they become available to the author:

PASCAL 'C GSPL WHIMSICAL PL9
Initial Subscription - $\$ 39.95$ (includes 1 year updares)
Updates for 1 year - $\$ 14.50$
S.E. MEDIA - C.P.I.

5900 Cassandra Smith Rd.
Hixson, TN 37343
(615) 892-4601

We are recelving calls and letters from numerous pources, including users, business and others looking for OS9 68000 software: applications. etc.

Many of you have developed soflware that with uttle change could be adapted for others. If you are interested in selling it. please let us know. There is a growing market out there now. Get in on the ground fioor!
If you can use addllitional income and have something that might be of interest. call and talk to Latry or Don.
S.E. MEDIA Division - CPI

POB 849
Hixson, TN 37343
Telephone (615) 842-6809
Telex (510) 600-6630

-This is exactly one cent more than the price of
the same system - with two floppies - for one cent more you get one floppy and a 25 MegaByte Hard Disk with the faster CPU board, additional serial ports and improved clock! Includes Professional OS-9rm Version 2 and the $\$ 500.00$ C Compiier! Remember - When it's over, IT'S OVER! We don't know how long this very, very low price can be maintained, don't miss it!

Data-Comp Div. - CPI

6809<>68XXX UniFLEX

X-TALK

A C-MODEM/Hardware Hookup

Exclusive for the MUSTANG-020 nunning UniFLEX, is a new transfer piogram and cable set from DATA-COMP (CPI). X-TALK consist of 2 disks and a special cable, this hook-up enables a 6809 SWTPC UniFLEX computer to port UniFLEX files ditectly to a 68 XXX UniFLEX system.

This is the only currently available method to transfer files, text or otherwise, from a 6809 UniFLEX system to a 68000 UniFLEX system, that we have seen. A must if you want to recompile or cross assemble your old (and valuable) source files to sun on a 68000 UniFLEX system. GIMIX users can directly transfer files between a 6809 GIMIX system and our MUSTANG-020 68020 system, or GIMIX 68020 system. All SWIDC usels must use some sort of method other than direct disk transfer. The 6809 SWTPC UniFLEX disk format is not readable by most other 68000 type systems.

The cable is specially prepared with intemal connections to match the non-standard SWTPC SO'9 DB25 connectors. A special SWPTC + cable and software is also available, at the same price. Orders must specify which type SWTPC 6809 UniFLEX system they intend to transfer from or to.

The X-TALK software is fumished on two disks. One $8^{\prime \prime}$ disk containing the 6809 software and one 5 " disk containing the 68 XXX software. These programs are also complete MODEM programs and can be used as such, including X-on X-off, and all the other features you would expect from a full modem program.

X-TALK cas be purchased with/without the special cables, however, this SPECIAL price is available only to registered MUSTANG-020 owners.

> X-TALK, w/cable $\$ 99.95$ X-TALK only 69.95 X-TALK w/source $\$ 149.95$

DATA-COMP
5900 Cassandra Smith Rd. Hixson, TN 37343

Telephone 615842.4601 Telex 510 600-6630

Nale: Reglslered MUSTANG-OZO owners musi turnigh system sertal number in order to ory at these spedal low prices.

68 MICRO JOURNAL
 Reader Service Disks

Dlsk- 1 Filesont. Minicat, Minicopy.Minifms, ${ }^{\bullet}$ Lifetime, \bullet - Poetry, * Foodlist, * Diet.
Disk. 2 Diskedit w/ inst. \& fixes, Prime. • Prnod,

Disk. 3 Cbug09. Sac1, Sec2. Find, Table2. Intext. Diskexp. ${ }^{\bullet}$ Disksave.
Disk- 4 Mailing Program, ${ }^{-}$Finddat, ${ }^{\bullet}$ Change, ${ }^{-}$Testdisk.
Disk- $5{ }^{\bullet}$ DISKFIX 1, *DISKFIX 2, **ETTER.

- LOVESIGN, ••BLACKJAK. ••BOWLING.

Disk- 6 •星urchase Order, Index (Disk file indx).
Dlsk- 7 Linking Loader, Rload, Harkness.
Dlsk-8 Crtest, lanpher (May 82).
Dlsk- 9 Datecopy, Diskfix9 (Aug 82).
Disk-10 Home Accounting (July 82).
Dlsk-11 Dissembler (June 84).
Dlsk-12 Modem68 (May 84).
Dlsk-13 *Initmf68, Testmf68, "Cleanup, ${ }^{\bullet}$ Dskalign, Help, Date.Trt.
Dlsk-14 ${ }^{\circ}$ Init, ${ }^{-}$Test, Tcminal, Find, ${ }^{\bullet}$ Diskedit, Init.Lib
DIsk-15 Modam9 + Updates (Dec. 84 Gilchrist) to Modern9 (April 84 Commo).
Dlsk-16 Copy.Txı, Copy.Doc, Cat.Txı, Cal Doc.
Disk-17 Match Uitility, RATBAS, A Basic Preprocessor.
Dlak-18 Parse.Mod, Size.Cmd (Sept. 85 Ansstrong), CMDC ODE, CMD.Txt (Sept, 85 Spray).
Disk-19 Clock, Date, Copy, Cat, PDEL,.Asm \& Doc. Errors.Sys, Do. Log.Asm \& Doc.
Dlak-20 UNIX Like Tools (July \& Sept. 85 Taylor \& Gilchsist). Dragon C, Grep.C, LS.C, FDUMP.C.
Dlsk-21 Utilities \& Games - Date, life, Madness, Touch, Goblin. Starshot, \& 15 more.
Dlak-22 Read CPM \& Non-FLEX Disks. Forser May 1984.
Dlsk-23 ISAM, Indexed Sequential file Accessing Methods, Conden Nov. 1985. Extensible Table Driven. Lan guage Recognition Utility. Anderson Masch 1986.
Disk-24 68' Micro Joumal Index of Alticles \& Bit Bucket Items from 1979-1985, John Current
Disk-25 KERMIT for FLEX derived from the UNIX ver. Burg Feb. 1986. (2)-5" Disks or (1)-8" Disk.
Disk-26 Compacta UniBoard review, code \& diagram. Burlison March '86.
DIsk-27 ROTABIT.TXI, SUMSTEST.TXT, CONDATA.TXT. BADMEN.TXT.
Dlsk-28 CT-82 Emulator, bit mapped,
Disk-29 - ${ }^{\text {Stur }}$ Trek
Disk-30 Simple Winchester, Dec.' 86 Green.
Dlsk-31 ** Read/Wite MS/PC-DOS (SK*DOS)
Disk-32 lier-UNIX Type upgrade - 68MJ $2 / 87$

NOTE:
This is a reader service ONLYI No Wamnety is offered or inplied, they are as received by $68^{\prime} \mathrm{Mi}$ (ro Joumal, and are for reader convenience ONLY (some MAY include fires or patches). Also 6800 and 6809 progiams are mixed, as each is faitly simple (mosily) to conver to the other. Software is available to cross-ascenble all.

- Denotes 6800 . ** Oeroles BASIC
- Oenotes 68000-6809 no indicator.

Specify 8" dlsk $\$ 19.50$ $5^{\prime \prime}$ disk $\$ 16.95$

Add: S/H - $\$ 3$ Ş0
Oversens add: $\$ 4.50$ surfsce - $\$ 7.00$ Air Mail, USA Dolters
68 MICRO JOURNAL
PO Box 849
Hixson, TN 37343
615 842-4600 - Telex 510 600-6630

IF YOU NEED IT, WE'VE GOT IT! (OR WE'LL MAKE IT

Yes. PERIPHERAL TECHNOLOGY still sells the FD-2 tor SS-50 Bus Computers. And, il you don't need It. we sell other products from Singte Board Computers to Systems which should fit your requirements. Custom Hardware Design is also available. Here's a smallsample ol what we otler:

FD- 2 FLOPPY DISK CONTROLLER

- Conirots up to fowr 519 a^{41} Drives
-Rune in 1 or 2 MHZ Sysiems
- Can be configured lor either 4 or 16
- Addressea per I/O SIol
¿SS30 or SS30CI
- Uses W02797 Controller Chip (compliblo with 1771/179x Conlroller Chind
- Maroware and Soliware compalible with SWTPC DC-4 conirollers
- 6600/6609 fier Divers available
- SK.0OS Operaling Sysiem or OS9/6809 Driver packerje

PT69-4 SINGLE BOARD COMPUTER

- 6 日09e Processor/1 MHZ Cloch
- Four RS232 Serial Poils usimo 6850's
- Two 8.Bir parallel Porls using 6821 PIA
- Time OP-Day Crock (MC1488181
- 59K of user RaM
- 2 K or 4 K ol EPROM using 2718 or 2732
- Double Sided/Doubre Density Froppy Coniroller
- Can Read/Write Radio Shack OS/G Diskelles
- Hoard Size $56^{\prime \prime} \times 62^{\prime \prime}$

SYSTEMS

- Floppy or Wincluester Versions Avalable
- Systems use any 6809 Single Board Computex or 68008 Board
- Will be configured to meet you Requ*emenis
- OS9 \& SK•DOS Operetang Systems
- Call or wrile for system
configuralions

MONTHLY SPECIAL
PT68K-1 10 Mhz \$375
Regulas Price \$495

PERIPHERAL TECHNOLOGY
\$480 Terrell Mill Road, Suite 870
Marietta. Georgia 30067
(404) 984-0742 Telex \#880584

VISA/MASTERCARD/CHECK/COD

 SWTRC is a lasemak al Seuthent Tectical Sywiens

FOR 6809 FLEX-SK-DOS(5/8")

 defined erwion and prim contoll Process Beal Form fleal Conditional eseaciart Pront
 reilicies! Buith in cext line editon Fully sexion oriented Entanced foand Boldfice. Double width, inalice and Underline aupporedf Writen in cernpect ancoured aceomblart Intagoted fur FAST excention
XDMS.IV Data Managemorl System
XDMS.IV it a brand new approach to dote managoneril 11 not anly pormise usars so describe, enter and retrieve data, but also to process entire files producing customized reports, acrear dimplays and file outpur Procesing can consis of myy of s set of sundard high levet functions including rocond and field emertion, sorting and agergation. Bookyps in owher files,
 preatioion of up io ctree relned files no "dolabise" on use defined a input repars.
POWERFUL COMMANDSI
XDME.IV eombince the functionality of many mpular DBMS consure systoms with a new easy

 SESSION OQIFATED!
XDMS-IV is scsision oriented. Enter "XDMS' and you are in inowat cernomand of all the
 areb al CREATE (Vle defrinian UPDA'TE (File aditor). PURGE and DEIETE (uibicia). Obep are proses comonade which are ued to crove a uso proce othich is erevred with : RUN cermend. Vider may be cremed into a "procos" file which in eamoted by an EXECUTE

 ran richoun over looving XDMS.IV!
TES EASY TO USE:
 ove nawre of the dat, we kepe XDMS.IV fle cticed. The user view of dou relejenchips is

 filee and arcour XDMS-N may bo usod for a wide renge of applications from cimple neand
 conecing .. Tho formbices are unlinited.

Vlsa \& Master Card Excepted
Telcphone: 615-342-4601 or Telex: 5106006630
Or Write: S.E. Mcdla, 5900 Cassondra Smith Rd.,
 Hisson, Temb. 37363

LTlX Micro-20 68020 SINGLE-BOARD COMPUTER

Mainframe CPU Performance

 on a $5.75^{\prime \prime} \times 8.8^{\prime \prime}$ Board
$\$ 2565^{00}$

Features

- 32-Bil MC68020 Processor (12.5, 16.67, or 20MHZ)
- MC68881 Floating-poin! coprocessor (optional)
- 2 Megabytes of 32-bit wide, high-speed RAM
- 4 RS-232 Serial I/ 0 Poits (expandable to 36)
- 8-bit Parailel I/O Porl ('Centronics' compatible)
- Time-ot-Day Clock w/battery backup
- 16-bit I/ 0 Expansion Bus
- Up to 256 Kbytes of 32-bit wide EPROM
- Floppy Disk Controlles lor iwo 5\%" drives
- SASI Intelligent Peripheral Interface (SCSI subset)
- Mounts directly on a $51 / 4$ " Disk Drive
- Optional Boards inciude Arcnet, Prototyping, I/ 0 Bus adapter. 60 line Paral?el 1/0, RS-422/485

Software

Included:

- GMX Version of Motorola's 020Bug Debugger with up/ download, breakpoint. trace, single-step, and assembles/disassembler capabilities
- Comprehensive Hardware Diagnostics

Optional:
UNIX ${ }^{\text {II }}$ IIke Mulfl-user/Mulil-tasking Disk Operating Sysfems

- OS-9/68000™ (Real-time and PROMable)
- UniFLEXN

Programming Languages and Application Software

- BASIC. C, PASCAL, ABSOFT FORTRAN, COBOL and ASSEMBLER
- Spreadsheet, Data Base Management, and Word Processing
COMPLETE EVALUATION SYSTEMS AVAILABLE
(312) 927-5510 • TWX 910-221-4055

State-of-the-Aft Computers Since 1975
 The CoCo

TSC Editor Reg $\$ 50.00$

Now $\$ 35.00$

ALL VERSIONS OF FLEX \& STAR-DOS• INCLUDE

+ Read-Write-Dir RS Disk
+ Run RS Basic from Both
+ More Free Utlities
+ Extemal Terminal Program
+ Test Disk Program
+ Disk Examine \& Repair Progrom
+ Memory Examine Program
+ Many Many More!!!

CoCo Disk Drive Systems

2 THINLINE DOUELE SIDED DOUELE DENSITY DISK DRIVES SYSTEM UITN PONEE SJPKLY, CAEINET, DISK DRIVE CABLE, JGN NEW DISK CONTBOLOLER JPD-CP WITH J-DOS,RS-DOS OPERATIMC SYS'PGMS. g469.g5

- Specify Whar CONTROLLER You vent Jen, or tablo grack

THINLINE DONETE SIDEB
DOULLE DENSITY 40 TRACKS

$$
8129.95
$$

Verbatim Diskettes

Sirsle Sided Double Denelty Double Sided Double Denelty
Controllers
JWM JPO-CP WITM J-DOS WITK J-DDS, RS-DOS RADIO SHACK 1.I
RADIO SHACK DIok Controller 1.1
Disk Drive Cables

$\$ 24.00$
$\$ 24.00$
8139.95
8159.95
8134.95
$\$ 130.95$
$\$ 19.95$
$\$ 24.95$

GAK UPCRRAE	2 29.95
PUE C, D,, , P, AND COCO 11	
KADIO SIUCK 甘ASIC 1.2	\$ 24.95
EAOTO SHACR DISK EASIC I.1	124.95
DISX ORIVE CAINET Pur a	
51NGLE DEIVE	149.95
DISK DEIVE CABINET POR Two	
THIMLINL DRIVES	8 89.95

RInsis

BPSON LX-80	4249.95
BPSON MX-70	$\$ 125.95$

BPSOW MX-100 8495.95

cocesonits for Epsot

8148 2K SEBLAL BARD 8 es.es
8149 32K EXPAND TO $128 \mathrm{~K} \quad \$ 169.95$
EPSUW MX-スX-80 KINEONS 7.95
EPSON LX-80 IIECOWS
TBACTOL UKITS POR LX-80
CALL TOR PKICIM

Coble for One Drive
Coble for Two Drive*

[^0]: G-64 and G-96 are regitered trodemarks of GESPAC SA OS-9 is a registered trademork of Microware Corp. PDOS is a registered trademark of Eyring Research Institute Inc

[^1]: Electroale Spaciallise, Inc. P.O. Box 389, 171 S. Main St, Naelck, Massachusezts 01i60 Phone: $800-225.4876$

