
.

Tapping into the
power of

PlayStation2
Rethinking software design to

exploit the cutting-edge technology
of PS2.

Speaker:Mark Breugelmans
Technology Manager - SCEE

©2000 Sony Computer Entertainment
Europe

2.

Topics

• Looking at the way PS2 works
• How that affects your software design
• Making effective use of GS drawing ability
• Utilising a micro-programmable graphics

pipeline effectively
• Data handling for parallel processing
• Pushing PS2 software to 2nd generation

©2000 Sony Computer Entertainment
Europe

3.

Designing PS2

• Requirements
– Hardware is fixed for lifetime of machine.
– High-quality graphics requires massive

bandwidth to maintain pixel fill-rate
– Huge calculation ability is required to transform

and light large numbers of polygons
– Large bandwidth is required for data such as

geometry and textures

©2000 Sony Computer Entertainment
Europe

4.

PS2 Design
Graphics Synthesizer

• Achieving Graphics performance
– Embedded DRAM gives 48 GByte/sec memory

bandwidth to eliminate pixel fill bottleneck.
– Fill rate is 2.4Gpixel/sec for 32bit + Alpha + Z
– Free alpha enables multi-pass effects
– 1.2GByte/sec bandwidth main memory to GS

for texture and geometry.

©2000 Sony Computer Entertainment
Europe

5.

Pixel Fill Rate

0.07

0.2

0.24

0.25
0.37

0.9 2.4

0 0.5 1 1.5 2 2.5

G pix/sec

PlayStation
Power VR2

Octane

Riva TNT
Voodoo 3 (3500)

Infinite Reality 2
GS

©2000 Sony Computer Entertainment
Europe

6.

PS2 Design - Vector Units

• Total 6.2GFlops including CPU FPU
• Twin geometry engines running @300mhz
• Optimised for 3D calculations
• Easy to develop pipelined programs
• VLIW run 2 instructions in parallel
• SIMD instructions run 4 FMACS in parallel

with one cycle throughput

©2000 Sony Computer Entertainment
Europe

7.

PS2 Design
Geometry Performance

0

20

40

60

80

100

120

140

160

M
 v

ec
to

r/s
ec

P2 (400 Mhz) P3 (733 Mhz) EE (300 Mhz)

Geometry & Perspective Transformation
1/Distance
Distance
Geometry Transformation

©2000 Sony Computer Entertainment
Europe

8.

PS2 Design - Vector Units

• Vector Unit SIMD instructions (2 forms)
• Broadcast

– X*bc, Y*bc, Z*bc, W*bc
– (where bc is X,Y,Z,W)

• Normal
– X*X, Y*Y, Z*Z, W*W

• There are also single cycle multiply and
accumulate instructions

©2000 Sony Computer Entertainment
Europe

9.

PS2 Design - Vector Units

Float
Registers
(128bit)

VF00-VF31
ACC

Integer
Registers

(16bit)

VI00-VI15
& special

Upper execution unit
F
M
A
C

F
M
A
C

F
M
A
C

F
M
A
C

Lower execution unit
F
D
I
V

R
A
N
D

L
S
U

I
A
L
U

E
F
U

B
R
U

VU MEM
(4K/16K)

63 0
Upper Instruction Lower Instruction

VU Micro Mem (4K/16K)

©2000 Sony Computer Entertainment
Europe

10.

Vector System outline

GIF

VU regs.

VU core

VU regs.

VU core

EFU

VIF1VIF0

Micro
Mem
(4k)

VU
Mem
(4k)

VU
Mem
(16k)

Micro
Mem
(16k)

MIPS cop2
VPU0 VPU1 GS

VU0 VU1

CPU
core

128

128Main Memory

©2000 Sony Computer Entertainment
Europe

11.

PS2 Design - Vector Units

• Vector Unit 0
– Available as a co-processor for CPU
– More flexible calculation for dynamic data such

as physics, animation
• Vector Unit 1

– Direct path to Graphics Synthesiser
– Very fast transformation

©2000 Sony Computer Entertainment
Europe

12.

Vector Code

• SIMD single cycle vector multiply
• Apply matrix in 4 cycles (uses accumulator)

MUL ACC, vector1, vector5x
MADD ACC, vector2, vector5y
MADD ACC, vector3, vector5z
MADD vector6, vector4, vector5w

• Alternatively use the 4 FMACs to perform
parallel calculations eg. 4 lights.

©2000 Sony Computer Entertainment
Europe

13.

Vector Code Example
Parallel dot product

• Store normals across vectors
Vector 1 = (nx1, nx2, nx2, nx3)
Vector 2 = (ny1, ny2, ny3, ny4)
Vector 3 = (nz1, nz2, nz3, nz4)

MULL ACC, Vector1, Vector1
MADD ACC, Vector2,Vector2
MADD result, Vector3,Vector3

• Result is 4 dot products stored in x, y, z, w

©2000 Sony Computer Entertainment
Europe

14.

PS2 Design - DMA System

• Data handling
– 128bit bus provides 2.4GByte/sec bandwidth to

devices
– Additional 128bit connection VU1 to GS
– DMA intelligent data transport frees CPU
– Image decompression unit
– Geometry decompression: delta + unpack

©2000 Sony Computer Entertainment
Europe

15.

PS2 data handling

SPR
GIF

128bit data bus

GS
4meg

38.4gig/sec

DMAC
2.4gig/second

Cache

Memory 32meg(3.2gig/sec)

CPU
Core

VU0 VU1
Cache

IPU

Hybrid UMA = 40 meg/frame can be transferred between devices
Intelligent DMA handler completely frees CPU

©2000 Sony Computer Entertainment
Europe

16.

PS2 Data handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

4x32bit float
Straight Copy

©2000 Sony Computer Entertainment
Europe

17.

Data Handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

8bit delta decompress
and sign extend
(skipping write)

©2000 Sony Computer Entertainment
Europe

18.

Data Handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

8bit sign extend
(skipping write)

©2000 Sony Computer Entertainment
Europe

19.

Data Handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

16bit direct copy
(skipping write)

©2000 Sony Computer Entertainment
Europe

20.

Data Handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

16bit colour unpack
(skipping write)

©2000 Sony Computer Entertainment
Europe

21.

Delta Decompression
Strip start
position New Start

position for
distant strip

• Points in a strip tend to be close together so delta is useful.
• After the start position each point is offset from the previous
position.
• This packs vertex from 12 bytes for 3 floats down to 3 bytes

©2000 Sony Computer Entertainment
Europe

22.

Cache usage

• Features of cache
– High speed memory
– Expensive
– Maintains CPU speed for data already in cache

• Dynamic media such as geometry does not
stay in the cache for any length of time so
large cache is unhelpful.

• Data throughput is more important

©2000 Sony Computer Entertainment
Europe

23.

Simplified PC architecture

L2
Cache

Graphics
Hardware

CPU

Main memory

16meg+

L1
Cache

©2000 Sony Computer Entertainment
Europe

24.

PC games design

• PC has large cache but poor bandwidth
– Big indexed meshes
– Extensive culling and clipping to reduce

bandwidth to graphics card
– Textures cached in Graphics card ram for speed
– Higher resolution and good monitors require

high resolution textures
• This doesn’t work well on PS2!

©2000 Sony Computer Entertainment
Europe

25.

PS2 Game

• PS2 has good bandwidth and small caches
to buffer DMA
– Enables on the fly texture downloading
– Extra DMA geometry compression is available

• Vector units enable alternative efficient
model representations
– Procedural models / patches
– Micro-models

©2000 Sony Computer Entertainment
Europe

26.

1st generation PS2

• Fighting small CPU cache,lack of VRAM
• Existing game with bigger textures
• Poly counts upped on models.
• Basic VU1 Directional lighting / Prelit
• Recompiled PC or PS1 code
• Minimal post processing
• Inefficient geometry

©2000 Sony Computer Entertainment
Europe

27.

2nd generation PS2

• Working with the memory system
– Maximising DMA use
– Using efficient data representations

• Exploiting the architecture of micro
programmable graphics pipeline
– Many different types of renderers

• Using GS fill rate
– Enhanced graphics effects

©2000 Sony Computer Entertainment
Europe

28.

Examining GS chip

• Huge bandwidth and fill rate
• Very fast alpha blending
• Setup time is the limitation to poly counts
• Always use strips
• Designed for TV

– Note (640x256*50=8mil pixel/sec)
• Use the high poly count with multi-pass

©2000 Sony Computer Entertainment
Europe

29.

Using GS effectively

• Use multi-pass (alpha is free) and saves on
vertex re-calculation

• Strips offer a huge saving over triangles
• Keep polygons small - many small polys are

much quicker than one large polygon.
• Penalty on miss is not huge.
• Texture tiling and wrap modes offer efficient

resolution improvement

©2000 Sony Computer Entertainment
Europe

30.

Suggested VRAM arrangement

• For 60hz frame-rates
Display

Draw 2x height
for interlace filter

Z Buffer 0.5meg

640x224x24bit = 430k

640x448x24bit = 860k

640x448x16bit = 573k

Static textures = 1.8meg

Texture cache=8*256x256 (8bit)

Texture 1.8meg

Texture cache
0.5meg

©2000 Sony Computer Entertainment
Europe

31.

Suggested VRAM arrangement

• For <60hz frame-rates
Display

Draw

Z Buffer 0.5meg

640x448x24bit = 860k

640x448x24bit = 860k

640x448x16bit = 573k

Static textures = 1.3meg

Texture cache=6*256x256 (8bit)

Texture 1.3meg

Texture cache
0.4meg

©2000 Sony Computer Entertainment
Europe

32.

Using GS effectively

• 640x448 is maximum visible pixels per frame
with 2 sample / pixel full screen filter

• Assuming fairly inefficient MIPMAP and multi-
pass using 20 texels per pixel at 8bit = 6meg

• With 2meg static texture and 4meg/frame DMA
this leaves 16meg geometry bandwidth

• Savings can be made with tiling and multiple
passes with 4bit textures

©2000 Sony Computer Entertainment
Europe

33.

Paletted textures

• Efficiency of paletted texture improves with
size

• Quality of paletted texture degrades with size
• For 256 colour pallet minimum 16x16 useful

size (all colours used). 256x256 still good
• For 16 colour pallet minimum 4x4 useful

size. Works well for monochromatic textures

©2000 Sony Computer Entertainment
Europe

34.

Paletted textures example
Only 4bit pallet!

©2000 Sony Computer Entertainment
Europe

35.

Using GS effectively

• Improving texture detail (2 layers)

Texture 1(4bit)
128x128x4bit=8k

Texture 2(Tiled)
64x64x4bit=2k

Texture 1*Texture 2
256x256x24bit = 196k

The result is 10k versus 196k = nearly 20:1 saving

©2000 Sony Computer Entertainment
Europe

36.

GS Effects

• Smoke, Fire
• Motion Blur
• Focus effects
• Heat haze
• Anti aliasing
• Interlace blending

©2000 Sony Computer Entertainment
Europe

37.

GS Effects : Smoke, Fire

• Use particle emitter to render off screen
• Alpha blend large percentage of previous

sprite
• Use scale and translate to create drift
• Add ‘noise’ to emitter position to create

lifelike effect

©2000 Sony Computer Entertainment
Europe

38.

GS Effects : Motion Blur

• Draw new screen
• Copy on top with transparency the previous

frame
• Effect is adjusted by alpha value
• Fill rate easily allows this during the Vertical

Blank

©2000 Sony Computer Entertainment
Europe

39.

GS Effects : Depth of field

• Draw new screen into off screen buffer
• Copy to display buffer
• Sprite copy screen with scale to display

buffer using Z test
• Repeat for different depths

©2000 Sony Computer Entertainment
Europe

40.

GS Effects : Heat Haze

• Draw new screen into off screen buffer
• Create mesh of squares texture mapped to

draw buffer
• Copy squares to display with texture

coordinate offsets based on sinusoidal
functions & time

• Display distorts like heat haze

©2000 Sony Computer Entertainment
Europe

41.

GS Effects : Interlace blending

• Odd and Even lines are drawn alternately.
• Any image not drawn on both lines flickers.
• Scan-line blending solves the problem.
• Techniques to fix this

– GS blend circuits with interlaced buffers(free)
– Motion blur % of previous field(low VRAM)
– Shrink full height to display height with bilinear

©2000 Sony Computer Entertainment
Europe

42.

GS Effects : Anti-aliasing

• Hardware edge anti-aliasing.
– Requires sorted polygons but looks excellent.

• Full screen anti-aliasing
– Render to large draw buffer then use bi-linear

filter to blend pixels smoothly.
– Render 4x with 25% alpha and 1/2pixel offset in

4 directions. Same effect without the VRAM hit

©2000 Sony Computer Entertainment
Europe

43.

PS2 parallel geometry pipelines

• You have to use Vector Units for good
performance

• Many games don’t use them both effectively
• These are very flexible : sub-div surfaces,

patches, terrain etc
• Micro-models
• Procedural models / Bezier patches

©2000 Sony Computer Entertainment
Europe

44.

Using VU effectively

• Use many renderers (clipping/non clipping)
• Reuse vertices (micro-mesh / patch)
• Remember polys = 300MHZ/(cycles per

vertex) so keep the VU busy every cycle
• Use them both!
• Pack your data

©2000 Sony Computer Entertainment
Europe

45.

Vector Unit Optimisations

• Remember
– Vertices = Clock speed/number of cycles

• Removing latencies
• Prologue, Epilog, Rolling up loops
• Vertex reuse
• Short vs Long loops

©2000 Sony Computer Entertainment
Europe

46.

Using Vector Units Together
Parallel connection + MFIFO

Main
memory

Main
memory

Memory
FIFO

VU0 Render1
CPU

SPRAM

VU1

+

GIF
GS

Render2

©2000 Sony Computer Entertainment
Europe

47.

Using Vector Units Together
Serial connection 1

Main
memory

VU0 Stage 1
CPU

SPRAM

VU1

+

GIF
GS

Stage 2

©2000 Sony Computer Entertainment
Europe

48.

Using Vector Units Together
Serial connection 2 + MFIFO

Main
memory

Memory
FIFO

VU0 Stage 1
CPU

SPRAM

VU1

+

GIF
GS

Stage 2

©2000 Sony Computer Entertainment
Europe

49.

Using Vector Units Together
Serial connection 3

Main
memory

Main
memory

Memory
FIFO

Stage 2 Parameters

VU0
Stage 1

CPU

SPRAM

VU1

+

GIF
GS

Stage 2

©2000 Sony Computer Entertainment
Europe

50.

Micro Models
• Most models can be separated into patches of points
• These share vertices, normals and a common texture
• Vertex reuse improves rendering efficiency
• This allows more complex lighting models

©2000 Sony Computer Entertainment
Europe

51.

Micro models

• Vertex cache
– Divide model into patches using shared vertices
– DMA set of vertices
– Transform vertices
– Indices used to generate triangle strips
– Aim to achieve more than 1 triangle per vertex

• Circular FIFO style vertex cache

©2000 Sony Computer Entertainment
Europe

52.

VU procedural renderers

• High efficiency vertex reuse
• Free bandwidth
• Wheels, spheres,
• Trees
• Terrain
• Bezier patches
• etc etc

©2000 Sony Computer Entertainment
Europe

53.

VU deformers

• Displacement maps
• Random displacement
• Time based deformation
• Noise functions
• Texture warping

©2000 Sony Computer Entertainment
Europe

54.

Conclusion

• Code with the system not against it
– DMA is the key
– Keep the Vector Units busy
– Use that fill rate!

• The results can be excellent if the system is
used well

	Tapping into the power of PlayStation2
	Topics
	Designing PS2
	PS2 Design Graphics Synthesizer
	Pixel Fill Rate
	PS2 Design - Vector Units
	PS2 Design Geometry Performance
	PS2 Design - Vector Units
	PS2 Design - Vector Units
	Vector System outline
	PS2 Design - Vector Units
	Vector Code
	Vector Code ExampleParallel dot product
	PS2 Design - DMA System
	PS2 data handling
	PS2 Data handling
	Data Handling
	Data Handling
	Data Handling
	Data Handling
	Delta Decompression
	Cache usage
	Simplified PC architecture
	PC games design
	PS2 Game
	1st generation PS2
	2nd generation PS2
	Examining GS chip
	Using GS effectively
	Suggested VRAM arrangement
	Suggested VRAM arrangement
	Using GS effectively
	Paletted textures
	Paletted textures exampleOnly 4bit pallet!
	Using GS effectively
	GS Effects
	GS Effects : Smoke, Fire
	GS Effects : Motion Blur
	GS Effects : Depth of field
	GS Effects : Heat Haze
	GS Effects : Interlace blending
	GS Effects : Anti-aliasing
	PS2 parallel geometry pipelines
	Using VU effectively
	Vector Unit Optimisations
	Using Vector Units TogetherParallel connection + MFIFO
	Using Vector Units TogetherSerial connection 1
	Using Vector Units TogetherSerial connection 2 + MFIFO
	Using Vector Units TogetherSerial connection 3
	Micro Models
	Micro models
	VU procedural renderers
	VU deformers
	Conclusion

