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Topics

• Looking at the way PS2 works
• How that affects your software design
• Making effective use of GS drawing ability
• Utilising a micro-programmable graphics 

pipeline effectively
• Data handling for parallel processing 
• Pushing PS2 software to 2nd generation
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Designing PS2

• Requirements
– Hardware is fixed for lifetime of machine.
– High-quality graphics requires massive 

bandwidth to maintain pixel fill-rate
– Huge calculation ability is required to transform 

and light large numbers of polygons
– Large bandwidth is required for data such as 

geometry and textures
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PS2 Design 
Graphics Synthesizer

• Achieving Graphics performance
– Embedded DRAM gives 48 GByte/sec memory 

bandwidth to eliminate pixel fill bottleneck.
– Fill rate is 2.4Gpixel/sec for 32bit + Alpha + Z
– Free alpha enables multi-pass effects
– 1.2GByte/sec bandwidth main memory to GS 

for texture and geometry.
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Pixel Fill Rate
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PS2 Design - Vector Units

• Total 6.2GFlops including CPU FPU
• Twin geometry engines running @300mhz
• Optimised for 3D calculations
• Easy to develop pipelined programs
• VLIW run 2 instructions in parallel
• SIMD instructions run 4 FMACS in parallel 

with one cycle throughput
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PS2 Design 
Geometry Performance
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PS2 Design - Vector Units

• Vector Unit SIMD instructions (2 forms)
• Broadcast

– X*bc, Y*bc, Z*bc, W*bc 
– ( where bc is X,Y,Z,W )

• Normal
– X*X, Y*Y, Z*Z, W*W

• There are also single cycle multiply and 
accumulate instructions
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PS2 Design - Vector Units
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Vector System outline
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PS2 Design - Vector Units

• Vector Unit 0
– Available as a co-processor for CPU
– More flexible calculation for dynamic data such 

as physics, animation
• Vector Unit 1

– Direct path to Graphics Synthesiser
– Very fast transformation
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Vector Code

• SIMD single cycle vector multiply
• Apply matrix in 4 cycles (uses accumulator)

MUL ACC, vector1, vector5x
MADD ACC, vector2, vector5y
MADD ACC, vector3, vector5z
MADD vector6, vector4, vector5w

• Alternatively use the 4 FMACs to perform 
parallel calculations eg. 4 lights.
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Vector Code Example
Parallel dot product

• Store normals across vectors
Vector 1 = ( nx1, nx2, nx2, nx3)
Vector 2 = (ny1, ny2, ny3, ny4) 
Vector 3 = (nz1, nz2, nz3, nz4) 

MULL ACC, Vector1, Vector1
MADD ACC,  Vector2,Vector2
MADD  result, Vector3,Vector3

• Result is 4 dot products stored in x, y, z, w
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PS2 Design - DMA System

• Data handling
– 128bit bus provides 2.4GByte/sec bandwidth to 

devices
– Additional 128bit connection VU1 to GS 
– DMA intelligent data transport frees CPU
– Image decompression unit
– Geometry decompression: delta + unpack
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PS2 data handling
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Intelligent DMA handler completely frees CPU
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PS2 Data handling

DMAC VIF
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Data Handling

DMAC VIF

Vertices
8bit delta

Normals
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Texture
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8bit delta decompress
and sign extend
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Data Handling

DMAC VIF

Vertices
8bit delta

Normals
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Texture
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4x4 floats
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8bit sign extend
(skipping write)
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Data Handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

16bit direct copy
(skipping write)
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Data Handling

DMAC VIF

Vertices
8bit delta

Normals
8bit

Texture
ST/UV
16bit

Matrices
4x4 floats

RGBA
5 5 5 1

16bit colour unpack
(skipping write)
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Delta Decompression
Strip start
position New Start

position for
distant strip

• Points in a strip tend to be close together so delta is useful.
• After the start position each point is offset from the previous
position. 
• This packs vertex from 12 bytes for 3 floats down to 3 bytes
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Cache usage

• Features of cache
– High speed memory
– Expensive
– Maintains CPU speed for data already in cache

• Dynamic media such as geometry does not 
stay in the cache for any length of time so 
large cache is unhelpful.

• Data throughput is more important
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Simplified PC architecture
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24.

PC games design

• PC has large cache but poor bandwidth
– Big indexed meshes
– Extensive culling and clipping to reduce 

bandwidth to graphics card
– Textures cached in Graphics card ram for speed
– Higher resolution and good monitors require 

high resolution textures
• This doesn’t work well on PS2!
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PS2 Game

• PS2 has good bandwidth and small caches 
to buffer DMA 
– Enables on the fly texture downloading
– Extra DMA geometry compression is available

• Vector units enable alternative efficient 
model representations
– Procedural models / patches
– Micro-models
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1st generation PS2

• Fighting small CPU cache,lack of VRAM
• Existing game with bigger textures
• Poly counts upped on models.
• Basic VU1 Directional lighting / Prelit
• Recompiled PC or PS1 code
• Minimal post processing
• Inefficient geometry
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2nd generation PS2

• Working with the memory system
– Maximising DMA use
– Using efficient data representations

• Exploiting the architecture of micro 
programmable graphics pipeline
– Many different types of renderers

• Using GS fill rate
– Enhanced graphics effects
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Examining GS chip

• Huge bandwidth and fill rate
• Very fast alpha blending
• Setup time is the limitation to poly counts
• Always use strips
• Designed for TV

– Note (640x256*50=8mil pixel/sec)
• Use the high poly count with multi-pass
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Using GS effectively

• Use multi-pass (alpha is free) and saves on 
vertex re-calculation

• Strips offer a huge saving over triangles
• Keep polygons small - many small polys are 

much quicker than one large polygon.
• Penalty on miss is not huge.
• Texture tiling and wrap modes offer efficient 

resolution improvement
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Suggested VRAM arrangement

• For 60hz frame-rates
Display

Draw 2x height
for interlace filter

Z Buffer 0.5meg

640x224x24bit = 430k

640x448x24bit = 860k

640x448x16bit = 573k

Static textures = 1.8meg

Texture cache=8*256x256 (8bit)

Texture 1.8meg 

Texture cache
0.5meg
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Suggested VRAM arrangement

• For <60hz frame-rates
Display

Draw

Z Buffer 0.5meg

640x448x24bit = 860k

640x448x24bit = 860k

640x448x16bit = 573k

Static textures = 1.3meg

Texture cache=6*256x256 (8bit)

Texture 1.3meg 

Texture cache
0.4meg
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Using GS effectively

• 640x448 is maximum visible pixels per frame 
with 2 sample / pixel full screen filter

• Assuming fairly inefficient MIPMAP and multi-
pass using 20 texels per pixel at 8bit = 6meg

• With 2meg static texture and 4meg/frame DMA 
this leaves 16meg geometry bandwidth

• Savings can be made with tiling and multiple 
passes with 4bit textures
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Paletted textures

• Efficiency of paletted texture improves with 
size

• Quality of paletted texture degrades with size
• For 256 colour pallet minimum 16x16 useful 

size (all colours used). 256x256 still good
• For 16 colour pallet minimum 4x4 useful 

size. Works well for monochromatic textures
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34.

Paletted textures example
Only 4bit pallet!
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Using GS effectively

• Improving texture detail (2 layers)

Texture 1(4bit)
128x128x4bit=8k

Texture 2(Tiled)
64x64x4bit=2k

Texture 1*Texture 2
256x256x24bit = 196k

The result is 10k versus 196k = nearly 20:1 saving
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36.

GS Effects

• Smoke, Fire 
• Motion Blur
• Focus effects
• Heat haze
• Anti aliasing
• Interlace blending
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GS Effects : Smoke, Fire

• Use particle emitter to render off screen
• Alpha blend large percentage of previous 

sprite
• Use scale and translate to create drift
• Add ‘noise’ to emitter position to create 

lifelike effect
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GS Effects : Motion Blur

• Draw new screen
• Copy on top with transparency the previous 

frame
• Effect is adjusted by alpha value
• Fill rate easily allows this during the Vertical 

Blank
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GS Effects : Depth of field

• Draw new screen into off screen buffer
• Copy to display buffer
• Sprite copy screen with scale to display 

buffer using Z test
• Repeat for different depths
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40.

GS Effects : Heat Haze

• Draw new screen into off screen buffer
• Create mesh of squares texture mapped to 

draw buffer
• Copy squares to display with texture 

coordinate offsets based on sinusoidal 
functions & time

• Display distorts like heat haze
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GS Effects : Interlace blending

• Odd and Even lines are drawn alternately.
• Any image not drawn on both lines flickers.
• Scan-line blending solves the problem.
• Techniques to fix this

– GS blend circuits with interlaced buffers(free)
– Motion blur % of previous field(low VRAM)
– Shrink full height to display height with bilinear
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GS Effects : Anti-aliasing

• Hardware edge anti-aliasing. 
– Requires sorted polygons but looks excellent.

• Full screen anti-aliasing
– Render to large draw buffer then use bi-linear 

filter to blend pixels smoothly. 
– Render 4x with 25% alpha and 1/2pixel offset in 

4 directions. Same effect without the VRAM hit
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PS2 parallel geometry pipelines

• You have to use Vector Units for good 
performance

• Many games don’t use them both effectively
• These are very flexible : sub-div surfaces, 

patches, terrain etc
• Micro-models
• Procedural models / Bezier patches
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Using VU effectively

• Use many renderers (clipping/non clipping)
• Reuse vertices (micro-mesh / patch)
• Remember polys = 300MHZ/(cycles per 

vertex) so keep the VU busy every cycle
• Use them both!
• Pack your data
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Vector Unit Optimisations

• Remember 
– Vertices = Clock speed/number of cycles

• Removing latencies
• Prologue, Epilog, Rolling up loops
• Vertex reuse
• Short vs Long loops
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Using Vector Units Together
Parallel connection + MFIFO

Main
memory

Main
memory

Memory
FIFO

VU0 Render1
CPU

SPRAM

VU1

+

GIF
GS

Render2
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Using Vector Units Together
Serial connection 1

Main
memory

VU0 Stage 1
CPU

SPRAM

VU1

+

GIF
GS

Stage 2
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Using Vector Units Together
Serial connection 2 + MFIFO

Main
memory

Memory
FIFO

VU0 Stage 1
CPU

SPRAM

VU1

+

GIF
GS

Stage 2
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Using Vector Units Together
Serial connection 3

Main
memory

Main
memory

Memory
FIFO

Stage 2 Parameters

VU0
Stage 1

CPU

SPRAM

VU1

+

GIF
GS

Stage 2
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50.

Micro Models
• Most models can be separated into patches of points
• These share vertices, normals and a common texture
• Vertex reuse improves rendering efficiency
• This allows more complex lighting models
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Micro models

• Vertex cache
– Divide model into patches using shared vertices
– DMA set of vertices
– Transform vertices
– Indices used to generate triangle strips
– Aim to achieve more than 1 triangle per vertex

• Circular FIFO style vertex cache
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VU procedural renderers

• High efficiency vertex reuse
• Free bandwidth
• Wheels, spheres, 
• Trees 
• Terrain
• Bezier patches
• etc etc



©2000 Sony Computer Entertainment 
Europe

53.

VU deformers

• Displacement maps 
• Random displacement
• Time based deformation
• Noise functions
• Texture warping
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54.

Conclusion

• Code with the system not against it
– DMA is the key
– Keep the Vector Units busy
– Use that fill rate!

• The results can be excellent if the system is 
used well
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