

SEGA

Programming
Manual

By B. BROWN

Edited and produced for HI-TECH Programming Ltd

by NOMAC Publishing Ltd,

6 Como st,Takapuna,Auckland,NEW ZEALAND.

© NOMAC PUBLISHING LTD 1984

CONTENTS
INTRODUCTION. A description of the basic components of the SEGA computer.

Chap-er 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

HARDWARE: A description of the chips inside the SHGA
and their functions.

SOFTWARE: A description of the ROM, Basic keywords,
program format, reserved ram areas.

VIDEO: VDP. The Visual Display Processor.
How to program it, and what it

can do.
ARCHITECHURE: An outline of the internal registers.
REGISTER UPDATING: Updating a VDP register. ie color control
VRAM: Writing and reading using machine code.
SPRITES: Movement and collision detection.
TABLES: A description of the Name, Pattern and Attribute

tables.

Other DISPLAY MODES: A brief demonstartion of another graphics
screen not available from Basic.

SOUND The Sound Generator chip.
Frequency and attenuation control of each
register.
The Noise register.
Creating music.

CASSETTE The Cassette Routines in ROM
Loading the Filename
Loading the program
Saving the Filename
Saving the Program
Auto load and execute Basic programs

JOYSTICKS & KEYBOARD
Connections
Using machine code.

INTERESTING BITS AND PIECES.

APPENDIX: Basic Programs and a PATTERN EDITOR

INTRODUCTION

The SHGA SC3000 home computer is a late addition to the computer

scene. It has good graphics and sound, with the promise of greater
things to come in the near future with the release of disc attatch-
ments. This book seeks to add to the growing knowledge of the internal
workings of theSHGA, and in so doing, help others in their search for
better and quicker ways of programming.

BASIC OPERATION PRINCIPLES

The SEGA computer can be represented as three main components,

3 He HE He OE I Ee Ee PPC ec. eee ree rr ee ry
* Do ee ca a a oe ee Ce ae *

* Cc * ADDRESS RUS * & * ors *
* FP DE nme sane sone onan see erse nese snot conn seen ween sere seve cen cscs cane cone BE m WE emer case cee wae sone HE p *

* * G * * vu *
* u Dc ae en tte ns * m Hmm mm Ss t *

* N * DATA BUS * y * * O *
* J 1H esse sate sees seme even sees tes cone sem sens ened cont eons sone cose soon ease ME He se cee ee ee HE vw *

% T * Tr rrree err | * L *
* ior ci camer aa aimee aa antema ee 1! | me ne ce ee TE p *

* *% CONTROL BUS * u *
* We sare save sens seve see nse snan sive cane sine ones sce seen cane onsn snes cums ones seve suse oree Seve cane atea tert crne wens esee ome cana ones exes see osee I t *

3H IE HEE EH OF . He HE EE

CENTRAL PROCESSING UNIT (CPU)

This device commnicates with all the devices connected to it, and

transfers information between the devices as required. (This may
involve the manipulation of the data internally within the CPU.)

MEMORY

There are two types of memory used, Read Only and Random Access
memory (ROM and RAM). The ROM contains the BASIC language (begin-
ners all-purpose symbolic instruction code), and the necessary

- programs which enable the CPU to communicate with all the other
devices. The contents of the ROM are retained when the power is
turned off. ROM can only be Read by the CPU, and is a sort of

text book from which the CPU gets the necessary instructions
informing it of what to do. RAM is used for temporary program
storage, and its contents disappear when the power is turned off.
This explains why you must transfer your program to cassette tape.

RAM can be thought of as a blackboard. Information can be both
written onto it and erased.

INPUT/OUTPUT DEVICES

These devices allow the user to communicate with the CPU and
allows feedback from the CPU to the user. An example of an
input/output device is the keyboard and Video Display.

COMMUNICATION BEIWEEN DEVICES

Fach device connected to the CPU is given a unique box number
(ADDRESS). The CPU can communicate with the specific device by
placing its box number (ADDRESS) on the ADDRESS BUS. A bus is
a common highway which allows communication between devices.
Having placed the right address on the bus, (ie selected the
correct box number), the CPU can then read from or write to the
selected device. The CPU transfers information between devices in
BINARY format. ‘The smallest element in binary is a BIT. A bit
is represented as having one of two possible states, ON or OFF.
The ON state is normally designated '1' whilst the OFF state
is designated a '0'. The CPU however, can work with eight bits
at a time. This group of eight bits is called a BYIE. A byte
can be thought of as eight buckets, where each bucket could be
full or empty. It thus follows that the maximum number of
combinations possible with eight bits is 256. Fach address
(box) is capable of storing eight bits, thus any box can have as
its contents a value of between O and 255. The CPU moves the
bytes around via the DATA BUS. In this case the DATA BUS is

bidirectional, ie information can travel fron the CPU to a
device or from a device to the CPU. Fach device is connected to the
address bus which is used by the CPU to tell the device that the CPU

is talking to it. The address bus is sixteen bits wide, thus the CPU
can access any one of 65536 possible locations (or boxes which hold
8 bits each). To inform the devices as to which way the information

is travelling on the data bus, a CONTROL BUS is used. This control
bus informs the device if it should expect to receive data (ie a write) -
or whether it should present data so that the CPU can read it (ie a
read). The CPU has temporary storage boxes inside it called
REGISTERS. When the CPU wishes to transfer information from one
address to another, the CPU carries out the following sequences,

1) Places the correct address (box number) on the address bus
2) Reads the contents of the selected address via the data bus
3) Transfers the information to one of its registers
4) Places the destination address on the address bus
5) Transfers the contents of its register onto the data bus

6) Informs the device at that address to get the new contents
for that address, which is appearing on the data bus

INPUT/OUTPUT PORTS

The CPU can have up to 256 seperate ports. These are selected
by an eight bit value on the address bus, and the use of a

special signal on the control bus. ‘This special signal is act-
ivated when you use the command OUT or INP in basic. These
ports can each hold an eight bit value. Not all of the ports are
used, so refer to chapter one and the section dealing with the
memory mapping arrangements for further information.

This covers the sequence of operations in a relatively simple
manner, and has served to introduce the reader to some of the more

technical terms which will be used shortly.

BINARY & DECIMAL

A byte of eight bits has already been introduced. These eight
bits can be either on or off, so a byte in binary could be re-
presented as follows,

B7 Bo B5 B4 B3 B2 Bl BO
111010141

Bit seven is the bit which has the greatest value, while bit zero
has the least value. Bit seven is thus called the MOST SIGNIF-

ICANT BIT (MSB) while bit zero is called the LEAST SIGNIFICANT BIT
(LSB). In terms of the decimal value of each bit, the following
example should help,

Decimal Value 128 6&4 32 16 8 4 2 1
Binary digit B/ Bo BS B4 B3 B2 Bl BO

thus a byte of 11000000 will have a decimal value of 192, because
bit 7 and bit 6 are both '1', so the decimal result is 128164.
Where a '1' occurs, the decimal value is added, while all '0's
are ignored.

HEXADBCIMAL NOTATION

Binary numbers of eight bits are sometimes tedious to write down, so
a method was devised in which the binary numbers are represented in
another form. This form is known as HEXIDECIMAL (hex). It has a
number base of 16 digits (decimal has 10, binary has two). The
equilavent decimal, binary, and hex values are listed below,

BINARY DECIMAL, HEXTDECIMAL

0000
0001
0010
OO11
0100
0101
0110
O111
1000
1001
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

O
O
N
D
U
P
W
N
H
H
-
O

M
A
O

Q
A
W
P
F
P
O
A
N
D
U
F
W
N
H
F
O

As shown, hex ranges fromO'F. When the hex number is larger, ie
16 in decimal then the hex number becomes 10. This is exactly the
same as in decimal when you go from 9 to 10. Looking at a byte
(eight bits), the four least significant bits are called the LOWER

NIBBLE, while the four most significant bits are called the
UPPER NIBBLE. (A nibble is 4 bits).

Upper Nibble Lower Nibble
B/ Bo BS B B3 B2 Bl BO
1 1 0 1 O 1 1 #1 Binary value of each bit

To represent this in hex requires two hex digits, as each hex digit
can only represent four bits. The upper and lower nibbles are con-
verted to hex digits, with the resultant hex digits being written with
the most significant one first. In the example above,

1101 in binary is '13' decimal so thats 'D' in hexidecimal
0111 in binary is ' 7' decimal so thats '7' in hexidecimal

so the corresponding hex digits which represent the byte 11010111 is
"D7'. Hexidecimal digits are prefixed with 8H in SEGA basic, and the
hexidecimal value of any decimal number can be found by using HEX$.

CHAPTER 1

10

The SEGA computer has two main sections, HARDWARE and SOFIWARE.
Hardware refers to the physical reality or components, whilst
software refers to the programs which control the hardware.

HARDWARE: ‘The hardware can be split into several main sections.

1)

2)

3)

4)

5)

6)

CENTRAL PROCESSOR: ‘This is a Z80 8bit processor. It has a
maximum address range of 65535 bytes. The first 32K is occupied
by the Basic ROM or Games ROMs, while the other 32K is for RAM.

VIDEO DISPLAY: The Video Chip is a Texas Instruments TMY9929A.
This provides up to four display modes, 32 sprites, 20 millisecond
interrupt generator, and 16Kbytes of dedicated RAM. The Video Ram

has no connection to the central processor, and is updated by
writing to the VDP. The VDP is port mapped at SHBE and SHBF.
The internal structure of the VDP and its programming is detailed
in chapter 2.
SOUND GENERATOR: ‘This is an SN76487AN chip. It has three sound

channels and a noise generator. Fach channel has its own program
mable attenuator for controlling the output volume. It is IC on the
main PC board, and its programming is discussed in chapter 3.

SYSTEM RAM: This is a 2Kbyte chip 8212 (1C3). It is memory mapped
at address's &HOOOO ' SHC7FF. It is used for stack and data storage
by plug-in cartridges.

INPUT/OUTPUT DEVICES: These include the keyboard, printer, joy—
sticks and cassette. The devices are connected to the computer
system via a programmable interface chip, a 8255 PIA (IC5). This
PIA has threeports and a control register. The information sent
to the control register determines whether the ports will be read
or write or both.
The ports are labelled as follows;

PORT A located at address 8HDC Keyboard Matrix
PORI B- located at address 8HDD Keyboard Matrix
PORT C located at address S8HDE Keyboard Control
PORT D located at address 8HDF Control Register

The actual programming of this PIA will be covered in chapter 5.

ADDRESS DEOODER: ‘This is achieved by IC2. A logic level of zero on
the appropiate CS lead will enable that particular chip. Only one

device may be enabled at any time. The CPU can cnly talk/listen to
one device at a time, so it is the function of the address decoder to

prevent more than one device interacting with the CPU at any moment. .

INTERRUPIS: ‘The SHGA computer operates with two interrupts. An inter-
rupt is a halting of the process being carried out by the processor, a
jump is then made to a specific program in memory, and when this program
ends the original program is resumed.

NON-MASKABLE INTERRUPT (NMI): ‘The interrupt causes the processor to jump
to address &H0066. This occurs whenever the RESET button is pushed. A
check is made of location 8H97E2 which stores whether a program resides
in memory, then the start-up routines are executed. The NMI cannot be
disabled.

INTERRUPT (INT): This is used for TIME$ and is generated by the VDP chip
every 50 milli-seconds. It can be disabled by a DI (disable interrupts)
command using machine-code. It must also be noted that the SEGA computer
also uses Interrupt Mode 1, which forces INT to address &HO038.

THE SEGA MEMORY: ‘The SEGA uses a Z80 microprocessor, thus
has a maximm address range of OAK.

0000 HHHHEEEE AI] Basic programming packs

* BASIC * occupy O000'7FFF, and comprise
* ROM * not only RO but also RAM.
* or * The 2K of system RAM is located
* GAME * at QOOO'C7FF. There is NO onboard
* * ROM! The Video RAM, keyboard,

a sound generator, and printer
* RAM * are all bank-selected using
* ARFA * T/O ports. Game Cartridges
% * use the system RAM chip located
*% * at COOO'C7FF which is the only
% * memory which is on-board. RAM is

FEFF 2seeeensee always located in 7EFF'EFEP.

11

12

INPUT/OUIPUT PORTS:

IHRE

7F * SOUND * SN/4689AN Sound Generator.
seeEeeEaEeds

DC * PORT A * Keyboard Matrix.
THREE

DD * PORT B * Keyboard Matrix

DE * PORT C * Keyboard Control.

DF * CONTROL * PIA Intel 8255.
JHHREHHEEEE

BE * VDP * ~'TMM9929A VDG.(+16K VRAM)
JERE

BF * VDP * Other part of VDG.
TARR

FOUR COLOR PRINTER/PLOITER: ‘The printer is run by a dedicated 8bit
micro-computer, type 6805. This CPU has the ROM built inside the actual
chip, and thus, if it goes faulty, it must be thrown away. The mech-
anism is standard, and is used in a wide range of printers, eg, Sharp,
Commodore, Casio, etc. Some parts are thus interchangeable.

SOFTWARE:

BASIC CARTRIDGES: The Basic cartridges (LVITIA/B) contain a 32K
ROM chip and also RAM chips. The Basic operating system must use some
of the RAM space for the storage of variables etc, (ie reserved Ram
areas), thus this explains why only 26620 bytes are available to the
user when using the level ITIB cartridge.
THE LEVELITIB CARTRIDGE: This contains a 32K ROM, 4 16Kx4bit RAM chips,
and a few support chips.
GAMES: The games cartridges usually contain a single RM chip. The
on-board system RAM located at 8HOOOO is used for temporary storage
of variables and the system stack. Some cartridges do use two RM
chips.

SHGA BASIC ROM: It occupies the first 32K of memory space. This
leaves only 32K left for RAM. The Basic ROM contains the Basic
Language, and allows the user to program the computer using english
type statements. The necessary routines to manage the keyboard, printer
sound generator etc are all part of the Basic Language. These routines
may be called independently so that a programmer can use them as part

of his own program. This is achieved by use of the CALL statement from
basic.

RESERVED RAM AREAS: 8H8000 " SHO7EF

In order for Basic to convert data from one form to another, and to

execute commands or run programs, it must reserve storage space for
this purpose. ‘The reserved Ram is also used to store pointers which
hold the address or location of the program in memory, the data being
used, variables and their values, what line number is being executed,

the color and cursor information, the character and sprite patterns,
etc. Table XXX1 lists some relevant reserved locations.
BASIC PROGRAM POINTERS: Whenever a Basic program is typed in or
RUN, the Basic Language in ROM must know where to locate the program,
whereabouts the program ends, where the variables are and what their
names are, etc. Basic thus stores all this information in a Reserved

RAM area, reserved because if this information is lost or destroyed,

then the program will fail to execute properly, if at all. Fach location
in the Reserved RAM area holds a specific value, eg, memory locations

&H8160 and 8H8161 store the address of the start of a Basic program.
To determine the start address in hexadecimal, type the following

PRINT HEX$(PEEK (88161)) ;HEX$(PEEK (8H8160))

The other pointers associated with the Pasic program are listed in
Table XXX1. Manipulation of these pointers can result in Merge
programs, the ability to save and load machine—code blocks of memory
or string storage areas (ie data) etc. For an example of this, refer
to the auto-load routine in chapter 4.

BASIC LINE STORAGE FORMAT: When a line of Basic program is typed into
the computer, it is stored in an area of designated free RAM. The way
that each line is stored in memory is as follows,

13

Byte 1 Number of Bytes in the Line
Byte 2 Least significant Byte of Line number
Byte 3 Most significant Byte of the Line number
Byte 4 Zero
Byte 5 Zero
Byte 6 "Byte N-l1 Basic line contents
Byte N Always a carriage return HOD

The end of each Basic line is terminated by a carriage return (CR).
If this occured before it should, the Basic Language would erase the
rest of the line contents. Occasions where this might happen are
explained in the section on String Packing.

TOKENISED BASIC KEYWORDS: Basic keywords are stored in memory as a
single hex byte. This saves memory space. When programs are listed or

printed, the keywords are expanded into their full meaning. Table XXX2
has a listing of the hex bytes and their equivalent Basic keyword.

When counting the number of bytes in a line, keywords are counted as a
single byte only.
STRING PACKING: String packing refers to the imbedding within RIM
statements of a machine-code routine. Because Sega Basic always
starts at the same address in memory (8H9800) then this becomes
relatively easy. It must be remembered that the machine-code routine
cannot have8HOD or 13 decimal in it, else Basic will think that the

line has actually finished, and the remaining machine-code will be
lost. Refer to the program listed in Table XX21 for an example of this.
Once the program has been RUN, press break and list line 5. The

machine-code data statements and poke routine can then be deleted,
and the code can be saved as part of a normal program.
COLOR BYTES: Locations &H9339 and 8H933A hold the color information
for the text and graphics screens respectively. The byte is split
up into two halves, the first half controls the writing color, and
the other half the background color. Refer to Table XXX7 for the
values which determine each color. If a Red text on Yellow
background is required in the text mode, POKE 8H9339,8H8B (8Red,

B-Yellow).
INKEY$ STORAGE ARFAS: Locations 8H9460 onwards store the value
received from the keyboard during an INKEY$ statement. Table
XXX4 lists the appropiate key, value and location for each key
press. Note that each key pressed returns a different value, and
that several locations are used to store the returned values.
USING INKEY$ WITH HYBRID PROGRAMS: A hybrid program is a mixture
of machine code and Basic. This technique allows fast speed and
ease of programming. A typical layout follows,

5 REM machine-code program poked into here
10 A$=INKEY$: CALL &H9808 : GOTO 10
20 REM &H9808 is start address of mcode
30 REM and tests key value returned in
4O REM locations &H9460-, then moves the
50 REM ship left, right, fires etc

ERRORS MESSAGES: The Basic Error messages are stored at 8H73E8 "
8H7676. ‘The routine at 8&H173B7 is used to determine the actual error,

and then print it to the screen. The code of the error is passed to
the routine, which searches a table for the error code, then loads the

text message that follows the error code. ‘The following program lists
the various errors and their appropiate code.

5 REM MMMM
10 SCREEN 1,1: CLS
20 FOR X=8H9808 TO 8&H980E
30 READ A: POKE X,A: NEXT
40 FOR Y=0 TO 70: POKE &H9809,Y
50 PRINT "Y=";Y;" ";: CALL &H9808
60 PRINT: NEXT Y
70 DATA 8H3E,0,8H4F , 8HCD,8HB7 ,&H73
80 DATA 8HC9

POWER-UP DIAGNOSTICS ROUTINES: ‘The Sega computer, on power-up, carries
out a self-check on the various internal compnents. Should a failure
occur, a jump is made to the fault indication routine, and an audible
indication is given to the user. These indications are,

Single Beep = RAM Failure &H6809
Double Beep = ROM Failure 8H680D
Triple Beep = VRAM Failure &H6811

16

ROM ROUTINES: These routines are used by the cpu when it
communicates with the devices connected to it. ‘These routines

can be called independently by the programmer, using a CALL’
statement. Table XXX3 lists some important ROM routines. ©

Table XXX1. RESERVED RAM AREAS.

Hex Address

8160/8161

8162/8163

8164/8165

8166/8167

8168/8169

82A2

82A3

83A3

8B30

8B36

9336

9339

933A

9364

9411

9490
9744/9745

Purpose
Start of Basic program
End of Basic program
String Storage pointer
Top of String Storage
Top of Memory pointer
Program found flag, O=found
Filename being loaded (16 bytes)
Filename being saved (16 bytes)
Basic Stack Area
8H80 bytes. Write to VRAM 8H1800+
Screen control
Color text screen byte
Color graphics screen byte
8&H80 bytes VRAM stores &H1800+ here
Top range of cursor
Bottom range of cursor
8 bytes for storage of PATTERN command -
8H28 bytes for storage of VRAM data
INKEY$ Storage area
Cursor, O=normal, 2=graphics
l=lowercase, O=uppercase
keybeep, O=beep, l=nobeep
Cursor position X value
Cursor position Y value
Time$ seconds
Time$ minutes

Time$ hours
Address of DATA byte

S
B
S
S
S
S
B
I
R
A
R
B
R

Table XXX2. BASIC KEYWORDS.

Qa

|
 %*

AO ON

- ee 4 C3 on
Me CA + A3. CURSOR
a OF - ae

SORE. gy mara AG SCREEN ee

= Se © > AS LINE ae
AQ SOUND
AA BEEP 8080 ABS AB CONSOLE 8082 SIN AC 6S 8084 TAN AD Ur 8086 ACS AE CALL 8088 LOG AF POKE 808A LW BO -PSET 08C RAD Bl PRESET 808E, PI B2 PAINT 8090 INT B3- BLINE 092 ASC BL POSITION 8004 VAL BS HOOPY 8096 INP B6 SPRITE 8098 VPEEK B7 PATTERN 809A STRIG B8 CIRCLE S0Al HEX$ BO BCIRCLE 80A3 LEFT$
a Me SOAS MIDS BB VPOKE

S
B
S
8
R
R
B
R
E
S
S

SP
EE

R
SB
SB
RS
S*

SS

aE

Rg

78

17

TABLE XXX3. ROM ROUTINES.

Hex Address Nature of Routine

1000 " 17BF Character table (8x8) for VDP
17CO " 19FF Basic keywords
1CB1 Determination of free bytes

2310 Get next character into DE

2400 Write character in A to video screen

2BD4 (2BD1) Read 80 bytes data from VRAM (81800) to
8&H9364, write 80 bytes from 8H8B36 to VRAM
(8H1800), move 80 bytes at &H9364 to &H8B36

2C2A (2BCE) Read data from VRAM
2C32 (2BCB) Write address in HL to VDP for VRAM read
2C3D (2BC8) Write data to VRAM
2C44 (2BC5) Write address in HL to VDP for VRAM write
2C51 (2BC2) Read VDP Status register
2C54 (2BBF) Write to a VDP register. Data in A, Register in C.
3604 Hex conversion routines
3A08 Delay using the BC register
3A0F Write Sync bytes to tape
3A12 Write byte to tape
3833 Write 8 bytes from &H9413 to VRAM
3D32 SCREEN 1,1
3D90 SCREEN 2,2
3DEE Initialise Text and Graphic screens
3FAO " 411F Keyboard characters arranged in matrix form
4120 " 4258 Basic keyboard symbol table
4590 Reset TIME$ to "00:00:00"
4756 Change cursor to graph
475E Change cursor to normal
4766 Change input to lowercase
476E Change input to uppercase
4918 INKEY$
4AGF Write text pointed to HL to current screen

position

6800 Restart OOH (Power)
6803 Restart 38H (VDG)
6806 NMI Entry (Reset)
6AB5 Print FRE routine
6C37 RUN

779F VERIFY

78EF LOAD

7A4O SAVE

TABLE XXX4. INKEY$ STORAGE AREAS.

Memory Location Keys Monitored Values Returned

8&H9460
8H9461
8&H9462
&H9463
8HO464
8HO4E5
8HO466
8H9467
&H9468

NOTE:

spc= space

clr= clear

del= delete/ins
cd = cursor down

cl = cursor left

crt= cursor right

1QAZ,,KI l
2WSXspc .LO i!
3EDCclr/;PO i’
4RFVdelpi :@ Ny
5IGBcd J[me
6YHNcler i
7UMertcup 1'
Joysticks

eng,fnc,ctr, 1'8
sht ,spc

eng= eng/diers
fnc= function
ctr= control
sht= shift
cup= cursor up
cr = carriage return

19

CHAPTER 2

21

THE VISUAL DISPLAY PROCESSOR:

The VDP is a Texas Instruments 9929A chip. ‘This has several important
features, such as sprites and interrupt capabilities. In the SHGA
computer, the VDP is mapped at two port locations, SHBE and SHBF’.
These ports are the means by which the central processor communicates
with the VDP chip and the Video Ram.

THE VISUAL DISPLAY MODES:

The VDP has four seperate display modes. The four modes are,

1) Graphics Mode I
2) Graphics Mode IT
3) Text Mode
4) Multicolor mode

Only the two used in the SHGA will be explained here, but a program
which allows the user to program the multicolor mode is appended
at the end of this chapter.

THE TEXT MODE: ‘The text mode provides for 40 characters wide by
24 lines of text. Only two colors may be present on the screen at any _
time. Basic only allows the use of 38 characters per line, this is done t
allow for older television sets who might chop off the lst two characters.
The two colors are referred to as the writing or foreground color, and the

background color. These colors are specified by the COLOR command, or
may be altered by poking location 8&H9339 with the appropriate value.
The address of Video Ram (VRAM) used to store the characters is as shown,

THEIR HERE EIB E BEAR RTT,

3000 & lst line of 40 characters # 3027

3F98 % Last line of 40 characters % 3FBF
JEHHESHSH SHEE HHS HEHEHE SHEER EHH EEHB GR

THE GRAPHICS MODE II: The graphics mode allows all 16 colors to be used

simultaneously, and the display is arranged as 256 by 192 pixels, where

a PIXEL is a single dot on the screen. A seperate area in VRAM is
used to store the color attribute of each pattern on the screen.

The patterns are stored as follows, (displaying the Ist character in

line 1 only)

% EEE ~— The characters are normally made up out ‘of 8x8 pixel

* 0000 * _ blocks. This shows the makeup of the first character
* QOOl * of the first line on the graphics screen. The eight
* 0002 * bytes that make the character are arranged as shown,
* 0008 * with the address inclosed. The second character will
* 0004 * thus use address's 0008 " OOOF, the third character
* 0005 * will use address's 0010 " 0017 etc. The color byte
* ©0006 * for each character is located at 8H2000"", ie, the
* ©0007 * color attribute address for the lst byte is 8H2000,

EEO ~— for the 2nd byte it is 8H2001, for the 1st byte of
the 2nd character it is &H2008.

The following program illustrates the colors avaiable in the graphics
mode

10 SCREEN 2,2:CLSsh=0
29 FOR X=&HO000 TO &HIZFF
3O Betis iF B=7 THEN RESTORE: &=0
49 READ AsVPOKE X,&HFO
sO VPOKE X+&H2000,4
60 NEXT X
79 GOTO 790
BO DATA &HO1, &H24,&H3s, &HoA, &H7k
99 DATA &H8C,&H9D, &HEF

ARCHITECHURE OF THE ‘IMMS9929A:

The VDP chip comprises eight (8 bit) write only registers, a read only

(8 bit) status register, and an autoincrementing (14 bit) address
register. The registers hold the necessary address's or data for the
VDP chip to be able to find the required patterns in VRAM and determine
the location, color, size etc of sprites or the text. The eight register

functions in turn are;

22

23

Register O:

Bits

Register 1:

Bits

Register 2:

Bits

Register 3:

Register O controls the external VDP input, as well as mode
select. The external VDP input allows the image from
another VDP to appear in the background. In the case of
the SEGA this is disabled. MODE SELECT(M3) controls the
format of the display screen. This is combined with
M2 and Ml of register 1 to select the desired screen
layout. (see Table XXX5)

7 6 5 4 3 2 #1 =«0

*0 *0 *0 *0 *0 *O0 * Mi EV*
THERES REESE EE EEEHH ES EEHESSSSSHEE

Register 1 controls the Video Ram type selection, the

blanking out of the active display area, interrupt
enable, Ml, M2 and the size and magnification factor

of any sprites. The SHGA computer has the following,
VRAM bit = 1 for 4116 type, Blank bit = 1, Interrupt
enabled(50Hz) = 1, Screen mode = text, Size and Mag
are 0.
SIZE: This bit determines whether 8 x 8 sprites or
16 x 16 sprites are used.
MAG: This doubles the size of the sprites if a l,
else if a 0 then the size is that set by the size bit.
(Table XXX6 gives the combinations equal to the MAG
command on the SHGA)

7 6 5 4 3 2 #1 =«0

* 16K* BL * IE * Ml * M2 * O * SIZ* MAG *

JE BHEIS HERR SHR ERI EB BHAI B ARABI III OIE

Register 2 holds the NAME TABLE address for the
text or graphic screen, this being 8H3000(text)
or 8HOOO0(graphics).

7 6 5 4 3 2 1 0)
IHRE BHR HHHR HEHEHE EHH HEHE OHH IE OEHHA OHEE

Actual Address =
O O* O* O*4 bit Address = i tit address ®

Ta 2/706)

Register 3 holds the COLOUR ATTRIBUTE TABLE address
for the graphics screen, this equal to &H2000 for the SEGA.

Bits

Register 4:

Bits

Register 5:

Bits

Register 6:

Bits

Register 7:

Bits

7 6 5 4 3 2 1 = 0
JERE HEEB BOI ASAHI IIIS

x 8 bit Address Bee ee =
TRRRRSS RRR 8 bit address *

8H40

Register 4 holds the PATTERN GENERATOR address for
the text or graphic screen, being 8H1800(text) or
&H3800(graphics).

7 6 5 4 3 2 1 =0
JERR EITHER SEIU SE IAI

RRR RRR REO)

Register 5 holds the SPRITE ATIRIBUTE address (&H3B00).

7 6 5 4 3 2 1 #90
JERE REI AREER III IORI

Actual Address =
xO * i - 0) 6 bit Address 6 bit address *
JERE SHORES HOSOI HH ARACEAE EO)

Register 6 holds the SPRITE PATTERN address (8H1800).

’, 6 &8 &€§ 3B 2 1 OD
JERE EH EHR EHS HEE HEISE SHB EHS OOEEE

Actual Address =
#O OF OF OF OF Bbit Add * 3 Hit address *

JHeseHHeeeHsesscsnsessesseonaseaaae. &H800

Register 7 holds the COLOR for the writing/background
combination.

7 6 5 4 3 2 1 =0
FEAR IEE SEI III III IE IIE

* Writing Color * Background Color *

STATUS Register: The status register holds the interrupt flag, the

Bits

fifth sprite flag and number, and the sprite collision
flag.

7 6 5 4&4 32 2 1 =O
EIA III III SIH IIR TORTS

*F *58*C * Fifth Sprite Num *
JES EB IEE SEITE III IIE

24

25

HOW TO WRITE/UPDATE A VDP REGISTER:

Two bytes are required to update or write to a register.
Byte 1 is the required data
Byte 2. is the required register

The composition of byte 2 is
10000 + RSO + RSI + RS2 (Where RSO-2
are 1 bit each)

RSO RSI RS2
Register 0 O 0)
Register 1 0 0 1
Register 2 0 1 ¢)
Register 3 0 1 1
Register 4 1 6))
Register 5 1 0 1
Register 6 1 1 6)
Register 7 1 1 1

NOTE: IT IS IMPORTANT THAT THE STATUS REGISTER IS READ AT PORT
SHBF BEFORE YOU UPDATE ANY VDP REGISTER.

There is a RO routine at &8H2CM which provides this facility.
Load Register C with the register number (0"7), Register A with
the Data byte before calling.

EXAMPLE: Change the color information of the text screen by
directly writing to VDP register7.

10 SCREEN 1,14=CLS
20 PRINT "This is sctually black writing"

3O FRINT “or & green background."

40 FOR X = &HAOOO TO &HAOOC
30 READ AA s POKE X,AA =: NEXT X
60 FOR DE = 1 70 SOO =: NEXT DE
7O CALL &HAOOO : FRINT "But is it really?"
80 GOTO 8o
99 DATA 243,219,191,62, 335,211,191

100 DATA 62,135,211,191,251,201
110 REM Disable interrupts, read status register
120 REM LD A with green/black(&H2l), Qut(&HBF) &

130 REM LD A with register destinatior:
140 REM OutC&HEF) A, Enable int’s, Return

NOTE: On return to Basic, ie after pressing break, you will
notice that the screen reverts to black on green. This is
because Basic gets the color information from address &H9339.

WRITING TO VRAM: Load the HL register with the screen address
then call 8H2C44, and output the value to port SHBE. The
address is autoincremented by one location after each write,

eg»

ENTRY: AQOO F3 D1
AOO] DSBF =sIN(BF/),A

BEGIN: A003 21003C LD HL,3000 Text screen

AQ06 CD442C CALL 2C44 Write address

; Disable Interrupts

A009 0610 +LDB,10 ; 16 times

Clear Status register

AOOB 3F32.~—s LD A, 32 Character "2"
LOOP: AOOD D3BE OUT(BE),A Print it

AOOF 10FC = DUNZ_ LOOP 16 times
A010 C9 RET Back to Basic

READING FROM VRAM: Load the HL register with the screen address,
call 82032, then input the value from port SHBE. The address is

auto~incremented after each read.

we REMEMBER *; Disable interrupts, then read the status register
at port SHBF before you do what you want, or you will get strange
results.

ALTERING THE CURSOR POSITION: If using machine-code then the above
procedures dealing with reading/writing to Video Ram are required
to set up the 14 bit address pointer. However, if using a hybrid
program, ie a mixture of machine-code and Basic, especially when
calling the print routine at SH4A6F, then the cursor position
may be altered by poking the appropiate X and Y values into
locations &H9489 and 8H948A respectively before calling the print
routine. An example of this is given in the next section.

26

27

WRITING TEXT OR CHARACTERS TO VRAM: There is a routine in RM
which allows the user to move data to the Video Ram. The
following program illustrates this. The text is hidden in the
data statements, and a machine code subroutine is used to point
the HL register to the text, then the ROM routine at SH4GA6F is
called. This writes the text out to Video Ram at the current
cursor position. Note that the text must end in 8HOD or 13
decimal, and you can also clear the screen etc, by the use of
control codes (cls=12 decimal).

10 SCREEN 1,1
20 FOR X=&HAOOO TO &HAOLO = REM the machine code
30 READ As POKE X,As NEXTX
40 FOR Z=&HROOO TO &HROOD : REM the text string
50 READ Ss FPOKE Z,S: NEXT Z
60 CALL &HAD09
70 REM Change cursor x,y positions
B80 DATA &HBE, &HOF ,&H32, &HOP, &H94
90 DATA SHEE, AHOA,&HS2, SHEA, &HO4

100
110
129
130
140

REM Machine-code routine

DATA &H21L,&HOO, &HRO,&HCD, &HOF, &HAA, EHO?

REM Text message follows
DATA 78,111,1146,32,66,97,190,32,101

DATA 104,33,33,33,13

ENTRY: AOOO 3K0F LD A,OF
A002 328094 LD (9489),A ; X position = 15
AOQOS 3K0A LD A,OA
AQO7 328494 LD (948A),A ; Y position = 10
AOOA 2100B0 ID_ HL,BOOO ; Point to text

AOOD CD6F4A CALL 4A6F ; Call print routine
AO1O © RET ; Back to Basic

TEXT: Booo "" > 'Not Bad eh!(OD)'

There is also another routine used for writing a string of characters

to the video screen. This routine is at 8H2400 and my be used in the

following way,

10 SCREEN 1,1: CLS
20 FOR X=&HG000 TO &HA009
3O READ As POKE X,As NEXT
40 CALL &HA0D00
=O STOF
60 DATA &HSE, &H32, &HOS, &H20
70 DATA &HCD, &HOO, &H24, &H20
80 DATA &HFE,&HC?
90 REM LD A with "2°

100 REM LD B with number of times to be printed

110 REM Call routine at &H2400

120 REM Dec B and Jp not zero tao print routine
130 REM Return when & is were.

SPRITES: A sprite is a predefined graphic character. This can be one

of four possible sizes, eight by eight pixels, sixteen by sixteen pixels,
sixteen by sixteen pixels (double the first), or thirty-two by thirty-
two pixels (double the second). The sprite may be moved pixel by pixel
around the screen, and a test may be made to see if any two sprites
overlap by a single pixel element. The sprite size is controlled by the
MAG command in Sega Basic, and the actual shape of the sprite is defined
by the PATTERN command. ‘The position of the sprite is controlled by the
SPRITE command.

SPRITE PLANES: ‘The Sega uses thirty-two planes, where each plane can be
thought of as a transparent screen each behind the other. Only one
sprite can be present on a sprite plane at any one time, but as the planes
are stacked behind each other, sprites appearing on the closest plane
have the highest display priority, ie, they appear in front of the
sprites on the planes behind it. Sprites can thus appear to move in
front of, or behind other sprites, depending upon which planes are used.

The pattern plane, or the plane on which ordinary text is written to, is

the lowest priority, thus sprites will always appear in front of written

text.

SPRITE COLLISION DETECTION: Sprite collisions may be detected by reading
the Status register located at port 8HBF. If any two sprites overlap
by a single pixel, bit 5 will be set to logic 1. A basic program to test
this would be

28

29

10
20
30
40
50
60
70
80

99
109
110
120
130

SCREEN 2,2: CLS
PRINT "Sprite callision dena."

FOR DE=1 TO 14002 NEXT DE
PATTERNS#1, "FFFFFEFFFFFFFFFE "
PATTERNS#2, "FFFFFFFFFFFFFFFF *
SPR
FOR

ITE 0,¢4120,20),1,14: C=
x= 9 TO 255

B= INP C&HRF)s IF (BR AND 32)=32 THEN
GOSUER 120
SPR
IF

ITE 1,%%,207,2,6
INKEY$="" THEN GOTO 100

NEXT Xs STOP
CURSOR 20,10: PRINT CHRS(S) 3"Collisioan"
BEEP s C=4: RETURN

Machine code programs may look something like,

AQOO
AQO2
AQ04
AQ06
AQ08

DBBF INP(8HBF) ,A

E620 AND 20

FE20 CP 20

28?? JR Z Collision

Continue with main program

SPRITE ATTRIBUTES TABLE: Starting at address &H3B00 are four bytes for
each sprite. These groups of four bytes control the position, color
and number of each sprite. Sprite O has the first four locations, sprite
1 the second group of four bytes, etc. Refer to Table XXX7 for the
relative locations. Table XX26 lists a machine code program
which creates sprites, moves them on the screen, checks for

sprite collision, changes their color, beeps, and gets a
response fromthe keyboard (all using mcode!).

SPRITE PATTERN GENERATOR TABLE: Located at address &H1800
are eight bytes for each sprite. These locations hold the
pattern for the sprites, as defined by the Basic command
PATTERN. ‘This area also contains the eight by eight
patterns for the text screen. They are swapped over as
needed by the routine at 8H2BD4. The following Basic
program illustrates the creation of a sprite, and its
movement by poking the attribute area of VRAM.

10
20
30
40
uo
69
79
89
90

100
110
120
130
140

SCREEN 2,28 CLSs PRINT’ Sprite Demo"

B=&H1iSOO0:REM Create the Sprite

FOR X=0 TO 7s READ A

FPOKE B+X,As NEXT
Be&H3ZbOOs REM Create attributes

FOR K=0 TQ 3: READ A

FOKE &+tX,As NEXT

FOR X=0 TO 235

POKE
NEXT

GOTO
DATA
DATA

&HBBOL,X
XPOKE &H3B03,4
110
&HEF, &HFE, &HEF,y &HEE, SHEE, &HEF, &HEF, &HEF
32,0,0,15

REM Y=32,xX=0,SPRITEO,COLORLS

PATTERN GENFRATOR TABLES: These address's store the eight
bytes that are needed to compose the character. For the
Text mode, the patterns are loaded from ROM address
8H1000 into the VRAM area when the computer is turned on or
reset.

ALTERING THE OONTENTS OF THE TEXT PATTERN GENERATOR TABLE:
In the text mode, the 8 x 8 patterns which make up the
character are stored at address 8H1800 onwards. Only the
characters from 8H20 to SHFF are defined in the pattern
table, thus the pattern for each character is obtained

by using the following formula,

address = 8H1800 + character value*8

This gives the address of the first byte that makes up the
character. ‘The other seven bytes follow the address determined
by the formula. ‘This information can now be used to alter
the contents of the existing characters so as to provide
both normal and inverse video characters on the text screen
at the same time. Basically, the following program replaces
the eng/diers characters with the equivalent inverse video
alphanumeric set.

30

19 SCREEN d,1sAZ$=""sFOR A=1 TO 14
20 READ ASSAZ$=AZS+CHRS$ (AS) sNEXT

3O DATA &HAD, &HAE , SHES, aHAS, &HES, SHES,
&HAS, 229, &HERS,&HAD , &HA4,&HAS, SHAF , 44

490 GOSUB 2000:CLS
SO PRINT" Welcome to ";AZ$s PRINT
60 FRINT® Try printing out the “sCHRS(&HCS) =

CHR (C&HCE) sCHREC&HOZ) s"/Sdier’s"
70 PRINT’ characters.": PRINT
80 STOF

2000 Bt&HIBO0+&H40%Es CH&HIBOO+R&H7F *B
2010 DC=(C+&H20%*8) +9
2020 FOR X=& TO C STEP 8
2030 FOR A=X TO X+7
2040 DA=VPEEK CA)
2050 DE=DA XOR &HFF
2060 VRPOKE CDC) ,DsDC#DC+1
2070 NEXT SNEXTs RETURN

By manipulating the contents of the pattern tables, it would

be easy to create upside down and reverse characters as well.
Table XX27 lists such a program.

NAME TABLE ADDRESS'S: These are eight bit pointers which point
to the specific pattern required. If using the Text mode,
it represents the ASC11 equivalent of the character.

MULTI-OOLOR MODE: Table XXX9 lists a program which experiments
with the multi-color screen mode. A machine code routine is
poked into memory and when called, it switches over to the
multi-color mode. Be sure to try this program with a color tele—
vision set, as it is quite impressive. The color attributes for
the multi-color mode are stored at &H3800 to &H3B00. Poking
these areas with different values in the range 0 to 255
can result in very colorful displays.

SWAPPING THE OONTENTS OF THE TEXT SCREEN: Utilising the large.
memory available with the 32K RAM cartridge, it is possible to
create a screen swap routine. This involves reading the entire
contents of the text screen into a buffer, and then carrying on
as per normal. When the old screen is required, a routine is
called which rewrites the buffer back to the screen. The
following program illustrates this. A machine code routine
is poked into line 5 of the program. .

S REM AARAAARARABRAABARABAARAAA AA AR A AF
AAAABRABRAABRARAAAAARBARARAABAAARBAS
AA ARABRAARRABARABARAARARARAARAAAA

10 SCREEN 1L,isCLSsPRINT® Text Screen Swap"

20 FOR X=&H9808 TO &Heaar
30 READ ASPOKE X,AsNEXT
40 FRINT" This is the original screen."
50 FOR DE=1 TO 3S0sNEXT DESCALL &H9808
60 CLSOSPRINT® This is & mew screen.”

70 FOR DE=1 TO S50:NEXT DE
80 CALL &H9S322
90 PRINT" Hows that! *

100 STOF
110 DATA &HFS, &HDB, SHEP ,AHEL, &HOO, RHEE

&HCD ,&H32,&H2C aH S, &H21 ,&HOO, &HAD
&HOSG, &HOS, SHOES, 6,193, 8HOE, &HRE, &HED
&HE?Z,&HCL ,&H1LO, &HFS,&HCD

110 DATA &HFS,&HDE,&HRF,&Hoi,&HOd, &AHSC
&HCD , &H44,&H2C , &HFS, &H21 ,&HOO, &HAD
&HOS6, &HOS, &HOS, 6,193, 8HOE, RHEE, &HED
&HES,&HCL, &HLO,&HF 6, &HC?

The routine at &H9809 saves the text screen contents into main
RAM starting at location SHAOOO onwards, while the routine at 8&H9822
writes the buffer at location SHAOOO to VRAM. Refinement of this
could result in simple animation. In machine-code the program is,

9808 —F3 DI ; Disable interrupts
9809 DBBF IN A, (BF) ; Clear status register
980B 21008C LD HL,3000 ; Text screen address

; Set up VDP for read

9812 2100A0 — LD HL,AOO00 ; Buffer area

9817. 65 PUSH BC ; Read
9818 0600 LD B,OO
981A OEFBE LD C,BE ; CG Port BE
981C EDB2 INIR ; Read until B-0
O81E Cl POP BC
O81F 10F6 DJNZ Read ; Complete screen?
9821 © RET

32

33

9823 DBBF IN A, (BF) ; Clear status register
9825 21003C LD HL,3000 ; Text screen address
9828 CD442C CALL 2044 ; Set up VDP for write

982C 2100A0 LDHL,AQOO - ; Buffer area

9831 6 PUSH BC ; Write
9832 0600 LD B,OO
9834 OEBE LD C,BE ; C = VDP
9836 EDB2 OUIR : Do until B+O
9838 «Cl POP BC
9839 10F6 DUNZ Write ; All the screen?

983B (9 RET

Table XXX5: MODE SELECT BITS.

MSl1 MS2 = MS3_— Screen type
6) Graphics mode I (32 x 24)
1 Graphics mode II (256x192)
0) Multicolor mode (64 x 48)
0) Text mode (40 x 24) =

o

Oo

'
o

O
o
O
r
o
°
o

Table XXX6: SIZE & MAG BITS.

Mag Size Bit size Sega manual
0 0 8x8 MAG O (single sprite)
) 1 16 x 16 MAG 1 (single sprite)
1 0 16 x 16 MAG 2 (double magQ)
1 1 32 x 32 MAG 3 (double mag1)

Table XXX7: SPRITE ATTRIBUTE TABLE.

1 ¥ POSITION y EC. If a logic one, it shifts
iam. the sprites to the left

1 *% POSITION 1 by 32 pixels.
Ym me ane cee ee ee nee wae snee cae ante core ee

1! SPRITE NAME |

JECHOLOIOICOLOR |

COLOUR. The 4 bits make up the
color of the sprite. Refer
to Table XXX8 for the color
values.

i)

Table XXX8: COLOR VALUES.

O Transparent 8 Red
1 Black 9 Light Red
2 Green A Deep Yellow
3 Light Green B Light Yellow
4 Dark Blue C Dark Green
5 Light Blue D Magenta
6 Dark Red E Gray
7 Cyan F White

Table XXX9: MULTI-COLOR MODE PROGRAM.

DEFFNACR) = INTCRND(L)*R) + &HBBOO
10 SCREEN 2,2 3: CLS
20 FOR X = &HAOOO TO &HAOLI
30 READ A =: POKE X,A : NEXT &
40 DATA &HFS, &HSE,&HOO, MHDS, SHEF
SO DATA &HSE,&H80, &HDS, SHEE
60 DATA &HBE, &HOS, &HDS, HEF
79 DATA &H3E,&H84,&HD3, SHEF ,&HC?
80 DH=&Hils DF=&HISOOs DG=a&HBEOO
90 FOR DE=DF TO DGs VFPOKE DE,DH
100 NEXT
110 CALL &HADOD

120 X = FNACA&H3OO)
130 VPOKE X,RND(1)*&HFF
140 GOTO 1290

In machine-code,

AOQOO F3 DI ; Disable interrupts

AOQO1 3500 LD A,0O ; Select multi-mode
A003 D3BF OUT (BF),A
AQO5 3E80 LD A,80 ; Register 0

AQO7 D3BF OUT (BF),A
AQO9 3EC8 LD A,C8 ; Multi-mode

AOOB D3BF OUT (BF),A
AOOD 3E84 LD A,&4 ; Register 1
AOOF D3BF OUT (BF),A
AO] C9 RET

34

CHAPTER 3

THE SOUND GENERATOR.

The sound chip is a SN/6489AN device. It requires 32 clock
cycles for the transfer of data from the CPU to be latched
internally. ‘This involves the use of the Ready line being
tied to the WAIT input of the Z80 CPU.
This means that when loading the sound generator chip with
data, theCPU is actually slowed down. The SG contains three
programmable tone generators and a noise source, the output
of each controlled by a programmable attenuator. The SG chip
is port mapped at 8H7F. The frequency and register is
selected by a two-byte combination, while only one byte
is necessary for attenuation control.

FREQUENCY SELECTION.

To determine how to program the SG chip the following infor-—
mation is necessary,

Clock speed = 3.84Mhz
N = Clock speed / (32 * Required frequency)

where N is converted to a 10 digit binary number.
Thus, to generate a tone of 1000Hz;

N = 3840000 / 32 * 1000
= 120 (N is always rounded to an integer)

Now convert N to Binary = 0001111000 (Most significant bit first)

REGISTER SELECTION.

To determine which sound register Table XX10 is used.

WRITING THE FREQUENCY AND REGISTER TO THE SCC.

In the above example-of a 1000Hz tone, N was derived into a

10 digit binary number of 0001111000. These ten bits, along
with the register code from Table XX10 are used to form the
two bytes required to program the desired frequency and sound
channel. Thus the format of the two bytes is,

Byte One: 1 + Register Code + last 4 bits of N
Byte Two: 00 + first 6 bits of N

Thus for our example of a 1000Hz tone using register one,

Byte One = 10001000 (or 8H88)
Byte Two = 00000111 (or &HO7)

The tone is produced by outputting the two values to port
8H7F, thus

OUT 8H7F,8&H88 : OUT 8H7F,&H07

will produce the desired result.

ATTENUATION CONTROL.

Control of the programmable attenuators can be achieved by
a single byte update. The format of this byte is as follows,

Single Byte = 1 + attenuation register + attenuation value

The attenuation register is three bits and is shown in Table
XX11. The attenuation value is shown in Table XX12 and comprises
four bits. ‘Thus to attenuate tone register one to a value
of 10db using Basic,

Single byte = 10010101 (&H95) so OUT 8H7F,8&H95

THE NOISE GENERATOR.

Updating the noise register and attenuator requires a single
byte transfer, This byte is 11100 + FB+SR

FEEDBACK CONTROL (FB): If FB=1 then noise is "periodic"
else if FB=l then the noise is set to "white" noise.

SHIFT RATE (SR): Refer to Table XX13 for the values of the

two SR bits.

ATTENUATION CONTROL OF NOISE REGISTER: This is the same
as described earlier, only the register code is 11l.

SAMPLE EXPLOSION: To generate an explosion, use "white noise"
then slowly increase the attenuation from Odb to OFF. Thus the
frequency control byte is,

11100 + 1 + 00 = 11100100 (or 8HFA)

The attenuation bytes range from Odb to OFF thus the range
is,

1111 + 0000 to 1111 + 1111 (or SHFO to MHF)

37

38

thus the program in Basic is,

10 OUT 8H7F,8HEA : FOR X = 8HFO TO SHFF : OUT SH/F,X
20 FOR DE = 1 TO 20 : NEXT DE
30 NEXT X

CREATING MUSIC: Table XX14 is a Basic program which allows
the user to input a series of notes (up to 255) and then
play them back. The program calculates the various bytes
necessary to program the sound generator chip.

TABLE XX10 REGISTER CODES

Register Binary Code
Register 1 000
Register 2 010
Register 3 100
Register 4 110

TABLE XX11 ATTENUATOR OODES.

Attenuator Binary Code
Tone reg 1 001
Tone reg 2 011
Tone reg 3 101
Noise reg 111

Table XX12 ATTENUATION TABLE.

Attenuation Value Binary Code Attenuation Value

Odb 0000 2db
4db 0010 6db
8db 0100 10db
12db 0110 14db
16db 1000 18db
20db 1010 22db
24db 1100 26db
28db 1110 OFF

Binary Cod

0001
0011
0101
0111
1001
1011
1101
1111

Table XX13. SHIFT RATE BITS.

SRO 3 SRI. Desired Frequency of Noise.

0 0 Clock/512
0 1 Clock/1024
1 0 Clock/2048
1 1 Frequency is that specified by Register 3

Table XX14
MUSIC PROGRAM & SOUND EDITOR.

Mustc and Sound Editor,

5 PATTERNCH&HDG, "7884B4N4A4B4849 78"

18 PN=&H?F :DIM X1(255),X%20255),X30255)

»WO255), 720255)

28 FLAG=2
3@ SCREEN],1:CLS
4@ PRINT"Mustc Editor. By B.Brown

" SCHR$(&HDB);" 84"
SQ PRINT"------------- 0 rene

68 PRINT:PRINT"Options"

76 PRINT "1 - Play memory area”

B8@ PRINT "2 - Create music »

98 PRINT "3 ~- Edit mustec array"

1086 PRINT:PRINT “Select desired option

11@ AAS=INKEY$: IF AAS=""THEN GOTO 110

128 IF AAS="1" THEN GOTO 828

130 IF AAS="2" THEN GOTO 9388

1940 IF AAS="3" THEN GOTO 1882

15@ GOTO 118

268 REM INPUT ROUTINES

218 Bls="18080800"

228 PRINT"Freq (118~356@) of tone B"je

B;" "3:INPUT FT:TF FT<118 OR FT>3580 T

HEN GOTO 220

230 BT=3848880/ (32*FT)

240 DB=INTCBT+.5):GOSUB 438

39

40

2508

268

278

288

238

388

318

320

336

348

256

366

37

380

B1$=LEFT$(B1$,4)+A1$

B2$=A2$

INPUT"Tone level (€1~15) "3$TL

IFCTL<1)ORCTL> 15) THEN27@

DB=TL:GOSUB 438

B4$="1001"

B3$=B4$+RIGHT$(A2$, 4)

GOSUB 88a

REM N1=Byte],N2=Byte2,N3=Atten

GS$=B1$:GOSUB6708 :N1=0B

GS$=B2$:GOSUB67@ :N2=0B

GS$=B3$:GOSUB6708 :N3=0B

PRINT"Desired rest period “

PRINT"before next note. "3: INPUT 2@C

>RETURN

3398

480

410

420

430

440

450

460

470

482

43a

388

51@
520

530

540

558

560

378

580

530

680

618

620

636

REM PLAY ROUTINE

OUTCPNJ,N3:OUTCPNI,N] :OUTCPN);N2

FOR TP=1 TO @C:NEXT

RETURN

REM DEC TO BIN

REM INPUT=DB, OUTPUT=A]$,A2$

FORZ2=17T010 -AACZ2Z)=G :NEXTZ2

DB=INTCDB)

FORT3=1TO1@

T2=0B MOD 2

TF T2=)] THENAACT3)=1

OB=INT(DB/2)
NEXTT3
AL$="" :A2¢="":FURZZ=]TOIG
AlB=A1S$+STR&(AA(Z2)):NEXT 28
GOSUBS586 :A)4=SB$

AZS="OB"+LEFTS(A1$,6)

AlFt=RIGHT$(A]$, 4)

RE TURN

SAg=""

FOR S=1TOLEN(AI$)

IFMIO$CA1$,S,1)=" “THEN620

SAS=SAS+NIDSCAI$,S,1)

NEXT S:SB¢s""

FOR S=1] TO LENCSA$)

648 SBS=SBS+MIDS(SA$,LEN(SA$)+]—-S, 1)
65@ NEXT S
66@ RETURN
67@ REM STRING TO DECIMAL
688 REN INPUT=GS$, OUTPUT=0B
63@ OB=0
788 IFMIO$(GS$,1,1)="1"THEN OB=OB+)] 28
718 IFMID$C(GS$,2,1)="1"THEN OB=O0B+64
728 IFNID¢(GS$,3,1)="1"THEN OB=OR+32

738 IFNIO¢CGS¢,4,1)="1] "THEN OB=9Bt16

748_ JFMID¢CGS$,5,1)="1"THEN..OB=OR+8
756 IFMID$(GS$,6,1)="1"THEN OB=0B+4
768 IFMIO$(GS$,7,1)="1"THEN OB=0B+2
278 IFMID$(GS¢,8,1)="1"THEN OB=0Br]
288 RETURN
738 REM RESET SOUND CAHNNELS
888 OUTPN,; 159:OUITPN, 191 :OUTPN, 223
81@ OUTPN, 255 :RETURN
828 °REM PLAY MUSIC
838 CLS:PRINT"Playing music." :PRINT"--

840 IF FLAG=@ THEN PRINT:PRINT"Music a

“rray is empty." :GOSUB 1148:GOTO-3a

856 FOR 2B=1 TO 255

86@ N1=X1(2B) :N2=X2(2B) :N3=X3(2B) :2C=W

C2B):IF N1l=a@ AND N2=@ AND N3=98 THEN 2B

=255:GOTO 88a

8786 GOSUB 338:SOUND @

888 NEXT 2B

898 GOTO 38

S@@ REM Create music

91@ CLS:PRINT "Create Music." :PRINT"--

casleniientenienietasachaonton "=PRINT:GOSUB 1140

323 INPUT"How many notes to play."3;2A

93@ IF 2A>255 THEN GOTO 320

94@ FOR ZB=!1 TO @A

9356 GOSUB 7489

968 X](ZBJ=N1:X20C2€8J=N2:xX30 2B) =N3:WC 2B

J=2@C:T2C2BI=FT

978 NEXT :X1(02B)=@:X2(2B)=8:xX3(2B)=@

Ay

9380 GOSUB 114@:FLAG=1:GOTO 3a

3398 STOP

1060 REM Edit music

1016 CLS:PRINT “Edit Music." :PRINT"---

qene--- "SPRINT: IF FLAG=@ THEN PRINT "

Buffer is empty." :GOSUB 1140:GOTO 38

1026 PRINT “Freq bytes can only be cha

nged, not"

10380 PRINT “inserted. Use the "3;CHRSC&

HBEJ;" key to change a “:PRINT "tone,

else "j;CHRS(&HBF);" key to move ta the

next":PRINT “Lone, and CR to abort,"

1048 FOR @B=1 TO 255

165@ PRINT "Tone "32B;" is ";T@C2B):"H
ee

1@55 PRINT “iblait pertod is";W(2B)

1068 TRS="":TRS=INKEY$

1090 IF TR%#=CHR$(36) THEN GOSUB 115@:G

OTO 1858

1108 IF TR#=CHR$C29) THEN GOSUB 1]4@:N

EXT

1118 JF TR#=CHR$C13) THEN 1138

1128 GOTO \868

113@ GOSUB 114@:GOTO 3a

114@ FOR DE=1 TO 2@@8:NEXTDE :RETURN

115@ GOSUB 1148@:GOSUB 20@:X1(2BJ=N] :X2

(@BJ=N2:X3C2@BJ=N3:W(2B)J=2C:T2(2B)=FT:R

E TURN

CHAPTER 4

CASSETTE ROUTINES.

MAJOR ENTRY POINTS: The major entry points for the cassette
routines are,

VERIFY 8H779F
LOAD = &H78D5
SAVE 8H7A40

PROGRAM FORMAT: ‘The programs are saved in two stages. The
first part is the Header section. This comprises sync bytes,
and the 16 character filename. The main program is saved next,
this includes address's and the actual program, ie, line

numbers etc.

VERIFY/LOAD: These routines are prefixed with a small routine
which searches for the filename of the program. The filenames
may be up to sixteen characters long, and for loading or
Verifying, the filename is stored at location &H82A3 onwards.
The filename from header section of the tape is loaded, then

compared with that stored in memory. If no filename was
specified, the program jumps to the Load main program section.
If a filename was specified, and found to match with that
readfrom tape, the program is loaded. If the program does
not match, a jump is made to the skip portion of the program.

FILENAME STORAGE: Location &H82A2 is used as a Filename found
flag, and if zero then the next program found on the cassette is
loaded, else a Filename Found flag, if zero then the program is
loaded, otherwise skip is made. When saving a program, the
filename is taken from the keyboard input buffer, corresponding
to &H83A3 [up to 16 bytes]. If the filename is less than 16
bytes, then the filename is padded with blanks.

ADDITIONAL INFO: Table XX15 lists the major entry points of all
the cassette routines, and their function. Also listed are the

sub-routines which are called also. Table XX16 and XX17 are
Basic programs which load the Header and Program Bytes respectively
to the video screen.

AUTOLOAD AND EXHCUTE BASTC PROGRAMS: ‘This may be achieved by poking
a machine language routine into reserved memory. If the computer
is then reset, the program will not be erased. The machine code
routine calls the main entry point of LOAD, then calls &H6C37

which is the RUN entry point for Basic programs. However, location
8H82A2 which holds the filename found flag must be zeroed to indicate
that the next program found must be loaded. Table XX18 illustrates
how this may be achieved.

MERGING BASIC PROGRAMS: A program to merge two Basic programs must
use a machine-code routine to save the Ram pointers in memory, call
the Load routine in Rom, reset the pointers and call the load
routine a second time. The program listed below is a combination of
most of that which has already been covered. It must be noted
however, that the second Basic program's line numbers must be
greater than the first or part of the program will be deleted.

10 SCREEN d,is CLO =: PRINT "BASIC MERGER®
20 PRINTs PRINT “Loading Meade."

3O POKE &H81468,0 5s FOR X=&HFFOO TG &HFF2F
35 REM Keserve memory space at top of memory

40 READ As POKE X,&s NEXT
790 FRINT “Press PLAY to load first program.”

80 POKE &H82Ah2,038 CALL &HFFOO
90 JEND

100 DATA &HCD, &HEF,&H7S
110 DATA &H2A, &HS2, SHOT, &HAR, a&H22, &HSO SHEL
120 DATA &HBE, &HOO, &H32Z, &HAZ,AHBOZ, &HAL,&HIF
130 DATA &HFF,&HCD, &Hdol ,&H4A,&HCD, &SHEF, &H73
140 DATA &H21,&HOO,&H9S, &H22,8HSO, RHBL,&HCO?
150 DATA 76,111,97,100,32,50,110,100, 32,112
160 DATA 114,411,1903,114,97,109,&HOD

In machine-code the program is,

FFOO CALL 78EF (LOAD prog1)
LD HL (8162) (Basic end pointer)
DEC HL
LD (8160) ,HL (Store it into Basic start)
LD A,O0O

LD (82A2),A (Filename found flag)
LD HL,FFIF

CALL 4A6F (Print text message)
CALL 78EF (LOAD prog2)
LD HL, 9800
LD (8160) ,HL (Set pointer to progl)
RET

FFIF ‘load 2nd program.’ (Text message)

45

46

Rom Address (Hex)
3A03
3A0F Write sync bytes to tape
3A12 Write byte in A to tape
7/9F Verifying Start
7T/E7 Skip
7822 Found
785D Verifying End
788F Verifying Error
78D5 Loading Start
78ED " 790E Compare Filenames
792B Skip
7956 Found
7982 Load Program
799AA Loading End
79E9 Tape Read Error
7A40 Saving Start
7A59 "" 7A85 Save Filename
7TAQ4 Save number of bytes
7ABO Save Sync Bytes
7AD2 Save Program
7AED Saving End
7BO7 Write HL to tape
7813 Pad Filename with Blanks

Table XX16. LOAD HEADER TO VIDEO SCREEN.

10 SCREEN 1,1 s CLS : PRINT "Press Play
to Load program." 3: B = 0

20 FOR X = &H7SEF TO &H7923
390 POKE &HABEF+RB,PEEK(X) =: & = EB

40 POKE &HAIOR, &HDS
SO FOKE &HASOC, &HRE

60 POKE &HA924, AHCD
79 CALL &HASEF
80 GOTO 790

TABLE XX15. CASSETTE ROUTINES IN ROM.

Function

A Delay routine using the BC register

19

20
39
49
30
60
79
89
99

Table XX17. LOAD PROGRAM BYTES TO VIDEO SCREEN.

SCREEN 1,1 3 CLS s PRINT “Press Flay

to Load Frogram."

FOR X = &HAODOO TO &HAO2?
FREAD A : POKE X,A : NEXT
CALL &HAD0D
STOP
DATA &HF3,&HCD, &HOO,&HBA, &SHCOD, &HOS
DATA &H3A,&HFE,&H17, &H20, &HES, &H2A
DATA &H60,&H81, &HO6, &HOO, AHOD, &HOA
DATA &H7A,&HD3,&HRE, AHBE, &H3BF,&HC4

100 DATA &H48,&H24,&H23,8HIB, &H7A, &HES
110 DATA &H20,&HFO,&HC3, &HAD,&H79

19

20
30
40
30
60
79

Table XX18. AUTO LOAD AND RUN BASIC PROGRAMS.

SCREEN 1,1 : CLS s PRINT " Press Play
to Load and Rum Program.”
DATA &HCD, &HDS,&H78,&HCD, &H37,&HSC
POKE &H81468,0

FOR X = &HFOOO TO &HFOOS

READ A =: POKE X,A 3: NEXT
POKE &HB2A2,0
CALL &HFOOO

47

CHAPTER 5

49

THE KEYBOARD AND JOYSTICKS.

The keyboard, joysticks, cassette and printer are all controlled
by an interface chip (8255). This interface chip allows the
connection of the devices to the CPU, and the transfer of

information between them. The interface is programmed by the
cpu, ie it is instructed on what to look for and what it must
do. This process is normally transparant to the user, ie the
user is unaware of the process's being executed.

THE KEYBOARD: ‘The keyboard is arranged in a matrix layout of
eight columns by eleven rows. Only one colum may be activated
at one time, and the columns are controlled by a decoder chip.
The keyboard rows are connected to two different ports, only
one can be read by the cpu at any time. An intersection
(which occurs due to a keypress) between the colum and row of
the matrix is detected by the cpu and is then interpreted to
find out the actual key being pressed. Refer to Table XX20
for the key matrix layout.

THE 8255 PERIPHERAL INTERFACE CHIP: ‘This is a programmable
chip, and allows the connection of the keyboard, cassette,

printer and joysticks to the cpu. The PIA has three ports,
A,B, and C and a control register. ‘The information written
to the control register will determine the status of each port
(ie inputs or outputs). When the ports are used as outputs,
the written data is latched or held internally till the next
update. In the SHGA the following is to be noted,

Port A is input, mapped at 8HDC, connected to X columns of
key matrix

Port B in input, mapped at SHDD, connected to X columns of
key matrix

Port C is output, mapped at @HDE, connected to Y column of
key matrix

Control register is mapped at SHDF

The data or words written to the control register to set up the
specific ports as input or output are,

Bits 7 6 5 4 3 2 #1 = 0
Or

ES
 1 0 *0O0* 1%*0 *0*¥ 1%*O *

THOSE IIIS

Bit 4 = Controls A

Bit 3 = Controls C upper
Bit 1 = Controls B

Bit O = Controls C lower

thus the byte to intialise the PIA is &H92 or 146 decimal.

ADDRESSING THE KEY-MATRIX.

The lower three bits (0,1,2) of Port C is used to address the
Y colums of the keymatrix. The output of Port C is applied
to a 74LS145 BCD decoder, which provides a one out of eight
output to activate only one Y colum at a time. The status

of the three lower Port C bits will determine which output
of the decoding chip is activated. Table XX18 lists the
combinations of these three bits and the resultant activated
output of the decoder. Table XX20 lists the keyboard
matrix.

SCANNING THE KEYBOARD USING MACHINE-OODE: Table XX21 lists
a Basic program which pokes a machine-code subroutine into memory.
This routine intialises the PIA with 8H92, then outputs a
specified byte to port C, thus selecting the desired Y colum
of the key-matrix. This byte is specified in line 75 of
the program, and refer to Table XX19 for the value of the
byte and its appropriate colum. It then loads the value of

ports A and B, storing them in @HAOOO and &HAOO] respectively,
before returning to Basic. By checking the returned code from
port Aor B, it is thus possible to search for a specified
key press. Having assembled the routine into line 5 of the
program, all data statements etc can be deleted from the
final program. Table XX26 lists a program which scans
the keyboard, and moves sprites etc, all using machine code.

MISCELLANEOUS CONNECTIONS: The remaining tables list the
various connectrions of the SEGA and their appropriate function.

THE PRINTER PLOTTER: This relies on a single chip microprocessor,

a 6805 up. Being a factory programmed device, it must be replaced
in total, ie you haven't got access to the software controlling the
6805. Also note that the same mechanism is used by the ORIC, and
OOMMODORE printer plotters, and the spares are also the same,
ie pens etc. Some SHARP printers are also identical, so shop
around for pens, paper etc

50

51

Table XX19. THE 74LS145 DEOODER COMBINATIONS.

a

—
 POO Y Colum —_— Hex Byte (outputted to SHDE)

¢) YO
il YI Ol
6) Y2

1

6)
1
6)
1

8

Y3
Y4
Y5
Y6
Y7 K

H
O
O
R
H
O
O
S

Q
R
E
R
B
R
L

Table XX21. BASIC KEY-SCAN PROGRAM.

REM ARBAAAAAARAAAAARARABAAAAAAAAAL
AARRAARAR AAR AAR ARARR ARAM ARR AA

7 REM Line & has about 100 A’s in it.

10
20
BO
49
50

69
6%
79
73
BO
8S
99
9S

SCREEN 1,1:CLS
FOR X=&H9808 TO &H9BiF
READ A:POKE X,AsNEXT X
CALL &H9808
PRINT*Port A =";PEEKC&HAOO0O) s
" Port & =" sPEEKC&HAOOL)
GOTO 40
DATA &HF3
DATA &HBE,&H92, &HDS, &HDF
DATA &H3E, &HOO
DATA &HD3,&HDE, &HDE, &HDC
DATA &H32,&H00,&HAO, &HDE, &HDD
DATA &H32,&HOL,&HAO, &HBE, &HI2
DATA &HD3,&HDF, &HC9

1900 REM YO=00,Y1=01, %2202, 73=03

110 REM Y4"04,YS=05, 7606, Y7207

120 FEM Change the 2nd tyte irs Dire 7S

130 REM to scan a different row.

Table XX20. KEYBOARD MATRIX LAYOUT.

8255 PorTc
OUTPUT

PC? FCI Pw

YD Yi Ye YS WAYS YG Y7

Q255 PORTA a Spall) GoysTick)

INPUT Ls Ley ae
Pag | Z2HAH4HSBHGH 7 Hoe

I a T i as L L =

PAI == Q W & 7 ke T Y | U 1 COWN

I L I “I I I I I
iP me—f{AHSHoHFHGHHHIHZ

J l I I i] L -

Pas—}4 ZH XH CH VE BANA Mee,
L 1 : re I I I l ,

PA4 = EIG H SPC CLR Fy DEL ' eal. |
I i 1 a os 1 l Hf

[>

PAS— 3 . Sn t m7 al ee
L I l i — I L I :

Ppo-4K HLA S$ H 3 A J cry f ue
L i I a J I i I

Pp
P74 CHOHPH@ eae

1 l l {— L I I oP

Peg—4 8H 9H BH” HH ¥ HBR
I = L it iC it I 25

PBI — I eT Lecar
iG if I I L 1 1

cP PBZ CTL}

Paa— H FUNCH SHIFT _

NMI: RESET

52

53

Table XX22. JOYSTICK PIN CONNECTIONS.

Pin Number

O
O
M
A
N
D
U
P
W
N
H
E

Right
No connection

left fire

No connection

Common

Right fire

Table XX23. PRINTER PIN CONNECTIONS.

Pin Number

N
O
D
W
U
P
W
N
E
H

Function

Fault

Busy
Data

Reset

Feed

Gnd

No connection

Table XX24, PORT B & C CONNECTIONS.

PBO
PB
PB2
PBS
PB4
PBS
PBO
PB7

Key Matrix POO
"f " PCL

" " PC2

" " PC3

Not Used PCA
Fault (Printer) PC5
Busy (Printer) PC6
Cassette Input C7

Key Matrix
" "

w "

Not Used
Cassette Output
Data (Printer)
Reset (Printer)
Feed " "

Table XX25. VIDEO PORT CONNECTIONS.

Pin Number

O
A
E
w
W
N
r

Function

Audio

Gnd

Video

Gnd

Gnd

EXPANSION EDGE CONNECTOR.

Pin number Pin number (Component side)
1 AO 1 +5v

2 Al 2 +5v

3 A2 3 CSRAM *

4 3 4 CEROM2 *

5 4 5 MEMRD *

6 A5 6 MEMWR *

7 A6 7 I/ORD *

8 A7 8 I/OwR *

9 A8 9 No Connection

10 AQ 10 MREQ *

11 AlO 11 OWN

12 All 12 RASI *

13 Al2 13 CASI *

14 Al3 14 RAM A7

15 DO 15 RAS2 *

16 Dl 16 CAS2. *

17 D2 17 MX *

18 D3 18 Al4

19 DA 19 Al5

20 D5 20 No Connection

21 Db 21 GND

22 D7 22 GND

NOTE: * means active low

54

55

OFFA
OFFD
AO000
A002
AQO4
AQ06
A008
AOOA
AOOC
AQOE
A010
AQL2
AO14
AQ17
AOIA
AOIC
AOID
AOIF
AOQ21
AQ24
A026
A028
AOQ2A
A02C
AO2F
A082
A034
A085
A037
A089
AO08C
AO3E
AO4O
A042
A044
AQ45
AQ47

AQ49
AO4B
AOAD

Table XX26. MOODE DEMONSTRATION.

O1E803
CDO033A
392
D3DF
3E00
DSDE
DBDC

3D
FEOO
2807
CD442C
DBBE
181C
3EFE
1855
21013B
D822C
DBBE

START: LD BC O3E8
CALL 3A03

MAIN: LD A,92

OQUI(DF),A
LD A,0O
OUT(DE),A

IN(DC),A
CP FE
JR Z LEFT

CP F7
JR Z RIGHT

JR START
LEFT: LD HL,3B01

CALL 2C32
IN(BE) ,A

DEC A

CP 00
JR Z INC2
CALL 2C44

OUT(BE),A
JR DETECT

INC2: LD A,FE

JR WRIT2
LD HL, 3B01

CALL 2032

IN(BE),A
INC A
CP FF
JR Z INC3
CALL 2C44
OUT(BE),A
‘JR DETHCT

INC]: LD A,FE
JR WRIT1

DETECT: D1

IN(BF),A
AND 20

CP 20
JR Z OOLL
JP START

WRIT2:

RIGHT:

sDelay routine

sCheck for key "1"

3Check for key "'Z"

AOQ50
A053
A056
AOQ58
AO5A
AO5C
AOSF
AQ61
A064
A067
AQ69
AOQ6B
AQ6E

AO71
AQ72

AOQ75
A078
A079
AO7B

AO7C
AO7E
A080
A081

AQB4
A085

A088
AO8B
AOQ8C
AOSE
AOSF
AO91
A093
A094
A097
AOQA
AOSD
AOA5
AOAD
AOB1

21033B COLL:
CD442C
304
D8BE
0605
CDAO56 BEEP:
1OFB
21033B
CD442C
3E08
D3BE
C3FASF
219DAO

55
210018

CD442C
El

TE WRITI:

CD442C
El
0608
7E WRIT2:

D3BE
10FB
C9
CD6EAO
CD81A0
C3FAQF
AAAAAAAAAAAAAAAA
002070A8F8500000
64500102
64640004

PATTERN:

ATTRIB:

ENTRY:

LD HL 3803
CALL, 2044
LD A,O4
OUT(BE),A
LD B,05
CALL 5640
DINZ, BEEP
LD HL 3803
CALL 2044
LD A,08
OUT(BE),A
JP START
LD HL AOSD

PUSH HL
LD HL 1800

CALL 2044
POP HL
LD B,OF
LD A, (HL)

OUT(BE),A
DUNZ WRITL
RET
LD HL AOAD

PUSH HL
LD HL 3800

CALL 2044
POP HL
LD B,7
LD A, (HL)
OUT(BE) ,A
DUNZ WRIT2
RET
CALL AO6E
CALL AO81
JP OFFA

3Set up sprite

8 x 8 patterns

sWrite to pattern

area Vram

;Write the pattern
bytes

;set up sprite
attributes

;Vram sprite attrib

address

;Write attrib bytes

;Do sprite patterns
;Do sprite attributes
3Go do main routine

SPRITE O PATTERN
SPRITE 1 PATTERN
SPRITE O ATTRIBUTE
SPRITE 1 ATTRIBUTE

56

57

MAIN ENTRY:

IN BASIC

19

29

30

49

SO

49

79

80

99

100

410

120

130

1490

LEO

140

170

Lao

199

209

210

220

230

240

250

240
270

280

290

300

B19

320
330

3490

3SO
3690

AQ94 = NO _ ERRORS DETECTED

SCREEN 2,2: CLS
FOR X#&HOFFA TO &HAOB4
READ

CALL

DATE

DATA

DATA

DATA

DATA

DATA

DAT A

DATA

DAT Rs

DATA

DATA

DATA

DATE

DATA

DAs TFs

DATA

DAT Fs

DATA

DATA

DATA

DATA

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
DATA

Az POKE X%,As NEXT
&HAOI4: STOF
&HOL, &HES, &HOB, &HCD, &HOB, &HBA
&HBE, &H92, &HDB, &HDE , &HBE, &HOO
&HD3,&HDE, &HDR, &HDC, &HFE, SHEE
&H23,8&HO6,&HFE, MHF? ,&H28, &H1A
&HIB, SHES, &H21, &HOL, &HBR, SHCD
&H32,&H2C,&HDB, &HBE, &H3D, &HFE
&HOO, &H29,&HO7, &HCD, &H44, HAC
&HD3, SHEE, &H18, &HIC, &HBE, &HFE
&HIG, SHES, &H2L,&HOL, &H3BR, &HCD
&H32,y&H2C,&HDE, &HRE, &H3BC, AHFE
&HEF , &H28, &HO7, &HCD, &H44, &H2C
&HD3, &HBE,&H18, &H04, &HBE, &HOd
&H1I8, &HFS, SHES, &HDE, &HEF , &HES
&H20, &HFE, &H20,&H28, &HOB, &HC3
&HE A, &HOF ,&H21,&HO3, &H3BB, &HCD
&H44,&H2C,&HBE, &H04, HDB, &HEE
&HOG, &HO, &HOD, &HAO, &HEG, &H1LO
&HEE, &H21,&HOS, &HBBR,&HCD, &H44
&HAC, &HBE, &HOB, &HD3, &HBE, HC
&HEA,&HOF &H21,&H9D, &HAO, SHES
&H21, &HOO, &H18, &HOD, &H44, SHAC
&HEL,&HO6,&H10,&H7E, &HDS, &HRE
&H10,&HFE,&HC?, &H21, &HAD, &HAO
&HES &H21,&H00,&H3R, &HCD, &H44
&H2C, &HEL, &HOS, MHOB, SHZE, &HDS
&HEE /&H10,&HFB, &HC?, &HCD, &HSE
&HAO,&HOD, &HOL, &HAO, &HOB, SHEA
&HOF y&HAA, &HAA, &HAA, &HAA, SHAG
&HAR, &HAA, AHAA, &HOO, &H20, &SH70
&HAG, &HFB,&HSO, &HOO,&HOO, &HS4
&HEO, &HOL, &HO2D, KHOA, &HSA, AHOO
&HO4

10 S$

28 D

3a 0

25 P

ag P

‘32 P

60 PP

70 P

BO P

30 A

TO 9

10)

110

120

130

140

158

160

17a

188

198

208

218

220

238

240

258

Cj+8

260

GJ+1

270

TABLE XX27 CHARACTER MANIPULATOR

CREEN 1,1:CLS
IM UDC8),P2¢8)
LIRSORB, @
RINT"CHARACTER MANIPULATOR"
RINT :PRINT "OPTION."
RINT " 1=INUERSE"
RINT " 2=REUERSE"
RINT " 3=UPSIDE DOWN"
RINT CHRSCS5) .
$=INKEYS:1F AS<"1"OR AS>"3"THEN GO
Q
FOR NE=1 TO 10Q:NEXT DE
A=VALCA$):0N A GOSUB 138,200, 330
GOTO 30
REM INUERSE
SQSUB 41
FOR A=@ TO 7
UNCAI=SUDCA) XOR &HFF
NEXT
GOSUB 480:REM CALL UPDATE
GOSUB 53Q0:RETURN
REM REVERSE
GOSUB 410
FOR C=@ TO 7:P2(C)=@:NEXT
FOR C=0 TO ?
IF CUDCCIJAND 128)=128 THEN P2(C)=4

IF CUDCCIAND 64)=64 THEN P2C(C)=P2(

IF CUDECCIAND 32)=32 THEN P2(CJ=P2C

6

IF CUDCCIAND 16)=16 THEN P2(C)=P2¢

C)+32

280
+64

IF CUDCCIAND 8)=8 THEN P2(CJ=P2(C)

58

2390 IF CUDCCIAND 4)=4 THEN P2(C)=P2(C)
£128

SHO NEXT

316 FOR B=®@ TO ?:UDCB)=P2(B) :NEXT

326 GOSUB 488:GOSUB 530:RETURN

230 REM UPSIDE DOWN

340 GOSIIB 116

350 B=7:FOR A=@ TO ?

360 P2CAJ=UDCA) :NEXT

378 FOR A=@ TO 7?

280 UDCAJ=P2(B) :B=B-1

33@ NEXT :GOSUB 489

496 GOSUB 530:RETURN

418 REM COMMON

420 CURSOR 90,6

43@ INPUT "CHARACTER VALUE ?" 5x

440 AD=sl11800+Xx8: Y=

45@ FOR B=AN TO AND+?

468 UDCYJ=UPEEK(B) :Y=Y+1

47@ NEXT -:RETURN

480 REM UPDATE

49@ AD=&H1800+XxX8 : Y=@

5988 FOR B=AD TOAD+7

51@ VUPOKECB),UDCY) :Y=Y+1

92@ NEXT :RETURN

238 CURSOR 30,9:PRINT CHRS(X)

948 GOTO32

330 CURSOR 38,@:PRINT CHRSCX) RETURN

CHAPTER 6

61

INTERESTING BITS AND PIECES.

This chapter is dedicated to all those wives who spend endless
hours trying to convince their husbands to give up that stupid
toy, and spend more time with them. Gathered together in this
chapter are the solutions to a wide range of problems, so now
there is no excuse for husbands to spend all night trying all
those various programming methods that don't work.

A SEGA PRINT USING STATEMENT:

Some people wish that the SEGA had a PRINT USING statement.
Basically this allows you to format numbers which always
appear in the same place, and with the same number of decimal
places after the decimal point. So here is a routine which
will always display numbers to two decimal places, and
always place it so that the numbers line up with the decimal
point always in the same colum.

LO UMPUT FS

20 Mee TMP OAL OO’ SOO

BQ ARESTRB A

SO LLM CAD

3O FOR I

SO IF MIDS AG, do" ." THEN GOT 100

7O NEXT

BO Aba he" OQ"

90 GOTO 42

LOO GF ys

L190 FOR

L290 $="

130 NEXT I

140 FRINT Gh

1590 GOTO 19

TATE Arthas he

TO 10-4

The value of 10 in line 110 has been used to give a number
with twelve characters long. The program would be used as a
subroutine within your particular program, and accessed by
a gosub statement.

A FAULTY RENUMBERER:

Not that you would want one anyway! No, just a note to say

that the SEGA RENUM command does not work properly. To
illustrate its major weakness, type in the following

program.

10 INPUT" String" 544%
20 IF LENCAS) <7 THEN GOTO 500
3O IF LENCAS) 34 THEN 400
40 GOTO 10

SOO PRINT " ASC?" GOTO
600 PRINT " Ag>4"s GOTO

Then use the RENUM comand. ‘The program will be

renumbered as follows,

LO INPUT" String" pas

20 IF LENCASI OF THEM GATO TO
SO IF LEN CA$IOG THEN 405
40 GATTO 10

SO PRINT " Age?" s GATO 10
60 PRINT " Adoda"s GATG 10

F

ss

Ne

Notice that the line numbers in lines 20 and 30 have not
been changed. Whenever a goto or line number follows a
string manipulation, the renum feature will not work
properly.

ERASING CHARACTERS ON THE GRAPHICS SCREEN:

Try the following program,

Pa hd nd
SY So I BEM 2,2tChs “,

ark au
“ae ; oe re Noe EEN EN bn at on} ans

20 FOR K=1000 Ta LOoeo

30 CURSOR LSO,O8PRINT " Scares" yx
a AN VE ead Yao al
‘| ix E Ad

ee Fu : a ry

neo GND

62

63

As you will have noticed, the characters written tend to
overwrite each other. After a couple of prints, you can't

read the score at all. ‘The way to overcome this is by
using a print CHR$(5) command. This erases everything to
the right of the current cursor position. Modify the
program to that below,

10 SCREEN 2,25CL¢
FOR X#1000 TO 1050

3O CURSOR L5O0,O3FR INT CHRBCS)

40 CURSOR 150,O0:FRINT " Scores" sx

oO NEX

40 END

As you notice now, the print chr$(5) statement allows you
print in the same position twice. However, note that the
chr$(5) erases all information to the right of the cursor
(except sprites). Its use must therefore be limited to close
to the right hand edge, ie for displaying scores, etc,
otherwise it could erase part of your pictures or graphic
displays.

OONVERTING ORIC PROGRAMS TO THE SEGA:

Listed are the ORIC commands with the appropiate SEGA
command ;

ORIC EQUIV SHGA [For use on Text screen only]

PLOT X,Y,"#" CURSOR X,Y: PRINI"#"

[for the Sega Y(23, the ORIC Y(27]

EXPLODE: QUT127 , 228
FOR X=240 TO 255
QUT 127,X ;
FOR Y=1 TO 15
NEXT: NEXT

KEY$ INKEY$

TF SCRN(H,V)< >32 IF VPEFK ((V*40) +H+8H3002)< >32

PAPER O:INK 7 COLOR 7,0 [generally ignore]

FOR A=(46080+(ASC("'#"")*8)) TO (ASC("&")
This command sets up user-defined graphics. The equivalent
command for the SHGA is

PATTERNC#ASC("'#"") ,"whatever the 8 data bytes were"
all the way to
PATTERNC#ASC("&"") ,"etc"

[It is a good idea to map out the bit patterns used as the
Sega allows only six of the eight columns to be used when
defining the character patterns. }

CURSET 100,10 X1=100: Y1l=10: LINE (X1,Y1)-(X1-10,Y1+20+P),1:
DRAW -10,20+P,1 BLINE (X1,Y1)-(X1-20,Y1+25)

DRAW —20,25,0

WAIT 20 FOR DE=1 TO 25

NEXT DE

GET Z$ INPUT Z$

SOME NOTES ABOUT THE GRAPHICS:

There appear to be some strange things happening when using
the graphics screen. This is due to the routines in RM
being designed with circles etc in mind. An example of this
limitation follows,

10 SCREEN 2,2: CLO oa

(9,0) - (255,1971),1

20 LINE (57,50) ~- (100,4100),15,8F

3O CURSOR 44,75: COLOR |

40 PRINT "teat"

30 GOTO SO

As you probably guessed, "test" is not printed and the background
color is ignored. This is because the routine does not erase
the previous contents of the video screen when writing new data
to it. A possible solution is to add these lines to the

previous program,

6

65

o 24S8H20002 ZCHAHLG

2o GOSUE 100

& GOSUE 210

100 FOR Y=70 TO DO:sBLINECS4,Y)-

(95,7) s NEXTs RETURN

110 FOR X=464 TO O85 STEP 8

120 FOR Y=7O TO 99

130 VEFOKE INTCY/8) SONG+ INT CXR) ¥B

+YMODGtLK ZC

£40 NEXT: NEMTs RETURN

This demonstrates the writing to the color attribute area of
the graphics screen. This technique should be used to add
more color onto the screen, as the graphic chip does allow 16
colors to be used in a character block (ie 8 x 8). The
computer is capable of generating color displays rivalling most
computers today, and should be comparable to more expensive
computers if programmed correctly.

LISTING PROGRAMS:

When listing Basic programs, pressing the SPACEBAR will pause
the listing. Pressing it again, the listing will continue.

HALTING THE GAMES CARTRIDGES:

Pressing RESET will halt the game, while a further press will
restart the game.

LOAD OR SAVE VARIABLES, MACHINE-OODE PROGRAMS, STRING ARRAYS EIC:

Well, we may as well go for broke on the last topic in this book.
If you have survived to this point then congratulations are in
order! By now, some of the concepts should be clicking together
and so to finally put you off the deep end, lets get into
saving or loading variables etc.
Basic Principle involved: We have already discovered that
Basic uses locations in the Reserved RAM area in order to locate
where to find the program, variables, strings etc. The LOAD
and SAVE routines look up locations &H8160 to 8H8165. These
locations store the start and end address's of the Basic
program and Variable storage areas. The area of memory
between the start and end address of the Basic program is

saved to tape, but the storage area isn't. Ina flash, we
discover that if we replace these start and end address's
of the Basic program with the address's for the variables,
then call the SAVE routine, the computer will save the
variables to tape for us. Having saved them to tape, if
we reset the address's to what they were previously, all
will be fine, and our program will continue on as usual.
The same principle applies to the LOAD process. Okay, so
the steps involved in designing this are,

1) Set up a machine-code routine to accomplish the task
2) Save the start/end address's somewhere safe

3) Get the variable address's and put them into where

the start/end address's of the Basic program are
stored

4) Call the LOAD or SAVE routine in RM
5) Reset the original address's
6) Return back to Basic

Setting up the mcode routine. Lets hide the machine-code in
a REM statement.

5 REM AAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

Line 5 has as many 'A's as possible, about 250 of them.
Now the first 'A' in line five is stored at address
8&H9808. Our machine-code routine can thus be poked into
address 8H9808 onwards (though the length of our routine
cannot exceed 250). The pointers that we pick up from
locations &H8160' must be saved somewhere safe, so we will
store them as follows,

&H9808/9 Poke this with start address to be saved
8&H980A/B Poke this with end address to be saved
8&H980C/D Store 8&H8160/1 here
8HO8S0E/F Store 8H8162/3 here
&H9810/1 Store 8H8164/5 here
8H9812/3 Store 8&H8166/7 here
8H9814" Machine code routine

66

67

The actual mcode routine written in machine code,

ENTRY
SAVE

ENTRY
LOAD

LD HL, (8160)
LD (980C) ,HL
LD HL, (8162)
LD (980E) ,HL
LD HL, (9808)
LD (8160) ,HL
LD HL, (980A)
LD (8162) ,HL
CALL 7A69
LD HL, (980C)
LD (8160) ,HL
LD HL, (980E)
LD (8162) ,HL
RET

LD A,00
LD (82A2),A
LD HL, (8160)
LD (980C) HL
LD HL, (8162)
LD (980E) ,HL
LD HL, (8164)
LD (9818) ,HL
LD HL, (8166)
LD (9812) ,HL
LD HL, (9808)
LD (8160) HL
LD HL, (980A)
LD (8162) ,HL
CALL 78EF
LD HL, (980C)
LD (8160) ,HL
LD HL, (980E)
LD (8162) HL
LD HL, (9810)
LD (8164),HL
LD HL, (9812)
LD (8166) ,HL
RET

;save Basic start

ssave Basic end

snew start

snew end

scall save routine

srestore Basic start

srestore Basic end

;zero filefound flag

ssave Basic start

ssave Basic end

ssave string start

;save string end

snew start

snew end

scail load routine

srestore Basic start

srestore Basic end

srestore string start

srestore string end

sreturn to Basic

The LOAD part of the routine is slightly different, because the
string pointers are altered by the load routine. ‘Thus they are
saved, and later restored after the load has executed. Location

82A2 is stored with zero this tells the load routine to load

the first file it encounters.

The machinecode is now converted to DATA statements, and poked
into the 'A's that make up line 5, eg

FOR X=8H9808 TO 8&H9808+number of data bytes
READ A:POKE X,A: NEXT

Once this is achieved, the routines can be called and executed.

This has been used in the following three programs written
by the author,

AQOOUNTS RECEIVABLE
AOQOCOUNTS PAYABLE
MAILING LIST

The major portion of the book is now over. Finally, the
appendix lists some games and a utility program that you the
reader can type into your SHGA computer. I hope that they
provide you with hours of use, as well as the information
in this book.

68

APPENDIX

This appendix lists three Basic games for a LVITIA
cartridge, and a very long STARIREK program for a LVITIB.
Appended is a PATTERN EDITOR utility program, which allows
the user to create patterns on an 8 x 8 grid, any pixel
can be set/reset, the hex values are worked out for you,
and it shows you a normal size, and expanded size of the
character you make up.

The Basic games are; CROSSROADS, ALIEN ATTACK, ONE ARMED BANDIT.

69

70

CROSSROADS

18

28

38

48

58

68

78

Ba

38

180

112

128

138

148

150

168

178

180

13@

200

210

226

230

240

256

260

270

LVITIA/B

HI=@:SCREEN1, 1:CLS:GOSUB .33@:GOSUB
462
GOSUB23@
U=14:H=19:GOSUB 220
CURSORH,U:PRINT" "3
IFINKEY$="" " THENU=U-1

BEEP
CURSOR@, 4 :PRINTA$:CURSOR@, 6 :PRINTBS

CURSOR@, 18:PRINTB$:CURSOR@, 12:PRINT

AS

IFUPEEKCUX4@+H+&H3C@B+2) <> 32THEN] 64

CURSORH, U:PRINTCHR$C253) 5

LI$=LEFT$CA$, 1) :RISF¢=RIGHTSCAS, 35)

L2$=LEFT$(B$, 35) :-R2$=RIGHT$(B$, 1)

AS=R1I$+L1$:BS=R2$+L2$

IFU=2THEN21@

GOTO42

FORX=1TO8:SOUND]1 , 2@0, 190:NEXTX:

SOUND@ : IFML>@THENML=ML-1:GOTO 32

IFSC>HITHENHI =SC

CURSORS, 2@:PRINT"Press any key" 3:

PRINT" to continue" :>FORX=1@08TO50G

STEP-5S :SOUND1,X%,5:NEXTX :SOUND@

IF INKEY$=""THEN19@

GOTO 28
BEEP :SC=SC+1@:GOTO36

CLS:PRINT"High "j3HI, "Score "3SC

CURSOR @,4:PRINTCHR$(C1)+A$

CURSOR 9@,6:PRINTCHR$(2)+B$

CURSOR @,1@:PRINTCHR$(5)+B$

CURSOR @,12:PRINTCHR$(6)+A$

CURSOR H,U:PRINTCHR$(€253) ;

456

462

476

486

FORA=1 TO NL:CURSOR A;1:PRINT CHR$

£253) 3 °(NEXT -RETURN

SC=8
AS=" x? Fae) x? XQ £9 x

Bg=" 03 ay "3 ay «3

ML=5 :<RETURN

REM User defined graphics

PATTERNCH&HEG, "G@GBGGG7BF 3FGCaB"

PATTERNCH&H27, 'G@QQGGFEGFEFEG6QQ"

PAT TERNCH&H3F , "G@@@QGF BFCFFE6QG"

PATTERNCH&H25, "9@G0000031F3F 1880"

SCREEN 2,;2:CLS:CURSOR 68,95

COLOR1,2,(0,0)-€255, 191),2:PRINT

CHR$C17) ;

FORXX=1T016:READC,L$

COLORC, 2

PRINTL$ 3 :<NEXT XX

FORY=1 TO 3:FORX=86@ TO 1000 STEPS

>SOUND1,%,1@:NEXTX:NEXTY

DATA 1,°C",14,°R",7;°0",18,"°S",4,

"SS"; 155 "R"%s 13, "0", 12, "A", 11, "D" 5395
“gu

SCREEN 15,1:RETURN

REM INSTRUCTIONS

CLS:PRINT"Welcome to CROSSROADS. "

PRINT:PRINT" The object of the gam

e is to cross"

49@ PRINT"the road without being knock

ed down"

560 PRINT"by a truck or car. You have

5S lifes"

518 PRINT"and move upwards by pressing

the 7

528 PRINT" SPACEBAR

72

5338 PRINT:PRINT"Good luck,..(Cpress any

key to play)"

548

55@

12

22

30

49

212)

62

79

8

325

3g

188

TC

ila

x

120
SU

139

UPD

188

130

200

21h

IF INKEY$=""THENS4@

SOUND@ =RETURN

ALIEN ATTACK LVITTA/B

GOSUB 188:GOTO 172

IF FL=@ THEN FX=SX:FY=128
FL=]:FY=FY-4

SPRITE 2,(FX,FY),2,3

IFFY <25THEN?@

GOTOS8

IFFX=TRTHENGOSUB1 89

IFFY<135 THEN FL=@:SPRITE 2, (FX,192)

3

RETURN

R=R+1@:CURSORR+5;,@:C0LOR 13,1:PRIN

HR$C250) 3: 1FR> SGTHENR=@ ‘

OUT1I 27,228 :FORXX=246T0255 :OUT127, x

ORNP=1TOS -=NEXT =NEXT RETURN

IF INKEY$="X" THEN Sk=SX+S2:1F Sx>

THEN SX=SU

IF INKEY$="2" THEN SX=SX--S2:1F SK<
THEN SX=SU

IF CINKEY$="S") AND CFL=@)2 THEN FX
:GOSUB22

IF FlL=1 THEN GOSLIB28

VUPOKE SA,SK:RETURN

FOR TR=TS TO TT STEP TU:GOSUB 120:

KESB, TR:NEXT:GOTO 179

SCREEN 2,2:CLS:COLOR 6,1,;,;1

PATTERNS#1, "OBEOHDO3C2ZEVEFFA4A2"

PATTERNSHO, "OOOOOO1B1E7EFFFF ”

PATTERNS#?2, "Q800004848480000"

220 SX=1?0:SPRITE @,(SX;,178),0,4

23@ SPRITE 1,0@,2@),1,11

246 TUH2:TS=O:TT=245 :S%=2:SU=245 :Sil=8

253 FL=Q:SA=8&HSBO1 ?SB=&H3BO5

26@ CURSOR 119,@:PRINT "ALIEN"; :RETURN

ONE ARYED BANDIT LVITTA/B

1@ SCREEN 1,1:CLS:SCREEN2;2:CLS
2@ COLOR 1,14,(80,8)-€255,191),4

38 GOSUB 1838:GOSUB 1318

46 MN@=180 :CL$=CHR$(5) :HL$=CHR$C230)

5@ PRINT CHR$C17):DIM C1(6)

6@ C10OI=6:C101)=12-C102)=4:C103j=3

7@ C104)=15:C105)=14

8@ PRINT" One Armed Bandit.”

3@ PRINT CHR$(16)

188 PRINT" A simple game of chance...”

11@ PRINT" Payoff...”

128 CURSOR 8;,;5@:PRINT"One "3:SPRITE 1;

(28,48),8@,6:CURSOR 35,58:PRINT" pays $

18.89"

13@ CURSOR 8,6@:PRINT"Two ";:SPRITE @;

(28,583,1,12:CURSOR 35,6@:PRINT" pays

$208,006"

14@ CURSOR 8;,;7@:PRINT"One "3;:SPRITE 2;

(28,68),2,5:CURSOR 35,70:PRINT" pays $

288.08"

15@ SPRITE 3;068,78),;3,;15:SPRITE 4,(18;

78);33;15:SPRITE 5,028;78);3;15:CURSOR

35,8@:PRINT" JACKPOT $1800.80" :PRINT

16@ COLOR S:PRINT"Press any key to pla

yi, ©

17@ IF INKEY$="" THEN GOTO 178

188 GOSUB 1118

193@ CURSOR 28,18@:COLORI5:PRINTCHR$(5)

"Money = $" ;CHR$C29) 5MB@:COLOR 2

73

74

260 SPRITE @,658,43),5,C

Z21@ SPRITE 1,686,43),5,C

226 SPRITE 2,(118;43),5;C

238 COLOR 1

24@ CURSOR 20,158:PRINT “Press "3:COLO

R 8:PRINT'SPACEBAR" ;°COLOR 1:PRINT" ta

Play" :COLOR 2

258 IF INKEY#<>CHR$C32) THEN GOTO 258

268 M@=MB-1a

278 CURSOR 28,18@:COLOR 15:PRINTCHRS$(5S

J3°Money = $" ;CHR$C29) 5M@:COLOR 2

288 GOSUB 71a

239@ GOSUB 588@:GOSUB 57@:GOSUB 648

388 IF RI=R2 AND R1I=R3 THEN GOSUB 36@:

GOTO 348:REM Jackpot

318 IF R1=1 AND R2=1 OR R1=] AND R3=]

OR R2=1 AND R3=1] THEN GOSUB 438:GOTO 3

49

322 IF R1=28 OR R2=8 OR R3B=8 THEN GOSUB

40@:GOTO 34a

332 IF R1l=2 OR R2=2 OR R3=2 THEN GOSLIB

468

348 REM End of toap

358 GOTO 198

360 REM Jackpot

370 IF R1=3 THEN MB=M8+1908:-GOTO 338

384 RETURN

398 BEEP2:COLOR 4:CURSOR 1880,4@:PRINT"

Jackpot" :(BEEP2:-OUT1227,228:FOR DE=2406 T

0 255:0UT127,DE:FOR DF=1 TO 15:NEXT =NE

XT-CURSOR 188,4@:COLOR 14:-PRINT CHRS$C5

}:COLOR 2:RETURN

406 REM One Cherry

414 MB@=MG+14a

420 BEEP2:COLOR 4:CURSOR 188,4@:PRINT"

Cherry ":BEEP2:OUT127,228:FOR DE=240 T

9 255:0UT127,;DE:FOR DF=1 TO 15:NEXT =NE

xT :-COLOR 14:CURSOR 188,48:PRINT CHR$(S

J:COLOR 2:RETURN

430 REM Two Apples

440 NB=MB+2B

45@ BEEP2:COLOR 4:CURSOR 188,4@:PRINT"

Apples ":BEEP2:OUT127,228:FOR DE=240 T

0 255:0UT127,;DE:FOR DF=1 TO 15:NEXT :=NE

*T:COLOR 14:CURSOR 186,4@:PRINT CHR$C5

J:COLOR 2:RETURN

46@ REM Mystery

478 MP=INTCRNDC13*10@0)+1

488 MB=M@+MP

49@ BEEP2:COLOR 4:CURSOR 178,4@:PRINT"

Mystery $" ;CHR$C29) 5MP :BEEP2:OUT127, 22

4:-FOR DE=24@ TO 255:OUT127,DE:FOR DF=1

TO 35:NEXT:NEXT:COLOR 14:CURSOR 172, 4

@:PRINT CHR$(5):COLOR 2:RETURN

5@Q@ REM ROW 1 ROTATE

51@ FOR x=1 TO 16

928 Y=INTCRNDC1)*6)

538 C=C1CY)

54@ SPRITE @,(50;,;43);Y;C

55@ BEEP :NEXT:RI=Y

S6@ RETURN

-57@ REM ROW 2 ROTATE

988 FOR X=1 TO 16

538 Y=INTCRND(C1)*6)

688 C=C1(Y)

618 SPRITE 1,(80,43);Y;C

628 BEEP:NEXT :R2=7

638 RETURN

648 REM ROW 2 ROTATE

65@ FOR X=1 TO 16

6648 Y=INTCRNDC1)*6)

678 C=C1(Y)

68@ SPRITE 2,(118,;43),Y;C

69@ BEEP :NEXT :R3=Y

700 RETURN

710 REM Handie pull

728 COLOR 14

738 COLOR 14

76

740

738

768

778

788

730

800

812

B20

832

848

858

86

B72

B88

838

388

310

9320

338

34

358

368

378

388

939

CURSOR 146,38:PRINTHL$

CURSOR 146,46-:PRINTHL$

CURSOR 146,54:PRINTHLS$

COLOR 2

CURSOR 146;78:PRINTHL$

CURSOR 146, 86:PRINTHL$

CURSOR 146,94:PRINTHL$

CURSOR 146, 1@2:PRINTHL$

CURSOR 146,62:PRINTHL$

COLOR 2

CURSOR 146,78:PRINTHL$

CURSOR 146,86:PRINTHL$

CURSOR 146,94:PRINTHL$

CURSOR 146,102:PRINTHL$

COLOR 14

CURSOR 146,182:PRINTHL$

CURSOR 146,94:PRINTHL$

CURSOR 146;,86:PRINTHL$

CURSOR 146; 78:PRINTHL$

COLOR 2

CURSOR 146,62:PRINTHL$

CURSOR 146,54:PRINTHL$

CURSOR 146,46:PRINTHL$

CURSOR 146,38:PRINTHL$

OUT 127,;224-FOR DE=24@ TO 255

OUT 127,DE:FOR DF=1 TO 15

1800 NEXT :NEXT

1818 RETURN

18@2@ STOP

1838 PATTERNS#G, '"S@Q@Q56FFFFVE3C13":

Heart 2

184@ PATTERNS#1,"@40876FFFF7E3C@8"

Appie

1@5@ PATTERNS#2, °38444408101008610"

Mystery

1060 PATTERNS#3, “Z2473ASA47E25AS7E"

Doilars

1870 PATTERNS#4, Q8QGGGFFFFO8Q0G0"

Bar

REM

-REM

-REM

-REM

-REM

188@ PATTERNS#S, "@@gg90a800900090" :RENM

Blank

1898 PATTERNS#6, "7E8199919199817E" -REM

Copyright

1186 RETURN

111@ CLS:COLOR 2,14, €(8,@)-€255,191),?7

1128 PRINT

113@ PRINT" "3214

114@ PRINT" " 522$

115@ PRINT" “3 2@2$

116@ PRINT" *;LEFT$C23$, 17)

1178 PRINT" "3 24$

1188 PRINT” "3 24$

1193@ PRINT" "323

120@ PRINT" *" S25$

121@ PRINT" "3 26$;CHR$C223)+CHR$C23

6)+CHR$C238)

122@ PRINT" * S27$

123@ SPRITE 6,(1985,78),6;1

1240 PRINT" "526%

125@ PRINT" “ SCHRSC2ZZ9I+CHREC144)4+C

HR$C144)3" April 1984" ;CHR$C144)+CHRSC

144) +CHR$(229)

1268 PRINT" "SLEFTS$C25$, 17)

1278 PRINT" "j;LEFT$C25$;, 17)

1288 PRINT" " SCHR$C149) +LEF TSC 23$, 17

J+CHR$(158)
129@ COLOR 1:CURSOR 42,2@:PRINT" Sega
Jackpot" :COLOR 2

1388 RETURN
1310 REM Set up strings

1326 Z1S="" sP2g=" ' iZae—" * re4ge
1338 25¢="" sFGge" § 1 Zea"
134@ FOR AA=1 TO 17:READ Az

1358 Z21$=%1$+CHRSCAZ)
1368 NEXT
137@ FOR AA=1 TO 17:READ Az
1388 22$=2%2$+CHRS$(AZ)

1398 NEXT

77

78

1488 FOR AA=1 TO 28:READ Az
1418 23$=23$+CHRS(AZ)
142@ NEXT
1438 FOR AA=1 TO 20:READ Az
144Q 24$=24$+CHRS(AZ)
145@ NEXT
1468 FOR AA=1 TO 28:READ Az
147Q Z25$=Z5$+CHRS(AZ)
1488 NEXT
149@ FOR AA=1 TO 17:READ Az
158@ Z6$=Z6$+CHRS(AZ)
1518 NEXT
1528 FOR AA=1 TO 18:READ Az
1538 27$=%7$+CHRS(AZ)
1548 NEXT
1558 RETURN
1568 DATA 149, 229, 229, 229,229, 229,229,
229, 229, 229, 229, 229, 229, 229, 229, 229,15
g
157@ DATA 229, 32, 32; 32, 32,32, 32, 32, 32,
32,32, 32, 32, 32, 32, 32, 229
1588 DATA 229, 229, 229, 229, 229, 229, 229,
229, 229, 229, 229, 229, 229, 229, 229, 229, 22
9,32, 32,232
1598 DATA 229, 229, 32, 32, 32, 229, 229, 32,
32,32, 229, 229, 32, 32, 32, 229, 229, 32, 32,2
32
1688 DATA 229, 144,144,144, 144,144,144,
144,144,144, 144,144, 144, 144, 144, 144, 22
9,229, 32, 238
1619 DATA 229, 144,144, 32, 32, 32, 32, 32,3
By B25 B25 3292532. 144s 1945229
1628 DATA 229, 144,144, 32,66, 46,66, 114,
121s 119s 1105 82) 32.325 1445 144, 229, 229

STARTREK LVITIB

5 REM AAAAAAARAAAAAAAAAAAAA

1Q@ RESTORE 5820

38 PATTERNC#254, "S@3@FCCC7838CCQB" :PAT

TERNC#135, "1F1F1F 9800888888"

4Q@ DEF FNACBYJ=INTCRNDC1IXBYJ+1

30 E$=CHR$(250) -K$=CHR$C254) :BS=CHR$C2

47) :S$="K":GOSUB 5@@@:RESTORE 7@

68 DIMSC8,;8),R(6),0(08,8),J018),G(8,8),

CN$C4) :CL$=CHR$(236) :SR$=",6% "SF

ORA=@TO4 :<READCN$(A) :NEXT

65 SS$=", K"+CHR$C254)+CHR$0247)+CHR$C2

58)

70 DATA Green, Yel low, XKXREDXKXX,Docked;,

82 DU=6 :FORA=1T06 :READDU$(AJ :NEXT

98 DATA Ion Drive,S.R Sensors,;L.R Sens

ors;Pulsar Ctrl,Photon Tubes,Damage Ct

rl

10@ CC$="CSLPTDGI" :CC=8

118 GOSUB3048

120 K1=FNAC15)+1@0:S1=FNAC149)+15@0:B1i=F

NACS) :C9=1 :FORI=17T08:FORJ=17T08:GCI,JjJ=

-1 =NEXT =NEXT :D1=FNAC1999)+20007190x10:D

3=40 :D2=D3+D1 :GOSUB3868

13@ FORI=1TO8:FORJ=1TO8:SCI,Jj=@

14@ NEXT :NEXT :L1=@ :L2=0 :GOSUB313@ :DE=1

Q

15@ FORI=1TOINTCS1) :DE=DE+1 = IFDE>255TH

ENDE=1@

16@ SPRITE 18, (DE; 180),8,2:A1=FNAC8) :A

2=FNAC8)

17@ IF SCA1,A2)I>8 THEN 162

188 SCA1,A2)J=SCA1L,A2ZI)+1

198 NEXTI

21@ FORI=1TOK1 :A1=FNAC8) :<AZ2=FNAC8) :=SCA

1,;A2)=SCA1,A2)+19@

79

80

215 NEXT :GOSUB3168

226 FORI=1TOBI1 :A1=FNAC8) :<A2Z=FNAC8) =SCA

1,A2J=SCA1L,A2ZI+190=NEXT

230 E1=FNAC8) -E2=FNAC8) -E7=FNAC8) :-E8=F

NAC8) :P=300@ :C1=8:T1=18:GOSUB79@

240 SCREEN1,1:CLS:COLORI,11

258 PRINT"Orders: Stardate ="3D1:PRINT

-PRINT" As commander of the United Sta

rship PEGASUS, your mission is to rid

the galaxy of the deadly Cygon’s.":

PRINT" To do this; you must destroy th

e@ Cygon invasion force of "3kKi;" B

attle"

268 PRINT"cruisers. You have ";D3;" so

lar days to complete your mission.”

278 PRINT"The Pegasus is currently loc

‘ated at Quadrant "jE2;"-"3E1:PRINT"S
ector " $E8;"-" ;E7:PRINT :GOSUB4@@@:PR
INT"Press I for instuctions,"

288 US=INKEY$: IFU$=""THEN28@
298 IFU$="I"THEN 3172
3@@ SCREEN1, 1:CLS:GOSUB276a
318 GOSUB1669
32@ SOUND@:CURSOR@;22:PRINT"Your Comma
nd Captain ?"3:Y=2

330 US=INKEY$:IF U$="" THEN 338
34@ IFU$=CHR$(13) THENGOSUB276@ :GOTO328

350 IFCA=1THENCLS:GOSUB 2768

368 FORA=1TOCC:IF U$S=MIDS$(CC$,A,1) THE

NC2=A-1 =GOTO339@

3708 NEXT

3828 GOTO 530

398 IFC2<>6THENS292

40@ CLS:PRINTCL$;"Galaxy map." :PRINT"
u

41@ CA=1:CB=@:PRINT” “3 :FORI=1TO08:PRIN
T" "313 :NEXT:PRINT:PRINT" "3 2C2=315

GOSUB78@ :FORI=1TO8:PRINTI;
42@ FORJ=1T08:IF GCI,J)<@ THENPRINT":
- "3:GOTOS1@
438 QW=GCI,J) :IFQW<1Q@THENGZ$="08"+STRS
CQW) :GOTO460
440 IF QW>S AND QW<10@ THENQZ2$="Q"+STR
$C QW) :GOTO46@
45@ QZ$=STR$(QW)
460 Weg=""
47@ FORQW=1TOLENCQ2$) : IFMID$(QZ$, QW, 1)
="""THEN49Q
480 W2$=W2$+MIDCQZ, QW, 1)
49@ NEXT :Q2$=Wz$
5@@ PRINT":" ;Q2$3
510 NEXTJ:PRINT" =" :NEXTI=PRINT" "35G

OSUB78@:PRINT:PRINT"Pegasus currently

at"3E25;"-"5E1 -GOTO320

528 ONC2+1GOTO 1328,65@, 1849, 2198, 2370

» 060,530, 3178

938 CLS:CA=1:CB=@:PRINTCL$;"Your choic

es of command are:":PRINT"C - Course d

irective":PRINT"S - Short range sensor

scan"

54@ PRINT"L - Long range sensor scan":

PRINT"D - Damage control report" :PRINT

"P — Fire Mega Pulsar’s"

55@ PRINT"T - Fire Photon torpedoes ":

PRINT"G - Galaxy map" =:=GOTO329

96@ CLS:PRINTCL$5;"Damage Control Repor

tL." sPRINT" "

578 IF RC6)<@ THENS9@

588 PRINT"Device State of repai

r" ;FORC2=1T06 :PRINTDU$CC2),RCC2) :NEXT =

GOTO 648

5998 TP=FNAC3) -CURSORG, 15:ONTPGOTO68@, 6

18,620

60@ PRINT “Engineering reports," :GOTO6

38

81

82

61@ PRINT “lst Officer reports," :GOTO6

38

620 PRINT "Navigation reports,”

6308 PRINT"Damage control not available

640 FORQW=1TO250@:NEXTQW:GOTO 318

658 GOSUB668 :GOTO03198

6608 CLS:PRINTCL$3;"Short Range Sensor S

can." :PRINT" q

678 IF RC2)<@ THENCB=98 :FORA=@8TO? :CURSO

RG, At+S:PRINTSR$ 3 2=NEXTA:PRINT -PRINT"Sho

rt range sensors damaged..." -:=RETURN

688 IFPQ=1THENGCE1,E2)=SCE1,E2)

698 CB=1 :GOSUB79@

708 CURSOR@,4:PRINT" 12345678"

718 FORA=@8TO?

7220 CURSOR@,A+S:PRINTSR$5" "jA+t1

738 NEXTA

748 FORI=1TO8

758 FORJ=1T08

768 IF DCI,JJ<>@ THENCURSORJ, I1+4:PRINT

MIDCSS,DCI,J3+1,1)5

770 NEXTJ:NEXTI:CURSOR@, 16:PRINT"Secto

pr Wshag ts gEPs* " :RETURN

78@ FORI1=1TOC2:PRINT"~" 5 :NEXTI1 :PRINT
RETURN
738 IF L1=E1 THEN 818

808 GOTO 820

810 IF L2=E2 THEN RETURN

820 L1=E1:L2=E2:FORI=1TO8:FORJ=1TO8:DC

IT, JJ=@:NEXTJ -NEXTI :DCE7;E8)=4 :PQ=1

830 IF E1l<1 THEN E1=8

840 IF E1>8 THEN E1=1

85@ IF E2<1 THEN E2=8

868 IF E2>8 THEN E2=1

878 IF SCE1,E2)-INTCSCE1,E2)710)*10=0

THEN 920

880 FORI=1TOSCE1,E2)-INTCSCE1,E2)718)x

128

898 E3=FNAC8) -E4=FNAC8)

3908 IF DCE3,E4)<>@ THEN 8390

918 DCE3;E4)=1:NEXTI

920 IF INTCSCE1,E2)710)J-INTCSCE1,E2)71

903)*1@=@ THENS7@

9338 FORI=1TOINTCSCE1,E2)710)-INTCSCE1;

E2)7100)X1@

348 E3=FNAC8) -E4=FNAC8)

358 IF DCE3,;E4)<>@ THEN 3948

368 DCE3,E4)=3:NEXTI

970 IF INTCSCE1,E2)37108)=@ THENIO20

980 FORI=1TOINTCSCE1,E2)7100) :-JCI3=300

330 E3=FNAC8) -E4=FNAC8)

190@ IF DCE3,E4)<>@ THEN 999

1810 DCE3,E4)=2:NEXTI

1820 IF CB=1 THEN GOSUB 668

1838 RETURN

1848 CLS:PRINTCL$3;"Long Range Sensor R

eport.":PRINT"

195@ IF RC33<>8@ THEN TP=FNAC3):GOTO 19

78

18608 GOTO 1120

1870 ONTPGOTO 1088, 1890, 11988

198@ PRINT"Navigation reports the Sens

ors are ":GOTO 1118

1890 PRINT"1ist Officer reports the Sen

sors are ":GOTO 1118

118@ PRINT"Engineering reports the Sen

sors are "

111@ PRINT"out Captain "“j;VA$:GOTO 319

1120 PRINT"Long range scan on Quadrant

"FEZ pe" El

113@ PRINT :C2=13 :GOSUB78@:FORI=E1-1TOE

83

84

1+1 :FORJ=E2-1TOE2+1

114@ IFI<1THEN13190

115@ IFI>8THEN1319

116@ IF J<1 THEN130@

1178 IF J>8 THEN13@0

118@ GCI,JJ=SCI,J)

119@ QW=SCI,J):IFQW<1@THENQA$S="@8"+STR

$C QW) :GOTO1220

120@ IF QW>39 AND QW<180 THENQGAS="Q"+ST

R$CQWI) :+GOTO1228

1218 QAS=STR$CQW)

1220 Qeg=""

1238 FORQX=1TOLENCQAS$)

1248 IFMIDCQA,QX,1)="" “THEN126@

1250 Q2$=Q2$+MID$CQAS, AX, 1)

1260 NEXTQX :QA$S=QZ$

1278 PRINT" :" ;QA$;

1280 NEXTJ:PRINT": "

1298 NEXTI :GOSUB78@ :GOTO319

1388 PRINT": - "5:GOTO1280

1318 PRINT": - : -— + - :":GO0TO129@

1328 A=544 :GOSUB2789

1338 CURSOR@,14:PRINT"Course" 3 :GOSUB28

98 :C2=N : IFDD=1 THEN319

134@ P1l=8:IF RC1)J=@ THEN137@

1358 Pl=.2:IF RC1)<-3 THEN1370

13608 P1l=INTCC4+RC1))*2)710

13728 IFP1<1THENP2$="0"+STR$(P1)

1388 P2$=STR$(P1) :PY$="" :FORAZ=1TOLENC

P2$)

139@ IFMID$(P2$,AZ,1)=" "THEN1419
1480 PY$=PY$+MIDSCPZ$, AZ, 1)

1418 NEXTAZ:P2$=PY$

1420 CURSOR@,15:PRINT"Light Speed (@ -

"3P2$5"3" 5 :GOSUB280@ : IFDD=1 THEN312

1438 C3=N:IF C3<@ OR C3>8 THEN1370

1440 IF C3<=P1 THEN1469

1458 CURSOR@,16:PRINT"Engineering repo

rts":PRINT"Ion Drive is damaged...":PR

INT"Max Light speed="5;P2%$:GOTO1379

146@ IFC3<1THEN1482

1470 FOR XU=C3xk19@ TO C3x4@@ STEP 5:SO

UND1, XU+190,15:NEXTXU

148@ P=P-16XC3-5 :N1=INTC8XC3) :IFN1=QTH |

EN1618

149@ N2=-COSCC2k. 8174533) :IF ABSCN2) <=

-@1 THENN2=@

1508 N3=SINCC2x. 0174533) :I1IF ABSCN3) <=.

81 THENN3=8

1518 AV=1 :AW=N1

1528 E3=E7:E4=E8 :P1=INTCES3+N2+. 4) :P2=I

NTCE4+N3+.4) °E7=P1 :E8=P2

1538 IF Pi<i THEN197@

154@ IF P1>8 THEN19792

1550 IF P2<1 THEN1I9990

1568 IF P2>8 THEN1I99@

1570 IF DCP1,P2)<>@ THEN201@

15880 DCE3,E4)=@:D(P1,P2)=4

1598 IFCB=1THENCURSOR@, 16:PRINT"Sector
SESS eS SEAS" St:

160@ AV=AU+1:IFAU<=AW THEN 1520

1618 Q=PP

1620 D1=D1+1:FORI=1TO6:IF RCIJ=@ THEN]

652

163@ RCIIJ=RCIJ+1

164@ IF RCIJ>@ THENRCII=@

1658 NEXTI :GOTO2020

1660 FORI=E?7-1TOE? +1

1676 IF I<1 THEN174@

1680 IF I>8 THEN174@

1698 FORJ=E8-1TOE8+1

1700 IF J<l THEN173@

171@ IF J>8 THEN173@

1726 IF DCI,JJ=3 THEN179@

1730 NEXTJ

174@ NEXTI

175@ C1=@:IFPQ=@THEN177@

85

86

1760 IF SCE1,E2)>=18@ THEN C1=2:GOTO18
9@

1770 IFP<=5@@ THEN Cl=1

1788 GOTO 1880

1790 C1=3:P=3000:T1=1@:FORI=1TO6:RCIjJ=

Q:NEXTI

1880 IF C1l=@ THEN 1820

1818 GOTO 184¢a

1820 FOR I=1TO6:IF RCIJ<@ THEN C1=1

1830 NEXTI

1848 RETURN

185@ C2=RNDC1):I1F C2¢.25 THEN1919

186@ IFC2<¢.8 THEN1S6@

187@ CURSOR@,16:PRINT"Space Storm u

>IFC1<3THEN1890

188@ PRINT"Starbase Shields. protect th

e ship%" :GOTO196@

1898 C2=FNACDU) :PRINTDU$(C2) 5" Damaged

"SRCC2I=RCC2I-SKRNDC13:1F C2<>

2THEN 1968

1988 CB=@:GOTO 1968

1918 FOR I=1 TO 6

1926 IFRCIJ=@THEN NEXTI

1938 GOTO 1968

194@ PRINT"TRUCE "3:PRINTDU$CI})5" Repa

ir status has improved" :RCIJ=RCII+2XRN

DC1)

195@ IF RCIJ>@ THEN RCIIJ=2

1968 GOSUB166@:RETURN

197@ S2=SGNCP1-1) :E1=E1+S2:E?=INTCP13-

8XS2:LI=E1+1

198@ IF P2>=1 AND P2<=8 THEN2@@0 -

1998 S2=SGNCP2-1) -E2=E2+S2sE8=INTCP2)-

8XS2:L2=E2+1

2080 GOSUB798 :CURSOR@,15:PRINT"Quadran

bY geZ2 pe" FEL" ";GOTO1S90

2010 E?P=E3:E8=E4:CURSOR@, 17:PRINT"Pega

sus blocked at";INTCP2)5"-"jINTCP1):BE

EP :GOTO162@

2820 GOSUB1668 :GOSUB185@ :GOSUB285@: IFP

<Q@THEN2690

2830. IFD1>D2THEN2678

2848 GOTO31@

2050 IFPQ=@THEN2180

20680 IF SCE1,E2)<18@ THEN218@

2070 IFC1<>3THEN2098

2888 GOSUB1889

2090 G=1:H=@:FORI=1TOS(CE1,E2)/71900

2100 H=H+1:IFH<=8THEN2120

2110 H=1 :G=G+1:IFG>8THENG=2

2120 IF DCG,;H)<>2 THEN21980°

2138 Q1=G-E7 :Q2=H-E8 :D4=SQRCABSCQ1XxQ1i+

Q2+Q2))+.1:PS=INTCCRNDC1IXABSCJCIIJ-1))

J: JCIJ=JCII-PS:1FC1=3THEN2170

214@ P6=P5/7D4 :P=P-P6 :CURSOR@; 18:PRINT"

Pegasus Hit ":PRINT"CYGON at Sector" 3H

:"-" 5G: IFP6<1Q@THEN2170

215@ A1l=3-INTCP64100):IF FNACA1)J<>1 TH

EN2179

2168 C2=FNACDU) =PRINTDU$(C2);" Has sus

tained DAMAGE" :-BEEP2:RCC2J=R(C2)-CP674

2J)XRNDC1) :- IFC2=2THENCB=@

2170 NEXTI:IFP<=@THEN2682

2188 RETURN

2196 CLS:PRINTCL$3;"Mega Pulsar’s.":PRI

NT = "

22060 IF RC4)<>@ THENCURSOR@, 15:PRINT"P

ulsar’s are in need of repair..." :GOTO

312

2218 CURSOR@,15:PRINT"Pulsar’s *LOCKED

* on target"

2228 PRINT"Energy available:"3;INTCP):P
RINT"Number of units to fire";:GOSUB28

88 : IFDD=1 THENI62@

2238 C2=N:IF C2>P OR C2<@ THEN2220

224@ GOSUB 2988

88

(2250 P=P-C2:Q=PP:IF SCE1,E2)<1@@ THEN2

358

2268 PS=C2/7INTCSCE1,E2)7100) :G=0 :H=1 °F

ORI=1TOSCE1,E2)7100

2268 PS=C2/7INTCSCE1,E237180) :G=02H=1 :F

ORI=1TOSCE1,E2)719@

2270 H=H+1:IFH>=S3THENH=1

2280 G=G+1:IFG>=STHENG=8

2290 IF DCG,;H)I>2 THEN2272

2300 Q1=G-E7:Q2=H-E8:IF DCG,H)<2 THEN2

278

2318 D4=SQR(Q1XQ1+Q2xkQ2) :P6=P5/7D4 :-JCI)

=JCIJ-P6:CURSOR@,19:PRINT"CYGON at" 3H;

"="SG35" hit": IFJCIJ>@THEN2340

2328 KD$=KD$+K$:GOSLIB2900 :CURSORG,; 28:P

RINT"Destroyed "3;KD$

23380 FORI2=I+1TOSCE1,E2)7190:JCI2-1)3=J

C12) :«NEXTI2:SCE1,E2)=SCE1,E2)-100:K1=K

1-1:DCG,HIJ=O0:T=I+1:GCE1,E2)=SCE1,E2)

2340 NEXTI

2358 IFKI=Q@THEN2662

236@ GOSUB2@58 :GOTO319

2378 CLS:PRINT CL$3;"Photon Torpedoes,”

:PRINT" i

2380 IF RC5)<>@ THEN PRINT:PRINT" Out

of order" :GOTO 319

2398 IFT1<=Q@THENPRINT :PRINT" Torpedoes

all fired.":GOTO 319

2400 GOSUB 27@0:PRINT "Torpedo Course"

;:GOSUB 2800: IFDD=1THEN312

2418 C2=N:T1=T1-1 *N2=-COSCC2xX, 8174533)

:IF ABSCN2)<=.981 THEN N2=0

2420 N3=SINCC2X, 8174533) : IFABSCN3) <=.8

1 THENN3=@

2438 GOSUB2920

2448 P1=E7:P2=E8

2450 P1=P1+N2:P2=P2+N3

2460 IF P1<.5 THEN 2658

2470 IF P1>8.5 THEN 2650

2488 IF P2<.5 THEN 2658

249@ IF P2>8.5 THEN 2659

2500 IFDCINTCP1+.4), INTOP2+.4))=QTHEN2

458

251@ ONDCINTCP1+.4), INTCP2+.4)3GOTO253

8, 2588, 2618

2520 GOTO 245@

2530 CURSOR @,15:PRINT"XXxX HIT STAR Xx

*" : IF CB=1 THENY=@

2540 IFFNAC4) <>1THENPRINT"Burned up":G

O0T02638

2598 SCE1,E2)=SCE1,E2)-1:IFFNACIQIJ=1TH

ENGOSUB2858 : GOTO268@

2566 GOSUB284@:IFFNAC1@)=1THEN2689

2578 GOTO 2620

2580 IFFNAC2@)=1THENPRINT"Failed to de

tonate":GOTO 2630

259@ IFFNAC3@J=1THENPRINT"Cygons shiel

ds have held." :GOTO2630

2608 KD$=KD$+K$:PRINT "Cygon Ship dest

royed "3KD$:SCE1,E2J=SCE1,E2)-100:K1=K

1-1:GOTO 2628

261@ PRINT "“Starbase destroyed.":S(CE1,

E2)=SCE1,E2)-19

2620 DCINTCP1+.4), INTCP2+.4))=0: IFCB=1

THENGCE1,E2)=SCE1,E2)

263@ IFKI=@THEN2662

26498 GOSUB2058 :GOT0319

2658 PRINT"Torpedo missed":GOTO 2630

2668 PRINT"CYGONS DESTROYED" :END

267@ CLS:PRINT"STARDATE X TIME RUN OUT

"SEND

2688 PRINT"PEGASUS DESTROYED" :END

2698 END

2706 CLS:PRINTCL$3"Navigation Directiv

e,"=PRINT" *SPRIN

T:PRINT

89

90

2718 PRINT" @ ":PRINT

27208 PRINT" 315 45" =PRINT

2730 PRINT" 270 98" =PRINT

2740 PRINT" 225 135" :PRINT

2750 PRINT" 180" :PRINT -RETURN

2768 CA=0:GOSUB1660:CLS:PRINTCL$3;"Stat

us Report." :PRINT" i

277@ PRINTCL$3;"Stardate "3D1:PRINTCL$;3

"Condition";" ";CN$CC13 :PRINTCL$3"Quad

rant "3E2;"-";E1:PRINTCL$;"Sector "3

SIF RC2)>=@ THENPRINTE83"-" 5E7:GOTO279

Q

2780 PRINT

2738 PRINTCL$;"Energy "SINTCP) :PRINT

CL$3"Torpedoes"3;T1:PRINTCL$3;"Cygons

"S$SK1:=PRINTCL$;"Days left" 53D2-D1 :RETURN

2800 C$="" > INPUTU$:Y=2 :DD=

2818 IFU$=CHR$C13) THEN DD=-1:RETURN

2820 N=VALCU$)

2830 RETURN

2848 PRINT"Went NOVA" :FORDE=1 T0200 :NEX

TDE : IFCB<> 1 THENRE TURN

2845 SP=50 :GOSUB2889 :RETURN

285@ CLS:PRINT"SUPERNOVA"

28686 FORDE=1T0200 :NEXTDE :SCREEN2, 2:CLS

>SP=20@ :GOSUB2882

2878 RETURN

2880 SCREEN2, 2:CLS :CALL&H9808 :FORDE=1T

OSP :DF=FNAC&H308) +&H3888 = UPOKEDF , FNAC&

HFEJ :<NEXTDE :SCREENI, 1

2890 GOSUB4808 :RETURN

2908 REM EXPLOSION

291@ OUT127, 228 :FORSO=248T0255 :OUT127,

SO :FORSP=1TO15 :NEXTSP :NEXTSO:RETURN

292@ REM TORPEDOES

2938 OUT127,231 :0UT127,; 248

2940 FORSO=0T015 :=FORSP=192T0207

2958 OUT127,SP:0UT127,S0:NEXTSP

2968 OUT127,240+S0O -NEXTSO

2970 RETURN

2388 REM PULSARS

29398 OUT127,228

3008 FORSP=240 TO255

3018 OUT127,SP:FORSQ=1T03:NEXT

3820 NEXT

3838 SOUND@:RETURN

3048 SCREENI,1:CLS:INPUT"Enter your na

me. "j;VA$

3058 RETURN

386@ SCREEN2;2:CLS:COLORS,11,(@,0)-(C25

3,1913,11:COLOR 1

3070 PRINTCHR$C17):PRINT" Quality Prog

rams"

311@ COLOR6, 11:CURSOR8@, 82
3120 PRINT"Presents" :RETURN

313@ COLOR 5;,11:MAG2

314@ CURSOR4@, 142:PRINTCHR$C17) 3"SPACE

TREK"

3150 RETURN

3168 PRINTCHR$C16) :COLOR13,;11:CURSOR 2

Q,130:PRINT"Starring Captain"; :COLORI2

»11:PRINT CHR$(C17) 5" ";UA$ =RETURN

317@ SCREEN1,;1:CLS:PRINT"Welcome to SP

ACETREK. " :PRINT" 7

318@ PRINT:PRINT" The Galaxy is divive

d into 64 ":PRINT"Quadrants. Each Quad

rant is divided "

3198 PRINT"into 64 sectors. Co-ordinat

es 1-5 ":PRINT"means 1 across; 5 down.

The "

3200 PRINT"galaxy has wrap around feat

ures for" :PRINT"ease of travel."

3218 GOSUB36228

91

92

3220 CLS:PRINT"Course directives." :PRI

NT '—— "SPRINT

3238 PRINT"The PEGASUS can travel ina

ny of the" :PRINT"eight directions as f

ollows,;":PRINT

3246 PRINT" g"

3250 PRINT" 315) 45 "

3260 PRINT" 278 30"

3270 PRINT" 229 135"

3280 PRINT" 180"

3298 GOSUB3620

3308 CLS:PRINT"Ion Drive.":PRINT"™

"SPRINT

331@ PRINT" The PEGASUS is equipped wi

th the" =PRINT" lastest Ion drive propul

sion system,"

332@ PRINT" 1 sector 2"

3330 PRINT" 4 sectors = .,.5 "

334@ PRINT" 1 Quadrant = 1"

335@ PRINT"Use of the Ion drive requir

es a "“:PRINT"single stardate."

3368 GOSUB36228

3378 CLS:PRINT"Short Range Sensors.":P

RINS" "sPRINT
33RB PRINT" The short range sensors sc
an the" :PRINT"present quadrant. The PE

GASUS looks"

3398 PRINT" like ®, the GYGONS® Bas

estars +, "SPRINT"and Stars xX .":GOSLIB
3620 ;

3488 CLS:PRINT"Long Range Sensors.":PR

INT" “SPRINT

3418 PRINT" The long range sensor scan

s the 9":PRINT"closest Quadrants."

3420 PRINT"The Ist digit = number of G

YGONS"

3430 PRINT"The 2nd digit = number of B

asestars"

3448 PRINT"The 3rd digit = number of S

tars."

3458 GOSUB3628

346@ CLS:PRINT"Galaxy Map. ":PRINT"_

—— * sPRINT

3470 PRINT" Every time the LR sensors

are used" :PRINT"the galaxy map is upda

ted." :GOSUB 3628

3488 CLS:PRINT"Mega Pulsars. ":PRINT"

"SPRINT

3498 PRINT" The pulsars are very accur

ate due to":PRINT"modern guidance syst

ems. Any amount"

35@@ PRINT"of available energy may be

fired. A" :PRINT"CYGON ship has up to 3

@@B units of"

.3518 PRINT"energy. " :GOSUB3628

3528 CLS:PRINT"Photon Torpedoes." :PRIN

ie "SPRINT

35328 PRINT" Torpedoes are limited to a

single" =:PRINT"Quadrant. The couse is

given as per"

354@ PRINT"the Navigation directive. I

a" :PRINT"torpedo hits a star the sta

r can go"

355@ PRINT"SuperNova, thus destroying

the ship.":PRINT"Should the star go0 NO

VA; your chances"

3568 PRINT"are 90%." :GOSUB3622

3578 CLS:PRINT"Damage Control." :PRINT"

"PRINT
358@ PRINT" This lists the state of re

pair of" :PRINT"all devices. ALL repair

s are carried"

3538 PRINT"out during the game, but do

cking":PRINT"with a BASESTAR will effe

ct" :PRINT" immediate repairs."

36808 PRINT"Docking is achieved by posi

93

tioning" :PRINT"the PEGASUS alongside a

Basestar." :GOSUB3620

3618 GOTOS32

362@ PRINT:PRINT"Press any key to cont

inue."

3625 FORRT=17T048@ :NEXTRT

363@ IFINKEY$=""THEN3632

3648 RETURN

4000 DH=%H11 -DF=&H388@ :DG=&H3BQQ :FORDE

=DF TODG :UPOKEDE; DH:NEXT :RETURN

38080 FORX=&H988@8TO&H9819

3918 READA:POKEX,;A:NEXT :RETURN

5020 DATA &HF3,;&H3E; 8, &HD3- &HBF, &HSE, &

H8@, &HD3, &HBF , &H3E, &HC8, &HD3, &HBF y &SHSE

PATTERN EDITOR LVIIIA/B

1@ DIN PTC16,19),BD(8),BTC8)

28 PATTERNC#2@8, "@01808FC@818G080"

3@ PATTERNC#211,"7884B4A4A4B48478"

4@ PATTERNC#2Q9, "26202028A8702000"

5@ 2Y$="--------------- 7

60 TP$="900880000000"

78 22$=CHR$(142)+", "+CHR$C143)+", "+

CHR$C208)+", "+CHR$C209)

8@ SCREEN 1,1:CLS:FOR X=1T0O16:FORY=1T0

19:PTCX; YJ=32 :NEXT =NEXT

3@ PRINT"Pattern Editor." :CURSOR25,@:

PRINT"B.Brown "3 :PRINTCHR$C211);3:

PRINT" 84":PRINT 2Y$

188 PRINT:GOSUB 742

118 X=2:Y=5

12@ CURSOR 26,2:PRINT"Expanded"

13@ CURSOR 26,16:PRINT"Normal”

14@ CURSOR 1,22:PRINT"CSJet;,C2Jero";:

158

168

178

180

138

208

218

220

230

240

258

268

278
286

2930

308

312

320

338

34@

350

368

378

380

PRINT", CEJrase,;," ;22$;

CURSOR 1,;23:PRINT"CPJrint shape";:

PRINT", CUJalues in Hex";

CURSOR X;Y:PRINTCHR$(144)3:FOR DE=

1 TO 15:NEXT DE

AS=INKEY$:CURSOR X,Y:PRINT CHR$CPT

(X;Y)JJ3:IFINKEY$="" THEN GOTO 160

IF AS=CHR$C28) THEN X=X+2: IF %>16

THEN X=2:Y=Y+2:1F YO19 THEN Y=5

IF AS=CHR$C29) THEN X=X-2: IF X<2

THEN X=16:Y=Y-2:I1F Y<S THEN Y=19

IF A$=CHR$(C3G) THEN Y=Y-2: IF Y<5S

THEN Y=19

IF AS=CHR$(C31) THEN Y=Y+2: IF Y>19

THEN Y=5

IF A$S="2Z2" THEN PTCX; YJ) =32

IF AS="S" THEN PTCX; Y)=229

IF AS="U" THEN GOSUB 288

IF A$="P" THEN GOSUB 352

IF AS="E" THEN GOTO 8a

GOTO 168
REM Print Hex values of each row

AY=4 :AX=24
BX=2:BB=1:FOR BY=5 TO 19 STEP2:BA=
@:GOSUB 64@:BD.(BB)=BA:BB=BB+1 :NEXT

BB=1:FOR BE=5TO19 STEP2:CURSORI8,
BE :BA$=HEX$(BD(BB)):IF LENCBA$)< 2
THEN BA$="@"+BA$
BB=BB+1:PRINT BAS; :NEXT
RETURN
REM Print Pattern on screen

AY=4 :AX=26:FOR AE=5TO 19 STEP2:FOR
AA=2 TO 16 STEP 2
IF PTCAA,;AEJ>32 THEN AD$=CHR$(229)
:GOTO 382
AD$=CHR$ (32)
CURSOR AX,AY:PRINT ADS;

95

96

33¢

400

418

428

438

448

45@

468

470

488

430

588

518

526

‘538

346

558

368

578

588

53@

68d

612

628

638

640

656

668

678

686

636

708

716

720

AX=AX+t 1 > IFAX> 33THENAX=26 -AY=AY+1

IF AY>11 THEN AY=4

NEXT =NEXT

GOSUB 28@:AA$=""

FOR BA=1T08 :-BBS=HEX$(BD(BA)): IF

LENCBB$)<2 THEN BB$="@6"+BB$

AAS=AAS$+BBS :NEXT :PATTERNCH&HD2: AAS

Be=@:BS=1:FOR MA=2TOLENCAASISTEP2

BRS=MIDSCAAS,MA; 1)

IF BR$="A" THEN BR$="18"

IF BR$="B" THEN BR$="11"

IF BR$="C" THEN BR$="12"

IF BR$="D" THEN BR$="13"

IF BR$="E" THEN BR$="14"

IF BR$="F" THEN BR$="15"

Beé=VAL(BR$) :BTCBS)=Bzé AND 3

BS=BSt+1:NEXT MA

AZ$=""2FOR BA=1 TO 8:Beé=BT CBA)

IF Bé=] THEN Bé=4

IF Bé=2 THEN Bze=8

IF B&é=3 THEN BzZ=12

BRS=HEX$(B2):IF LENCBR$) <2 THEN

BRS=BR$t"B" :AZS=AZ$+BRS NEXT

PAT TERNC#&HD4, AZ$

CURSOR 28,18:PRINT CHR$(&HD2);:

PRINTCHR$(&HD4)

RETURN

REM Determine Value per row

IF PTCBX,;BYJ>32 THEN BA=BAt+128

IF PTCBX+2,BY3>32 THEN BA=BAt+64

IF PTCBX+4,;BY)>32 THEN BA=BA+32

IF PTCBX+6,BY)>32 THEN BA=BAt+16

IF PTCBX+8;,;BY)>32 THEN BA=BAt8

IF PTCBX+1@,BY)>32 THEN BA=BAt+4

IF PTCBX+12,;BY)>32 THEN BA=BA+2

IF PTCBX+14,;BY)>32 THEN BA=BA+1

RETURN

738

74@

2358

768

778

788

738

888

818

B26

830

840

858

862

878

888

B96

386

318

328

REM clear array

PRINT"

PRINT"

PRINT" 1;

PRINT" ;¢

PRINT"2;
PRINT" ;
PRINT"3;

PRINT" i

PRINT" 4;
PRINT" ¢

PRINT"S;

PRINT" ;

PRINT"6;

PRINT" ;

PRINT"?;

PRINT" |

PRINT"8;

PRINT"

RETURN

12345 6?7 8

97

Sy

es
Sih

	SC3000 Programmers Manual00
	SC3000 Programmers Manual01
	SC3000 Programmers Manual02
	SC3000 Programmers Manual03
	SC3000 Programmers Manual04
	SC3000 Programmers Manual05
	SC3000 Programmers Manual06
	SC3000 Programmers Manual07
	SC3000 Programmers Manual08
	SC3000 Programmers Manual09
	SC3000 Programmers Manual10
	SC3000 Programmers Manual11
	SC3000 Programmers Manual12
	SC3000 Programmers Manual13
	SC3000 Programmers Manual14
	SC3000 Programmers Manual15
	SC3000 Programmers Manual16
	SC3000 Programmers Manual17
	SC3000 Programmers Manual18
	SC3000 Programmers Manual19
	SC3000 Programmers Manual20
	SC3000 Programmers Manual21
	SC3000 Programmers Manual22
	SC3000 Programmers Manual23
	SC3000 Programmers Manual24
	SC3000 Programmers Manual25
	SC3000 Programmers Manual26
	SC3000 Programmers Manual27
	SC3000 Programmers Manual28
	SC3000 Programmers Manual29
	SC3000 Programmers Manual30
	SC3000 Programmers Manual31
	SC3000 Programmers Manual32
	SC3000 Programmers Manual33
	SC3000 Programmers Manual34
	SC3000 Programmers Manual35
	SC3000 Programmers Manual36
	SC3000 Programmers Manual37
	SC3000 Programmers Manual38
	SC3000 Programmers Manual39
	SC3000 Programmers Manual40
	SC3000 Programmers Manual41
	SC3000 Programmers Manual42
	SC3000 Programmers Manual43
	SC3000 Programmers Manual44
	SC3000 Programmers Manual45
	SC3000 Programmers Manual46
	SC3000 Programmers Manual47
	SC3000 Programmers Manual48
	SC3000 Programmers Manual49
	SC3000 Programmers Manual50
	SC3000 Programmers Manual51
	SC3000 Programmers Manual52
	SC3000 Programmers Manual53
	SC3000 Programmers Manual54
	SC3000 Programmers Manual55
	SC3000 Programmers Manual56
	SC3000 Programmers Manual57
	SC3000 Programmers Manual58
	SC3000 Programmers Manual59
	SC3000 Programmers Manual60
	SC3000 Programmers Manual61
	SC3000 Programmers Manual62
	SC3000 Programmers Manual63
	SC3000 Programmers Manual64
	SC3000 Programmers Manual65
	SC3000 Programmers Manual66
	SC3000 Programmers Manual67
	SC3000 Programmers Manual68
	SC3000 Programmers Manual69
	SC3000 Programmers Manual70
	SC3000 Programmers Manual71
	SC3000 Programmers Manual72
	SC3000 Programmers Manual73
	SC3000 Programmers Manual74
	SC3000 Programmers Manual75
	SC3000 Programmers Manual76
	SC3000 Programmers Manual77
	SC3000 Programmers Manual78
	SC3000 Programmers Manual79
	SC3000 Programmers Manual80
	SC3000 Programmers Manual81
	SC3000 Programmers Manual82
	SC3000 Programmers Manual83
	SC3000 Programmers Manual84
	SC3000 Programmers Manual85
	SC3000 Programmers Manual86
	SC3000 Programmers Manual87
	SC3000 Programmers Manual88
	SC3000 Programmers Manual89
	SC3000 Programmers Manual90
	SC3000 Programmers Manual91
	SC3000 Programmers Manual92
	SC3000 Programmers Manual93
	SC3000 Programmers Manual94
	SC3000 Programmers Manual95
	SC3000 Programmers Manual96
	SC3000 Programmers Manual97
	SC3000 Programmers Manual98

