
§EGK
Computer

July / August
Issue
1988 -

The official magazine of the
SEGA User Club of New Zealand

\oside the SEGA

Published by MJH Software in association
with Poseidon Software

SEGA MAGAZINE
SUBSCRIPTION YEAR

Oct 1987 - Nov 1988

New Zealand Subscription: NZ$25 incl GST
Australia Subscription: A$26 Airmail

All contributions are welcome, but please include your name, address and telephone
number.

A question and answer page in the form of Letters To The Editor is provided and we will
do our best to answer any questions about software or programming.

It is preferable that programs be submitted on tape or disk in a listable form. (No
copyright protection please). A listing is useful but don ' t worry if you aren't lucky
enough to own a printer. Where required please include instructions on how to type in the
program.

Please check your programs thoroughly for errors and spelling mistakes before sending it
to us. Please send updates if any errors are discovered, so we can publish corrections.

All software programs received by the magazine becomes the property of MJH Software
unless by prior arrangement. They are accepted on the basis that they are the original
work of the author or required modification to run on a SEGA.

All contributions are subject to approval by the editor and may be edited to suit the
magazine style. Submitted programs will be returned on request

Each issue two prizes ofNZ$40 and NZ$20 may be awarded to the program of the month
at the descretion of the Editor.

The pages in this magazine are created using only personal computers and DeskTop
Publishing technology. All text is entered and edited on an Apple Macintosh using
Microsoft Word and then assembled using Aldus PageMaker 3.0 page layout software.
The finished pages are printed on an Apple LaserWriter Plus and then sent on to offset
printers.

Offset printed by Garden Graphics Printing, Tokoroa.

Published bi-monthly by MJH Software
36 Colum Place Bucklands Beach
Auckland New Zealand
Telephone (09) 534-3379

in association with
Poseidon Software
FREEPOST 243 P.O. Box 277
Tokoroa New Zealand
Telephone (0814) 67-105

SEGA
Computer

The official magazine of the

WelCome to
tlie new {oot

SEGA User Club of New Zealand

----Issue 5 Contents

Letters to the Editor 2
Editorial 4

Mystery Program 5
Machine Code Programming 7

Directory .8
Multicolour Mode Demo 10

Graphics Mode 1 demo 12
Scanning the Keyboard 13

Inside the SEGA 14
Visual Display Processor 15

- Text Mode 16
- Graphics Mode 1 17
- Graphics Mode 2 18

- Multicolow Mode 19
- Sprites 20

- VDP Registers 22
Programmable Peripheral Interface 23

Sprite Collision 26
Boo Boo's page 28
In the last issue 28

1

IL@~~@IT~

~@ ~fu@

~cQlfi~@IT
• This question and answer page is

provided to help you. So send me
some questions.

• The last letter from the last issue was in fact from Geoff McM of
Hamilton, not Geoff from Tokoroa as stated. This will put many peoples
minds at rest!

Dear Editor,
o What is the address for BOOT in Basic Version 1. I?
@ Is there a quicker version of basic around?
David Martin, South Australia

Editors reply
o I've only got Disk Basic version LOp and unitl recently I thought this was the only
version around. You could try #051B which is the BOOT routine in version I.Op (the only
version which I have documented).

It is possible that version 1.1 is quite different from version l.Op and this brings up
another problem - the majority of my machine code programs may not work with your
version. Anyway I will try and find a copy of version 1.1 and check out whether it is
different - hopefully Japan have just corrected a few bugs, and in 1.1 there will be no
drastic changes.
@ Not that I know of - maybe 1.1 is faster than LOp. I wouldn't worry about it, as Basic is
too slow in many cases for it to be useful - it all depends on the application. Often you are
better off using machine code and if you need Basic you can always make CALL's to the
necessary routines. The next Machine Code Programming Course starts to detail how to
call certain routines in the Basic interpreter.

2

Dear Editor,
o How do you detect sprite collisions in machine code? In Basic you could use
IF X+16>Y AND X<Y+16 TIffiN PRINT "YOU CRASHED INTO TIffi SPACESHIP"
49 How do you get one sprite (eg a man) and make him walk and how do you flip sprites
(make a car face to the right then face left when you turn left)?
• I noticed that you can increase or decrease any variable (by one), but can you add and
subtract to A and HL? How can you print the result?
.. How can you draw really fast graphics in machine code? I know it can be done because
the maps are drawn so quickly in geography quiz. What would be the machine code
equivalents to line, circle, paint etc?
Steven Boland, Auckland

Editors reply
o Basically you have to use the same method as in Basic. There are more complicated
methods such as those used in ''Tank Battle", which makes use of the SEGA's built-in
sprites (called "Hardware" sprites) to display the tanks, but collision dectection is done at
a software level by actually checking the screen bitmap.

The way it works is to have two copies
of the sprites. One is used by the SEGA
hardware and is stored in VRAM. The
other is a "shadow" or mask of the sprite
and is stored in RAM for use by the
software.

To check for a collision, the area
beneath the mask in place of the sprite on
the screen is checked for l 's (ie bits set). If
any are found then a collision has occured.

Sprite Mask

This involves quite a lot of work in machine code, but the result is perfect collision
detection. If you use the method of checking as in Basic then a bullet which moves past a
tank (but not actually hitting it) would cause a collision.
49 You don't really flip the sprite, but you define another spirte pattern for the car facing
right. Tank Battle has patterns for 12 directions. (0,30,60,90 degrees etc). To make the tank
turn you simply change the pattern which is being displayed. In Basic using MAG 2 sprites
where sprite pattern ° is left and pattern 4 is right then

SPRITE 0,(128,95),0,1 Sprite facing left
SPRITE 0,(128,95),4,1 Sprite facing right

• See "Simple Arithmetic" in the Machine Code Programming Course from Issue 2
(page 11) as this explains how to add and subtract from A and HL. The example program
also shows you how to print the result using a routine at #7B9E (#2B3A for Cartridge
Basic). This routine is equivalent to PRINT HL in Basic .
., A bit much to explain right now - see future Machine Code Programming Courses.

Sorry, couldn't fit in all the letters thai arrived.

3

EDITORIAL
Sorry for this issue being so late, but this has been the hardest

issue to complete so far. It took a long time to write the article on
SEGA hardware and I found it very hard to compress all my
information in to so few pages.

As there are only two programs in this issue and I am running
out of money, no magazine tape will be included with this issue.
The two programs will be added to the next issue's tape. Sorry,
but this will mean a slight delay for some of you before you will
be able to use these programs. - they are actually pretty
short, so you can probably type them in anyway.

The next issue of the magazine will most likely
be the last. The magazine has become too time
consuming for me to continue again next year.
The technology which makes this magazine
possible, is also very expensive and so far
this year the cost to me personally has been
over $1,500.

EDITOR: Michael Hadrup

MANLOGIC
I'VE CRACKED IT/I'VE CRACKED m

AFTER YEARS Of TRIALS AND
TRtBULAnOIl/S rvE CRfATfDA

SMALLER LOGIC ~----L_~
MACHINE!

Original Idea by Neil Bradley

MYSTERY PROGRAM

1 REM Picture expander
2 REM
3 REM By Michael Hadrup
4 REM
5 REM Original size - 6144
6 REM Compressed size - 1067
7 REM
8 REM Saving ~ 83%
9 REM
10 X-72:Xl-184:SY-1
20 WIDTH-X1-X
30 Y=X+SY*256
40 SCREEN2,2:COLOR1,11,,11:CLS
50 RESTORE400
60 FORN-OT03
70 READB(N)
80 NEXT
90 RESTORE410
100 FORN"()T05
110 READe (N)
120 NEXT
130 RESTORE1000:M-0
140 GOSUB270:IFB<>OTHEN150P
145 GOT0145
150 IFB>128THEN200
160 FORN~lTOB:GOSUB270
170 VPOKEY,B
180 Y-Y+1:IFYMOD256-X1THENY-Y+256~IDTH
190 NEXT:GOT0140
200 C-B-128:GOSUB270
210 IFB-OTHEN250
220 FORN-1TOC:VPOKEY,B
230 Y-Y+1:IFYMOD256-X1THENY-Y+256-WIDTH
240 NEXT:GOT0140
250 IF(C+YMOD256)>-X1THENY-Y+256-WIDTH
260 Y-Y+C:GOT0140
270 IFM<>OTHEN360
280 READA$
290 IFLEN (A$) <>6THENPRINT"Error in line"; 1000+INT (N/64) *10
300 A-D
310 FORF-DT05
320 B-ASC(MID$(A$,F+1»-65
330 IFB>25THENB=B-6
340 A=A+C(F)*B

5

350 NEXTF
360 IFA=OTHENB=0:GOT0380
370 B=INT(A/B(M)):IFB>OTHENA=A-B*B(M)
380 M=M+1:IFM=4THENM=0
390 RETURN
400 DATA 16777216,65536,256,1
410 DATA 380204032,7311616,140608,2704,52,1
1000 DATA HnsIWP,ASaMwg,AHXvDz,FxoEIY,AROIFD,JuKifW,AGvrba,AABRjs, IqwDCo,
AEtfrZ,AABXhs,AluIYi,BVHbqI,AHQXMg,FquGbk,AJKKzL
1010 DATA AADBdM,CGLCjG,IYdaLE,FrBeEh,AoJyIC,AKRJSI,AMgiaw,FwhGTE,FoepoQ,
CprrcrRQ,AEfgUQ,IdIHKQ,GLeFeY,FtnhcA,ACRWGq,AEfRZg
1020 DATA AEgaLl,LNGfRc,AMCcJt,DZGzUA,AMPuPU,CGLOuI,AIBpIg,HsWqxP,Akqkeo,
AQDMHX,KDWDyI,IYruEQ,FtJWrk,GEiOMx,AHmwiY,FtJWzK
1030 DATA ACQBQw,AUirQY,ATeJsE,HNSIIQ,AFErnZQ,ACRJlu,FisoMQ,FvZYUw,AMgZTb,
AQEVAw,AWxiOs,DJsods,GSkxOf,AAAqYo,ABJbUI,AACFFs
1040 DATA CrWyQg,ACRVxC,AEIJtU,AACXNs,BVjNub,AACRTX,AQOrED,ACWxXD,LPVjTy,
LPVgcA,LGoVfg,LIWXbU,AJhDip,ADakrI,FitwGN,AjfoSb
1050 DATA FjWpTk,AABUiX,FvYndQ,IiwbrV,AUAQOp,FiuZEj,BWhgex, IYgePk,ASWPAS,
ADdyWw,AGxlJs, BWAIJs, GbfLip,FqvpyI,FrJOJc, GAKgeo
1060 DATA FsuoAA,AGQMhS,AAAwxE,GycVoj,AtCqMW,AGtzPU,FtYgiY,FomZug,FxvDbb,
FqfXLE,FvYnZD,CZkQsR,LOROrm,IZDhNM,AEwVqu,AOyTNu
1070 DATA AGzpFs,AHBHyo,FquGYg, BMOeDE,AKRFnU,ATdZFy, AQGaTK,KjLYgw, IZmQgC,
IasSmo,AGmbXp,AAHAGJ,ABldzc,AJKKrk,FidfzA,AIFRyJ
1080 DATA FiwLwS,AQGmKb,FofmTU,HEsoPI,AABVYU,AIDxNQ,AJNBsg,FquGUW,AQGmKb,
AJJmkQ,GRQfvY,LPVLRU,AQDMIA,JvWCVc,FilDAU,AGtxyJ
1090 DATA FtJXGY,AAAMI1,AADryI,Akorma,AEfSPU,FqvPEE,HVZrvF,FquSuH,AFlepQ,
GSXrjE,BVITUA,AFmbhf,CqttgQ,AlwZkl,ACQlZe,AKUidE
1100 DATA AJLJyk,AuLLUg,FvYnYx,ADYTfJ,BXiNKk,LHiyzG,ChudjU,AGuWGI,Fplguo,
FixlVA,AkorwR,FxoEGI,FgeeIF,ASaCDk,Fixgjp,BWfUAC
1110 DATA ACQBao,AGscmL,KxEmEw,CsCtea,CjWODE,ALcSUw,EOPPEA,AClwTE,ASTZUs,
AlAEEw,FjFckz,ACSGKY,BWHnaY,FoioOo,GAhYUw,ALaFtO
1120 DATA GLUoLE,GADUuI,EMdfXo,AlwZiL,Bd01Pp,Cwtgyb,AEfFnI,AACRxM,AlATOD,
ABLaPY,ABJbUE,IYdrxf,BWhfGa,AkspxE,GADhEi,AHJsxt
1130 DATA HlcriI,GADUeo,FyvmOJ,FxpNHk,ACswJs,AFmDVS,ASTwQM,GADhlx,AEmetf,
ABJDFS,AEflNc,GSdhZk,GADhUg,FvZjxd,ADZoQC,ACWEeo
1140 DATA AGfEbM,AKUicz,AnIThf,ASYHxi,AAAlmo,IYelAg,BVHbnk,ARoogY,FidgmM,
FofmFe,GADUnW,AEgOZM,AJQnjU, IZqapU,CsDqDF,KfvZyJ
1150 DATA AKSRdQ,ACPvAQ,FvZkCW,FnatFv,AGvrHp,AABjts,CsCVSK,AJKXMh,AZMgeI,
BaMzLe,AOxjTw,HDHCuI,CsBbvG,BMOeDE,AGqMev,AAAwWM
1160 DATA BVYFZt,CqOrly,AFmnso,AABOjD,FxoEDj,FxoFPj,AAHYcU,AJKjSk,AAdxNM,
FjGxTW,AAAAD1,HmCrjF,IbVZBj,CYAkJc,JdvVXD,ItUBzS

6

· · · · · M~chiIleC~<Ie ..

Programmigg
. ...

. By Michael Ha(Jrup

• •••••••••••••••••••••• •
• •
• . I have reproduced the diagram below of • In's and • the shift and rotate instructions from the •
• •
• last issue, which was slightly unreadable. • Out's • (well, you couldn't read it at all). •
• • • •
• olt e " , ,,,.""',,,, e W • This issue is devoted to the
• • hardware side of the SEGA and • • • -t--t--t--t--t--t--t- • therefore I will discuss the machine
• CAIlRY • code commands with which we can

olt~ ''''''_''0'''0''''''' ~ W • • communicate with the other parts
-t--t--t--t--t-i-'i-' • oftheSEGA.

CAIlRY •

1 0
7 <-- ROTATE LEFT <-- W • The first is IN A,(N) which is

• similar to the INPO function in • Basic. The original value of A !-t-i-'-t--t--t-i-'i-' •
CAIlRY • provides bits 8-15 and N bits 0-7

1 0
7 --t ROTATE RIGIIT --t W • of the I/O address. (see "Inside the • • SEGA" in this issue for more I-t-i-'-t--t--t-i-'-t- • information).

CARRY •
7 <-- SHIFT LEFI' ARITHMIITIC <-- 0 • A second form of IN is IN R,(C)

D-E -t--t--t--t--t-i-'-t- j- 0
• where B provides bits 8-15 and C •

CARRY • bits 0-7 of the I/O address. Where r
• is a register B, C, D, E, H, L or A. • • Of course there are similar
• versions of OUT - similar to OUT • • in Basic - OUT (N),A and OUT lo 7 --t SAFf R1GIIT LOOICAL --t }J • (C),R. • • In the case of the SEGA only o+±±±±±±± • bits 0-7 of the I/O address are used, CAIlRY •

7 <-- SHIFT LEFT LOOICAL <-- 0 • so you don't have to worry about

D-E i-'-t--t-i-'i-'i-'i-' j- 1
• bits 8-15 held in A or B - depending •

CAIlRY • on which instruction you are using.

• •
•••••••••••••••••••••••• Continued on page 10

7

Directory Program Disk Basic Only

By Denver Scott

1 REM
2 REM Patterns.Cde file creator
3 REM This creates the file
4 REM "Patterns .Cde" used in the
5 REM Directory program
6 REM Just run it and it saves.
7 REM
8 REM (c) 1988 MJH Software
9 REM
10 PATTERNC,48 , "708898A8C8887000"

35
40
45
50
55
60
65
70
75
80

IFA;32THEN65
B;&H1DOO+(A-160)*8
C;&H1800+PEEK(&H5DB2+N) *8
FORM;OT07
VPOKEB+M,VPEEK(C+M)XOR255
NEXTM
NEXTN
INPUT" P lace disk in dr i ve"; D$
FORN;lT0500:NEXT
CALL &H64CA

15 PATTERNC,79 ,"7088888888887000" 85 SAVEM"Patterns. Cde", &HA316, &HA316+204 7
CALL&H64CA 20 FORN;OT063 90

25 A;PEEK(&H5D32+N) 95 PRINT"Finished":END
30 IFA;OTHEN65

MAIN PROGRAM

The main program listing starts below and is hopefully listed in 38 column format, so
that it looks like what you should see on the screen.

The program contains Inverse characters. These are shown using "strike thru" and
"look like this". Inverse characters are typed with the ENG DIER's key.

The character "_" is also used. This is typed in the GRAPH mode with SHIFT -Z.

10 SCREEN1,1:CLS:COLOR15,4
20 IF PEEK(&HB02A»0 THEN 50

170 T$ (1);"

...:ftMl~kB~=tF~RtEe;t;IIi=eB+IR~fle;e~'l'PEe~R;;;Y';;-
30 PRINT"Insufficient maxfile numbei80 T$(2);"
40 BEEP 2 : END -:WUR~I~'l'~flH'l':ee::;B~IHR~tIl;ee~'l'6ieR~y-;;"-
50 IF PEEK(&HFFFO);lTHEN100 190 T$(3);"
60 CALL& H 6 4 CA ..:eBfl~hhifl~!HflHF~R;eeM!I:B~IfiR~fl~e~'l';ee;jitR¥l"~
70 LOADM"Patterns.Cde",&HA316
80 CALL&H64CA
90 POKE&HFFFO,l
100 ERASE
105 GOSUB6000
110 A$;CHR$(32) :A1$;A$+A$:B$;""
120 M$ (1);"

~:::=;-liillllfl
130 M$(2)="

S'l'Rflfl'l'
140 M$(3)="

SttBttRB
150 M$(4)="

eI'I'Y
160 M$(5)="

PIJ8UE

200 T$ (4) =....:" ~~M~~:&H~~~
hIS! liillllflS IIi BIMle'l'eRl'

210 T$ (5);"
..@eht;eB;s~flH'l'i+I1~fl;::::&B+IRR;itIl~e~'l'PEe~R;;;Y;;-'

220 CURSOR1,6:PRINT"
~Sfl~e~A~B~I~SI~(=tB~A~S~fl~B~A~

BBRflSS BIRfle'l'eRY"
230 CURSOR6,9:PRINT"1988 Version By D.
Scott"
240 CURSOR1,ll:PRINT"Please wait for f
ile initialisation"
250 DIM N$(300)
260 OPEN "A Direct .DTA"AS III
270 IF LOF(1)=OTHEN2900
280 CLOSE
290 OPEN"B Direct .DTA"FOR INPUT AS til

8

300 FORN=IT0300:INPUTll,N$(N) :NEXTN
310 CLOSE
320 SFUD=O
330 BEEP:CLS

1410 CURSORO , 21 : PRINT"
f€"R-t New name+

I+t Menu ";:IF R=l THENPRINTCHR$(30); "_
";CHR$(31);CHR$(29);CHR$(29);CHR$(29

340 CURSORO,O : PRINT");''i"P"+ Phone":R=O
ABBRE99 BIREe~eRY 1420 RETURN

1500 REM GET AND DISPLAY FILE
350 CURSORO,3:PRINT" 1510 OPEN"A Direct.DTA"ASll

360 PRINT:PRINT"
1520 GETl1,F;S$,0,30;D$,30,30;C$,60,30
;P$,90,30

370 PRINT'ftt Read from Directory":P
RINT"
380 PRINT'tZi
INT"
390 PRINT'r.'t
:PRINT"
400 PRINT't+t
y":PRINT"

Write to Directory":PR

Delete from Directory"

List names in Director

410 PRINT't5-t Close the Directory"
420 PRINT:PRINT"

1530 CLOSE
1540 PRINTM$(l);N$(F)
1550 PRINTM$(2);S$
1560 PRINTM$(3);D$
1570 PRINTM$(4) ;C$
1580 PRINTM$(5);P$
1590 RETURN
2000 REM WRITE TO DIRECTORY
2010 BEEP:CLS:PRINTT$(2)
2020 REM SEARCH SEQUENTIAL FILE

Select numbet+--5"t" FOR FREE SPACE .
430 J$=INKEY$:IFJ$<"1"ORJ$>"5 "THEN 430 2030 PRINT:PRINT:PRINT "Please wait Se
440 ONVAL(J$)GOTO 1000,2000,3000 ,4000,arching for free space"
5000 2040 FORN=lT0300 : IF N$(N)="
1000 REM READ FROM DIRECTORY
1010 BEEP:CLS:PRINTT$(l)
1020 GOSUB 1300

"OR N$(N) = " "OR N$(N)=""THEN F=
N:N=305
2050 NEXT N

1030 IF F=O THEN PRINT:PRINT"Name not 2060 IF N=301 THEN CURSORO,8 : PRINT "Fil
on file":GOT010S0 e full No free space":FORD=lT0750:NEX
1040 GOSUB1500:GOSUB1200 TD:GOTO 330
1050 GOSUB1400 2070 REM DATA ENTRY
1060 J$=INKEY$
1070 IFJ$=CHR$(13)THEN1000
1080 IFJ$="M"THEN 330
1085 IFJ$="P"THEN 7000
1090 GOT01060

2080 CURSORO,8 :INPUT_'*'*M~==:;_
-1ii'rllE

(F)

2090 INPUT"
"':;9 ~;;R*E!f;E:q;~=:- "; S $

1200 REM CHECK FOR PHONE NUMBER 2100 INPUT" ____ _
1210 FORL=lTOLEN(P$) 9!lj;)!lRj;) ";D$
1220 IFMID$ (P$, L, 1) >CHR$ (0) THENR=l :L=L2110 INPUT" ____ _
EN(P$)+l eI~Y ";C$
1230 NEXTL:RETURN 2120 INPU1'"
1300 REM SEARCH FOR NAME ...:pF*f1e:e!;+iiE~=;- ";P$
1310 CURSORO,5:INPUT" 2140 OPEN"A Direct.DTA"ASll

lIiN$

liilrllE . ";K$ 2150 PUT#l,F;S$,0,30;D$,30,30;C$,60,30
1315 F=O:PRINT:PRINT"Please wait Sear;P$,90,30
ching Directory" 2160 CLOSE:SFUD=l
1320 FORN=lT0300 2170 GOSUB1400
1330 IF K$=LEFT$(N$(N),LEN(K$))THENF=N2180 J$=INKEY$
:N=301 2190 IF J$=CHR$(13)THEN2000
1340 NEXTN 2200 IF J$= "M"THEN330
1350 RETURN 2210 GOT02180
1400 REM MENU OPTION 2900 REM OPEN MAIN RANDOM FILE FOR

9

THE FIRST TIME 4090 IF J$=CHR$ (13) THEN402D
2910 PUTi1,300;S$,0,30;D$,30,30;C$,60,4100 IF J$="M"THEN330
30;P$,90,30:CLOSE 4110 GOT04070
2920 REM CLEAR MEMORY FOR SEQUENTIAL 5000 REM CLOSE FILE
29 30 FORN=lTO 300:N$(N)="":NEXT N 5010 BEEP:CLS:PRINTT$(5)
2940 GOSUB5110
2950 GOT0320
30 00 REM DELETE FROM DIRECTORY
3010 BEEP:CLS : PRINTT$(3)
3Ll O GOSUB1300
3030 IF F=OTHEN PRINT:PRINT"Name
n fi le" :GOT03150
3040 GOSUB1500
3050 CURSORO,21:PRINT"

not

+'ti Delete-tttt
Remain"

3060 J$=INKEY$
3070 IF J$ ="Y"THEN 3) 00
3080 IF J$="N"THEN BEE. P :GOT03150
3090 GOT03060
3100 BEEP

5020 IF SFUD <>1 THEN 5040
5030 CURSORO,6:PRINT"Closing Directory
":CURSORO,10:PRINT"Please wait while d
isk i s updated":GOSUB5050
5040 CURSOR 0, 15:PRINT"Directory close

od":BEEP:END
· 5050 KILL "B Di rect.DTA"

5060 GOSUB5110
5100 REM SEQUENTIAL FILE UPDATE
5110 OPEN "B Direct .DTA"FOROUTPUTASU
5120 FORN=lT0300:PRINTt1,N$(N) :NEXTN
5130 CLOSE
5140 RETURN
6000 REM SET UP TELEPHONE CODES
6010 RESTORE 6040
6020 FORN=lT010:READT(N),T1(N) :NEXTN

3110 OPEN "A Direct.DTA"ASi1 6030 RETURN
3120 PUT'1,F;A$,0,30;A$,30,30;A$,60,306040
iA$,90,30 6050
3130 CLOSE 6060
3140 N$(F)=B$:SFUD=l 6070
3150 GOSUB1400 6080
3160 J$=INKEY$ 6090
3170 IF J$=CHR$(13) THEN3000 6100
3180 IF J$ ="M"THEN330
3190 GOT03160

6110
6120

4000 REM LIST NAMES ON FILE 6130

DATA 941,1209
DATA 697,1209
DATA 697,1336
DATA 697,1447
DATA 770,1209
DATA 770,1336
DATA 770,1477
DATA 852,1209
DATA 852,1336
DATA 852,1477

4010 A=1:B=30:C=1 7000 REM CALL TELEPHONE NUMBER
4020 BEEP:CLS:PRINTT$(4) :PRINT:PRINT"P7010 IF LEN (P$)=OTHEN7100
age "iCi" of 10":PRINT 7020 FORI=lTOLEN(P$)
4030 FOR X=ATOB 7030 A=ASC(MID$(P$,I,1))-47
4040 PRINTN$(X), :NEXT 7040 IF (A<1)OR(A>10)THEN7090
4050 A=A+30:B=B+30:C=C+1 7050 SOUND1,T(A),15
4060 CURSORO,21:PRINT n 7060 SOUND2,T1(A),15

tefl1 Continuet 7070 FORQ=lT070:NEXTQ
Mt Menu" 7080 SOUNDO
4070 J$=INKEY$ 7090 NEXTI
4080 IF J$=CHR$(13)AND B=330 THEN4010 7100 R=1:GOT01050

Mulicolour Mode Demo Program
1 REM Multi colour mode 7 REM
2 REM 8 REM
3 REM Demonstration 10 X=&HFOOO
4 REM 20 READA$:IFA$="*"THEN90
5 REM 30 POKEX,VAL("&h"+A$) :X=X+l:GOT020
6 REM By Michael Hadrup 40 DATA F3,DB,BF,0,0,0 ,0,0

10

50 DATA 3E,0,D3,BF,3E,SO,D3,BF,0,0,0,3E,ES,D3,BF,3E,Sl,D3,BF
60 DATA 3E,E,D3,BF,3E,S2,D3,BF,0,0,0,3E,0,D3,BF,3E,S4,D3,BF
70 DATA C9
SO DATA *
90 SCREEN2,2:COLOR",15:CLS 250 X-16:Y-30:A$-"colour":GOSUB450
100 CALL&HFOOO:REM Change screen mode260 X-22:Y-40:A$-"mode":GOSUB450
110 IF(VPEEK(&H3S20)-0)THENGOT0210 270 BEEP:BEEP
120 REM 2S0 GOT02S0
130 REM Set up the name table
140 REM unless already set up
150 REM
160 X-&H3S00
170 FORN-OT07:FORM-OT03:FORF-OT031
180 VPOKEX,F+N*32:X-X+1
190 NEXTF, M, N
200 REM
210 COL-1
220 X-5:Y-1:A$-"HELLO":GOSUB410

290 REM
300 REM This routine prints a string
310 REM on the multi colour screen
320 REM
330 REM It uses the bottom of the
340 REM graphics screen as a copy
350 REM area for the character bit
360 REM maps
370 REM
380 REM

230 X-7:Y-10:A$-"A demo of":GOSUB450 390 REM Double width printing
240 X-7:Y-20:A$-"the multi":GOSUB450 400 REM

410 BLINE(0,184)-(255,191)"BF:CURSORO,184:PRINTCHR$(17);A$:A$-A$+A$:GOTO
460
420 REM
430 REM Single width printing
440 REM
450 BLINE(0,184)-(255,191)"BF:CURSORO,184:PRINTCHR$(16);A$
460 L-l+INT (LEN (A$) *6/8) :Z-588S

470 REM 600 REM
480 REM L is the width of the string610 IFV-D>-OTHENV-V-D:GOSUB730
490 REM to nearest S pixels 620 COL-COL+2:IFCOL>14THENCOL-COL-14
500 REM 630 X-X+1:NEXTI
510 FORN-OTOL:FORM-OT07 640 COL-COL-4:IFCOL<lTHENCOL-COL+14
520 V-VPEEK(Z+M+N*8) : RESTORE525 650 x-x-8:Y-Y+1:NEXTM
525 DATA 128,64,32,16,S,4,2,1 660 COL-COL+4:IFCOL>14THENCOL-COL-14
530 REM 670 x-X+8:Y-Y-8:NEXTN
540 REM M is each vertical line 680 RETURN
550 REM V is the S pixels of the lin~90 REM
560 REM 700 REM The multi colour plot routine
570 FORI-OT07:READD 710 REM Plots at (X,Y), colour COL
580 REM 720 REM
590 REM Plot the point if necessary 730 ADDR-INT(X/2)*S+YMOD8+INT(Y/8)*256

740 IFXMOD2-0THENVPOKEADDR, (VPEEK(ADDR)AND15)+COL*16:RETURN
750 VPOKEADDR, (VPEEK(ADDR)AND240)+COL:RETURN

The routine sets up the Multicolour mode.
MI=O, M2=1, M3=O
Name table at #3800
Pattern Generator Table at #0000
Note that the Basic program sets up the Multicolour mode using Name Table overlapping
as described on page 20 of this issue.

11

F3
DBBF
0000000000
3EOO
D3BF
3EBO
D3BF
EEB
D3BF
3EB1
D3BF
3EOE
D3BF
3EB2
D3BF
3EOO
D3BF
3EB4
D3BF
C9

01
IN A, (tBF)
NOP:NOP:NOP:NOP:NOP
LD A,O
OUT (tBF) , A
LD A, 'BO
OUT ('BF) ,A
LD A,tEB
OUT (tBF),A
LD A, ,B1
OUT (tBF) ,A
LD A, fOE
OUT (tBF),A
LD A, tB2
OUT (lBF),A
LD A,O
OUT (fBF),A
LD A, t B4
OUT (mF) ,A
RET

DISABLE INTERRUPTS
CLEAR STATUS REGISTER
WAIT A WHILE
DATA FOR REGISTER 0

OUTPUT TO VDP REGISTER 0
DATA FOR REGISTER 1

OUTPUT TO VDP REGISTER 1
DATA FOR REGISTER 2
OUTPUT TO VDP REGISTER 2

OUTPUT TO VDP REGISTER 2
DATA FOR REGISTER 4

OUTPUT TO VDP REGISTER 4

Graphics Mode 1 Demo Program
1 REM Graphics mode 1
2 REM
3 REM Demonstration
4 REM
5 REM
6 REM By Michael Hadrup
7 REM
B REM
9 REM
10 X=&HFOOO

70 DATA C9
BO DATA *
90 SCREEN1,1:COLOR1,15:CLS
100 CALL&HFOOO:REM Change screen mode
110 REM
120 REM Set up the colour table
130 REM
140 A=2:FORN=&H3FCOTO&H3FFF
150 VPOKEN,A+16
160 A=A+1:IFA=15THENAz2

20 READA$:IFA$="*"THEN90 170 NEXT
30 POKEX, VAL ("&h"+A$) :X=X+1:GOT020
40 DATA F3,DB,BF,0,0,0,0,0
50 DATA 3E,0,D3,BF,3E,BO,D3,BF,3E,EO,D3,BF,3E,B1,D3,BF
60 DATA 3E,F,D3,BF,3E,B2,D3,BF,3E,3,D3,BF,3E,B4,D3,BF

1BO REM 2BO VPOKE&H3COO+N,N
190 REM Set "@"-"W" to white on black290 VPOKE&H3EOO+N,RND(1)*256
200 REM 300 NEXT
210 FORN=&H3FCBTO&H3FCA 310 GOT0310
220 VPOKEN,&HF1:NEXT 320 REM
230 REM 330 REM This routine prints a string
240 X=7 :Y=10 :A$="A DEMONSTRATION OF" :340 REM at (X, Y)
GOSUB360 350 REM
250 X=9:Y=13:A$="GRAPHICS MODE I":GOS360 ADDR=X+Y*32+&H3COO
UB360 370 FORN=lTOLEN(A$)
260 REM 3BO VPOKEADDR+N-1,ASC(MID$(A$,N,1»
270 FORN=OT0255 390 NEXT:RETURN

12

SCANNING THE KEYBOARD
Bits 0-2 of Port C (#DE) Keyboard Joystick

Bit 0 1 2 3 4 5 6 7

Port A 0 1 2 3 4 5 6 7 I 1 Up

(#DC) 1 Q W E R T Y U: 1 Down

2 A S D F G H J 1 1 Left

3 Z X C V B N Mil Right

4 DIER SPC CLR DEL 1 1 Shot L

5 / n Down Left Right 1 1 Shot R

6 K L CR Up 1 2 Up

7 lOP @ 1 2 Down
-----------------------1----
Port B 0 8 9 0 - 1\ ¥ Break 2 Left

(#DD) 1 GraPh: 2 Right

2 Ctrl 1 2 Shot L

3 Func Shift I 2 Shot R

Tables similar to this have been published in previous magazines, but never explained
very well. If you have read the information on the PPI then you will recognise the ports
used above as those involving the PPI.

Only one vertical row of the keyboard matrix above can be read at a time and you must
tell the keyboard which row you want to check. To do this you output a number between 0
and 7 to Port C, which is #DE. You can then read from #DC or #DD (depending on which
set you wish to check) and examine individual bits. A 0 means a key is down, and 1 means
a key is up.

When the matrix is blank, there is no key to check. The value of the bit can be either a
lor 0 depending on whether you have a soft or hard keyboard (and how old it is), so don't
assume that the unused bits will be a 0 or 1. They can be either!

For example if you want to check for the Space Bar being pressed and released in
machine code, you could wirte the.following ...

LOOP

LOOPl

LD A,l
OUT (#DE),A
IN A, (#DC)
BIT 4,A
JR NZ,LOOP
IN A, (DC)
BIT 4,A
JR Z,LOOPl
RET

, 3

Set vertical row 1
Read Port A
Check for space
If up then wait
Read Port A
Check for space
If still d o wn then wait

Inside the ST,{j5l 'By Micfuu{:Hiuf:rup

HARDWARE

BI-DIRECTIONAL DATA BUS 00-07
... JI n u

RAM ROM

I/O
ZSO Memory Input
CPU Output

If n If n

"

..

r-

E
X
P
A
N
S
I
0
N

P
0

The SEGA computer
can be divided into three
separate parts - CPU,
Memory and Input and
Output (1/0)-

UNI-DIRECTIONAL ADDRESS BUS AO-A15 "I R
T

It is important to note
that the address bus is used
to access memory locations
and Input/Output devices_
Which type of device is
determined by the control
bus_

II II
BI-DIRECTIONAL CONTROL BUS r _

PART 1- THE BASIC SEGA

The basic SEGA (one with no cartridge or Super Control Station connected) contains
the following main chips __ _ _

IC2 - AnDRESS DECODER

This is a special chip that handles a number of functions_ Mainly it controls selection of
I/O devices_ If A4 is low then intemall/O devices are disabled - for use with Super Control
Station. The chip also handles disabling of IC3 - System Ram with the OSRAM signal on
B3 of the expansion port. It also produces the Non-maskable interrupt when the Reset key
is pressed. I/O devices are only addressed using A5-A7 giving 8 possible devices.

The following I/O device is selected given A4-A 7

I/O address
#7F
#BE,#BF
#DC-#OF

IC4 - SOUND Cmp

A7-A4
1111
1011
1101

I/O Device
IC4 - Sound Chip
IC9 - Visual Display Processor
IC5 - Parallel Peripheral Interface

This has already been well documented in previous magazines and will not be discussed
now. For more information refer to the extracts from Brian Brown's SEGA Programmers
Manual. See page 10 of November 1986 / February 1987 issue of SEGA Computer
(produced by SEGA Software Support)_

14

IC9 - VISUAL DISPLAY PROCESSOR

The VDP in the SEGA is a Texas Instruments 9929A chip (now produced by Western
Digital). The VDP has its own 16K of RAM in which display information is stored, called
VRAM (video ram). The CPU cannot access VRAM directly but must use the VDP to
access VRAM. It accesses through I/O ports #BE (data port) and #BF (command port).
The VDP has eight 8 bit write-only registers, an 8 bit read-only status register and a 14 bit
auto-incrementing address register.

The address register is 14 bits long because it points to an address in VRAM between 0
and #3FFF (16K). Auto-increment means that when you write or read, it automatically
adds one to itself and points to the next byte in VRAM.

The VDP has FOUR basic operations ...

Write to VRAM

Before you can send data to VRAM you must set up the 14 bit address register for
writing to a location in VRAM. This involves the output of two bytes to the command port.
The first is the low byte and the second is the 6 bits of the high byte with bit 6 set (ie + #40)
and bit 7 reset. Once the address register has been set, bytes can be sent to the data port and
they are stored consecutively in VRAM.

Read from VRAM

Before you can read data from VRAM you must set up the 14 bit address register for
reading from a location in VRAM. This involves the output of two bytes to the command
port The fIrst is the low byte and the second is the 6 bits of the high byte and bits 6 and 7
reset. Once the address register has been set, bytes can be read from the data port in
consecutive order from VRAM.

Write to VDP write-only Register

These registers control the VDP operation and determine they way VRAM is allocated.
To change a VDP register involves the output of two bytes to the command port. The fIrst
is the data byte (the new value) and the second is made up of bits 0-2 (which register
number 0-7), bits 3-6 reset and bit 7 set. (ie + #80). Note that the address register is
destroyed when a VDP register is changed.

Read from read-only VDP Status Register

This register contains flags on interrupts, sprite collision and the fifth sprite. It is also
used to reset the transfer of bytes. For example if you were changing a VDP register and
the transfer of the fIrst data byte was complete (but not the second) and an NMI interrupt
occurs (reset key pressed), the VDP is left hanging. The next byte sent would be interpreted
as a register destination. A read of the status register resets the VDP, so that the next byte
will be interpreted correctly.

15

OPERATION 0 1 2 3 4 5 6 7
Write to VRAM
Byte 1 Address Setup A7 A6 A5 A4 A3 A2 A1 AO
Byte 2 Address Setup 0 1 A13 A12 A11 A10 A9 A8
Byte 3 Data Write D7 D6 D5 D4 D3 D2 D1 DO
Byte N Date Write D7 D6 D5 D4 D3 D2 D1 DO
Read from VRAM
Byte 1 Address Setup A7 A6 A5 A4 A3 A2 A1 AO
Byte 2 Address Setup 0 0 A13 A12 A11 A10 A9 A8
Byte 3 Data Read D7 D6 D5 D4 D3 D2 D1 DO
Byte N Date Read D7 D6 D5 D4 D3 D2 D1 DO
Write to VDP Regis1er
Byte 1 Data D7 D6 D5 D4 D3 D2 D1 DO
Byte 2 Register Select 1 0 0 0 0 R2 R1 RO

The Four Screen Modes
Text mode
In this mode, the screen is divided into a grid of 40 text positions across by 24 down.
(nonnally only 38 columns are visible). Each of the text positions contains 6 pixels across
by 8 pixels down. The tables in VRAM used to generate this display are the Pattern Name
Table and the Pattern Generator Table which occupy 3008 VRAM bytes.

TEXT MODE MAPPING

0
1

TEXT rosmoN 0 TEXT rosmoN 39 2
0 4orosmoNs
1
2 ~

8M TEXT rosmoN "N" "0
8 0

N M Bytes en

8M+7 a
TEXT PATIERN "M" @

en

957
958
959 Cl=INK TEXT rosmoN 959

PATIERN
2045 CO=PAPER 2046

NAME 2047 I COWRO TABLE COLOR 1
PATIERN
GENERATOR
TABLE VDP REGISTER 7

1 6

There can be up to 256 unique text patterns (characters) defmed at any time and their
definitions are stored as 8 x 8 pixels (bits 0 and 1 are ignored) - 8 bytes pet character - in the
Pattern Generator Table which is 2048 bytes (2K) long. Its base address begins OIl a 2K
boundary and is defmed by VDP register 4. Only two colours are available for the whole
screen including the backdrop (border) and they are defined by VDP register 7
(background+foreground colour*16). A "I" in a text pattern corresponds to the foreground
(ink) colour and a "0" corresponds to the background (paper) colour.

The Pattern Name Table holds a map of which text pattern (character) is to be displayed
and is 960 (4004) bytes long. Its base address begins on IK boundary and is dermed by
VDP register 2. The first 40 bytes correspond to the top row. the next 40 to the second row
and so 00. Sprites are not available in the Text mode.

Graphics Mode 1 - Not available in Basic
In this mode. the screen is divided into a grid of 32 columns across by 24 rows of

pattern positions. Each of the pattern positions contains 8 pixels across by 8 pixels down.
The tables in VRAM used to generate this display are the Pattern Name Table. Pattern
Generator Table and Colour Table which occupy 2848 ¥RAM bytes.

0
1
2

N

765
766
767

M

PATfERN
NAME
TABLE

M/8

GRAPHICS MODE 1 MAPPING

0
1
2 POsmONO POSmON31

32POsmONs

8M
~

8

8M+7

2045
2046
2047

Bytes
POSmON"N" ~

r----t------~ i

o
1
2

PATIERN
GENERATOR
TABLE

C1=INK
CO=PAPER

PATTERN
COLOUR TABLE

17

POsmON767

There can be up to 256 unique
patterns defined at any time and their
definitions are stored as 8 x 8 pixels - 8
bytes per character - in the Patteni
Generator Table which is 2048 bytes
(2K) long. Its base address begins on a
2K boundary and is defined by VDP
register 4. A "1" in a pattern corresponds
to the foreground (ink) colour and a ''0''
corresponds to the background (paper)
colour.

The colours of the "I '''s and "O'''s are defined by the Colour Table which has 32 entries,
each of which is one byte long. (background* 16+foreground colour). The first entry in the
colour table defines the colours for patterns 0-7, the next for patterns 8-15 and so on. Its
base address begins on a 64 byte boundary and is defined by VDP register 3.

The Pattern Name Table holds a map of which pattern is to be displayed and is 768
(32x24) bytes long. Its base address begins on 1 K boundary and is defined by VDP register
2. The first 32 bytes correspond to the top row, the next 32 to the second row and so on.
Sprites are available in Graphics Mode l.

Graphics Mode 2 - The normal Graphics Screen
This mode is similar to Graphics Mode 1 except it allows for more patterns - 768

(32x24) and additional colour information is included for each pattern.

o
1

N1

255
256

M1

o
1

2047
2048

GRAPHICS MODE 2 MAPPING

8
Bytes

8

PosmONO POsmON31

POsmON"N1"
PATTERN "M1" 255

N2

511
512

L--.-t---, Bytes r--+--L.s POsmON"N2"
PATTERN "M2"

N3 M3

766
767

PATTERN
NAME
TABLE

IC11coi
EACHBYfE
IN COLOUR

TABLE
C1=INK

CO=PAPER

4095 I--_+-~
4096

8
6142 Bytes
6143

2047
2048

PATTERN
GENERATO
TABLE

8
6142 Bytes
6143

PATTERN
COLOUR TABLE

18

511
~~-+--------------~~

POsmON"N3"
PATTERN "M3"

POsmON767

In this mode, the screen is divided
into a grid of 32 columns across by 24
rows of pattern positions, which is
subdivided again into vertical thirds. Each
of the pattern positions contains 8 pixels
across by 8 pixels down. The tables in
VRAM used to generate this display are
the Pattern Name Table, Pattern Generator
Table and Colour Table which occupy
12.75K of VRAM.

There can be up to 768 unique patterns
defined at any time and their definitions
are stored as 8 x 8 pixels - 8 bytes per
character - in the Pattern Generator Table
which is 6144 bytes (6K) long.

It is separated into three blocks of 256 patterns, each a vertical third of the screen so
that patterns in the top third are found in the flrst 2048 bytes and so on for each third. Its
base address begins on a 8K boundary and is deflned by VDP register 4. It may be located
in the lower or upper half of VRAM. VDP register 4 contains 0 for the lower or 255 for the
upper half. A "I" in a pattern corresponds to the foreground (ink) colour and a "0"
corresponds to the background (paper) colour for that pattern.

The colours of the "1"'s and "O"'s are deflned by the Colour Table which is 6144 (6K)
long. Each of which is one byte long. (background* 16+foreground colour). The flrst entry
in the colour table dermes the colours for the corresponding pattern in the Pattern
Generator Table. Its base address begins on an 8K boundary and is deflned by VDP
register 3. It may be located in the lower or upper half of VRAM. VDP register 3 contains
o for the lower or 255 for the upper half. (opposite to Pattern Generator Table).

The Pattern Name Table holds a map of which pattern is to be displayed and is 768
(32x24) bytes long. It is segmented into three blocks of 256 names so that names in the top
third point to patterns found in the ftrst 2048 bytes in the Pattern Generator Table and so
on. Its base address begins on a lK boundary and is deflned by VDP register 2. The flrst 32
bytes correspond to the top row, the next 32 to the second row and SO on. Sprites are
available in Graphics Mode 2.

MultiColour Mode - Not available in Basic

The MultiColour mode provides an unrestricted 64 x 48 colour square display. Each
colour square contains 4 x 4 pixels. The tables in VRAM used to generate this display are
the Pattern Name Table and Pattern Generator Table which ouccupy 2816 bytes (2.75K) of
VRAM.

The Name Table is the same as in the other modes, consisting of 768 entries for each of
the 32 x 24 positions. It points to an 8 byte segment in the Pattern Generator Table. Only
two bytes are used and these specify the colour of a 2x2 block area (8x8 pixels).

BYTE 1 COLOUR A COLOURB

BYTE 2 COLOURC COLOURD

2 BYTES FROM
PATTERN GENERATOR TABLE

The location of the 2 bytes within the 8 byte segment pointed
to by the name is dependant upon the screen position where the
name is mapped. For names in the top row (names 0-31), the 2

~
tll

~
Q.,

00

8 PIXELS

A B

C D

MULTICOLOUR
PATTERN

bytes are the ftrst two. The next row of names (32-63) uses bytes 3 and 4 within the 8 byte
segment. The next (64-95) use bytes 5 and 6, while the last row uses bytes 7 and 8. This
series repeats for the remainder of the screen.

Thus the colour displayed from a 8 byte segment of the Pattern Generator is dependant
upon its position on the display.

19

Because the colour displayed can differ depending upon the position, the mapping can
be simplified by using duplicate names in the Name Table. Each group of 4 rows points to
the same set of multicolour patterns as follows. Names 0-31, 32-63, 64-95 and 96-127,
pointto the multicolour patterns 0-31 and Names 128-159, 160-191, 192-223 and 224-255,
point to the multicolour patterns 32-63 and so on.

This now requires only 1536 bytes for the Pattern Generator Table. Its base address
begins on a 2K boundary and is defined by VDP register 4. The base address of the Name
Table begins on an lK boundary and is defined by VDP register 2. Sprites are available in
the Multicolour Mode.

o
1
2

765
766
767

o
1
2

8
NAME By~s

PATIERN 2045
NAME 2046
TABLE 2047

PATTERN
GENERATOR

TABLE

SPRITES

~
U
P
~

A

C

E

G

I

K

M

0

B
ROW 0

D
F

ROWl
H

J

L
ROW 2

N

P
ROW 3

64 COLUMNS

VIDEO DISPLAY

~ BY1ESPOIN1ED ~ TO BY NAMES

..,.
oc
~
0
~
Vl

The video display can have up to 32 sprite planes. The location of a sprite is defined as
the top left hand comer. A sprite can be moved by redefming the sprite origin. Sprites are
transparent outside of the pattern itself. Sprites are not available in the text mode.

The blocks in VRAM that defme the sprites are the Sprite Attribute Table and Sprite
Generator Table. As there are 32 sprites there are 32 entries in the Attribute Table each
occupying four bytes. This table is 4x32 = 128 bytes long and is located on a 128 byte
boundary defined by VDP register 5.

The first two bytes detennine the position of the sprite.
The first byte holds the vertical position from the top of the screen such that ·1 (or

255) puts the sprite at the very top. The second byte holds the horizontal position such
that 0 is at the left edge of the screen.

20

When the position of a sprite extends into the backdrop area that portion of the sprite is
not displayed. This allows sprites to move on to the screen from behind the backdrop or
border.

• Vertical values from -8 to -1 allow a sprite to blend in from the top of the screen.
• Vertical values from 183 to 191 allow a sprite to move off the bottom of the screen
• Horizontal values from 248-255 allow a sprite to move off the right of the screen

There are no horizontal values to allow
a sprite to blend in from the left of the
screen. However a special bit is provided
called the Early Clock Bit When this is set
a sprite jumps 32 pixels to the left To make
a sprite blend in from the left we set the EC
bit and move it horizontally from 1 to 31,
then reset the EC bit and set the horizontal
position to O.

BYTE

o

1

2

3

VERTICAL POsmON

HORIZONTAL POSmON

NAME

EARLyj
CLOCK

o 0 0 I COLOUR
BITS 0-3

Byte 3 of the Attribute Table holds the
name of the sprite pattern held in the Pattern
Generator Table.

SPRITE ATTRIBUTE TABLE ENTRY
Byte 4 contains the colour of the sprites

in bits 0-3 and holds the Early Oock bit in bit 7.
The Sprite Generator Table contains 256 patterns of 8 bytes and is 2048 (2K) long. It

base address begins on a 2K boundary defined by VDP register 6.
There is a maximum limit of four sprites that can be displayed on a horizontal line. If

this rule is violated then the four highest priority sprites are displayed and fifth and
subsequent sprites are not. The fifth sprite bit in the VDP status register is set and the
number of the violating fIfth sprite plane is placed in the status register.

Larger sprites than 8x8 pixels can be used. The MAG and SIZE bit of VDP register 1
are used to select various options.

MAG 0, SIZE 0 No options selected. (8 byte pattern)
MAG I, SIZE 0 The size of each pixel is doubled when displayed creating 16x16
MAG 0, SIZE 1 32 bytes (4 patterns are used to display 16x16 pixels).
MAG I, SIZE 1 32 bytes are used and each is doubled when displayed giving 32x32

PATIERNA

PATIERNB

PATIERNC

PATIERND

rn rn
SIZE 1 SPRITES

SPRITE GENERATOR
PATIERNS

The VDP also checks sprite collision (called
coincidence checking). The coincidence flag in
the status register is set if any two sprites have
bits active at the same screen location.

Sprite processing is terminated if a value of
208 is fOWld in the vertical position of any sprite
Attribute entry. If all sprites are to be blanked,
then simply place a 208 in the vertical position
of the first sprite.

21

A total of 2176 bytes in VRAM are required for Sprite generation. If all 256 sprite
patterns are not needed then tables can be overlaped to reduce the amount of VRAM
required.

The designing of sprites has been described before, so I won't go into any more detail
about sprites.

WRITE ONLY REGISTERS

Register 0

BIT 0

Register 1

BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BITS
BIT 6
BIT7

Register 2

o
1
14
15

Register 3

o
1
#FE
#FF

Register 4

o
1
6
7

Contains one VDP operation bit. All the other bits must be zero and are
reserved for future use.
M3

Contains 7 VDP operation bits

MAG bit, 0 selects IX, 1 selects 2X magnification
SIZE bit, 0 selects 8x8 bits, 1 selects 16x16 bits
Reserved must be zero
M2
Ml
IE (Interupt enable), 0 disable interrups, 1 enables interrupts
BLANK, 0 blanks display, 1 enables active display
4/16K VRAM, 1 selects 16K VRAM (always use 1)

MI M2 M3
000
001
010

o 0

Graphics Mode 1
Graphics Mode 2
Multicolour Mode
Text mode

Name Table Base Address = #400 muliplied by value in register 2
#()()()()

#0400 ...
#3800
#3COO

Colour Table Base Address = #40 muliplied by value in register 3

#()()()() - Special case for Graphics Mode 2
#0040 ...
#3F80
#3FCO

Pattern Generator Table Base Address = #800 muliplied by value in
register 4

#()()()() - Special case for Graphics Mode 2
#0800 ...
#3000
#3800

22

Register 5

o

#7E
#7F

Register 6

o
1
6
7

Register 7

Sprite Attribute Table Base Address = #80 muliplied by value in
register 5

#0000
#0080 ...
#3FOO
#3F80

Sprite Generator Table Base Address = #800 muliplied by value in reg 6

#0000
#0800 ...
#3000
#3800

Bits 4-7 are text colour (foreground)

Bits 0-3 are text colour (background) and backdrop colour

ST A TUS REGISTER (READ ONLY)

A read of the status register always clears the address register and all flags.

Bit 7 Interrupt flag - Set at end of each raster scan pending an interrupt This
must be read every interrupt in order to clear the interrupt and receive the
new interrupt for the next frame. This is why we must disable interrupts
before writing or reading to VRAM. At the end of every interrupt the
status register is read and the address register is cleared, resulting in
some strange effects if not disabled.

Bit 6 Fifth sprite flag - This is set to 1 whenever five or more sprites occur on
a horizontal line. The number of the fifth sprite is placed in the status
register whenever this is set to one.

Bit 5 Coincidence flag - This is set to 1 if two or more sprites collide.
Coincidence occurs if any two sprites have an overlapping pixel.
Transparent sprites as well as those partially or completely of screen are
also considered. Spritres beyond the Attribute Table Terminator (a 208
in the vertical position) are not considered.

Bits 0-4 Fifth Sprite Number

IC5 - PROGRAMMABLE PERIPHERAL INTERFACE
The 8255A is a general purpose programmable I/O device. It has 24 I/O pins which

may be individually programmed in two groups of twelve and used in three modes of
operation. In Mode 0, each group of twelve pins may be programmed in sets of 4 as input
or output.
In Mode I, each group may be programmed as 8 lines of input or output (strobed). The
remaining pins are used for handshaking and interrupt control signals.
In Mode 2, a bi-directional mode, which uses 8 lines for the bi-directional bus and five
lines (one from the other group) for handshaking.

2 3

Port Description

#IX Port A - One 8 bit data output latch/buffer and one 8 bit data input latch
#DD Port B - One 8 bit data input/output latch/buffer and one 8 bit data input buffer
#DE Port C - One 8 bit data input/output latch/buffer and one 8 bit data input buffer

(no latch for input). This port can be divided into two 4 bit ports under the mode
control. Each 4 bit port contains a 4 bit latch and it can be used for the control
signal outputs and status signal inputs in conjunction with A and B.

#DF Control register (write only)

MODE DEFINITION FORMAT

- PORT C (LOWER)

DO 1 = INPUT
O=OUTPUT - GROUPB PORTO

01 1 = INPUT
0= OUTPUT - MODE SELECTION

02 O=MODEO
1 = MODE 1

f--

03 PORT C (UPPER)
1 = INPUT

f--- GROUP A 0= OUTPUT

04
PORTA
1 = INPUT

f-- 0= OUTPUT
MODE SELECfION

05 ~ ()() = MODE 0

f--- 01 = MODE 1
lX=MODE2

06 ~
f--

D7 MODE SET FLAG
I=ACTIVE

MODE 0 PORT DEFINITION CHART
A B Group A

Hex D4 D3 Dl DO PortA PortC
Upper

#80 0 0 0 0 OUTPUT OUTPUT
#81 0 0 0 1 OUTPUT OUTPUT
#82 0 0 1 0 OUTPUT OUTPUT
#83 0 0 1 1 OUTPUT OUTPUT
#88 0 1 0 0 OUTPUT INPUT
#89 0 1 0 1 OUTPUT INPUT
#8A 0 1 1 0 OUTPUT INPUT
#8B 0 1 1 OUTPUT INPUT

24

Initially when RESET
each port will be set to input
(high impedance state). The
modes for Port A and Port
B can be defined separately,
while Port C is divided into
two portions as required by
the Port A and Port B
definitions. All of the output
registers including the status
flip-flops, will be reset
whenever the mode is
changed.

SINGLE BIT SETiRESET

FEATURE

Any of the eight bits of Port
C can be Set or Reset using
a single output. When Port
C is being used as status!
control for Port A or B,
these bits can be Set or Reset
using this operation just as
if they were data outputs.

Group B
PortB Port C

OUTPUT
OUTPUT
INPUT
INPUT

OUTPUT
OUTPUT
INPUT
INPUT

Lower
OUTPUT
INPUT

OUTPUT
INPUT

OUTPUT
INPUT

OUTPUT
INPUT

A B Group A Group B
Hex D4 D3 Dl DO PortA PortC PortB PortC

Upper Lower
#90 0 0 0 INPUT OUTPUT OUTPUT OUTPUT
#91 0 0 1 INPUT OUTPUT OUTPUT INPUT
#92 1 0 0 INPUT OUTPUT INPUT OUTPUT
#93 1 0 1 1 INPUT OUTPUT INPUT INPUT
#98 1 0 0 INPUT INPUT OUTPUT OUTPUT
#99 1 0 1 INPUT INPUT OUTPUT INPUT
#9A 0 INPUT INPUT INPUT OUTPUT
#9B 1 1 INPUT INPUT INPUT INPUT

The normal SEGA is setup in Mode
o with control word #92 (the disk
drive uses control word #90 - more
on this later). So I am only going to
discuss Mode 0 for now.

BIT Set / Reset FORMAT

DC (A) Input, Side A of keyboard
DD (B) Input

Bits 0-3, Side B ofkeyboard Q
Bit 4, External B 11 on A::
connector (No connection) ~
Bit 5, Fault signal SP-400 :3
Bit 6, Busy signal SP-400 0
Bit 7, Cassette tape input A::

E--t
DE (C lower and upper) Output OZ

Bits 0-2, Keyboard setup U
Bit 3, No connection
Bit 4, Cassette tape output
Bit 5, Data bit SP-400
Bit 6, Reset signal SP-400
Bit 7, Feed signal SP-400

DO~---4

Dl

D2 ~---4

D5 ~f---

D6

D7 t----t

BIT SET / RESET
1 = SET
O=RESET

BIT SELECT
o 1 2 3 4 5 6 7

01 0 1 -0 1 0 1 0 1
0200110011
03 0 0 0 0 1 1 1 1

DONTCARE

BIT RESET / SET FLAG
O=ACfIVE

An example of the Bit Set/Reset feature can be found in the tape routines. When the
tape output is to be zero we use

LD A,8:0UT (#DF),A.

When the tape output is to be one we use

LD A,9;OUT (#DF),A.

Previously a way of disabling break (and the whole keyboard) was to use OUT
&HDF,&H9B in Basic. We can now see that this changed everything to Input, which does
in fact disable the keyboard circuitry.

25

SPRITE COLLISION - USING OUR KNOWLEDGE OF THE VDP
This routine checks for collision between sprites and any dot on the graphics screen. - it
only works for MAG 0 sprites

ORG lIECOO
F5F3 Check PUSH AF:DI ; Keep sprite number
DBBFFI DI:IN A, (IIBF):POP AF ; Restore sprite number
FE20DO CP 32:RET NC ; Retum if not 0-31 (invalid)
B7B7 ADD A,A:ADD A,A ; Multiply by 4
D3BF OUT (IIBF) ,A
3E3BD3BF LD A, lI3B: OUT (II BF) , A ; Set up for read from Sprite Attribute Table
0000 NOP:NOP
0000 NOP:NOP
DBBE IN A, (jiBE)
3c57 INC A:LD D,A ; Put Y -coordinate + 1 into D
00 NOP:NOP
DBBE5F IN A, (flBE) :LD E,A ; Put X -coordinate into E
000000 NOP:NOP:NOP
DBBE47 IN A, (jiBE) :LD B,A ; Put pattern name into B
000000 NOP:NOP:NOP
DBBE4F IN A, (jiBE) :LD C,A ; Put EC bit and colour into C
7AFECO LD A,D:CP 192 ; Checlc vertical is between -7 and 191
3804 JR C,Check1
FEF9 CP -7
3FDO CCF:RET NC ; Retum if sprite not on screen
CB792B08 Check1 BIT 7,C:JR Z,Check2 ; Check EC bit
7B LD A,E ; If EC set, shift to left 32 pixels
D6205F SUB 32 : LD E,A
FEF9 CP 249
3FDO CCF:RET NC ; Retum if not on screen
682600 Check2 LD L,B:LD H,O ; Calculate address of Sprite Pattern
2929 ADD HL,HL:ADD HL,HL
29 ADD HL, HL ; Multiply by 8
7DD3BF LD A,L:OUT (jlBF) ,A
7CC618 LD A,H:ADD A,iIlB
D3BF OUT (jlBF) ,A ; Set for read from Sprite Pattern
7BE607 LD A,E:AND 7 ; Number of bits to shift pattern right
3259EC LD (JUMP) ,A ; Self modifying code for the JR below

05 PUSH DE ; Keep coordinates safe for later
llEOEC LD DE, STORE ; Area to store shifted data

0608 LD B,8 ; 8 scans of data

DBBE Check3 IN A, (jiBE) ; Get byte of Sprite Pattern
6F LD L,A ; HL is used as a shift register

2600 LD H,O ; from 8 bits to 16 bits

18FE JR $: JUMP EQU $-1 ; Jump over unnecessary shifts
2929 ADD HL,HL:ADD HL,HL ; Each add is a left shift

2929 ADD HL,HL:ADD HL,HL
2929 ADD HL,HL:ADD HL,HL
2929 ADD HL,HL :ADD HL,HL
EB EX DE,HL
7223 LD (HL),D:INC HL ; Store the shifted pattern

26

7323
EB
lOEB
D1
21 000 8
7A
D6B93815
3CED44
E60767
7AD6F9
380A
3C
67
1600
ED44E60 7
87 6F
E5
CDCFEC
E3
44
7BFEF9
3806
CB79
2002
CBF1
2600
llEOEC
19
D1
CB79
200B
7BD3BF
7AD3BF
00 00
DBBE
A6
37
CO
23
CB71
200D
7BC608
D3BF
7AD3BF
000000
DBBE
A6
37
CO
23
1C
7BE607

LD (HL), E: INC HL
EX DE,HL
DJNZ Check.3
POP DE
LD HL,lI800
LD A,D
SUB 185:JR C, Check4
INC A:NEG
AND 7:LD H,A
LD A,D:SUB 249
JR C,Check4
INC A
LD H,A
LD D,O
NEG:AND 7
ADD A,A:LD L,A

Check4 PUSH HL
CALL ADDR
EX (SP),H L
LD B,H
LD A,E:CP 249
JR C,Check5
BIT 7,C
JR NZ, Check5
SET 6, C

CheckS LD H,O
LD DE,STORE
ADD HL,DE
POP DE

Check6 BIT 7,C
JR NZ,Check7
LD A,E:OUT (lIBF) ,A
LD A,D:OUT (IIBF),A
NOP:NOP:NOP
IN A, (lIBE)
AND (HL)
SCF
RET NZ

Check7 INC HL
BIT 6,C
JR NZ,Check8
LD A,E : ADD A,8
OUT (IIBF),A
LD A,D:OUT (IIBF),A
NOP:NOP:NOP
IN A, (IIBE)
AND (HL)
SCF
RET NZ

Check8 INC HL
INC E
LD A, E: AND 7

; Which is now 16 bits

; Repeat for each scan
; Restore coordinates
; Initially S scans and 0 skiped bytes
; Get Y -coordinate
; Jump if completely on screen (ven)

; We now check S-(Y-IS4)MODS scans

; Jump if sprite is moving off bottom
; Sprite is moving onto top of screen
; We now check (Y-24S) scans
; Set Y coordinate to top of screen
; We must skip some data stored in STORE
; We will skip 2*[S-(Y-24S)MODS] bytes

; Keep this for later
; Calculate address in VRAM
; Swap address wih num of scans and skips

; B will be the scan counter
; Is the sprite fully on screen (horiz)
; Jump if it is - otherwise set some flags

; Allow for the EC bit
; If set, moving on from left, so skip left side
; Moving off right of screen, so skip right side
; L holds the number of bytes to skip

; Skip the bytes
; Restore address in VRAM

; Jump if we skip left side (in broder)

; Set for read from graphics screen

; Read byte from VRAM
; Use shifted sprite pattern as a mask
; Signal collision
; If any bit set then there is a collision
; Move to next byte in STORE

_ ; Jump if we skip right side (in border)

; Set for read from next scan on the right

; Read byte from VRAM
; Use shifted sprite pattern as a mask
; Signal collision
; If any bit set then there is R collision
; Move to next byte in ~TORE
; Move down a scan

27

2005 JR NZ,Check9 ; Jump if still in same row
7B LD A,E
D6085F SUB 8:LD E,A ; Restore to start of row
14 INC 0 ; Move to next row
1001 Check9 DJNZ Check6 ; Repeat for required scan.
A7C9 AND A:RET ; No collision

62 ADDR LD H,D ; Copy Y -coordinate to H
CB3CCB3C SRL H:SRL H
CB3c SRL H ; H=IN1'(HJ8)
7A LD A,D ; This is Y -=ordinate
E6076F AND 7:LD L, A ; L=YMODS
7B LD A,E ; This is X -=ordinate
E6F8 AND 248
B56F OR L:LD L,A ; L = L+INT(XJ8)·S
C9 RET
00 STORE OS 16,0 ; Define space for 16 bytes ci. storage

3EOO BASIC LD A, (STORE) ; Get which sprite to check
CDOOEC CALL Check ; Call check routine
9F SBC A,A ; If CARRY = 0 then 0, CARRY = 1 then 2SS
32EOEC LD (STORE+l) ,A ; Store the result for BASIC prognm

~ C9 RET

BOO BOO'a
There were problems with the scroll routines from the last issue. There were numbezs

in some cases, where there should have been question marks. Each call instruction was
supposed to be calculated by you and the numbers added in. The calls should have been
read as

CD???? CALL Upl
CD???? CALL Downl
CD???? CALL Leftl
CD???? CALL Rightl

This is because the addresses in the call instructions were all wrong. Howe~ost
people managed to figure it out eventually.

Information from the Disk Drive, about
RS-232, centronics and Floppy Disk Controllers

ie. The stuff I couldn't fit in this issue

Due out about November - December (after Finals)

28

•••••••••••••••••••••••••••••

: Posei.don SQftw'are :
• • • NZ SEGA DISTRIBUTORS •

FREEPOST 243
PO BOX 277
TOKOROA

NEW ZEALAND
• ••••••••••••••••••••••••••••

Decimator
Poker
Delta Fighter
Burgular Bill
Carverns of Karanor
Vortex Blaster
Aerobat
Orb of Power
Castle of Fear
Castaway
Burgular Bill and
Caverns of Karanor

32K only
32K only
32K only

16K / 32K
16K / 32K
32K only
32K only
32K only
32K only
32K only

on one disk
Michael Howard's - More than 50 Programs
Book and Tape - Teach Yourself BASIC Programming
LSV, Print 64 and Pattern Paint Disk / Tape versions
Magazine programs on cassette
Machine Code Summary Sheets

Australia New Zealand
Magazine subscription (6 issues) A$26 NZ$25

$27.95
$24.95
$24.95
$17.95
$19.00
$12.00
$19.95
$12.00
$12.00
$12.00

$50.00
$5.00
$6.00
$15.00
$20.00
$1.00

GST inc!
--------------------~------

Name
Address

Item

Payment by (circle one)

Cheque Cash

Credit Card No
Signed - _ -

Phone

No. of items $ Total

Add Postage $2.50

~ Total Enclosed $

Bankcard Visa
Orders over $20.00 only

I·-I
Expires / / 'hlco_

here

DECIMATOR
32Konly

Written by
Michael Boyd

For Poseidon Software

POKER

I ;

• r~l.rlr.' 1

f
11

Written by T. R. Speirs
for Poseidon Software

	(Sega Computer)-1988-Jul-Aug00a
	(Sega Computer)-1988-Jul-Aug00b
	(Sega Computer)-1988-Jul-Aug01
	(Sega Computer)-1988-Jul-Aug02
	(Sega Computer)-1988-Jul-Aug03
	(Sega Computer)-1988-Jul-Aug04
	(Sega Computer)-1988-Jul-Aug05
	(Sega Computer)-1988-Jul-Aug06
	(Sega Computer)-1988-Jul-Aug07
	(Sega Computer)-1988-Jul-Aug08
	(Sega Computer)-1988-Jul-Aug09
	(Sega Computer)-1988-Jul-Aug10
	(Sega Computer)-1988-Jul-Aug11
	(Sega Computer)-1988-Jul-Aug12
	(Sega Computer)-1988-Jul-Aug13
	(Sega Computer)-1988-Jul-Aug14
	(Sega Computer)-1988-Jul-Aug15
	(Sega Computer)-1988-Jul-Aug16
	(Sega Computer)-1988-Jul-Aug17
	(Sega Computer)-1988-Jul-Aug18
	(Sega Computer)-1988-Jul-Aug19
	(Sega Computer)-1988-Jul-Aug20
	(Sega Computer)-1988-Jul-Aug21
	(Sega Computer)-1988-Jul-Aug22
	(Sega Computer)-1988-Jul-Aug23
	(Sega Computer)-1988-Jul-Aug24
	(Sega Computer)-1988-Jul-Aug25
	(Sega Computer)-1988-Jul-Aug26
	(Sega Computer)-1988-Jul-Aug27
	(Sega Computer)-1988-Jul-Aug28
	(Sega Computer)-1988-Jul-Aug29
	(Sega Computer)-1988-Jul-Aug30

