
Introduction
Cygnus Support Developer’s Kit

Cygnus Support Developer’s Kit, page 1.
Manuals, page 3.
Using Online Documentation, page 5.
Your Support Contract, page 7.
Reporting Trouble, page 9.
Free Software, page 10.
About Cygnus Support, page 11.
Cygnus Support and the FSF, page 12.

Cygnus Support

Copyright c 1991, 1992, 1993, 1994, 1995 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Cygnus Support Developer’s Kit 1

Cygnus Support Developer’s Kit

This Developer’s Kit release puts at your disposal, in a single coor-
dinated and tested release, some of the best software development tools
available. These tools are available for native development (where the
same kind of system can run both the tools and the code you develop
with them) and for cross-development (where one system, the host, runs
the tools to develop software for another system, the target).

Cygnus Support has portedgnu tools to over sixty different platforms.
As part of our service, we integrate all our tools to ensure that they all
work together. Our developers use a regression testing method that
checks not only for problems with a single tool, but across all the tools.
We check for problems that a change in one program may cause in
another. We don’t ship your Developer’s Kit release until we know it
works.

The Developer’s Kit contains these development tools and utilities:
(Not all tools are available for all platforms and operating systems. See
section “Overview” in Release Notes, for specific information on your sys-
tem.)

Compilers and Development Tools

gcc C compiler

g++ C++ compiler

gdb Debugger

as Assembler

gasp Assembler Preprocessor

ld Linker

Libraries

libg++ C++ class library

libio C++ iostreams library

libc ansi C runtime library (only available for cross-development
toolkits)

libm C mathematical subroutine library (only available for cross-
development toolkits)

c y g n u s s u p p o r t

Cygnus Support Developer’s Kit 2

General Utilities

byacc Parser generator

flex Fast lexical analyzer generator

make Compilation control program

diff
diff3
sdiff Compare text files

patch Installs source fixes

cmp Compares files byte-by-byte

send-pr Sends structured problem reports to Cygnus

install-sid
Customizes send-pr for your site

gprof Performance analyzer (only available for Sun 4 systems run-
ning SunOS 4 or Solaris 2)

gcov Coverage analyzer

Binary Utilities

c++filt C++ symbol name deciphering utility

nm Lists object file symbol tables

objdump Displays object file information

size Lists section and total sizes

ar Manages object code archives

ranlib Generates archive index

strip Discards symbols

objcopy Copies and translates object files

Text Utilities

Texinfo (requires TEX)
texindex
texi2dvi Documentation formatting tools

makeinfo
info Online documentation tools

c y g n u s s u p p o r t

Manuals 3

Manuals
These manuals may be included in a hardcopy format in this Cygnus

Support Progressive Release, depending on the nature of your support
contract. Note: hardcopy versions of the documentation are available
as a separate product from Cygnus Support if your contract does not
include printed manuals. All documentation is included online with
every release; see “Using Online Documentation,” page 5.

For convenience we have bound them in two volumes:

Volume I Volume II
Introduction The GNU C++ Iostream Library
Installation Notes The Cygnus C Support Library
Release Notes The Cygnus C Math Library
Rebuilding From Source Using as
Reporting Problems The C Preprocessor
GNU Online Documentation Using ld
Using GNU CC The GNU Binary Utilities
Debugging with GDB Comparing and Merging Files: diff,
GNU General Public License diff3, sdiff, cmp, and patch

GNU Make: A Program for Directing
Recompilation

Source for all documentation is also included.
The manuals are designed for easy online browsing (see “Online

Documentation,” page 5). For online use, the accompanying software
distribution includes all the printed manuals, and also the following
documents:

FLEX: A Fast Lexical Analyzer Generator
Generates lexical analyzers suitable for gnu gcc and other
compilers.

Using and Porting GNU CC
Detailed information about what’s needed to put gcc on dif-
ferent platforms, or to modify gcc. Also includes all the
information from the printed manual Using GNU CC.

BYacc A discussion of the Berkeley Yacc parser generator.
User’s Guide to the GNU C++ Library

Details about the general-purpose gnu C++ library, covered
under the gnu Library General Public License.

Texinfo: The GNU Documentation Format
How you can use TEX to print these manuals, and how to
write your own manuals in this style.

c y g n u s s u p p o r t

Manuals 4

Cygnus configure
Details on the configuration program used in Cygnus re-
leases.

GNU Coding Standards
A complete discussion of the coding standards used by the
gnu project.

On the Sun-3 and Sun-4 (SunOS 4.1 or Solaris 2) platforms, the following
manual is also provided online:

GNU gprof
Details on the gnu performance analyzer.

Finally, man pages are included for all the programs in the release.
You have the freedom to copy the manuals, like the software they

cover; each manual’s copyright statement includes the necessary permis-
sions. The manuals themselves are also free software, and the source
code for them is also available on the tape.

Conventions

Our manuals use these conventions to help you distinguish com-
mands, filenames, and other program-specific objects from the descrip-
tive text.

Typewriter-text
Indicates text that is a literal example of a piece of a pro-
gram, such as environmental variable names like EDITOR. It
will also indicate keyboard characters you should type, or
other literal bits of text from a program, such as filenames
or examples.

KEY-NAME Indicates the conventional name for a special key on a key-
board, such as RET or DEL.

generic-name
Stands for another piece of text. For example, in the com-
mand description “To delete the file named filename, type rm
filename.” filename stands for the file you want to delete,
no matter what you’ve named it.

c y g n u s s u p p o r t

Using Online Documentation 5

Using Online Documentation

You can browse through the online documentation using either gnu
Emacs or the documentation browser program info included in the De-
veloper’s Kit distribution. Online, the manuals are organized into nodes,
which correspond to the chapters and sections of a printed book. You can
follow them in sequence, if you wish, just like in the printed book—but
there are also other choices. The documents have menus that let you go
quickly to the node that has the information you need. info has “hot”
references; if one section refers to another, you can tell info to take you
immediately to that other section—and you can get back again easily to
take up your reading where you left off. Naturally, you can also search
for particular words or phrases.

The best way to get started with the online documentation system is
to run the browser info. After this Developer’s Kit release is installed on
your system, you can get into info by just typing its name—no options or
arguments are necessary—at your shell’s prompt (shown as ‘eg%’ here):

eg% info

(You may need to check that info is in your shell path after you install
the Developer’s Kit release. If you have problems running info, please
contact your systems administrator.)

To learn how to use info, type the command ‘h’ for a programmed
instruction sequence, or CTL-h for a short summary of commands. If at
any time you are ready to stop using info, type ‘q’.

See section “The Info Program” in GNU Online Documentation, for
detailed discussion of the info program.

Cygnus Support Online Library

All of the manuals in our printed documentation set (see “Manuals,”
page 3) are also available via the Cygnus Support Information Gallery,
our World-Wide Web server, available at

http://www.cygnus.com/

Contact Cygnus Support for information on connecting via the World-
Wide Web.

As with all gnu software, the html source for our documents is avail-
able (or you can convert them yourself using publicly available utilities)
if you wish to put them into an internal Web server for use at your facil-
ity. Contact Cygnus Support for details, and please report any problems
to the Cygnus documentation department at doc@cygnus.com.

c y g n u s s u p p o r t

Using Online Documentation 6

Free Software Report
The Free Software Report is a Cygnus publication dedicated
to the business of supporting free software.

Volume 1, Number 1: “Free Software? Yes, Free Software”
Volume 2, Number 1: “Free Software And The Law”
Volume 2, Number 2: “Free Software Business Models”
Volume 2, Number 3: “Free Software: An Agent For Open
Systems”
Volume 3, Number 1: “Testing, Testing, 1-2-3”

Inside Cygnus Engineering
Inside Cygnus Engineering is a newsletter describing recent
and upcoming activities in the Cygnus Support engineering
division. We now have a complete archive of previous issues
of Inside Cygnus Engineering.

Technical Reports
Cygnus Support technical reports, written by Cygnus engi-
neers.

Security Issues in Embedded Networking
Simple Garbage Collection in G++

The GNU Instruction Scheduler
Runtime Type Support in C and C++

c y g n u s s u p p o r t

Your Support Contract 7

Your Support Contract

gnu development tools provide a powerful, integrated applications
development environment. Cygnus Support is one of the primary de-
velpment centers for gnu tools; your support contract links you directly
with the developers. With this release, Cygnus Support has provided
the latest fully-tested release of the gnu tools, preconfigured for your
supported system.

Updates to your progressive release

Every quarter during the period of your support contract, Cygnus
Support provides an updated toolchain, complete with the latest en-
hancements and improvements. The updates also include bug fixes and
updated documentation. Most customers receive these updates auto-
matically; if you wish to get automatic updating, please call our support
hotline at +1 415 903 1401.

You also receive a monthly newsletter, Inside Cygnus Engineering,
which keeps you informed about release dates, improvements, new sup-
ported platforms, and new products. We often request information about
your needs via surveys in this newsletter.

Contacting Cygnus Support

You can reach Cygnus Support by email, phone, or fax. To submit
problem reports,

Cygnus Support
toll free: +1 800 CYGNUS-1
main line: +1 415 903 1400
hotline: +1 415 903 1401
email: support@cygnus.com

Headquarters East Coast
1937 Landings Drive 48 Grove St., Ste. 105
Mountain View, CA 94043 USA Somerville, MA 02144 USA

+1 415 903 1400 +1 617 629 3000
+1 415 903 0122 fax fax +1 617 629 3010

Faxes are answered 8 am–5pm, Monday through Friday.

c y g n u s s u p p o r t

Your Support Contract 8

Future Needs

The availability of source code enables anyone to enhance the gnu

tools. While Cygnus is doing the greatest amount of ongoing devel-
opment, many other users around the world are also contributing en-
hancements and improvments. Cygnus integration and regression test-
ing ensures that enhancements made elsewhere can work with Cygnus’
developments. As your needs evolve, so do the capabilities of the gnu

tools and the support services available from Cygnus Support.

c y g n u s s u p p o r t

Reporting Trouble 9

Reporting Trouble

We’ve tried to make the programs in this release of the Cygnus Sup-
port Developer’s Kit as trouble-free as possible. If you do encounter
problems, however, we’d like to diagnose and fix the problem as quickly
as possible. You can help us do that by using the script send-pr to send
us your problem reports (prs). send-pr comes with this release, and is
easily configured to send reports back to Cygnus.

send-pr invokes an editor on a problem report form (after trying to fill
in some fields with reasonable default values). After you exit the editor,
send-pr sends the filled out form to the Problem Report Management
System (prms) at Cygnus Support. You can use the environment variable
EDITOR to specify which editor to use (the default is vi). Emacs users
will find prms especially easy to use.

For more information on send-pr, see section “Overview” in Reporting
Problems.

Filling out a problem report

Problem reports are structured so that a database program can man-
age them. When you fill out the form, please remember the following
guidelines:
� Each pr needs a valid customer-id and category.
� Describe only one problem per pr.
� For follow-up mail, use the same subject line as the one in the auto-

matic acknowledgment. It shows the category, the pr number and
the original synopsis line. This causes your mail to automatically
be filed with the original bug report. Your followup comments will
be sent to all the people who are working on the bug.

� Please try to make the subject or synopsis line as informative as
possible. For misbehaving software, you might use a sentence of
the form ‘Encrypted rlogin hangs if you send interrupt’ or ‘g++:
calling wrong overloaded function.’

� You don’t need to delete the comment lines while editing the pr form;
this is done by send-pr. Put your information before or after the
comments.

Consult the section “Examples and guidelines for effective PRs” in
Reporting Problems, for more discussion on this topic.

c y g n u s s u p p o r t

Free Software 10

Free Software

If you find our Developer’s Kit distribution useful, please feel free to
give or sell copies of the software and documentation to anyone you like.

In this release, we’ve assembled the most current editions of these
software development tools, tested them, made sure they work well to-
gether, and made them easy to install. The installation tape comes with
binaries already compiled for your system, and we’ve made them easy
to reconfigure and recompile from source.

These tools are free software; they are part of the gnu project, pro-
duced by the Free Software Foundation (fsf). “gnu” is the name of the
fsf’s evolving operating system (in speech, the ‘g’ is sounded). Cygnus
Support collaborates with the fsf in developing these tools. (For more
information on the relationship between Cygnus Support and the fsf,
please see “Cygnus Support and the FSF,” page 12.)

Cygnus Support exists to help our clients exploit their freedom in
using, adapting, or enhancing this software. Cygnus products are free
software, protected by the gnu General Public License (gpl). The gpl

gives you the freedom to copy or adapt any program it licenses—but
every person getting a copy also gets with it the freedom to modify that
copy (which means that they must have access to the source code), and
the freedom to distribute further copies. Traditional software companies
use copyrights to limit your freedoms; the gpl is designed to preserve
your freedoms.

Fundamentally, the General Public License is a license which grants
you these freedoms, and only imposes restrictions to ensure that no one
can take these freedoms away from anyone else.

For full details, see the LICENSE section in this manual set, or the
file ‘COPYING’ in the top level of the source code distribution.

c y g n u s s u p p o r t

About Cygnus Support 11

About Cygnus Support

Cygnus Support, founded in 1989, provides commercial support for
free software. Why free software? Free software is fast, powerful, and
more portable than its proprietary counterparts. It evolves faster be-
cause users who want to make improvements are free to do so.

Cygnus Support has become the leading development organization
of the gnu tools, contributing more than 50% of ongoing development.
In addition to in-house development, Cygnus leverages the increasing
cumulative pool of functionality available as public domain software on
the Internet, creating a virtual community of developers. Building upon
and contributing to this effort, Cygnus raises the level of functionality
available to the entire industry.

The problem with free software has always been that your company’s
programmers and engineers must spend time maintaining the tools as
well as using them, which ties up company resources. Cygnus frees up
those resources by supplying products and services, which allows you to
use state-of-the-art tools without the problems of maintenance. You can
now choose to use free software and get the advantages of powerful and
prompt support, combining the best of both.

Our team of experienced engineers include the leading architects for
g++, gdb, gas, and bfd. We use one of the most comprehensive bug-
reporting and tracking software in the business, prms.

Because all our improvements are also free software, you can dis-
tribute them widely within your organization, or to your customers,
without extra cost. No unwieldy licenses to manage, and no worries
about buying extra copies.

Cygnus makes sure that our customers’ problems get solved the right
way. No grungy little programs, no klugey fixes that don’t generalize,
no work-arounds that end up being features instead of temporary situa-
tions.
Cygnus Support
toll free: +1 800 CYGNUS-1
main line: +1 415 903 1400
hotline: +1 415 903 1401
email: support@cygnus.com

Headquarters East Coast
1937 Landings Drive 48 Grove St., Ste. 105
Mountain View, CA 94043 USA Somerville, MA 02144 USA

+1 415 903 1400 +1 617 629 3000
+1 415 903 0122 fax fax +1 617 629 3010

c y g n u s s u p p o r t

Cygnus Support and the FSF 12

Cygnus Support and the FSF

Cygnus Support and the Free Software Foundation cooperate on ma-
jor projects, such as the port of the gnu development tools to Solaris 2.
We look forward to continuing such cooperation in the future.

Cygnus maintains many programs and libraries for the fsf: g++,
gdb, gas, the linker, gprof, the binary utilities, libg++, and the Binary
File Descriptor libraries. In addition, Cygnus and the fsf share sources
for other programs on a regular basis.

Both Cygnus and the fsf agree that free software is the best way
to meet the industry’s technical needs. However, Cygnus and the fsf

have different missions. Cygnus, as a for-profit company, concentrates
on meeting its customers’ needs. The fsf concentrates on meeting the
internal needs of the gnu project.

Therefore, Cygnus may not accept into our source tree certain fsf

changes until they are reworked into a form acceptable for our customers’
needs—for example, changes that reduce performance or reliability on
the software platforms we support. Conversely, the fsf may not accept
changes from Cygnus that improve support for only a limited group of
users (Cygnus customers).

Also, Cygnus sometimes supports non-fsf code. Our C subroutine
library is an example. The fsf’s version carries licensing restrictions
which are impractical for customers who write code for embedded sys-
tems; as a result, we developed our own subroutine library, libc. The
Cygnus C subroutine library, although also freely redistributable, does
not carry the licensing restrictions that would inconvenience these cus-
tomers.

Finally, although the fsf makes every effort to provide high-quality
releases, its development requirements take priority. The fsf regards
software testing as the user community’s contribution to the gnu project.
Cygnus releases go through a quality assurance cycle which is in large
part driven by our knowledge of customer requirements.

c y g n u s s u p p o r t

Release Notes
Cygnus Support Developer’s Kit

Progressive–95q3

Cygnus Support

Edited by Jeffrey Osier (jeffrey@cygnus.com).

Copyright c 1995 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

i

Table of Contents

Overview . 1
Checking the Cygnus bug database by mail 2
Confidential information in problem reports 3

New in this release . 4
Changes to supported platforms . 4
What’s new with gcc . 4
What’s new with g++ . 5
What’s new with gdb . 5
New options for ld . 6

Limitations and Warnings. 7
Programs not available on some platforms . 7
Problem generating pic under hpux . 7

Issues from previous releases . 8
Don’t use ‘-traditional’ with ansi header files 8
-gstabs gives better C++ coff debugging . 8
Options for cpu32 and cpu32+ targets . 8
New gcc syntax for function attributes . 9
Debugging remote connections . 9
Accessing the ‘m68k-idp’ targets . 10
Leap year calculations . 10
No ‘ar q: : :’ on Unixware . 10
The LANG variable on RS/6000 . 11
Requirements for MS-DOS . 11
DEL does not work in MS-DOS Info . 11

Notes on rebuilding from source 12
Need to upgrade xlc to rebuild for rs/6000 12
Upgrade link.h for Unixware . 12
Use --with-gnu-as when configuring mips 13
Rebuilding the tools under Solaris 2 . 13
Multiple object code formats . 13
Rebuilding with the GUI debugger . 14

Problems fixed in this release 15
Binary File Descriptor library . 15
Binary Utilities . 15
Configuration . 16

c y g n u s s u p p o r t

ii

Diff and Patch . 16
Flex . 16
G++ . 16
Assembler . 24
Assembler Preprocessor . 25
Compiler . 25
Debugger . 28
Installation . 29
Linker . 29
C Support Library . 30
C++ Support Library . 31
Make . 31
Motorola Assembler . 31
C and Math Support Libraries . 32
Problem Reporting . 32

Appendix A Graphical User Interface for GDB
. 33

Getting Started . 33
Menus . 34
Windows . 35

Appendix B Specifying Names for Hosts and
Targets . 38

Host names . 38
Target names . 38
config.guess . 40

c y g n u s s u p p o r t

Overview 1

Overview

Cygnus Support Developer’s Kit
Progressive–95q3

The progressive–95q3 release is available for these native and cross-
development configurations:

TARGET

AMD 29k UDI (coff)

Intel x86 (a.out)

 Intel 960 VxWorks5.x

SPARC VxWorks

SPARC a.out

SPARClite a.out

Native

Hitachi SH (coff)

HOST

MIPS R3000 ecoff/elf

Z8000 coff

S
P

A
R

C
, S

ol
ar

is
 2

.3

S
P

A
R

C
, S

u
n

O
S

 4
.1

.3

IB
M

 R
/S

60
00

, A
IX

 3
.2

.5

S
G

I
Ir

is
, I

ri
x

4.
05

H

H
P

 9
00

0/
30

0,
 H

P
U

X
 9

H
P

 9
00

0/
70

0,
 H

P
U

X
 9

M
S

-D
O

S
/W

in
do

w
s/

N
T

i3
86

, U
n

ix
W

ar
e

1.
1.

1

SPARClite VxWorks

SPARClite coff

D
E

C
 A

lp
h

a,
 O

S
F

/1
 v

2.
0

MIPS R4000 elf

S
G

I
Ir

is
, I

ri
x

5.
2,

 5
.3

IB
M

 R
/S

60
00

, A
IX

 4
.1

Mot. 68k VxWorks5.1

Motorola 68k (a.out)

Motorola 68k IDP

Motorola 68k (coff)

PowerPC EABI (elf)

Intel 960 Nindy (coff)

AMD 29k VxWorks

SPARC v9

Hitachi H8/300 (coff)

Hitachi H8/500 (coff)

HP PRO (elf)

= available now

= contact Cygnus
 for availability

Motorola
68000
68020
68030
68040
68060
68EC000
68EC020
68EC030
68EC040
68302
68306
68307
68330
68331
68332
68F333
68F340
68333
68340
68341
68349
68360

Motorola/IBM
PowerPC
601
603
604
403GA
403GB

Hitachi
H8/310
H8/322
H8/323
H8/324
H8/325
H8/326
H8/327
H8/328
H8/329
H8/330
H8/350
H8/3332
H8/3002
H8/3003
H8/3040
H8/3041
H8/3042
SH7020
SH7021
SH7032
SH7034
SH7604

MIPS
R4000
R4400
R4600
R4650
R3000A
R3500
R3041
R3051
R3052
R3081
NEC 4200

Fujitsu
930
931
932
933
934

AMD
Am29000
Am29005
Am29050
Am29035
Am29030
Am29040
Am29205
Am29200
Am29245
Am29240
Am29243
Am386SE/DE
Am386SE/LV
Am386EM

SPARC
SPARC V7
SPARC V8
SPARC V9
SuperSPARC

Intel
i386EX
i386CX
i386SX
i486
Pentium
80960CF
80960CA
80960KA
80960KB
80960SA
80960SB
80960HA
80960HD
80960HT
80960JF
80L960JF
80L960JA
80960JA
80960JD

c y g n u s s u p p o r t

Overview 2

For discussion of the three-part naming scheme used to configure your
software for each host/target combination, see Appendix B “Specifying
Names for Hosts and Targets,” page 38.

These are the current version numbers for the individual programs
in the progressive–95q3 release:

Program Cygnus Version Numbers
bfd 2.5-95q3
binutils 2.5-95q3
byacc +28-95q3
diff 2.6-95q3
expect 5.7.0-95q3
flex 2.4.7-95q3
gas 2.5-95q3
gasp 1.2-95q3
gcc 2.6-95q3
gcov 1.5-95q3
gdb 4.14-95q3
info 2.9-95q3
ld 2.5-95q3
libg++ 2.6-95q3
libio 0.67-95q3
libc/libm 1.6-95q3
makeinfo 1.55-95q3
make 3.72-95q3
patch 2.1-95q3
texindex 1.45-95q3
texinfo.tex 2.122-95q3
send-pr 3.2-95q3
tcl 7.3-95q3

Checking the Cygnus bug database by mail

You can interrogate non-confidential bug reports in the Cygnus Prob-
lem Report Management System (prms) by electronic mail.

Send mail to ‘query-pr@cygnus.com’, with query parameters in the
‘Subject:’ line of your mail header. (The message body is ignored.)

For example, to inquire about problem reports numbered 4020 and
5004, send mail including these lines in the header:

c y g n u s s u p p o r t

Overview 3

To: query-pr@cygnus.com
Subject: 4020 5004

You can also include many command line options to request informa-
tion on bugs in a particular state, or a particular category; for example,
this header requests a list of all open g++ bugs that are not confidential:

To: query-pr@cygnus.com
Subject: --state=open --category=g++

If you do not include a ‘--state=’ specification in your subject line,
the mail server uses

--state="open|analyzed|feedback|suspended"

Careful! Since the default state specification for electronic mail queries
does not include closed, no news is good news—a closed bug yields a
response with no message body.

Also, confidential bug reports are not available via the mail query
server. You can request the status of your confidential PRs from your
Cygnus technical contact.

Many options are available. To see a synopsis, send a message like
this:

To: query-pr@cygnus.com
Subject: --help

Confidential information in problem reports

There has been some confusion about where to put confidential infor-
mation in problem reports sent with send-pr. If you submit a problem
report to Cygnus and you want its detailed contents to remain confiden-
tial, set the ‘>Confidential:’ field to ‘yes’.

However, the ‘Subject:’ line in the mail header and the ‘>Synopsis:’
field in the body of the PR are not treated as confidential information, as
they are used when we compile reports, such as the list of Fixed Prob-
lems in this manual (see “Problems fixed in this release,” page 15). Do
not put confidential information in these fields. Any code samples, ma-
chine descriptions, problem details, and so on of course remain strictly
confidential in any problem report marked as such.

The mail query server for problem reports never reports any infor-
mation from confidential bug reports.

c y g n u s s u p p o r t

New in this release 4

New in this release

There are improvements in each of the major development tools.
We’ve also fixed many problems. See “Problems fixed in this release,”

page 15, for a list of bugfixes.

Changes to supported platforms

hp pa1.1 pro (elf)
Support for the hp pa1.1 pro using the elf object file format
has been expanded. This target is now available for the
following hosts:
� hp9000/700 running hpux 9 (hppa1.1-hp-hpux)
� Sun sparcstation running SunOS 4.1.3 (sparc-sun-

sunos4.1.3)
� Sun sparcstation running Solaris 2.x (sparc-sun-

solaris2)
� PC running MS-DOS

Intel x86 (elf)
The Intel x86 chip using the elf object file format is now
accessible as a target from the Sun sparcstation running
SunOS 4.1.3 (sparc-sun-sunos4.1.3).

Intel 960 Nindy monitor (coff)
Support for the the Intel 960, coff object file format, utilizing
the Nindy monitor is now available for the Sun sparcstation
running SunOS 4.1.3 (sparc-sun-sunos4.1.3).

Hitachi SH3 (coff)
Support for the new Hitachi SH3 processor has been added
to the SH toolchain.

mips r4650
Support for the r4650 has been added to the mips toolchain.

For the complete matrix of supported hosts vs. targets, see “Intro-
duction,” page 1.

What’s new with gcc

Along with many bug fixes (see “Problems fixed in this release,”
page 15), the following features have been added to gcc:

c y g n u s s u p p o r t

New in this release 5

� A new option ‘-fpack-struct’ has been added to automatically pack
all structure members together without holes.

� Support for the new Hitachi SH3 processor has been added to the
SH toolchain.

� Support for the r4650 has been added to the mips toolchain.

What’s new with g++

A number of major changes appear in this release of g++.
� Support for exception handling has been improved; more targets

are now supported, and throws use the RTTI mechanism to match
against the catch parameter type. Warning: Optimization is not yet
supported with ‘-fhandle-exceptions’.

� Synthesis of compiler-generated constructors, destructors and as-
signment operators is now deferred until the functions are used.

� Explicit instantiation of template methods is now supported. Also,
inline template class foo<int>;

can be used to emit only the vtable for a template class.
� The template instantiation code now handles more conversions

when passing to a parameter that does not depend on template
arguments. This means that code like

string s; cout << s;

now works properly.
� Invalid jumps in a switch statement past declarations that require

initializations are now caught.
� Functions declared ‘extern inline’ now have the same linkage se-

mantics as inline member functions. On supported targets, where
previously these functions (and vtables and template instantiations)
would have been defined statically, they are now defined as weak
symbols so that only one out-of-line definition is used.

What’s new with gdb

Besides many bug fixes this quarter, gdb now features support for the
CPU32BUG monitor (found on m68k CPU32 boards, such as the BCC).

Many improvements have also gone into the gdb gui. The gui comes
in two flavors: the Unix gui, based on the Tcl/Tk toolkit, and WinGDB,
the gui for use under Microsoft Windows. See Appendix A “Graphical
User Interface for GDB,” page 33, for details.

c y g n u s s u p p o r t

New in this release 6

New options for ld

The gnu linker, ld, has two new options:

-split-by-reloc count
Attempts to creates extra sections in the output file so that
no single output section in the file contains more than count
relocations. This is useful when generating huge relocatable
for downloading into certain real time kernels with the COFF
object file format; since COFF cannot represent more than
65535 relocations in a single section. Note that this fails to
work with object file formats which do not support arbitrary
sections. The linker does not split up individual input sec-
tions for redistribution, so if a single input section contains
more than count relocations one output section contains that
many relocations.

-split-by-file
Similar to -split-by-reloc but creates a new output section for
each input file.

c y g n u s s u p p o r t

Limitations and Warnings 7

Limitations and Warnings

Programs not available on some platforms

dec Alpha running osf/1 2.0
The progressive-95q3 release does not include a linker (ld)
for the Alpha. The native linker is used.

ibm rs/6000 native
The progressive-95q3 release does not include the follow-
ing supporting programs in the native configuration for ibm
rs/6000.

ar objcopy ranlib
ld objdump size
c++filt nm strip
as

We ship the gnu compiler configured to use the native linker
and assembler, supplied by the machine vendor.

sgi Irix The Developer’s Kit requires the operating system vendor’s
C library and include files in a native configuration. The sgi
Irix operating system does not contain these files by default,
but they are included in a separate developer’s package. You
cannot use the Cygnus Developer’s Kit without this package.

hp9000/700 native
gnu ld is not included for the hp700 in the native configura-
tion.

Problem generating pic under hpux

The gcc option ‘-fPIC’ may cause the compiler to abort when per-
forming function inlining for hppa1.1-hp-hpux targets. This problem
has been fixed for 95q4.

c y g n u s s u p p o r t

Issues from previous releases 8

Issues from previous releases

These issues are not necessarily bugs, but they may help provide
advice if you run into problems with our release.

Don’t use ‘-traditional’ with ansi header files

Some vendors are starting to ship systems with ansi C header files.
You cannot use ‘-traditional’ if you include any header files that rely
on ansi C features.

This is not new behavior, but it can cause confusion. ‘-traditional’
causes the compiler to behave as a traditional Kernighan and Ritchie C
compiler rather than using the newer ansi standard.

-gstabs gives better C++ coff debugging

If you use the gcc option ‘-gstabs’, gcc embeds extended debugging
information in coff object files. (The extended debug information is
based on the stabs debugging format, which was originally used only
with the a.out object file format; see The stabs debug format, in your
sources as ‘src/gdb/doc/stabs.texinfo’, or contact Cygnus for more
information.) With this additional debugging information, you can debug
C++ programs with gdb, even on systems that use coff.

You can get better C++ debugging by compiling with ‘-gstabs’ for
these targets:

a29k-amd-udi m68k-coff
h8300-hms m88k-coff
z8k-coff sh-hms

Options for cpu32 and cpu32+ targets

The Motorola cpu32 and cpu32+ targets are part of the family of
68000 chips which Cygnus supports. There are a few options to help you
compile code for these targets:
� gcc has an option ‘-m68332’ to be used specifically when compiling

for the Motorola 68332 board. (gcc also has an option ‘-m68302’,
currently undocumented. The 68302 technically isn’t a cpu32 chip.)

� It is also possible to configure gcc for a target of ‘m68332-aout’ or
‘m68332-coff’ when rebuilding from source, in which case ‘-m68332’
is the default.

� gnu as accepts the following board-specific options:

c y g n u s s u p p o r t

Issues from previous releases 9

-mcpu32 -m68331 -m68332
-m68333 -m68340 (and -m68302)

Contact Cygnus Support for more information on our support for cpu32
and cpu32+ targets.

New gcc syntax for function attributes

To declare that a function does not return, you must now use the
‘__attribute__’ keyword (with two leading and trailing underbars) to
write something like this:

void fatal () __attribute__ ((noreturn));

Unfortunately, this new syntax is not compatible with older versions
of gcc. Here is an alternative syntax, which works in both the current
version and in some older versions:

typedef void voidfn ();
: : :

volatile voidfn fatal;

ansi C does not permit the formerly used syntax, ‘volatile void
fatal ();’, to have this meaning.

Likewise, to declare that a function has no side effects, so that calls
may be deleted or combined, write something like this (which works only
with the latest gcc):

int computation () __attribute__ ((const));

or like this (which works in some older versions):
typedef int intfn ();
: : :

extern const intfn computation;

See section “Declaring Attributes of Functions” in Using GNU CC,
for more discussion of function attributes.

Debugging remote connections

A common hurdle in cross development is to get the communications
set up properly between the target board and the development platform.

The gdb ‘set remotedebug’ command can help. It was designed to
help develop new remote targets; it displays the packets transmitted
back and forth between gdb and the target environment. This com-
mand can be helpful in diagnosing communications problems, for exam-
ple allowing you to observe packets not getting through, or noise on the
line.

The set remotedebug command is now consistent among the mips

remote target; remote targets using the gdb-specific protocol; udi (the

c y g n u s s u p p o r t

Issues from previous releases 10

amd debug protocol for the 29k); the 88k bug monitor; and Hitachi ROM
monitors. You can set it to an integer specifying a protocol-debug level
(normally 0 or 1, but 2 means more protocol information for the mips

target). See section “Communication protocol” in Debugging with GDB,
for details.

Accessing the ‘m68k-idp’ targets

The way gdb accesses programs intended for the idp board has
changed. With this release, as with the previous one, you should compile
programs for this board using ‘-Tidp.ld’ and the ‘-nostartfiles’ option
(this option is not necessary for coff configurations):

m68k-coff-gcc : : : -Tidp.ld : : :

or
m68k-aout-gcc : : : -Tidp.ld -nostartfiles : : :

This yields a binary file which you can you convert to an S-record using
objcopy, and then run directly on the idp board (see section “objcopy”
in The GNU Binary Utilities).

We used to provide pieces of a rom68k tool chain which were needed
to allow gdb to communicate with an idp board over a serial line. Mo-
torola now supplies a boot monitor called rom68k with which gdb can
communicate. To debug a program compiled in the manner described
above, type the following on the gdb command line:

target rom68k device 9600

where device corresponds to the device you used to download the binary
into the board (for example, ‘/dev/ttya’).

Leap year calculations

The calculation in ‘time.h’ breaks down whenever a leap year inter-
venes, though it has been improved in recent months. In particular,
leap-seconds are not accounted correctly.

Time functions are in the Cygnus libc, supplied for embedded sys-
tems only.

No ‘ar q: : :’ on Unixware

The “quick-append” option to gnu ar, specified with the keyletter
‘q’, does not work on Unixware. Since this option does not conform to
the posix specification for ar, it may be removed altogether in a future
release. Use the ‘r’ instead. See section “Controlling ar on the command
line” in The GNU Binary Utilities.

c y g n u s s u p p o r t

Issues from previous releases 11

The LANG variable on RS/6000

aix on the rs/6000 provides National Language Support (nls) for en-
vironments outside of the United States. Compilers and assemblers use
nls to support locale-specific representations of various objects includ-
ing floating-point numbers (‘.’ vs. ‘,’ for separating decimal fractions).
There have been problems reported where the library linked with gcc

does not produce the same floating-point formats that the assembler ac-
cepts. If you have this problem, set the LANG environment variable to
either ‘C’ (the C language locale) or ‘En_US’ (the American English locale);
either value should work.

Requirements for MS-DOS

The Cygnus Developer’s Kit is only supported onms-dos 6.2 or higher.
We do not recommend using the cross-development kit with less than

four (4) megabytes of RAM.
We provide a ms-dos extender with the cross-development kit for

ms-dos which does swapping to disk when ms-dos runs out of memory.
To avoid excessive swapping you must have at least two (2) megabytes
of RAM to run g++ on a PC with ms-dos. If you’ve got more than two
megabytes, the extra memory can be used as a disk cache to significantly
improve performance.

DEL does not work in MS-DOS Info

gnu Info, the online documentation browser, is available in our ms-
dos distribution.

Unfortunately, the dos version of Info, INFO.EXE, does not recognize
the DEL key. This key is normally used for paging backwards within a
node in Info.

As a workaround, you can page backwards by keying ESC v.

c y g n u s s u p p o r t

Notes on rebuilding from source 12

Notes on rebuilding from source
Details on rebuilding specific platforms and features are shown below.

See the manual Rebuilding From Source for detailed instructions.
Some general notes:
� You cannot run configure in the background; when configuring the

program expect, configure hangs with a terminal message similar
to the following:

checking mask type of select
checking return type of signal handlers
checking to see if signals need to be re-armed
checking whether cross-compiling... no
checking to see if stty reads from stdin or stdout

[1] + Suspended (tty output) ../progressive/configu\
re --prefix=‘pwd‘/stage1 -v |& tee config.out

at which point the shell waits for you to put the process in the
foreground again.

Need to upgrade xlc to rebuild for rs/6000

There is a reported problem in rebuilding the Developer’s Kit using
ibm native tools. (This problem does not crop up if you use gcc to rebuild
the tools.)

On thers/6000, xlc version 1.3.0.0 miscompiles ‘jump.c’. xlc version
1.3.0.1 or later fixes this problem. You can obtain xlc version 1.3.0.2 by
requesting ptf 421749 from ibm.

Upgrade link.h for Unixware

Note: This problem has been fixed in Unixware 1.1.1 and later.
In order to rebuild the Cygnus Developer’s Kit tools from source

on Unixware, you must first install a “fixed” ‘link.h’ file into
‘/usr/include’. This fix is supposed to be a part of the upcom-
ing Update 4 for Unixware, and is available on NetWire (the Com-
puServe support channel for Novell) as well as via anonymous ftp from
‘gateway.univel.com’, in the directory ‘/pub/developer/’.

Replace the original ‘/usr/include/link.h’ with the new file.
For your reference, Novell’s problem id for this is:
dv93-23707 Wrong /usr/include/link.h on Unixware

Note: the software must be configured with the option
‘--with-stabs’ to configure when rebuilding the tools for
Unixware. This is the default behavior.

c y g n u s s u p p o r t

Notes on rebuilding from source 13

For more information, see section “Rebuilding From Source” in Re-
building From Source.

Use --with-gnu-as when configuring mips

If you rebuild the entire Developer’s Kit from source, the top-level
configuration files handle the following configuration detail for you au-
tomatically.

But if you rebuild the compiler alone, for a mips target, we highly
recommend that you specify ‘--with-gnu-as’ on the command line for
configure. This avoids an incompatibility between the gnu assembler
and the mips assembler. The mips assembler does not support debugging
directives, and gcc uses a special program, mips-tfile, to generate
them. gnu as parses the debugging directives directly, and does not
require mips-tfile.

You should also specify ‘--with-stabs’ on the command line to
configure. This provides better debugging symbols, in particular for
C++.

If you plan to use gnu ld, be sure to specify ‘--with-gnu-ld’ when
you rebuild on any platform for which the linker is available.

Rebuilding the tools under Solaris 2

If you wish to rebuild the tools from source on your sparc system
running Solaris 2, you can use either the original Solaris 2 native-
development binaries from the Cygnus Support Developer’s Kit or the
unbundled compiler sold separately by Sun.

Beware! You might notice that there is a program called /usr/ucb/cc,
and be tempted to use it. Don’t; this program is incompatible with the
real compiler, which is in ‘/opt/SUNWspro/bin/cc’.

For more information on rebuilding the Developer’s Kit, see section
“Rebuilding From Source” in Rebuilding From Source.

Multiple object code formats

As in previous releases, you can reconfigure the Developer’s Kit
tools to support more than one object format (see section “Rebuilding
From Source” in Rebuilding From Source). However, we’ve changed the
configure command-line option slightly.

To add support for more object file formats (besides the format appro-
priate for the configured target), list the additional targets as arguments

c y g n u s s u p p o r t

Notes on rebuilding from source 14

to the configure option ‘--enable-targets’, separated by commas. For
example,

./configure --enable-targets=m68k-coff,i386-elf,decstation

To find out what targets are available, look in the file
‘bfd/config.bfd’ in the source distribution.

To configure the Developer’s Kit tools to support all available object
formats, use ‘--enable-targets=all’ rather than listing individual tar-
gets.

Rebuilding with the GUI debugger

If you are rebuilding from source and wish to configure gdb to use the
new Tk-based GUI (see Appendix A “Graphical User Interface for GDB,”
page 33), you must use the option --enable-gdbtk on the command line
to configure.

Note: Using ‘--enable-gdbtk’ when rebuilding under Solaris or
HPUX is known to fail. Contact Cygnus for an available patch if this is
a problem for you. (Reference PR #6743)

For more information on rebuilding from source, see the manual Re-
building From Source.

c y g n u s s u p p o r t

Problems fixed in this release 15

Problems fixed in this release

Here is a list of the problems we have fixed since the last Progres-
sive release. We hope that you find it useful. (You can contact us at
+1 415 903 1401 to inquire about the status of any problems.)

This information, as well as a list of all problems that have been
reported to us that are still outstanding, is available in ASCII form from
Cygnus Support. Contact us at support@cygnus.com or at the phone
number above and ask for the ASCII list of known and/or fixed bugs for
95q3.

The following summaries of fixed bugs in the progressive-95q3 re-
lease are organized by the reporting category—that is, by the software
component, such as gdb or g++.

Each bug summary begins with the Cygnus Support Problem Report
number. We consider a problem report closed only when the customer
who reported the bug agrees the problem is solved.

Binary File Descriptor library

2419 GCC generates wrong magic number for mc68000

4083 bfd/archive.c needs tweak to work with hp-pa for s300 cross

4854 no way to tell relocatable from absolute object file

Binary Utilities

3611 Suggested option for nm

4114 Disassembler does not handle BASE+DISPLACEMENT ad-
dress (I3008)

4449 sparc-x-386lynx strip doesn’t remove enough

4779 objdump number display base not consistent

5057 m68k-aout-objdump -d generates a ’tpcc #7’ instead of ’trap
#7’

5059 objdump -d could be more useful

5859 ar breaks purify

6024 ld fails on pic objects not in shared library

6255 ar tv nulls out oversized filenames instead of truncating

6345 all binutils should have an option to display BFD backends

c y g n u s s u p p o r t

Problems fixed in this release 16

6391 ar tv dumps core

6540 pb with library (creation)

6551 -static flag generated an internal compiler error [ld error]

6660 C++ filter doesn’t seem to demangle virtual tables

6736 GAS-SH crashes on undefined symbols

6985 objdump does not display

7023 29k COFF to Hex tools

Configuration

2086 error message for missing Makefile.in

2888 configure –srcdir=‘pwd‘ eats files

6389 configure fails to pass down –config-cache=FILE arg

6576 config.guess doesn’t match progressive precompiles.

6593 Why don’t you provide a binary for ’protoize’?

Diff and Patch

3235 Diff doesn’t compile with cc due to stray "const"

Flex

5971 flex requires libg++

G++

515 name of virtual is converted to ptr to a method, no vtbl indi-
rection

1018 segmentation violation caused by ambiguousness of conver-
sions

1070 PT parsing bugs

1205 question on building program that uses templates

1248 pure virtual destructor causes abend

1375 GNU C++, failed assertion in cp-lex.c:1109

c y g n u s s u p p o r t

Problems fixed in this release 17

1382 GNU C++ crashes when compiling a const member function

1416 Can’t invoke [cg]++68k,sparc

1419 question about browsing classes

1460 GNU C++ doesn’t do the right thing with -nostdinc

1462 new with placement syntax

1497 cc1plus gets fatal signal

1514 g++ doesn’t provide struct debugging information

1533 g++ instantiates some method templates it shouldn’t

1553 fatal signal from c++ compiler

1583 question on pure virtual destructor

1640 "-a" for test coverage doesn’t work

1657 g++ core dumps under error conditions

1772 expressions on enums of two elements become of type int

2124 Have a question about how G++ handles new of arrays

2153 compiler get fatal signal 11 (segmentation violation)

2279 gdb 4.8 can’t print struct/class with no member functions

2374 g++ stabs generation prevents debugging

2418 g++ fails to accept multiple extern declarations

2444 question on include directories automatically searched by
g++/gcc

2513 g++ code gets segmentation fault

2519 g++ produces incorrect results with -O or -O2

2572 Compiler errors, using inheritance

2608 confused vitrual pointer tables (OR confused programmer:
me)

2747 bad code is generated for delete [] of types without destructors

2761 inconsistent return types error for template class constructor

2984 friend Template operators dont work unless they are inline

3006 cannot convert int to const char &

3015 g++ calls wrong virtual function
3045 g++ does not get “error: jump past initializer (did you
forget a ’ ’?)” but Sun CC does

c y g n u s s u p p o r t

Problems fixed in this release 18

3150 Internal error in H8/g++ 3190 error “signment of read-only
variable ‘d2’ ” should say “assignment of read-only variable
IN variable ‘d2’ ”

3242 another template “syntax error at null character” reparsing
error

3244 no error if template member function occurs after template
instance use

3265 template bug: as error generated

3295 g++ calls the wrong virtual functions

3572 Bogus warning from g++

3587 Bizarre errors for nested classes in a template

3613 CC allows global scope operator on class names but g++ does
not

3634 forward declaration of template class after actual declaration

3639 Compilation error associated with -Woverloaded-virtual

3681 Accurate line number desired for “MapCH.h:319: syntax er-
ror before ‘*’ ”

3852 -Wenum-clash not included in -Wall

3911 can we do better than “syntax error before ‘*’ ” here?

4001 operator delete cannot be overloaded

4078 compiler emits warnings unnecessarily, aborts with math-
68881.h

4121 Memory fault when using cerr in class constructor.

4180 Incorrect warning statement.

4258 problem with an array class

4278 further thoughts on bug reported yesterday re: overloaded
operators

4341 Code for some member functions is not generated

4464 get seemingly erroneous error message from g++

4465 string.h declarations are inconsistent with builtins

4588 inconsistent behaviour of g++ using ’++’-operators (pre-
fix/postfix)

4627 ‘void foo() static const char *const v[] = 0 ; ’ gets internal
error

c y g n u s s u p p o r t

Problems fixed in this release 19

4633 template argument with explicit global scope: g++ gives error

4634 Pointers to member function, overloading: g++ gives wrong
error

4646 friend function in a template class: g++ ld error

4647 template class, forward declaratoin of a template function

4650 template class

4651 template class

4653 template class, pointer to member function

4655 template class, template arg

4656 Function templates

4659 template function

4660 template class, constructors

4661 template class, friend class

4662 template class, default argument in constructor/destructor

4664 class, C++ function, extern C functon with the same name

4665 Static class object initializing

4666 Scope reference inside the same class

4667 Virtual bases constructed in wrong order

4668 Internal compiler error.

4679 g++ acts strangely toward forward declaration for template
class

4684 extern "C" friend function

4685 extern "C" friend function, wrong duplicate declaration

4686 Template member functions not being generated in g++

4688 virtuals, templates, and C, oh my!

4692 g++ allows foo->member and foo.member to be applied when
foo is a pointer to an object

4695 should allow passing reference to undefined object

4696 const objects w/o constructors shouldn’t always go in text
segment

4707 parser problem

4738 GDB’s ptype won’t pierce structure

c y g n u s s u p p o r t

Problems fixed in this release 20

4745 g++ complains of inconsistent return type for template con-
structor

4747 static class members not generated in g++

4756 Cygnus Release Doesn’t Work With Purify/Quantify

4790 linker error when using -O

4819 global constructor from library not getting run

4866 template instantiation facilities are inadequate

4907 erroneous ’too many arguments for method’ message

4917 1 of n static members in a class is undefined.

4969 AIX ld too "smart" ?

4972 virtual function declared but not defined gets error

4977 inheritance, default copy constructor

5028 global constructors are called twice each

5126 C++ constructor produces bad code

5134 g++ generates incorrectly aligned code with MI and virtual
bases

5148 internal compiler error, pointers to member functions

5158 Possibly bogus aritmetic overflow warning

5218 #pragma implementation makes *all* funcs global

5228 more attribute ((packed)) bugs

5266 “#pragma implementation "NOTHING"” is silently ignored
if it is used too far into the file (no warning or error)

5306 dtor called for never constructed object

5307 eof not set

5382 g++ gets very confused by matching declarations and defini-
tions with default args and gives an error

5388 g++’ concept of the known size of an initializer differs here –
and the error messages are real cryptic

5407 cc1plus can’t deal with this file

5459 FSF 2.6.0 has lost the ability to reference lexically visible
static class members in a template

5462 Cannot declare a destructor in a user-provided class template
instantiation

c y g n u s s u p p o r t

Problems fixed in this release 21

5463 gratuitous ‘value computed is not used’ may hide further
badness?

5468 gratuitous? “redeclaration of derivation chain of type ‘class
MapLS<String,Ref<X3> >”’

5470 Why are the synthetic member functions with internal link-
age, copied in each file?

5472 large char array causes slow compilation

5503 g++ gets confused about how many arguments an imported
nested class needs

5526 cxx requires 800K to compile this while g++ requires 20MB;
cxx generates 2K of code; g++ generates 11K

5541 something causes a core dump

5588 g++ gets an internal compiler error with calls to the destruc-
tor for template types, when the type is a pointer to member
function.

5611 virtual function in local class: internal compiler error

5615 Destructor called twice here when a user-defined conversion
is silently invoked

5622 declaration causes syntax error

5624 Linker complains about missing inlined template methods

5643 error on “initialization to ‘void (X::*)()’ from ‘void (X::*)()’ ”

5659 g++ gives wrong error on operator overloading

5666 g++ deletes temporaries before they should be deleted

5668 g++ gives wrong error (function template)

5671 Link problem

5684 g++ doesn’t generate valid temporary object

5692 the message “ argument list for ‘c’ does not match any in class
‘A::c’ ” is misleading in this instance

5745 g++ gives wrong error dealing with local class

5763 overload operator resolution: g++ gives wrong error

5959 internal error on scalar init for array.

6032 g++ fails to access protected member of parent’s parent class
when parent is a virtual base

6037 g++ calls constructor for an object even if new fails

c y g n u s s u p p o r t

Problems fixed in this release 22

6039 GCC EXEC PREFIX conflicts with Purify Software tools

6047 g++ can’t mangle names correctly where part of the name is
an anonymous type

6050 How can one explicitly call static initializers from dls under
sunos?

6057 new compile error 1st compile after upgrade

6082 gcc uses C include path for C++ includes

6093 operator delete access control not enforced

6131 unable to compile constructors of template that inherits from
virtual base class

6151 using -fno-implicit-templates causes pc-relative reference to
external symbol on 29k target

6172 syntax errors when new operator is overloaded

6193 overloading of new with a class encounters syntax problems

6205 pragma implementation used to be default if base matched
header

6261 Need help with undefined symbols.

6330 new syntax errors on previously compiled code with new com-
piler

6553 Is ’true’ now a reserved C++ keyword?

6568 Overload resolution of user defined operators broken be-
tween 2.6.3 and rotd Feb 23

6569 MI, virtual bases and rtti

6582 g++ treats enum as UNsigned

6609 Not all templates are exported with -fexternal-templates

6610 Virtual base classes fail to allocate properly

6625 Missing declarations

6629 abs(double) redefinition whines

6648 Missing operator= for ostream

6658 g++ - type checking failure - ostream& v/s ostream*

6661 Internal compiler error for static initializers

6662 gcc: Internal compiler error

6663 I960 branch prediction bit

c y g n u s s u p p o r t

Problems fixed in this release 23

6683 Internal compiler error + Compiler hang

6704 internal compiler error

6705 compiler hangs

6710 compiler hangs

6721 fixproto fails to parse some header files

6802 Templates ain’t working

6816 g++: array-ptr-conversion

6835 c++ reports "internal compiler error" in function almostEq

6836 when I compile this example, I get a compiler error in std.
includes.

6847 Cannot successfully apply previously received patch.

6885 Incorrect type handling

6908 g++ generates an invalid access control error.

6909 Overriding virtual function returning different type loses

6917 virtual table thingy

6943 #pragma interface causes undefined references to virtual ta-
bles

6979 Getting "warning: recoverable compiler error, fixups for vir-
tual function"

6980 we have a problem to report

7007 When is the explicit keyword functionality due out?

7013 g++ 95q2 can’t generate static (non-public) vtables

7019 g++ : internal compiler error

7028 g++ : Internal compiler error

7037 Re: Question regarding g++/6981

7068 g++ 29k incorrectly overwrites a register used to cache a
function address

7077 g++ applies conversions differently between infix and prefix
form of the same operator

7095 request to ftp latest ANSI C++ paper if you have it

c y g n u s s u p p o r t

Problems fixed in this release 24

Assembler

1358 as68k accepts "-m68881"

1359 gas -mc68000 causes a bus error on DECstation with floating
point insns

1360 gas for sparc doesn’t recognize "trivial save"

1368 gas: doesn’t know about fpcr,fpsr,fpiar

1376 gas-sparc: some synthetic instructions don’t support con-
stants

1480 68020 assembly instruction not handled by gas

1664 lables resembling registers confuse as68k

1673 The size of the bsr instruction varies with the displacement

1674 m68k-coff-as blows up but m68k-aout-as doesn’t

1741 Assembler confused about symbols starting with "sp "

2071 gas assembly listing format error

2434 gas generates incorrect addresses for pc-relative jsr

2663 gas produces wrong code for label(pc,d7.w)

3211 Assistance With gas

3292 need software workaround for 68331 processor hardware bug

3554 using the MARK macro causes the compiler to get a stack
dump

3600 Local BSS symbols mislocated (I1997)

4868 fatal 6 in assembler when -g used

5632 mips64-elf-gcc without -g on .S file does an improper instr
reorder

5758 i960-vxworks-gas generating bad rellocation information

5784 .mdebug stabn local symbols have wrong layout

6326 Can not assemble certain MIPS machine instructions

6363 apparent bad output for weak symbol definition

6676 Delay slots not optimized correctly under specific circum-
stances.

6732 GAS-SH issues no error; leaves 0 length file as output

c y g n u s s u p p o r t

Problems fixed in this release 25

Assembler Preprocessor

6780 GASP changes a .data to a .long?

Compiler

1401 crts.o shouldn’t be included in link for OSE targets.

1402 SOFT FP for 68k missinf from OSE release

1763 alignment of gcc structs

2068 question about register variables in gcc

2443 internel compiler error

2599 inline expansion of shift operations for long long desired

2643 i386-aout-gcc forgot about the " " prefix for externals

2669 -m68020 options runs cpp with -Dmc68000

2718 Masking of unsigned int in big-endian region incorrect
(#I779)

2941 gcc m68k optimizer oddity

3087 performance analysis: can we use gcc -a option

3841 warning: variable ‘r’ may be clobbered by ‘longjmp’

4401 mips64-elf-gcc -pipe disabled in gcc specs file

4453 static globals allocated with incorrect size

4477 Can protoize and unprotoize be included in binary distribu-
tion?

4500 G++ passes parameters to function incorrectly

4580 stdio.h is not correctly fixed for AIX3.2.5 release

4593 compiler aborts on bitfield return

4600 Conflicts between cygnus and vxworks system header files &
libraries

4613 libgcc.a for -m68000 has 68020 instructions (bsrl)

4713 inconsistent handling of #endif un-terminated comments

4744 Request more info on proposed changes in m68k-gcc

4841 lhu used instead of lbu for struct element access

4877 gcov directory handling problems

c y g n u s s u p p o r t

Problems fixed in this release 26

4894 gnu linker is not able to find libX11.a and won’t link all

4905 gcc inline function has poor switch optimization on literals

5303 Help on gcc for SOLARIS

5304 Need option to say "all longs are aligned on 16 bit bound-
aries".

5403 gcc does incorrect code generation

5435 including math-68881.h emits code for atan, exp, log, and
sqrt

5498

5521 compilation time seems excessive

5523 extenddfxf2 not implemented for 68k -msoft-float

5524 compiler generates label LBB$0002 which gdb uses

5527 LynxOS linkage problems

5573 Internal compile error generated.

5662 Pointer manipulations generate bus errors

5702 bad .rodata and .data sections

5783 stabn’s with out of order line numbers

5790 gcc infinite loop on bad C source

5849 Want option that behaves like GCC EXEC PREFIX (was:
94q4 distribution errors for mips64el-elf)

5913 -m68332 links with wrong libs

5951 gdb fails to recognize a struct type

5985 Debugger cannot show aggregate type

6022 Test of send-pr please ack.

6028 division by a constant is compiled incorrectly for R4000

6051 gcc has internal error with -O2 and -O3

6098 MIPS GCC code gen question

6138 Single precision floating point multiplication in mips-elf-
940504 generates a FP exception.

6191 code generation for ternary expressions with write only mem-
ory fails

6342 new feature: -fpack-struct

c y g n u s s u p p o r t

Problems fixed in this release 27

6460 LISTING /home/ed/tmp/cca19507.s

6480 pointer compares on hppa not always handled correctly

6693 Invalid fixups in collector

6857 gcc on hppa generating bad code with -O[123]

7107 HPPA: function ptr compare crashes optimizer

page 1

6474 gcc generating calls to "sqrt"

6489 gcc should define SVR4

6524 low nibble of int not stuffed into 12 bit bit field

6541 g++ finds incorrect include file

6546 invoking another assembler

6549 Re: Internal compiler error: program cc1 got fatal signal 11

6597 Re: GCC-SH: register unnecessarily allocated in gen shifty op?

6598 GCC-SH: andcosts() calculates costs incorrectly

6599 GCC-SH: REGISTER MOVE COST is too expensive for T-bit
move

6603 Re: GNU mixed language programming

6623 GCC-SH: sh.md doesn’t know ashrsi3 destroys r1

6655 Can gcc produce executables that are debugable by both gdb
and dbx?

6672 Segmentation violation using strtok.

6675 gcc generates unaligned data access exception.

6731 gcc doesn’t search /usr/local/lib/gcc-lib as claimed by docs

6768 mips64-elf jal delay slot filled with ’lw $2,value’ is broken

6771 Warning: Can’t load Codeset file ’C’, using internal fallback

6775

c y g n u s s u p p o r t

Problems fixed in this release 28

Debugger

1686 gdb misdisplays some information

2006 gdb can’t find a C++ fn that is not a member of a class

2072 gdb fails to find symbols

2085 gdb and stepping into "new"

2317 gdb fails to disassemble m68k "trap" instruction

2440 gdb internal error for i386-aout-gdb

2819 gdb cannot print C++ compiled structures defined without
tags

2854 gdb does not properly handle cfront 3.0 names

3141 gdb: xcoff internal: pending include file exists.

3905 GDB unable to de-mangle template name (I2429)

3906 Backtrace loses info after superclass constructor call (I2430)

4000 segmentation violation when setting breakpoints. (I2934)

4179 Bus timeout too short (I3242)

4261 m88110-*gdb unable to find functions and local variables

4262 ’next’ and ’step’ commands do not work as specified (I3358)

4279 m88110-bug-coff-objdump,gdb disassembly of trap instruc-
tions

4478 gdb is confused by external labels added to the code. (I4075)

4494 I get "badly mangled named" when I ptype *this

4556 gdb print elements cannot print 0 elements

4576 With language chill identifiers starting with ‘ ’ are not al-
lowed

4610 gdb crashes within emacs-19

4903 gdb doesn’t work correctly

5005 hppa backtrace consistently produces error message

5207 gdb can’t properly debug c++ objects

5948 GDB question

5988 With –annotate=2, gdb dumps core on command sequences

6078 gdb new feature request in exception handling

c y g n u s s u p p o r t

Problems fixed in this release 29

6175 does not display correctly external var of type ptr to char

6302 gdb can’t find data

6409 gdb cannot find source code on breakpoint

6443 Problems printing "this" in template function.

6535 gdb fails in trying to retrieve saved registers for a frame

6548 Issuing the "handle all print" command to gdb will generate
a segmentation violation

6577 problem with invoking gdb in progressive-95q1

6591 gdb shared library version warnings

6592 gdb has some hardcoded pathnames

6642 gdb always starts windows?

6681 problem in remote debugging of m68k target using 95q1 gdb

6764 GDB GUI Help missing, would like to run non-GUI

Installation

6566 installation problems with SunOS 4.1.3 / Solaris 2.3

6640 Installation error Cygnus Support Developer’s Kit

6644 Install is broken on OSF1 2.0

6765 Install script doesn’t recognise OSF/1 2.0

Linker

2330 ld places wrong "machine type" into A.OUT output files

4785 ld ignores -T option

4788 ld generates errors for variables assignments over 16 bits

4803 ld fails with segmentation violation

5136 gnu ld with g++ on alpha-osf1.3 does not generate viable
executables

5312 "ld" for AMD29K consumes excessive resources

5699 Use of DEFINED() function in scripts causes core dump.

5751 data section items not aligned correctly with -G0 option

c y g n u s s u p p o r t

Problems fixed in this release 30

5910 problem with R4000 compiler
6049 Do we support runtime loadable libraries (dlopen) on hppa?
6157 Don’t understand output formats and Endian issues
6170 loader coredumps w/o error on object files w/different ver-

sions
6238 weak symbols defined first should be overidden
6239 94q4 mips64-elf-ld abort() in map program segments()
6258 ld -O a.out-mach3 does not produce a.out output
6341 Can not load output from the linker: "Backward seek"
6343 bad relocation
6397 ld aborts
6414 ld crashes when cross-compiling for the hurd on netbsd
6450 Link on Solaris platform fails with "bfd assertion fail"
6476 ld -shared sets execute bit on output file
6637 Linker gets memory exhausted error
6678 -split-by-reloc does not consider alignment characteristics
6791 code that linked with old version of ld now has undefined

references
6796 abort during linking
6853 Linker doesn’t order text as requested on command line
6893 Can’t link standard library functions
6969 AT keyword in linker script does not work.
6998 File object produce errors while the ld command
6999 File object produce errors while the ld command
7024 linker reports "No symbols" in library
7025 linker is running out of memory
7063 ld of common symbols possibly not correct
7080 LD-SH: LD incorrectly resolves label

C Support Library

5202 statics remain in libc which should be in reent
5241 memory leaks from Balloc
6968 Which libc to use for 68360 compiles?

c y g n u s s u p p o r t

Problems fixed in this release 31

C++ Support Library

1244 <<long long can call <<char, conversion and

1245 Does the g++ library restriction apply to embedded medical
systems?

2254 question on newer vintage of g++

2269 builtin.h max doesn’t work

2824 warning: use of ‘...’ without a first argument is non-portable

3660 string.h does not declare bfill(). (I2121)

4242 progessive-930929 has stopped work

4463 iomanip.h needs changes to work-around some defects

5209 iostream gives erroneous value for INT MIN

6726 large # of I/O operations in program vs. older GNU version

Make

2017 make dependencies using archive files have a problem

2372 verbose messages from recursive make considered a defect

2441 make long-named options broken

4416 ’make’ does not run under solaris2.2

4676 How to include files conditionally depending on target with-
out recursion

6645 can’t override make variable with trailing + character in
name

Motorola Assembler

2157 Difference between mas and Motorola compatible assembler

c y g n u s s u p p o r t

Problems fixed in this release 32

C and Math Support Libraries

2542 newlib problem

2735 gcvt does not work for negative numbers

2852 order of #includes can hide wchar t (and others)

3285 Line buffered files have problems and lose data

3286 printf("%s",NULL) prints "null" rather than ""

3287 localtime returns pointer to a dynamic variable

3495 C library context structure too big

4053 localtime and mktime functions do no handle leap years right

4417 libc ’System Calls’ documentation missing ’open()’

4583 Trouble finding library routines

4594 cannot include both math.h and math-68881.h

4733 Balloc should use calloc ?

4960 embedded errno facility is not extensible

5434 cannot include both math.h and math-68881.h

5531 Bus error caused by improper use of Balloc in dtoa.c

5547 toupper/tolower reference argument twice

6497 stdio and printf

6500 sprintf fails on some numbers

6595 atof("0.123456789012345678") -> infinite loop

6702 missing multibyte character functions

6708 pointer returned by [cm]alloc not aligned properly

Problem Reporting

4941 make install puts send-pr in wrong place

5364 send-pr.el gives bogus default response

5438 send-pr fails due to shell-command-on-buffer and point

c y g n u s s u p p o r t

Appendix A: Graphical User Interface for GDB 33

Appendix A Graphical User Interface for
GDB

gdb in this release is configured to use the new Graphical User In-
terface.

To run the GUI under Unix, just type ‘gdb’. If your windowing en-
vironment is set up correctly (see “Getting Started,” page 33) the GUI
pops up automatically. (To run gdb without the GUI, use ‘gdb -nw’.)

The gui is based on Tcl and the Tk windowing toolkit; a different
system was used to develop the GUI under Windows (available soon),
but the underlying structure is the same.

When running as a Unix program and using the X11-based interface,
you must of course be using an X server and/or workstation and your
DISPLAY environment variable must be set correctly. If either of these is
not true, then gdb starts up using the traditional command interface.

The exact layout and appearance of the windows depends upon the
host system type. General behavior and layout is consistent across
all platforms; omissions or restrictions on particular platforms, if not
documented as unavoidable, should be considered bugs and reported.

All gdb windows have a common structure. Each window has an
associated menu bar, which may be at the top of the window or perhaps
elsewhere. Some of the menus and menu items in the menu bar are
common to all gdb windows, while others are specific to particular types
of windows. Below the menu bar is the working data area of the window.
If the data is too large to display all at once, the data area shows scroll
bars on its right and bottom sides. Below the data area are two optional
features: a status/data line, and a button box.

For details on using gdb, see section “GDB Commands” in Debugging
With GDB.

Getting Started

To launch the gdb gui, simply type gdb on the command line. If you
are in a windowing environment and your DISPLAY variable is set cor-
rectly, the Command Window and Source Window appear. To suppress
the gui, use the ‘-nw’ (non-windowing) option on the command line.

If you move the binaries to somewhere other than their original loca-
tion, you need to set the following three environment variables:

TCL_LIBRARY
TK_LIBRARY
GDBTK_FILENAME

c y g n u s s u p p o r t

Appendix A: Graphical User Interface for GDB 34

TCL_LIBRARY is the location (directory) of tcl code that tcl expects to
be able to find, while TK_LIBRARY is the same for tk.

GDBTK_FILENAME is the pathname to the tcl code that actually defines
the gdb graphical interface.

For example, to set these environment variables if you installed in the
standard location for this release (‘/usr/cygnus/progressive-95q3/: : :’),
use the following (backslashes, \, indicate a line continuation even
though a line break is shown; this is to make the example able to fit on
the printed page).
set TCL_LIBRARY=\

/usr/cygnus/progressive-95q3/lib/tcl
export TCL_LIBRARY
set TK_LIBRARY=\

/usr/cygnus/progressive-95q3/lib/tk
export TK_LIBRARY
set GDBTK_FILENAME=\

/usr/cygnus/progressive-95q3/H-hosttype/lib/gdbtk.tcl
export GDBTK_FILENAME

Note: sh syntax is shown. Use the syntax appropriate for your shell.

Menus

File Menu
The standard file menu provides operations that affect the
overall state of gdb. These are mainly file operations, but
other options exist as well.

File... Lets you set the combined executable and symbol
file that gdb will use. (Like the gdb command
‘file’.)

Target... Brings up a dialog that you can use to connect
gdb to a target program. The dialog is described
in more depth later. (Like the gdb command
‘target’.)

Edit... Starts up an editor to modify the source file being
displayed.

Exec File...
Lets you set the executable file that gdb will use.
(Like the gdb command ‘exec-file’.)

Symbol File...
Lets you set the symbol file that gdb will use.
(Like the gdb command ‘symbol-file’.)

c y g n u s s u p p o r t

Appendix A: Graphical User Interface for GDB 35

Add Symbol File...
Lets you add additional symbol files. (Like the
gdb command ‘add-symbol-file’.)

Core File...
Lets you set the core file that gdb will use. (Like
the gdb command ‘core-file’.)

Shared Libraries...
(Like the gdb command ‘sharedlibrary’.)

Quit Quits gdb. (Like the gdb command ‘quit’.)

Options Menu
The Options Menu is different for each window, showing the
viewing options available within that window. In the Source
Window, for example, one of the options is whether to display
line numbers.

Window Menu
The Window Menu allows access to all the windows available
in gdb. The first part of the menu lists all of the predefined
individual windows. If the window exists already, its item
will be marked as such; selecting the item will cause the
window to be put in front if it is obscured. If the window does
not exist, then it will be created.
The second part of the menu lists additional windows that
you may have created, such as source windows or variable
displays.
Selections on this menu include:
� Command
� Source
� Assembly
� Registers
� Variables
� Files
� any other windows you have open

Help Menu
The Help Menu includes access to gdb’s online help.

Windows

c y g n u s s u p p o r t

Appendix A: Graphical User Interface for GDB 36

Command Window
The command window provides access to the standard gdb

command interpreter. In nearly all cases, commands typed
into this window behave exactly as for a non-windowing gdb.
Note that not all changes to gdb are be reflected in this
window. For instance, if you type a ‘step’ command, then
click on the ‘step’ menu item in the source window, then type
another ‘step’ command, the command buffer shows only two
steps, although you have actually done three. gdb places an
ellipsis (: : :) in the command buffer when operations in other
windows are done, as a reminder that the command buffer
is incomplete. The command window has no status line or
button box.

gdb

File Options Window Help

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for
details. GDB 4.13-95q1 (sparc-sun-sunos4.1.3), Copyright 1994 Free
Software Foundation, Inc.

* Command Buffer *

(This example screen is the initial Command Window from
the Unix version of the gdb gui.)

Files Window
The Files Window lists all of the files that were used to build
the executable.
Clicking in the bar in the left margin expands/contracts the
display of included files and symbols defined by the file.

Source Window
A source window displays a single file of source code.

c y g n u s s u p p o r t

Appendix A: Graphical User Interface for GDB 37

The left margin includes an indicator for the current PC,
breakpoints and potential breakpoints, and (optionally) line
numbers.

c y g n u s s u p p o r t

Appendix B: Specifying Names for Hosts and Targets 38

Appendix B Specifying Names for Hosts
and Targets

Your tape is labeled to indicate the host (and target, if applicable) for
which the binaries in the distribution are configured. The specifications
used for hosts and targets in the configure script are based on a three-
part naming scheme, though the scheme is slightly different between
hosts and targets.

Host names

The full naming scheme for hosts encodes three pieces of information
in the following pattern:

architecture-vendor-os

For example, the full name for a Sun sparcstation running SunOS
4.1.3 is

sparc-sun-sunos4.1.3

Warning: configure can represent a very large number of com-
binations of architecture, vendor, and operating system. There
is by no means support for all possible combinations!

The following combinations refer to hosts supported by Cygnus Sup-
port. Some common short aliases are included, but these may be obsolete
in the future. (For a matrix which shows all supported host/target com-
binations, see section “Overview” in Release Notes.)

canonical name alias platform
sparc-sun-solaris2 sun4sol2 Sun 4 running Solaris 2
sparc-sun-sunos4.1.3 sun4 Sun-4 running SunOS 4
mips-dec-ultrix decstation DECstation
rs6000-ibm-aix rs6000 IBM RS6000
mips-sgi-irix4 iris SGI Iris running Irix 4
m68k-hp-hpux hp300hpux HP 9000/300
hppa1.1-hp-hpux hp700 HP 9000/700
i386-unknown-sysv4 UnixWare
alpha-dec-osf1.3 DEC Alpha running OSF/1 v1.3

Target names

If you have a cross-development tape, the label also indicates the
target for that configuration. The pattern for target names is

architecture[-vendor]-objfmt

Target names differ slightly from host names in that the last variable
indicates the object format rather than the operating system, and the

c y g n u s s u p p o r t

Appendix B: Specifying Names for Hosts and Targets 39

second variable is often left out (this practice is becoming obsolete; in
the future, all configuration names will be made up of three parts).

In cross-development configurations, each tool in the Developer’s Kit
is installed with the configured name of the target as a prefix. For
example, if the C compiler is configured to generate coff format code for
the Motorola 680x0 family, the compiler is installed as ‘m68k-coff-gcc’.

Warning: configure can represent a very large number of tar-
get name combinations of architecture, vendor, and object for-
mat. There is by no means support for all possible combinations!

This is a list of some of the more common targets supported by Cygnus
Support. (Not all targets are supported on every host!) The list is not
exhaustive; see section “Overview” in Release Notes, for an up-to-date
matrix which shows the host/target combinations supported by Cygnus.

Motorola 68000 family
m68k-aout a.out object code format
m68k-coff COFF object code format
m68k-vxworks VxWorks environment

Motorola 88000 family
m88k-coff COFF object code format

Intel 960 family
i960-vxworks5.0 VxWorks environment (b.out format)
i960-vxworks5.1 VxWorks environment (COFF format
i960-intel-nindy Nindy monitor

amd 29000 family
a29k-amd-udi UDI monitor interface

To use the minimon interface, use this configuration
with the auxiliary program MONTIP, available from AMD.

sparc family
sparc-vxworks VxWorks environment
sparc-aout a.out object code format
sparclite-aout a.out object code format
sparclite-coff COFF object code format

Intel 80x86 family
i386-aout a.out object code format
i386-netware NetWare NLM

idt/mips r3000
mips-idt-ecoff IDT R3000, big endian ECOFF
mipsel-idt-ecoff IDT R3000, little endian ECOFF
mips64-idt-ecoff IDT R4000 ECOFF

Hitachi h8300
h8300-hms-coff COFF object code format

Hitachi sh
sh-hms-coff COFF object code format

c y g n u s s u p p o r t

Appendix B: Specifying Names for Hosts and Targets 40

z8000

z8k-coff COFF object code format

config.guess

config.guess is a shell script which attempts to deduce the host
type from which it is called, using system commands like uname if they
are available. config.guess is remarkably adept at deciphering the
proper configuration for your host; if you are building a tree to run on
the same host on which you’re building it, we recommend not specifying
the hosttype argument.

config.guess is called by configure; you need never run it by hand,
unless you’re curious about the output.

c y g n u s s u p p o r t

Installation Notes
Cygnus Support Developer’s Kit

Release progressive-94q4

Contents:

Brief installation instructions:
Installing in brief for Unix systems, page 1.
Installing in brief for ms-dos systems, page 3.

Detailed installation information:
Developer’s Kit installation on Unix, page 5.
Developer’s Kit installation on ms-dos, page 21.

Appendices:
Appendix A Platform names, page 27.
Appendix B Cross-development environment, page 31.

Cygnus Support hotline: +1 415 903 1401

Copyright c 1994, 1995 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Installing in brief for Unix systems

Installing in brief for Unix systems

You can run the brief installation procedure if:
� You are installing on a standard Unix platform (see Appendix A

“Platform Names,” page 27)
� Your Unix machine has its own device which corresponds to your

distribution media (e.g., a qic-24 tape drive)
� You’re willing to use the installation directory ‘/usr/cygnus’
� You have enough disk space in ‘/usr/cygnus’ (your tape label lists

the required disk space for binary, source, and both)

Otherwise, see “Developer’s Kit installation on Unix,” page 7.
Steps for Brief Install:

(In examples, we show the system prompt as ‘eg$’.)
1. Make sure you can write in ‘/usr/cygnus’ by typing:

eg$ su root (enter root password)
mkdir /usr/cygnus (ignore “File exists” error if any)
chmod 777 /usr/cygnus
exit (root access not needed beyond this)

2. Load the distribution into the drive and extract the Install script.
WARNING: you must use a non–rewinding tape device; see “Device
names,” page 5.

eg$ cd /tmp
eg$ tar xfv device Install

3. Run the Install script:
eg$./Install -tape=device

Install displays messages about its activity, ending with
Done.

4. Build symbolic links to make execution paths easy (you may need
root access to put the link in ‘/usr’):

eg$ cd /usr/cygnus
eg$ ln -s progressive-94q4 progressive
eg$ su root
ln -s /usr/cygnus/progressive/H-host /usr/progressive
exit (give up root access as soon as possible)

5. Use your Cygnus Support customer ID (see cover letter) to tag your
copy of our problem-report form:

eg$ /usr/progressive/bin/install-sid customer-ID

6. Remove public write access from ‘/usr/cygnus’. See your system
administrator for the correct permissions at your site.

You’re done! Anyone who puts ‘/usr/progressive/bin’ in their PATH
can use this Developer’s Kit distribution.

c y g n u s s u p p o r t 1

Progressive Developer’s Kit Installation

We have attempted to make the installation of the Cygnus Support
Developer’s Kit distribution as trouble-free as possible. If you encounter
any problems, please contact us:

Cygnus Support
toll free: +1 800 CYGNUS-1
main line: +1 415 903 1400
hotline: +1 415 903 1401
email: support@cygnus.com

Headquarters East Coast
1937 Landings Drive 48 Grove St., Ste. 105
Mountain View, CA 94043 USA Somerville, MA 02144 USA

+1 415 903 1400 +1 617 629 3000
+1 415 903 0122 fax fax +1 617 629 3010

Faxes are answered 8 am–5pm, Monday through Friday.

2 7 July 1995

Installing in brief for ms-dos systems

Installing in brief forms-dos systems

All ms-dos releases of the Developer’s Kit can use this brief instal-
lation procedure. For more detail on the installation procedure, see
“Developer’s Kit installation on ms-dos,” page 21.

We ship your Developer’s Kit on a set of floppy disks. The INSTALL
program is included on Disk 1.

Steps for Brief Install:
1. Insert Disk 1 into the floppy drive (the example shows ‘A:’) and type:

A:\INSTALL

2. INSTALL prompts for an installation directory; the default is
‘C:\CYGNUS’. The tools may be installed anywhere. (If you are in-
stalling more than one Developer’s Kit, see “ms-dos Installation
Directories,” page 21.)
Make sure the installation directory is correct and press RETURN.

3. INSTALL first checks the installation location to make sure it has
enough space before unpacking the tools. Installed Developer’s Kit
disk usage varies from about 10 to about 16 megabytes, depending
on the target. The disk labels list the required disk space for each
distribution.

4. INSTALL reads the first disk and then requests the next.
5. After the last disk, press RETURN to exit the INSTALL program.
6. To run the programs, type ‘installdir\SETENV’ to set up your work-

ing environment. (installdir is the installation directory you spec-
ified, ‘C:\CYGNUS’ by default.)

C:\> cd c:\cygnus
C:\CYGNUS\> setenv
...

7. To test the installation, change your working directory to the ‘in-
stalldir\DEMO’ subdirectory and type ‘MAKE’:

C:\CYGNUS\> cd c:\cygnus\demo
C:\CYGNUS\DEMO> make
...

8. It is often easiest to set your working environment in the initializa-
tion file ‘AUTOEXEC.BAT’. If you installed in the default ‘C:\CYGNUS’,
you can simply add the following line to your ‘AUTOEXEC.BAT’:

CALL C:\CYGNUS\SETENV.BAT

c y g n u s s u p p o r t 3

Progressive Developer’s Kit Installation

4 7 July 1995

Developer’s Kit installation on Unix

Developer’s Kit installation on Unix

This section describes host-specific information and installation in-
structions for Unix systems.

Device names

For Unix distributions, your distribution tape includes two files:

Install The Install shell script is a portable installation procedure
which automatically installs the software on your system
(see “Invoking the Install script,” page 8).

distribution tar file
The binaries and source for the Developer’s Kit distribution
are located in a single compressed tar file.

In order for Install to read and install your distribution, you
must use a non–rewinding tape device, so that the tape drive
maintains the tape location at the beginning of the compressed
tar file after you extract Install.

These are examples of non–rewinding tape devices for each system; see
your system administrator for the name of the non–rewinding tape de-
vice on your particular host. Also shown are man pages to which you
can refer for more information about tape devices.

Standard qic-24 tape drives:

platform device man page
sparc-sun-solaris2 /dev/rmt/0n use man st
sparc-sun-sunos4.1.3 /dev/nrst8 use man st
mips-dec-ultrix /dev/nrtm0 use man mtio
mips-sgi-irix4 /dev/mt/tps0d0nrns use man tps

(Note: You must also use a non-byte-swapping device for the SGI Iris)
rs6000-ibm-aix /dev/rmt0.1 use man rmt
i386-sysv4.2 /dev/rmt/c0s0n use man tape

Standard dat tape drives:

platform device man page
m68k-hp-hpux /dev/rmt/0mn use man 7 mt
hppa1.1-hp-hpux /dev/rmt/0mn use man 7 mt
mips-sgi-irix5 /dev/mt/tps1d5nrns use man tps

(Note: You must also use a non-byte-swapping device for the SGI Iris)

c y g n u s s u p p o r t 5

Progressive Developer’s Kit Installation

Disk space requirements

This section lists the minimum disk space requirements (in
megabytes) for installations of binaries only, source code only, or the
sum total of both. For more information on binary- or source-only instal-
lations, see “Developer’s Kit installation on Unix,” page 7. Sizes shown
are for native distributions; see your tape label for the actual disk size.

platform binaries source total
sparc-sun-solaris2 44 71 115
sparc-sun-sunos4.1.3 31 71 102
mips-dec-ultrix 39 71 110
rs6000-ibm-aix 44 71 115
mips-sgi-irix4 39 71 110
m68k-hp-hpux 32 71 103
hppa1.1-hp-hpux 46 71 117
i386-sysv4.2 48 71 119
alpha-dec-osf1.3 56 71 127

Operating System requirements

This section lists the minimal operating system requirements for each
Unix system.

platform OS level
sparc-sun-solaris2 Solaris 2.x
sparc-sun-sunos4.1.3 SunOS 4.1.x
mips-dec-ultrix Ultrix 4.2
rs6000-ibm-aix AIX 3.2
mips-sgi-irix4 Irix 4.x
m68k-hp-hpux HP/UX 8.x
hppa1.1-hp-hpux HP/UX 8.x
i386-sysv4.2 UnixWare SysVr4.2, version 1.1.1
alpha-dec-osf1.3 OSF/1 1.3

6 7 July 1995

Developer’s Kit installation on Unix

Installing your Developer’s Kit distribution

There are a few steps to follow in installing the software in the De-
veloper’s Kit distribution onto your system.

Note: For Unix distributions, your distribution tape includes two files:

Install The Install shell script is a portable installation procedure
which automatically installs the software on your system
(see “Invoking the Install script,” page 8).

distribution tar file
The binaries and source for the Developer’s Kit distribution
are located in a single compressed tar file.

In order for Install to read and install your distribution, you must use
a non–rewinding tape device, so that the tape drive maintains the tape
location at the beginning of the compressed tar file after you extract
Install. See “Device names,” page 5, for a list of default device names
for each host type.
1. First, decide where to install the software. The default installation

location is ‘/usr/cygnus/progressive-94q4’. (To use the software
conveniently from elsewhere, you may want to reconfigure and re-
compile from source; see “Running the programs,” page 15.)
If you don’t wish to install in ‘/usr/cygnus’ but can create a symbolic
link to it from another location, or if you don’t wish to install into
‘/usr’ at all, see “Installing in a nonstandard location,” page 14.

2. Create the installation directory, if it doesn’t already exist, and make
sure it’s publicly accessible so Install can write there. For example,
if you use the default installation directory of ‘/usr/cygnus’:

eg$ su root (enter root password to write in ‘/usr’)
mkdir /usr/cygnus (ignore “File exists” error if any)
chmod 777 /usr/cygnus
exit (root access not needed beyond this)

3. Make sure you have enough space for the tools in your chosen in-
stallation location. The required disk usage for the Developer’s Kit
is printed on the tape label; values for binaries only, sources only, or
both are shown.

4. Load the Developer’s Kit distribution tape into your tape drive. If
your machine doesn’t have its own tape drive, you need to first
extract the software into a location accessible by both your host
and the machine that has a tape drive, and then install on your
host. If there is no shared disk, you can extract the software on the
machine with the tape drive and then transfer it over to your host.
“Installing with a remote tape drive,” page 14, for details.

5. Extract the Install script off the tape using

c y g n u s s u p p o r t 7

Progressive Developer’s Kit Installation

tar xvf non-rewinding-tapedev Install

Remember to use a non–rewinding tape drive!
6. Run Install, using command-line options and arguments to specify

the details about your installation.
Default behavior installs both binaries and source under
‘/usr/cygnus/progressive-94q4’ using the default non–rewinding
tape drive for your system (see “Device names,” page 5). For native
toolchains only, a process called fixincludes automatically makes
copies of your system header files and alters them to work with
gcc (your system’s header files are not changed; see “Why convert
system header files?,” page 11). Finally, Install runs a simple test
to make sure your distribution was installed correctly.

7. Make sure the program send-pr knows your Cygnus customer iden-
tification code. You can install your customer ID by using the pro-
gram install-sid as follows:

eg$ cd /usr/cygnus/progressive-94q4/H-hosttype/bin
eg$ install-sid customer-ID

Contact Cygnus Support at +1 415 903 1401 if you do not know your
customer ID.

8. Create symbolic links so that your newly installed Developer’s Kit
is easily accessible to developers, able to exist with other Devel-
oper’s Kit installations in a heterogeneous environment, and easily
updated when you install a new Developer’s Kit.
The nature of the links depends on where you installed the Devel-
oper’s Kit release, but they follow the example below. If you installed
into ‘/usr/cygnus/progressive-94q4’, the links are
ln -s /usr/cygnus/progressive-94q4 /usr/cygnus/progressive
ln -s /usr/cygnus/progressive/H-hosttype /usr/progressive

See “Links for easy access and updating,” page 12, for more infor-
mation on these links.
You’re done! The installation is now online; anyone who puts

/usr/progressive/bin

in their path has access to the toolkit.
9. If you had to change the permission status on the directory

‘/usr/cygnus’, be sure to revert the change. See your system ad-
ministrator for the proper permissions at your site.

Invoking the Install script

There are two kinds of command-line arguments to Install, which
you can use to direct its operation:

8 7 July 1995

Developer’s Kit installation on Unix

� What form of the programs to install. You can choose between bina-
ries (argument bin) and source code (source). If you don’t specify
either of these, Install assumes you want both source and binaries.

� What installation actions to carry out. A full installation involves up
to three steps; Install has options to let you choose them explicitly.
The steps are
1. extracting source from the tape (option extract)
2. writing copies of your system ‘include’ files, adjusted for porta-

bility (needed for the compilation tools; option fixincludes)
3. running a simple test of the installed programs (option test)

The last two of these actions (fixincludes and test) are not needed
for cross-development configurations. (A cross-development configu-
ration runs on a host, but is meant to develop code for another plat-
form, the target. Cross development tapes have ‘target = target’
on the tape label.)
These two actions can only run on your host. If you read the tape on
another machine, you must specify the extract option explicitly, to
indicate that you don’t expect the other two actions to run (and are
aware of the need to run further installation steps on your host).

Install also has two command line options: ‘-tape’ and
‘-installdir’. You can use these to adapt the installation to your
system.

Install options
Install [bin] [source]

[extract] [fixincludes] [test]
[-tape=device]
[-installdir=directory]

bin
source By default, Install extracts both source and binaries. In-

stead of relying on the default, you can use these options to
specify exactly what you want. You need to do this if you
want only binaries or only source.
Install is designed to share files, wherever possible, be-
tween installations for different hosts (of the same release).
If you get Cygnus release tapes configured for different hosts,
there is no need to do a binary-only install of some of the tapes
to save space on a shared file system; Install arranges the
files so that all hosts share the same source files. Documen-
tation files are shared as well. Note that it is faster to extract

c y g n u s s u p p o r t 9

Progressive Developer’s Kit Installation

the source code only once if you are installing the Developer’s
Kit distribution for more than one host.
See “Links for easy access and updating,” page 12, for a
discussion of how to manage the directory structure used for
this purpose.

extract
fixincludes
test

In a cross-development configuration, only the ‘extract’ step
is used.
In a native configuration—meant for developing software on
the same host where the Developer’s Kit runs—a full instal-
lation includes up to three things: (1) extracting software
from the tape; (2) creating ansi-C conforming copies of your
system’s standard header files; and (3) testing the installa-
tion. You can execute these steps separately by specifying
‘extract’, ‘fixincludes’, or ‘test’ on the Install command
line.
In the native configuration, after you run ‘extract’,
‘fixincludes’ is essential to the compiler. ‘fixincludes’
does not change your system’s original header files; Install
writes the converted copies in a separate, gcc-specific di-
rectory. See “Why convert system header files?,” page 11,
for more discussion of the ‘fixincludes’ step. Install only
attempts these last two steps if you run it on the host for
which the binaries were compiled.
When you run ‘extract’, Install creates a log file in
‘/usr/cygnus/progressive-94q4/extraction.log’. When
you run ‘fixincludes’, Install creates a log file in
‘/usr/cygnus/progressive-94q4/fixincludes.log’.
‘test’ (used only for the native configuration) is a confidence-
building step, and doesn’t actually change the state of the
installed software. The ‘test’ step may not make sense, de-
pending on what other options you’ve specified—if you install
only source, there’s nothing to test.

-tape=device
-tape=tarfile

Specify the non–rewinding device name for your tape drive
as tape.
If you extract the installation script and tarfile on some
other system, and transfer them to your host for installation,
use the name of the tar file instead of a device name with

10 7 July 1995

Developer’s Kit installation on Unix

‘-tape’. See “Installing with a remote tape drive,” page 14,
for more discussion.

-installdir=directory
If you cannot or do not wish to install into ‘/usr/cygnus’,
use this option to specify an alternate directory for placing
your software—but beware: the software is configured to go
in ‘/usr/cygnus’, and you’ll have to override or change that
too. See “Running the programs,” page 15.

If you specify a step that doesn’t make sense, Install notices the
error, and exits (before doing anything at all) with an error message, so
you can try again.

Why convert system header files?

The ‘fixincludes’ installation step described here applies only
to the native configuration of the Developer’s Kit—that is, only if
your tape is configured to develop software for the same host on
which it runs. If you have a cross-development tape, configured
to develop software for another machine (the target), the system
header files from your host are not needed for thegnu compilers.
Cross-development tapes have ‘target = target’ on the tape
label.

For the native configuration, it is very important to run ‘Install
fixincludes’ (on each host where you install the compiler binaries).

When the ansi x3j11 committee finished developing a standard for
the C language, a few things that had worked one way in many tradi-
tional C compilers ended up working differently in ansi C. Most of these
changes are improvements. But some Unix header files still rely on the
old C meanings, in cases where the Unix vendor has not yet converted
to using an ansi C compiler for the operating system itself. ‘Install
fixincludes’ does a mechanical translation that writes ansi C versions
of some system header files into a new, gcc-specific include directory—
your system’s original header files are not affected.

The C header files supplied with SVr4 versions of Unix depend on a
questionable interpretation of the ansi C standard: they test for a non-
ansi environment by checking whether __STDC__ is defined as zero. The
ansi standard actually only specifies that __STDC__ be defined to 1; if it
is defined to any other value, the environment is not ansi C compatible,
and ansi C says nothing about what that value might be.

gcc defines __STDC__ to 1 when running with ‘-ansi’, when it func-
tions as an “ansi C superset” compiler. (It also sets __STRICT_ANSI__

c y g n u s s u p p o r t 11

Progressive Developer’s Kit Installation

when it runs with the ‘-pedantic’ option.) However, gcc leaves __STDC_
_ undefined when it is not running as an ansi C compiler.

Unfortunately for Solaris users, Solaris header files follow the SVr4
choice. Since gcc never defines __STDC__ as 0, the distributed header
files can leave out some declarations. (Look in ‘/usr/include/time.h’,
for example.)

Part of the installation process of the native compiler release is to
“fix” the header files, such as ‘stdio.h’, on the host system to remove
ansi incompatibilities. ‘Install fixincludes’ makes copies of the sys-
tem ‘include’ files which have these nonstandard features removed, so
that gcc can process them. These copies are placed in a new, gcc-
specific ‘include’ directory—your system’s original header files are not
affected. Once these fixed header files are created, gcc finds and uses
them automatically.

Likewise, C++ programmers require C++-ready, ansi-compatible ver-
sions of the standard C header files. These used to be provided with
libg++, but were difficult to maintain due to the design compromises
(and outright “kludges”) that were necessary to make these work on all
the systems we support.

We have recently introduced what we believe to be a better solution
in the form of a new shell script, fixproto. fixproto analyzes all the
header files in ‘/usr/include’, and adds any missing standard ansi and
Posix.2 prototypes. The ‘extern "C"’ braces needed to specify that these
are C (not C++) functions are also added as needed. It is run as part of
the installation and/or build of a native compiler. The resulting header
files are also used for C, with the result that the ‘-Wimplicit’ option for
gcc is much more useful.

The most obvious drawback to this solution is that the process of “fix-
ing” the ‘include’ files takes longer to run, so any installation of a native
compiler is noticeably slower than in previous releases. Performance
improvements will be made as part of a future release.

If you don’t run fixincludes, the gnu C compiler can only use the
original system header files when you compile new C programs. In some
cases, the resulting programs will fail at run-time.

Links for easy access and updating

Once you’ve extracted the tools from the tape, they are installed into
a directory named ‘installdir/progressive-94q4’. We put the release
number in the directory name so that you can keep several releases
installed at the same time, if you wish. In order to simplify admin-
istrative procedures (such as upgrades to future Cygnus Support Pro-

12 7 July 1995

Developer’s Kit installation on Unix

gressive releases), we recommend that you establish a symbolic link
‘/usr/cygnus/progressive’ to this directory.

ln -s installdir/progressive-94q4 installdir/progressive

For example, if you’ve installed in the default location under
‘/usr/cygnus’:

ln -s /usr/cygnus/progressive-94q4 /usr/cygnus/progressive

Directories of machine-independent files (source code and documenta-
tion) are installed directly under ‘progressive-94q4’. However, to acco-
modate binaries for multiple hosts in a single directory structure, the bi-
nary files for your particular host type are in a subdirectory ‘H-hosttype’.
(hosttype indicates a particular architecture, vendor and operating sys-
tem. See Appendix A “Platform names,” page 27.)

This means that one more level of symbolic links is helpful, to allow
your users to keep the same execution path defined even if they some-
times use binaries for one machine and sometimes for another. Even
if this doesn’t apply now, you might want it in the future; establishing
these links now can save your users the trouble of changing all their
paths later. The idea is to build ‘/usr/progressive/bin’ on each ma-
chine so that it points to the appropriate binary subdirectory for each
machine—for instance, ‘/usr/cygnus/progressive/H-hosttype’.

You may need super-user access again briefly to establish this link:
ln -s /usr/cygnus/progressive/H-hosttype /usr/progressive

We recommend building these links as the last step in the instal-
lation process. That way, users at your site only see software in
‘/usr/progressive’ when you’re satisfied that the installation is com-
plete and successful.

Installation variances

Once you’ve extracted Install from your tape, you can tell Install
what software to install, what form of the programs you need, and what
installation steps to do. Here are some examples covering common sit-
uations. For a full explanation of each possible Install argument, see
“Invoking the Install script,” page 8.

Install’s default tape drive is the non-rewinding tape drive for your
system (see “Device names,” page 5), which is right for the most
common cases. If your tape drive is different, you need to use the
‘-tape=/dev/tape’ option; the examples show this option for complete-
ness. Remember to specify a non–rewinding tape device.

c y g n u s s u p p o r t 13

Progressive Developer’s Kit Installation

Installing only binaries or source

If you don’t want the source—for instance, to save space—you can use
the argument ‘bin’.

eg$ tar xvf device Install
Install
eg$./Install -tape=device bin ...

By the same token, if you don’t wish to install the binaries—for in-
stance, if you plan to rebuild them from source anyway—you can use the
argument ‘source’.

eg$ tar xvf device Install
Install
eg$./Install -tape=device source ...

Installing in a nonstandard location

If you wish to install this Developer’s Kit distribution in a directory
other than the default, ‘/usr/cygnus’, use the ‘-installdir’ option to
Install. Remember, though, you must set some environment variables
in order for the tools to function at all. See “Running the programs,”
page 15.

eg$ cd /tmp
eg$ tar xvf device Install
Install
eg$./Install -tape=device -installdir=somewhere bin
...

Installing with a remote tape drive

If your host doesn’t have an appropriate tape drive, you may still be
able to install your software. Check with your system administrator to
see if another machine at your site has a tape drive you can use. If so:

If a shared filesystem is available
between the two machines, and it has enough space, create
‘/usr/cygnus’ on your host (the one where you want to install
this Progressive Release) as a symbolic link to a directory
where the other machine (the one with a tape drive) can
write:

ln -s shared /usr/cygnus

Run Install from the machine with a tape drive, using the
‘extract’ argument and the ‘-installdir’ option:

Install extract -installdir=shared

You still have to finish the installation, but the last two steps
(fixincludes and test) must be run on your host. (If you

14 7 July 1995

Developer’s Kit installation on Unix

forget, there’s no great harm done: Install notices that it
can’t carry out a full installation on the wrong machine, and
stops with an error message—then you can go back and try
again. When Install notices a problem like this, it doesn’t
carry out any action other than giving a helpful error mes-
sage).
Unless you are installing a cross-development tape (the tape
label says ‘target = target’ for cross configurations), the
‘fixincludes’ part of the installation is essential. Please
see the full explanation (see “Why convert system header
files?,” page 11), if you’re curious.

On a machine on your network with a tape drive:
./Install extract -installdir=shared/cygnus ...

On your host
ln -s shared/cygnus /usr/cygnus
cd /usr/cygnus/progressive-94q4

If your copy of the Developer’s Kit is configured native (to
develop software for the same type of machine where the
Developer’s Kit itself runs), you’ll have to run ‘Install
fixincludes’ and ‘Install test’ from your host afterwards.

Native configurations only:
./Install fixincludes test

If some form of filetransfer is available
(such as uucp), read the tape using a system utility (for in-
stance, dd on Unix systems; see the system documentation
for the machine with a tape drive). There are two files on the
distribution tape; the first contains just the Install script,
and the second is a compressed tar format file containing
the rest of the release. Read both of these files, and trans-
fer them to your own machine. Then run Install, but use
‘-tape=tarfile’ to specify the name of the installation file,
instead of ‘-tape=device’ as shown in the examples. In the
simplest case, for example (starting after you’ve transferred
Install and the tar file to your system):

eg$./Install -tape=tarfile

Running the programs

In order to run the tools in the Developer’s Kit release after you install
them, you must first set a few environment variables so your shell can
find them.
� At the very least, you must set your PATH variable. See “Setting

PATH,” page 16.

c y g n u s s u p p o r t 15

Progressive Developer’s Kit Installation

� If you installed the tools in a location other than the default and
choose not to set the standard symbolic links in place (see “Links for
easy access and updating,” page 12), you must also set the environ-
ment variable GCC_EXEC_PREFIX. Otherwise, the compiler cannot
find its resources. See “gcc paths,” page 16.

� If you install the Developer’s Kit tools in an alternate location, you
need to set the variable INFOPATH so that info can find the online
documentation. See “Online documentation paths,” page 17.

� Some man programs recognize the environment variable MANPATH
as a search path for online manual pages. You must either add
your installation directory to your MANPATH environment variable,
or copy the online manual pages in your distribution into a location
where your man program can find them. See “Online documentation
paths,” page 17.

Setting PATH

Any user who wishes to run the tools in this distribution needs to
make sure her PATH environment variable can find the tools. Whether
you install in the default location:

/usr/cygnus/progressive-94q4

or in an alternate location, you need to alter your PATH environment
variable to point toward the newly installed tools.

If you create the symbolic links we recommend (see “Links for easy
access and updating,” page 12), users who want to run the Developer’s
Kit—regardless of whether they need binaries for your particular host,
or for some other platform—can use settings like one of the following in
their initialization files.

This example shows ‘/usr/progressive/bin’ as the final linked in-
stallation directory. If you installed into a directory other than this,
substitute the actual directory for ‘/usr/progressive/bin’.

For Bourne-compatible shells (/bin/sh, bash, or Korn shell):

PATH=/usr/progressive/bin:$PATH
export PATH

For C shell:
set path=(/usr/progressive/bin $path)

gcc paths

You can run the compiler gcc without recompiling, even if you install
the distribution in an alternate location, by first setting the environment

16 7 July 1995

Developer’s Kit installation on Unix

variable GCC_EXEC_PREFIX. This variable specifies where to find the
executables, libraries, and data files used by the compiler. Its value will
be different depending on which set of binaries you need to run. For
example, if you install the tape distribution under ‘/local’ (instead of
the default ‘/usr/cygnus’), and you wish to run gcc as a native compiler,
you could set GCC_EXEC_PREFIX as follows.

(Note: The sample shows a GCC_EXEC_PREFIX which is split across
two lines only to fit on the printed page; it is meant to be typed on one
line.)

For shells compatible with Bourne shell (/bin/sh, bash, or Korn shell):
eg$ GCC_EXEC_PREFIX=/local/progressive-94q4/\

H-hosttype/lib/gcc-lib/
eg$ export GCC_EXEC_PREFIX

For C shell:
eg% setenv GCC_EXEC_PREFIX /local/progressive-94q4/\

H-hosttype/lib/gcc-lib/

Note: The trailing slash ‘/’ is important. The gcc program uses GCC_
EXEC_PREFIX simply as a prefix. If you omit the slash (or make any other
mistakes in specifying the prefix), gcc fails with a message beginning
‘installation problem, cannot exec...’.

Online documentation paths

The standalone documentation browser info needs to know the loca-
tion of the documentation files in the distribution. The default location,
‘/usr/cygnus/progressive-94q4/info’, is compiled into info. If you
install elsewhere, set the environment variable INFOPATH to indicate the
alternate location.

For example, assuming you installed under ‘/local’:
For shells compatible with Bourne shell (/bin/sh, bash, or Korn shell):
eg$ INFOPATH=/local/progressive-94q4/info
eg$ export INFOPATH

For C shell:
eg% setenv INFOPATH /local/progressive-94q4/info

If you built ‘progressive’ as a symbolic link to ‘progressive-94q4’, as
recommended in “Links for easy access and updating,” page 12, then you
could simply use ‘/local/progressive/info’ as the value of INFOPATH
in the examples above.

You should also ensure that your man command can pick up the man-
ual pages for these tools. Some man programs recognize a MANPATH envi-
ronment variable. If your man program is one of these, users at your site
can also include in their initialization file lines like

c y g n u s s u p p o r t 17

Progressive Developer’s Kit Installation

For Bourne-compatible shells:
eg$ MANPATH=/usr/cygnus/progressive/man:$MANPATH:/usr/man
eg$ export MANPATH

For C shell:
eg% setenv MANPATH /usr/cygnus/progressive/man:$MANPATH:/usr/man

If your man program doesn’t recognize MANPATH, you may want to copy
or link the files from ‘installdir/progressive/man/man1’ into your
system’s ‘man/man1’ directory.

Some Things that Might go Wrong

We’ve tried to make the installation of the Developer’s Kit distribution
as painless as possible. Still, some complications may arise. Here are
suggestions for dealing with some of them.

No customer ID for send-pr

Make sure the program send-pr knows your Cygnus customer iden-
tification code. You can install your customer ID by using the program
install-sid as follows:

install-sid customer-ID

If you installed the Developer’s Kit into a location other than the
default, and you chose not to set up symbolic links pointing to the
real installation location, you need to use the ‘--install-dir’ option
to install-sid as follows:

install-sid --install-dir=install-dir-prefix customer-ID

where install-dir-prefix points to the top level of the installation.
Contact Cygnus Support at +1 415 903 1401 if you do not know your
customer ID.

Not enough space

If you don’t have enough space to install all of the tape distribution,
you can instead extract only the compiled code, or only the source.

You can easily extract these components independently of one another
by using the ‘source’ or ‘bin’ arguments to Install. See “Invoking the
Install script,” page 8.

18 7 July 1995

Developer’s Kit installation on Unix

No access to ‘/usr/cygnus’

If you can’t sign on to an account with access to write in ‘/usr’ or
‘/usr/cygnus’, use the ‘-installdir=directory’ option to Install to
specify a different installation directory to which you can write. For
example, if all the other installation defaults are right, you can exe-
cute something like ‘./Install -tape=/dev/tape -installdir=mydir’.
You’ll need to either override default paths for the pre-compiled tools, or
else recompile the software. See “Running the programs,” page 15, and
“Links for easy access and updating,” page 12, for details.

WARNING: If you can’t install in ‘/usr/cygnus’ (or link your
installation directory to that name), some of the defaults config-
ured into the progressive-94q4 distribution won’t work. See
“Running the programs,” page 15, for information on overriding
or reconfiguring these defaults.

Error messages from Install

The Install script checks for many errors and inconsistencies in
the way its arguments are used. The messages are meant to be self-
explanatory. Here is a list of a few messages where further information
might be useful:

Can not read from TAPE device, tape
The error message ends with the tape device Install was
trying to use. Please check that it is the device you in-
tended; possible causes of trouble might include leaving off
the ‘/dev/’ prefix at the front of the device name. A ty-
pographical error in the device name might also cause this
problem.
If the problem is neither of these, perhaps your tape device
can’t read our tape; see “Installing with a remote tape drive,”
page 14, for a discussion of how to use another machine’s tape
drive, or contact Cygnus Support.

stdin: not in compressed format
You are probably not using the non–rewinding tape device.
There are two files on each tape. The first is a tar file
containing the Install script. The second is a compressed
tar file containing everything else. Without using the non–
rewinding device, there is no way to skip over the first file to
begin reading the second.

gcc: cannot exec cpp
If you’ve installed the binary distribution of the Developer’s
Kit software in a non-standard location, remember to set

c y g n u s s u p p o r t 19

Progressive Developer’s Kit Installation

your environment variable GCC_EXEC_PREFIX accordingly.
See “Running the programs,” page 15.

.. . This is a problem.
Cannot cd to installdir
I do not know why I cannot create installdir
hello.c fails to run
test-ioctl.c fails to run

These errors (the first covers anything that ends in ‘This is a
problem’) are from paranoia checks; they are issued for situ-
ations that other checks should have covered, or for unlikely
situations that require further diagnosis.
If you get one of these messages, please call the Cygnus
hotline, +1 415 903 1401, or send electronic mail to
‘help@cygnus.com’.

20 7 July 1995

Developer’s Kit installation on ms-dos

Developer’s Kit installation on ms-dos

This section describes the installation procedure for the Cygnus Sup-
port Developer’s Kit distribution running on ms-dos. For specific in-
formation about using this release with ms-dos, see the ms-dos specific
developer’s note, Developing with DOS.

ms-dos installation directories

You may install the software in any directory. The INSTALL program
assumes that you are installing in C:\CYGNUS; if you want to change this,
you may do so at the beginning of the installation process.

If you are installing cross-development tools for more than one target,
you must install them into different directories; otherwise, the second
installation overwrites the first. We recommend you use a directory
structure that has the target name built-in, such as:

C:\CYGNUS\A29KUDI\. .. AMD 29k cross-development toolkit
C:\CYGNUS\M68KCOFF\. .. Motorola 68k cross-development toolkit
...

If you use this paradigm, remember to type
disk:\CYGNUS\target\SETENV

to reset your environment every time you switch targets.

Disk space

The total space required to extract and install binaries for all pro-
grams in the Developer’s Kit is from 10 to 16 megabytes, depending on
the target. The actual disk space required by the Developer’s Kit is
printed on the disk label. The INSTALL program dynamically compares
the space available on your designated drive with the size of the instal-
lation before starting the installation. If you do not have enough space
to install the binaries, the INSTALL program exits with an error message
before writing anything.

Note that if you’re using a disk compression utility like STACKER then
the actual amount of disk space that you have available may be less
than reported. This is because the compression utilities usually report
the amount of free space available assuming that the data which would
go into it would be compressed at least as well as the data already on the
disk. This is important information if you’re trying to install the tools
onto a compressed disk with only just enough room for the installation.
It could be that you run out of real disk space before the installation is
complete because the compression utility couldn’t do as good a job as it
expected.

c y g n u s s u p p o r t 21

Progressive Developer’s Kit Installation

ms-dos memory requirements

We do not recommend using the cross-development kit with less than
four (4) megabytes of ram.

We provide a ms-dos extender with the cross-development kit for ms-
dos which swaps programs to disk when ms-dos runs out of memory. To
avoid excessive swapping you must have at least 2 megabytes of ram to
run g++ on a pc with ms-dos.

If you’ve got more than 2 megabytes, the extra memory can be used
as a disk cache to significantly improve performance.

Installation your Developer’s Kit

We ship your Developer’s Kit on a set of floppy disks. The INSTALL
program is included on Disk 1.

The files are stored on the floppies using Microsoft’s COMPRESS pro-
gram. If you prefer, you can install files without using the INSTALL
program by just copying them into the right place on your hard drive
and running EXPAND on each file. Since the files are stored on the floppy
using their full name (not those marked as compressed by using Mi-
crosoft’s ‘.XX_’ naming convention) you must use a temporary file.

Warning! If you have a program in your path called EXPAND and
it’s not the one provided by Microsoft, then you should either
change your path to use only the Microsoft EXPAND program, or
be certain that your EXPAND program can decompress files which
have been compressed using Microsoft COMPRESS.

We show the system prompt as ‘C:\>’ for the local hard disk drive,
and ‘A:\>’ for the local 3.5” floppy disk drive.

For these examples we assume that you install into a directory called
‘C:\CYGNUS’ and that you use drive ‘A:’ to read the installation floppies.
Substitute other hard drives, installation directories, and floppy drives
to match your environment.

22 7 July 1995

Developer’s Kit installation on ms-dos

The INSTALL program first prompts you for an installation directory:

h8300-coff-hms
q2-1994

This installation will require around 9 Mb of disk space.
Please enter the name of the directory into which you want to
install the tools. Press [ENTER] to accept, [ESC] to quit.

C:\CYGNUS

At this prompt, enter the name of the directory where you want the
tools to be installed and press ENTER. INSTALL prompts you (assuming
that you accept ‘C:\CYGNUS’):

The installation will write into C:\CYGNUS.
Are you sure you want to continue [Y] or [N]

If you type N, INSTALL asks for another path name. If you type Y,
INSTALL begins the installation.

The program draws a status bar, which fills up as INSTALL works.
When the box is full, the installation is complete. INSTALL shows the
name of the file being processed at the bottom of the screen.

h8300-coff-hms
q2-1994

Need next disk

Please insert disk number 2 and press [ENTER].

c y g n u s s u p p o r t 23

Progressive Developer’s Kit Installation

INSTALL prompts you for each disk in order.
To use another installation directory, specify the path to your desired

directory wherever the examples show ‘C:\CYGNUS’
You must execute the batch file ‘SETENV.BAT’ before running the De-

veloper’s Kit. You can set the environment automatically whenever you
boot the machine by putting the following line in your ‘AUTOEXEC.BAT’:

CALL C:\CYGNUS\SETENV.BAT

(If you install in a location other than ‘C:\CYGNUS’, be sure to specify the
correct directory.)

Release contents

The programs in this Developer’s Kit are shipped as binaries, precon-
figured to run on Intel x86 pcs running standard ms-dos.

The individual programs in the Developer’s Kit are:
REL Name of the release
MANIFEST Disk contents manifest
README\COPYING Information about copying this release
README\README Last minute information
BIN\AR.EXE Archive utility
BIN\AS.EXE Assembler
BIN\ASYNCTSR.COM Serial line driver TSR
BIN\CC1.EXE C compiler
BIN\CC1PLUS.EXE C++ compiler
BIN\CPP.EXE C preprocessor
BIN\CXX.EXE C++ compiler driver
BIN\CXXFILT.EXE C++ symbol name filter
BIN\EMU387 387 emulator
BIN\GASP.EXE Assembler preprocessor
BIN\GCC.EXE C compiler driver
BIN\GDB.EXE Debugger
BIN\GO32.EXE dos extender
BIN\GXX.EXE C++ compiler driver
BIN\INFO.EXE Documentation browser
BIN\LD.EXE Linker
BIN\MAKE.EXE Recompilation director
BIN\NM.EXE Symbol name utility
BIN\OBJCOPY.EXE Object file copier and converter
BIN\OBJDUMP.EXE Object file dumper
BIN\RANLIB.EXE Archive indexer
BIN\SIZE.EXE Object file size utility
BIN\STRINGS.EXE Object file strings utility
BIN\STRIP.EXE Object file symbol stripper
DEMO\HELLO.C Demonstration program
DEMO\INIT.BAT Demonstration initialzation batch file
DEMO\MAKEFILE Makefile for demonstration
INSTALL.EXE The install program
LIB\LIBC.A ansi C library

24 7 July 1995

Developer’s Kit installation on ms-dos

LIB\LIBGCC.A Compiler support library
LIB\LIBM.A Maths library
INCLUDE_ANSI.H Include files for C library
INFO*.INF Online documentation, read with info.exe
LIB\LDSCRIPT\ELF32MIP.x Linker information scripts

The included libraries and some utilities are different depending on
which target this release is intended for. The file ‘MANIFEST’ in the
root directory of the first installation disk contains a complete list of
everything included in this release.

How to report bugs

If you find a bug in this release, please report it to Cygnus Support.
Use a copy of the Cygnus bug-report form to ensure that we can

respond to your bug as quickly as possible. The file ‘SENDPR.TXT’ in the
installation directory contains a blank copy of this form. To save time,
customize this form ahead of time with your Cygnus customer ID, as
described in the previous section.

The easiest way to report a bug is to fill in a copy of this form on your
computer and send it via Internet electronic mail to ‘bugs@cygnus.com’.
Otherwise, you can print the file ‘SENDPR.TXT’, fill it in, and fax the
problem report to Cygnus at +1 415 903 0122 (Mountain View, Califor-
nia) or +1 617 629 3010 (Somerville, Massachusetts). Contact Cygnus if
you have any trouble.

Cygnus Support
hotline: +1 415 903 1401
email: info@cygnus.com

Headquarters East Coast
1937 Landings Drive 48 Grove St., Ste. 105
Mountain View, CA 94043 USA Somerville, MA 02144 USA

+1 415 903 1400 +1 617 629 3000
+1 415 903 0122 fax fax +1 617 629 3010

Source code for your Developer’s Kit

The qic-24 tape included with your Developer’s Kit contains source
code for all the programs. Most dos systems cannot read this tape; you
probably need to find a Unix system to read it.

c y g n u s s u p p o r t 25

Progressive Developer’s Kit Installation

You need about 71 megabytes of free disk space to hold the source
code. To extract the source code into the current working directory on
most Unix machines, execute a command like this:

dd if=tapedev | compress -d | tar xvf -

tapedev stands for the device name for the tape drive. For example,
on most Sun workstations, the device name for the qic-24 tape drive
is ‘/dev/rst8’. Contact your system administrator for the correct tape
device for your system.

Please contact Cygnus Support at +1 415 903 1401 if you would like
the source code in another form.

26 7 July 1995

Appendix A: Platform names

Appendix A Platform names

Your tape is labeled to indicate the host (and target, if applicable) for
which the binaries in the distribution are configured. The specifications
used for hosts and targets in the configure script are based on a three-
part naming scheme, though the scheme is slightly different between
hosts and targets.

Host names

The full naming scheme for hosts encodes three pieces of information
in the following pattern:

architecture-vendor-os

For example, the full name for a Sun sparcstation running SunOS
4.1.3 is

sparc-sun-sunos4.1.3

Warning: configure can represent a very large number of com-
binations of architecture, vendor, and operating system. There
is by no means support for all possible combinations!

The following combinations refer to hosts supported by Cygnus Sup-
port. Some common short aliases are included, but these may be obsolete
in the future. (For a matrix which shows all supported host/target com-
binations, see section “Overview” in Release Notes.)

canonical name alias platform
sparc-sun-solaris2 sun4sol2 Sun 4 running Solaris 2
sparc-sun-sunos4.1.3 sun4 Sun-4 running SunOS 4
mips-dec-ultrix decstation DECstation
rs6000-ibm-aix rs6000 IBM RS6000
mips-sgi-irix4 iris SGI Iris running Irix 4
m68k-hp-hpux hp300hpux HP 9000/300
hppa1.1-hp-hpux hp700 HP 9000/700
i386-unknown-sysv4 UnixWare
i386-lynx-lynxos i386-lynx Intel x86 Lynxos 2.2
m68k-lynx-lynxos m68k-lynx Motorola 68k Lynxos 2.2
sparc-lynx-lynxos sparc-lynx SPARC Lynxos 2.2
rs6000-lynx-lynxos rs6000-lynx IBM RS6000 Lynxos 2.2
alpha-dec-osf1.3 DEC Alpha running OSF/1 v1.3

Target names

If you have a cross-development tape, the label also indicates the
target for that configuration. The pattern for target names is

architecture[-vendor]-objfmt

c y g n u s s u p p o r t 27

Progressive Developer’s Kit Installation

Target names differ slightly from host names in that the last variable
indicates the object format rather than the operating system, and the
second variable is often left out (this practice is becoming obsolete; in
the future, all configuration names will be made up of three parts).

In cross-development configurations, each tool in the Developer’s Kit
is installed with the configured name of the target as a prefix. For
example, if the C compiler is configured to generate coff format code for
the Motorola 680x0 family, the compiler is installed as ‘m68k-coff-gcc’.

Warning: configure can represent a very large number of tar-
get name combinations of architecture, vendor, and object for-
mat. There is by no means support for all possible combinations!

This is a list of some of the more common targets supported by Cygnus
Support. (Not all targets are supported on every host!) The list is not
exhaustive; see section “Overview” in Release Notes, for an up-to-date
matrix which shows the host/target combinations supported by Cygnus.

Motorola 68000 family
m68k-aout a.out object code format
m68k-coff COFF object code format
m68k-vxworks VxWorks environment
m68k-lynx Lynxos 2.2 environment

Motorola 88000 family
m88k-coff COFF object code format

Intel 960 family
i960-vxworks5.0 VxWorks environment (b.out format)
i960-vxworks5.1 VxWorks environment (COFF format
i960-intel-nindy Nindy monitor

amd 29000 family
a29k-amd-udi UDI monitor interface

To use the minimon interface, use this configuration
with the auxiliary program MONTIP, available from AMD.

sparc family
sparc-vxworks VxWorks environment
sparc-aout a.out object code format
sparclite-aout a.out object code format
sparclite-coff COFF object code format

Intel 80x86 family
i386-aout a.out object code format
i386-netware NetWare NLM
i386-lynx LynxOS 2.2 environment

idt/mips r3000
mips-idt-ecoff IDT R3000, big endian ECOFF
mipsel-idt-ecoff IDT R3000, little endian ECOFF
mips64-idt-ecoff IDT R4000 ECOFF

28 7 July 1995

Appendix A: Platform names

Hitachi h8300
h8300-hms-coff COFF object code format

Hitachi sh
sh-hms-coff COFF object code format

z8000

z8k-coff COFF object code format

config.guess

config.guess is a shell script which attempts to deduce the host
type from which it is called, using system commands like uname if they
are available. config.guess is remarkably adept at deciphering the
proper configuration for your host; if you are building a tree to run on
the same host on which you’re building it, we recommend not specifying
the hosttype argument.

config.guess is called by configure; you need never run it by hand,
unless you’re curious about the output.

c y g n u s s u p p o r t 29

Progressive Developer’s Kit Installation

30 7 July 1995

Appendix B: Cross-development environment

Appendix B Cross-development
environment

Using the Developer’s Kit in one of the cross-development configura-
tions usually requires some attention to setting up the target environ-
ment. (A cross-development configuration is used for developing soft-
ware to run on a different machine (the target) from the development
tools themselves (which run on the host)—for example, you might use a
sparcstation to generate and debug code for an amd 29K-based board.)

To allow our tools to work with your target environment (except for
real-time operating systems, which provide full operating system sup-
port), you need to set up:
� the C run-time environment (described below).
� stubs, or minimal versions of operating system subroutines for the

C subroutine library. See section “System Calls” in The Cygnus C
Support Library.

� a connection to the debugger. See section “Remote Debugging” in
Debugging with GDB.

The C Run-Time Environment (crt0)

To link and run C or C++ programs, you need to define a small module
(usually written in assembler as ‘crt0.s’) that makes sure the hardware
is initialized for C conventions before calling main.

There are some examples of ‘crt0.s’ code (along with examples of
system call stub code) available in the source code for your Developer’s
Kit. Look in the directories under:

installdir/progressive-94q4/src/newlib/libc/sys

(installdir refers to your installation directory, by default
‘/usr/cygnus’.) For example, look in ‘. . ./sys/h8300hms’ for Hi-
tachi h8/300 bare boards, or in ‘. ../sys/sparclite’ for the Fujitsu
SPARClite board. More examples are available under the directory:

installdir/progressive-94q4/src/newlib/stub

To write your own ‘crt0.s’, you need this information about your
target:
� A memory map. What memory is available, and where?
� Which way does the stack grow?
� What output format do you use?

At a minimum, your ‘crt0.s’ must do these things:
1. Define the symbol start (‘_start’ in assembler code). Execution

begins at this symbol.

c y g n u s s u p p o r t 31

Progressive Developer’s Kit Installation

2. Set up the stack pointer ‘sp’. It is largely up to you to choose where to
store your stack within the constraints of your target’s memory map.
Perhaps the simplest choice is to choose a fixed-size area somewhere
in the uninitialized-data section (often called ‘bss’). Remember that
whether you choose the low address or the high address in this area
depends on the direction your stack grows.

3. Initialize all memory in the uninitialized-data (‘bss’) section to zero.
The easiest way to do this is with the help of a linker script (see
section “Command Language” in Using LD). Use a linker script
to define symbols such as ‘bss_start’ and ‘bss_end’ to record the
boundaries of this section; then you can use a ‘for’ loop to initialize
all memory between them in ‘crt0.s’.

4. Call main. Nothing else will!

A more complete ‘crt0.s’ might also do the following:
5. Define an ‘_exit’ subroutine (this is the C name; in your assembler

code, use the label ‘__exit’, with two leading underbars). Its precise
behavior depends on the details of your system, and on your choice.
Possibilities include trapping back to the boot monitor, if there is
one; or to the loader, if there is no monitor; or even back to the
symbol start.

6. If your target has no monitor to mediate communications with
the debugger, you must set up the hardware exception handler in
‘crt0.s’. See section “The gdb remote serial protocol” in Debugging
with GDB, for details on how to use the gdb generic remote-target
facilities for this purpose.

7. Perform other hardware-dependent initialization; for example, ini-
tializing an mmu or an auxiliary floating-point chip.

8. Define low-level input and output subroutines. For example,
‘crt0.s’ is a convenient place to define the minimal assembly-level
routines described in section “System Calls” in The Cygnus C Sup-
port Library.

32 7 July 1995

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright c 1989, 1991 Free Software Foundation, Inc. 675
Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and
to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free soft-
ware. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

GPL

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi-
fication follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as
“you”.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of run-
ning the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Pro-
gram (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicu-
ously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along
with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

2 26 June 1995

GNU GENERAL PUBLIC LICENSE

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If iden-
tifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of
who wrote it.
Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to ex-
ercise the right to control the distribution of derivative or collective
works based on the Program.
In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program)
on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a. Accompany it with the complete corresponding machine-

readable source code, which must be distributed under the
terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed

c y g n u s s u p p o r t 3

GPL

under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt oth-
erwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you un-
der this License will not have their licenses terminated so long as
such parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to mod-
ify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.

4 26 June 1995

GNU GENERAL PUBLIC LICENSE

You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is imple-
mented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose
that choice.
This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the orig-
inal copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver-
sions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Pro-
gram specifies a version number of this License which applies to it

c y g n u s s u p p o r t 5

GPL

and “any later version”, you have the option of following the terms
and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the au-
thor to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided
by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

6 26 June 1995

GNU GENERAL PUBLIC LICENSE

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the com-
mands you use may be called something other than ‘show w’ and ‘show
c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

c y g n u s s u p p o r t 7

GPL

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

8 26 June 1995

GNU Online Documentation
Reading and Making Info files

For GNU Info version 2.9

Brian J. Fox (bfox@ai.mit.edu)

Edited by Roland H. Pesch (pesch@cygnus.com)
for Cygnus Support

Copyright c 1992, 1993, 1994, 1995 Free Software Foundation
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation ap-
proved by the Free Software Foundation.

Table of Contents

GNU Online Documentation . 1

1 Reading GNU Online Documentation 3
1.1 Command Line Options . 3
1.2 Moving the Cursor . 5
1.3 Moving Text Within a Window . 6
1.4 Selecting a New Node . 7
1.5 Searching an Info File . 9
1.6 Selecting Cross References . 10

1.6.1 Parts of an Xref . 10
1.6.2 Selecting Xrefs . 11

1.7 Manipulating Multiple Windows . 12
1.7.1 The Mode Line . 12
1.7.2 Window Commands . 13
1.7.3 The Echo Area . 14

1.8 Printing Out Nodes . 16
1.9 Miscellaneous Commands . 17
1.10 Manipulating Variables . 18

2 Making Info Files from Texinfo Files 23
2.1 Controlling Paragraph Formats . 23
2.2 Command Line Options for Makeinfo 23
2.3 What Makes a Valid Info File? . 25
2.4 Defaulting the Prev, Next, and Up . 26

Index . 29

c y g n u s s u p p o r t i

GNU Online Documentation

ii 11 July 1995

GNU Online Documentation

GNU Online Documentation

You can read the manuals for gnu software either on paper, as with
any other manual, or as online info files, using an ordinary ASCII ter-
minal.

You can browse through the online documentation withgnuEmacs, or
with the program Info, a smaller program intended just for the purpose
of viewing info files. This manual describes version 2.9 of Info.

Info files are generated by the program makeinfo from a texinfo source
file. (Texinfo is a documentation markup language designed to allow the
same source file to generate either printed or online documentation.)
This manual describes version 1.51 of Makeinfo. The Texinfo language
is described in a separate manual, Texinfo: The GNU Documentation
Format.

c y g n u s s u p p o r t 1

GNU Online Documentation

2 11 July 1995

Chapter 1: Reading GNU Online Documentation

1 Reading GNU Online Documentation

The info file version of a manual is organized into nodes, which usually
correspond to the chapters and sections of the printed book. You can
follow them in sequence, if you wish, just like in the printed book—but
there are also other choices. Info files have menus that let you go quickly
to the node that has the information you need. Info has “hot” references;
if one section refers to another, you can tell Info to take you immediately
to that other section—and you can get back again easily to take up your
reading where you left off. Naturally, you can also search for particular
words or phrases.

The best way to get started with the online documentation system is
to use a programmed tutorial by running Info itself. You can get into
Info by just typing its name—no options or arguments are necessary—at
your shell’s prompt (shown as ‘eg$’ here):

eg$ info

Info displays its first screen, a menu of the documentation available, and
awaits your input. Type the single letter

h

to request a tutorial, designed to teach you how to use Info.
If you already use Emacs, you may want to get into the documentation

browsing mode, instead, by typing C-h i inside Emacs.
You can get out of Info at any time by typing the single letter q.
Info can also display a summary of all its commands at any time,

when you type the single character ?.

What is Info?

This text documents the use of the GNU Info program, version 2.9.
Info is a program which is used to view info files on an ASCII termi-

nal. info files are the result of processing texinfo files with the program
makeinfo or with the Emacs command M-x texinfo-format-buffer. Fi-
nally, texinfo is a documentation language which allows a printed man-
ual and online documentation (an info file) to be produced from a single
source file.

1.1 Command Line Options

GNU Info accepts several options to control the initial node being
viewed, and to specify which directories to search for info files. Here is
a template showing an invocation of GNU Info from the shell:

c y g n u s s u p p o r t 3

GNU Online Documentation

info [--option-name option-value] menu-item. ..

The following option-names are available when invoking Info from
the shell:

--directory directory-path
-d directory-path

Adds directory-path to the list of directory paths searched
when Info needs to find a file. You may issue --directory
multiple times; once for each directory which contains info
files. Alternatively, you may specify a value for the envi-
ronment variable INFOPATH; if --directory is not given,
the value of INFOPATH is used. The value of INFOPATH is a
colon separated list of directory names. If you do not supply
INFOPATH or --directory-path a default path is used.

--file filename
-f filename

Specifies a particular info file to visit. Instead of visiting the
file dir, Info will start with (filename)Top as the first file
and node.

--node nodename
-n nodename

Specifies a particular node to visit in the initial file loaded.
This is especially useful in conjunction with --file1. You
may specify --node multiple times; for an interactive Info,
each nodename is visited in its own window, for a non-
interactive Info (such as when --output is given) each node-
name is processed sequentially.

--output filename
-o filename

Specify filename as the name of a file to output to. Each
node that Info visits will be output to filename instead of
interactively viewed. A value of - for filename specifies the
standard output.

--subnodes
This option only has meaning when given in conjunction with
--output. It means to recursively output the nodes appear-
ing in the menus of each node being output. Menu items
which resolve to external info files are not output, and nei-
ther are menu items which are members of an index. Each
node is only output once.

1 Of course, you can specify both the file and node in a --node command;
but don’t forget to escape the open and close parentheses from the
shell as in: info --node ’(emacs)Buffers’

4 11 July 1995

Chapter 1: Reading GNU Online Documentation

--help
-h Produces a relatively brief description of the available Info

options.

--version
Prints the version information of Info and exits.

menu-item
Remaining arguments to Info are treated as the names of
menu items. The first argument would be a menu item in
the initial node visited, while the second argument would
be a menu item in the first argument’s node. You can easily
move to the node of your choice by specifying the menu names
which describe the path to that node. For example,

info emacs buffers

first selects the menu item ‘Emacs’ in the node ‘(dir)Top’,
and then selects the menu item ‘Buffers’ in the node
‘(emacs)Top’.

1.2 Moving the Cursor

Many people find that reading screens of text page by page is made
easier when one is able to indicate particular pieces of text with some
kind of pointing device. Since this is the case, GNU Info (both the
Emacs and standalone versions) have several commands which allow
you to move the cursor about the screen. The notation used in this
manual to describe keystrokes is identical to the notation used within the
Emacs manual, and the GNU Readline manual. See section “Character
Conventions” in the GNU Emacs Manual, if you are unfamilar with the
notation.

The following table lists the basic cursor movement commands in
Info. Each entry consists of the key sequence you should type to execute
the cursor movement, the M-x2 command name (displayed in parenthe-
ses), and a short description of what the command does. All of the cursor
motion commands can take an numeric argument (see Section 1.9 “Mis-
cellaneous Commands,” page 17), to find out how to supply them. With
a numeric argument, the motion commands are simply executed that
many times; for example, a numeric argument of 4 given to next-line
causes the cursor to move down 4 lines. With a negative numeric argu-
ment, the motion is reversed; an argument of -4 given to the next-line
command would cause the cursor to move up 4 lines.

2 M-x is also a command; it invokes execute-extended-command. See
section “Executing an extended command” in the GNU Emacs Man-
ual, for more detailed information.

c y g n u s s u p p o r t 5

GNU Online Documentation

C-n (next-line)
Moves the cursor down to the next line.

C-p (prev-line)
Move the cursor up to the previous line.

C-a (beginning-of-line)
Move the cursor to the start of the current line.

C-e (end-of-line)
Moves the cursor to the end of the current line.

C-f (forward-char)
Move the cursor forward a character.

C-b (backward-char)
Move the cursor backward a character.

M-f (forward-word)
Moves the cursor forward a word.

M-b (backward-word)
Moves the cursor backward a word.

M-< (beginning-of-node)
b Moves the cursor to the start of the current node.

M-> (end-of-node)
Moves the cursor to the end of the current node.

M-r (move-to-window-line)
Moves the cursor to a specific line of the window. Without a
numeric argument, M-r moves the cursor to the start of the
line in the center of the window. With a numeric argument
of n, M-r moves the cursor to the start of the nth line in the
window.

1.3 Moving Text Within a Window

Sometimes you are looking at a screenful of text, and only part of
the current paragraph you are reading is visible on the screen. The
commands detailed in this section are used to shift which part of the
current node is visible on the screen.

SPC (scroll-forward)
C-v Shift the text in this window up. That is, show more of

the node which is currently below the bottom of the window.
With a numeric argument, show that many more lines at the
bottom of the window; a numeric argument of 4 would shift
all of the text in the window up 4 lines (discarding the top

6 11 July 1995

Chapter 1: Reading GNU Online Documentation

4 lines), and show you four new lines at the bottom of the
window. Without a numeric argument, SPC takes the bottom
two lines of the window and places them at the top of the
window, redisplaying almost a completely new screenful of
lines.

M-v

DEL (scroll-backward)
Shift the text in this window down. The inverse of scroll-
forward.

The scroll-forward and scroll-backward commands can also move
forward and backward through the node structure of the file. If you
press SPC while viewing the end of a node, or DEL while viewing the
beginning of a node, what happens is controlled by the variable scroll-
behaviour. See Section 1.10 “Manipulating Variables,” page 18, for more
information.

C-l (redraw-display)
Redraw the display from scratch, or shift the line containing
the cursor to a specified location. With no numeric argument,
‘C-l’ clears the screen, and then redraws its entire contents.
Given a numeric argument of n, the line containing the cursor
is shifted so that it is on the nth line of the window.

C-x w (toggle-wrap)
Toggles the state of line wrapping in the current window.
Normally, lines which are longer than the screen width wrap,
i.e., they are continued on the next line. Lines which wrap
have a ‘\’ appearing in the rightmost column of the screen.
You can cause such lines to be terminated at the rightmost
column by changing the state of line wrapping in the window
with C-x w. When a line which needs more space than one
screen width to display is displayed, a ‘$’ appears in the
rightmost column of the screen, and the remainder of the
line is invisible.

1.4 Selecting a New Node

This section details the numerous Info commands which select a new
node to view in the current window.

The most basic node commands are ‘n’, ‘p’, ‘u’, and ‘l’.
When you are viewing a node, the top line of the node contains some

Info pointers which describe where the next, previous, and up nodes are.
Info uses this line to move about the node structure of the file when you
use the following commands:

c y g n u s s u p p o r t 7

GNU Online Documentation

n (next-node)
Selects the ‘Next’ node.

p (prev-node)
Selects the ‘Prev’ node.

u (up-node)
Selects the ‘Up’ node.

You can easily select a node that you have already viewed in this
window by using the ‘l’ command – this name stands for "last", and
actually moves through the list of already visited nodes for this window.
‘l’ with a negative numeric argument moves forward through the history
of nodes for this window, so you can quickly step between two adjacent
(in viewing history) nodes.

l (history-node)
Selects the most recently selected node in this window.

Two additional commands make it easy to select the most commonly
selected nodes; they are ‘t’ and ‘d’.

t (top-node)
Selects the node ‘Top’ in the current info file.

d (dir-node)
Selects the directory node (i.e., the node ‘(dir)’).

Here are some other commands which immediately result in the se-
lection of a different node in the current window:

< (first-node)
Selects the first node which appears in this file. This node is
most often ‘Top’, but it doesn’t have to be.

> (last-node)
Selects the last node which appears in this file.

] (global-next-node)
Moves forward or down through node structure. If the node
that you are currently viewing has a ‘Next’ pointer, that node
is selected. Otherwise, if this node has a menu, the first menu
item is selected. If there is no ‘Next’ and no menu, the same
process is tried with the ‘Up’ node of this node.

[(global-prev-node)
Moves backward or up through node structure. If the node
that you are currently viewing has a ‘Prev’ pointer, that node
is selected. Otherwise, if the node has an ‘Up’ pointer, that
node is selected, and if it has a menu, the last item in the
menu is selected.

8 11 July 1995

Chapter 1: Reading GNU Online Documentation

You can get the same behaviour as global-next-node and global-
prev-node while simply scrolling through the file with SPC and DEL; See
Section 1.10 “scroll-behaviour,” page 18, for more information.

g (goto-node)
Reads the name of a node and selects it. No completion
is done while reading the node name, since the desired node
may reside in a separate file. The node must be typed exactly
as it appears in the info file. A file name may be included as
with any node specification, for example

g(emacs)Buffers

finds the node ‘Buffers’ in the info file ‘emacs’.

C-x k (kill-node)
Kills a node. The node name is prompted for in the echo area,
with a default of the current node. Killing a node means that
Info tries hard to forget about it, removing it from the list of
history nodes kept for the window where that node is found.
Another node is selected in the window which contained the
killed node.

C-x C-f (view-file)
Reads the name of a file and selects the entire file. The
command

C-x C-f filename

is equivalent to typing
g(filename)*

C-x C-b (list-visited-nodes)
Makes a window containing a menu of all of the currently
visited nodes. This window becomes the selected window,
and you may use the standard Info commands within it.

C-x b (select-visited-node)
Selects a node which has been previously visited in a visible
window. This is similar to ‘C-x C-b’ followed by ‘m’, but no
window is created.

1.5 Searching an Info File

GNU Info allows you to search for a sequence of characters throughout
an entire info file, search through the indices of an info file, or find areas
within an info file which discuss a particular topic.

s (search)
Reads a string in the echo area and searches for it.

c y g n u s s u p p o r t 9

GNU Online Documentation

C-s (isearch-forward)
Interactively searches forward through the info file for a
string as you type it.

C-r (isearch-backward)
Interactively searches backward through the info file for a
string as you type it.

i (index-search)
Looks up a string in the indices for this info file, and selects
a node where the found index entry points to.

, (next-index-match)
Moves to the node containing the next matching index item
from the last ‘i’ command.

The most basic searching command is ‘s’ (search). The ‘s’ command
prompts you for a string in the echo area, and then searches the remain-
der of the info file for an ocurrence of that string. If the string is found,
the node containing it is selected, and the cursor is left positioned at
the start of the found string. Subsequent ‘s’ commands show you the
default search string within ‘[’ and ‘]’; pressing RET instead of typing a
new string will use the default search string.

Incremental searching is similar to basic searching, but the string is
looked up while you are typing it, instead of waiting until the entire
search string has been specified.

1.6 Selecting Cross References

We have already discussed the ‘Next’, ‘Prev’, and ‘Up’ pointers which
appear at the top of a node. In addition to these pointers, a node may
contain other pointers which refer you to a different node, perhaps in
another info file. Such pointers are called cross references, or xrefs for
short.

1.6.1 Parts of an Xref

Cross references have two major parts: the first part is called the
label; it is the name that you can use to refer to the cross reference, and
the second is the target; it is the full name of the node that the cross
reference points to.

The target is separated from the label by a colon ‘:’; first the label
appears, and then the target. For example, in the sample menu cross
reference below, the single colon separates the label from the target.

10 11 July 1995

Chapter 1: Reading GNU Online Documentation

* Foo Label: Foo Target. More information about Foo.

Note the ‘.’ which ends the name of the target. The ‘.’ is not part of
the target; it serves only to let Info know where the target name ends.

A shorthand way of specifying references allows two adjacent colons
to stand for a target name which is the same as the label name:

* Foo Commands:: Commands pertaining to Foo.

In the above example, the name of the target is the same as the name
of the label, in this case Foo Commands.

You will normally see two types of cross references while viewing
nodes: menu references, and note references. Menu references appear
within a node’s menu; they begin with a ‘*’ at the beginning of a line, and
continue with a label, a target, and a comment which describes what the
contents of the node pointed to contains.

Note references appear within the body of the node text; they begin
with *Note, and continue with a label and a target.

Like ‘Next’, ‘Prev’ and ‘Up’ pointers, cross references can point to any
valid node. They are used to refer you to a place where more detailed
information can be found on a particular subject. Here is a cross ref-
erence which points to a node within the Texinfo documentation: See
section “Writing an Xref” in the Texinfo Manual, for more information
on creating your own texinfo cross references.

1.6.2 Selecting Xrefs

The following table lists the Info commands which operate on menu
items.

1 (menu-digit)
2 . . . 9 Within an Info window, pressing a single digit, (such as ‘1’),

selects that menu item, and places its node in the current
window. For convenience, there is one exception; pressing ‘0’
selects the last item in the node’s menu.

0 (last-menu-item)
Select the last item in the current node’s menu.

m (menu-item)
Reads the name of a menu item in the echo area and selects
its node. Completion is available while reading the menu
label.

M-x find-menu
Moves the cursor to the start of this node’s menu.

This table lists the Info commands which operate on note cross refer-
ences.

c y g n u s s u p p o r t 11

GNU Online Documentation

f (xref-item)
r Reads the name of a note cross reference in the echo area

and selects its node. Completion is available while reading
the cross reference label.

Finally, the next few commands operate on menu or note references
alike:

TAB (move-to-next-xref)
Moves the cursor to the start of the next nearest menu item
or note reference in this node. You can then use RET (select-
reference-this-line to select the menu or note reference.

M-TAB (move-to-prev-xref)
Moves the cursor the start of the nearest previous menu item
or note reference in this node.

RET (select-reference-this-line)
Selects the menu item or note reference appearing on this
line.

1.7 Manipulating Multiple Windows

A window is a place to show the text of a node. Windows have a view
area where the text of the node is displayed, and an associated mode
line, which briefly describes the node being viewed.

GNU Info supports multiple windows appearing in a single screen;
each window is separated from the next by its modeline. At any time,
there is only one active window, that is, the window in which the cursor
appears. There are commands available for creating windows, changing
the size of windows, selecting which window is active, and for deleting
windows.

1.7.1 The Mode Line

A mode line is a line of inverse video which appears at the bottom of
an info window. It describes the contents of the window just above it;
this information includes the name of the file and node appearing in that
window, the number of screen lines it takes to display the node, and the
percentage of text that is above the top of the window. It can also tell
you if the indirect tags table for this info file needs to be updated, and
whether or not the info file was compressed when stored on disk.

Here is a sample mode line for a window containing an uncompressed
file named ‘dir’, showing the node ‘Top’.

12 11 July 1995

Chapter 1: Reading GNU Online Documentation

-----Info: (dir)Top, 40 lines --Top-------------------------
ˆˆ ˆ ˆˆˆ ˆˆ

(file)Node #lines where

When a node comes from a file which is compressed on disk, this is
indicated in the mode line with two small ‘z’’s. In addition, if the info file
containing the node has been split into subfiles, the name of the subfile
containing the node appears in the modeline as well:

--zz-Info: (emacs)Top, 291 lines --Top-- Subfile: emacs-1.Z-

When Info makes a node internally, such that there is no correspond-
ing info file on disk, the name of the node is surrounded by asterisks
(‘*’). The name itself tells you what the contents of the window are; the
sample mode line below shows an internally constructed node showing
possible completions:

-----Info: *Completions*, 7 lines --All---------------------

1.7.2 Window Commands

It can be convenient to view more than one node at a time. To allow
this, Info can display more than one window. Each window has its own
mode line (see Section 1.7.1 “The Mode Line,” page 12) and history of
nodes viewed in that window (see Section 1.4 “history-node,” page 7).

C-x o (next-window)
Selects the next window on the screen. Note that the echo
area can only be selected if it is already in use, and you have
left it temporarily. Normally, ‘C-x o’ simply moves the cursor
into the next window on the screen, or if you are already
within the last window, into the first window on the screen.
Given a numeric argument, ‘C-x o’ moves over that many
windows. A negative argument causes ‘C-x o’ to select the
previous window on the screen.

M-x prev-window
Selects the previous window on the screen. This is identical
to ‘C-x o’ with a negative argument.

C-x 2 (split-window)
Splits the current window into two windows, both showing
the same node. Each window is one half the size of the orig-
inal window, and the cursor remains in the original window.
The variable automatic-tiling can cause all of the windows
on the screen to be resized for you automatically, please see
Section 1.10 “automatic-tiling,” page 18 for more informa-
tion.

c y g n u s s u p p o r t 13

GNU Online Documentation

C-x 0 (delete-window)
Deletes the current window from the screen. If you have
made too many windows and your screen appears cluttered,
this is the way to get rid of some of them.

C-x 1 (keep-one-window)
Deletes all of the windows excepting the current one.

ESC C-v (scroll-other-window)
Scrolls the other window, in the same fashion that ‘C-v’ might
scroll the current window. Given a negative argument, the
"other" window is scrolled backward.

C-x ˆ (grow-window)
Grows (or shrinks) the current window. Given a numeric
argument, grows the current window that many lines; with
a negative numeric argument, the window is shrunk instead.

C-x t (tile-windows)
Divides the available screen space among all of the visi-
ble windows. Each window is given an equal portion of
the screen in which to display its contents. The variable
automatic-tiling can cause tile-windows to be called
when a window is created or deleted. See Section 1.10
“automatic-tiling,” page 18.

1.7.3 The Echo Area

The echo area is a one line window which appears at the bottom of
the screen. It is used to display informative or error messages, and
to read lines of input from you when that is necessary. Almost all of
the commands available in the echo area are identical to their Emacs
counterparts, so please refer to that documentation for greater depth of
discussion on the concepts of editing a line of text. The following table
briefly lists the commands that are available while input is being read
in the echo area:

C-f (echo-area-forward)
Moves forward a character.

C-b (echo-area-backward)
Moves backward a character.

C-a (echo-area-beg-of-line)
Moves to the start of the input line.

C-e (echo-area-end-of-line)
Moves to the end of the input line.

14 11 July 1995

Chapter 1: Reading GNU Online Documentation

M-f (echo-area-forward-word)
Moves forward a word.

M-b (echo-area-backward-word)
Moves backward a word.

C-d (echo-area-delete)
Deletes the character under the cursor.

DEL (echo-area-rubout)
Deletes the character behind the cursor.

C-g (echo-area-abort)
Cancels or quits the current operation. If completion is being
read, ‘C-g’ discards the text of the input line which does not
match any completion. If the input line is empty, ‘C-g’ aborts
the calling function.

RET (echo-area-newline)
Accepts (or forces completion of) the current input line.

C-q (echo-area-quoted-insert)
Inserts the next character verbatim. This is how you can
insert control characters into a search string, for example.

printing character (echo-area-insert)
Inserts the character.

M-TAB (echo-area-tab-insert)
Inserts a TAB character.

C-t (echo-area-transpose-chars)
Transposes the characters at the cursor.

The next group of commands deal with killing, and yanking text. For
an in depth discussion of killing and yanking, see section “Killing and
Deleting” in the GNU Emacs Manual

M-d (echo-area-kill-word)
Kills the word following the cursor.

M-DEL (echo-area-backward-kill-word)
Kills the word preceding the cursor.

C-k (echo-area-kill-line)
Kills the text from the cursor to the end of the line.

C-x DEL (echo-area-backward-kill-line)
Kills the text from the cursor to the beginning of the line.

C-y (echo-area-yank)
Yanks back the contents of the last kill.

c y g n u s s u p p o r t 15

GNU Online Documentation

M-y (echo-area-yank-pop)
Yanks back a previous kill, removing the last yanked text
first.

Sometimes when reading input in the echo area, the command that
needed input will only accept one of a list of several choices. The choices
represent the possible completions, and you must respond with one of
them. Since there are a limited number of responses you can make,
Info allows you to abbreviate what you type, only typing as much of the
response as is necessary to uniquely identify it. In addition, you can
request Info to fill in as much of the response as is possible; this is called
completion.

The following commands are available when completing in the echo
area:

TAB (echo-area-complete)
SPC Inserts as much of a completion as is possible.

? (echo-area-possible-completions)
Displays a window containing a list of the possible comple-
tions of what you have typed so far. For example, if the
available choices are:

bar
foliate
food
forget

and you have typed an ‘f’, followed by ‘?’, the possible com-
pletions would contain:

foliate
food
forget

i.e., all of the choices which begin with ‘f’. Pressing SPC or
TAB would result in ‘fo’ appearing in the echo area, since all
of the choices which begin with ‘f’ continue with ‘o’. Now,
typing ‘l’ followed by ‘TAB’ results in ‘foliate’ appearing in
the echo area, since that is the only choice which begins with
‘fol’.

ESC C-v (echo-area-scroll-completions-window)
Scrolls the completions window, if that is visible, or the
"other" window if not.

1.8 Printing Out Nodes

You may wish to print out the contents of a node as a quick reference
document for later use. Info provides you with a command for doing this.

16 11 July 1995

Chapter 1: Reading GNU Online Documentation

In general, we recommend that you use TEX to format the document and
print sections of it, by running tex on the texinfo source file.

M-x print-node
Pipes the contents of the current node through the command
in the environment variable INFO_PRINT_COMMAND. If the
variable doesn’t exist, the node is simply piped to lpr.

1.9 Miscellaneous Commands

GNU Info contains several commands which self-document GNU Info:

M-x describe-command
Reads the name of an Info command in the echo area and
then displays a brief description of what that command does.

M-x describe-key
Reads a key sequence in the echo area, and then displays the
name and documentation of the Info command that the key
sequence invokes.

M-x describe-variable
Reads the name of a variable in the echo area and then dis-
plays a brief description of what the variable affects.

M-x where-is
Reads the name of an Info command in the echo area, and
then displays a key sequence which can be typed in order to
invoke that command.

C-h (get-help-window)
? Creates (or moves into) the window displaying *Help*, and

places a node containing a quick reference card into it. This
window displays the most concise information about GNU
Info available.

h (get-info-help-node)
Tries hard to visit the node (info)Help. The info file
‘info.texi’ distributed with GNU Info contains this node.
Of course, the file must first be processed with makeinfo,
and then placed into the location of your info directory.

Here are the commands for creating a numeric argument:

C-u (universal-argument)
Starts (or multiplies by 4) the current numeric argument.
‘C-u’ is a good way to give a small numeric argument to cursor
movement or scrolling commands; ‘C-u C-v’ scrolls the screen
4 lines, while ‘C-u C-u C-n’ moves the cursor down 16 lines.

c y g n u s s u p p o r t 17

GNU Online Documentation

M-1 (add-digit-to-numeric-arg)
M-2 . . . M-9

Adds the digit value of the invoking key to the current nu-
meric argument. Once Info is reading a numeric argument,
you may just type the digits of the argument, without the
Meta prefix. For example, you might give ‘C-l’ a numeric
argument of 32 by typing:

C-u 3 2 C-l

or
M-3 2 C-l

‘C-g’ is used to abort the reading of a multi-character key sequence,
to cancel lengthy operations (such as multi-file searches) and to cancel
reading input in the echo area.

C-g (abort-key)
Cancels current operation.

The ‘q’ command of Info simply quits running Info.

q (quit) Exits GNU Info.

If the operating system tells GNU Info that the screen is 60 lines tall,
and it is actually only 40 lines tall, here is a way to tell Info that the
operating system is correct.

M-x set-screen-height
Reads a height value in the echo area and sets the height of
the displayed screen to that value.

Finally, Info provides a convenient way to display footnotes which
might be associated with the current node that you are viewing:

ESC C-f (show-footnotes)
Shows the footnotes (if any) associated with the current node
in another window. You can have Info automatically dis-
play the footnotes associated with a node when the node is
selected by setting the variable automatic-footnotes. See
Section 1.10 “automatic-footnotes,” page 18.

1.10 Manipulating Variables

GNU Info contains several variables whose values are looked at by
various Info commands. You can change the values of these variables,
and thus change the behaviour of Info to more closely match your envi-
ronment and info file reading manner.

18 11 July 1995

Chapter 1: Reading GNU Online Documentation

M-x set-variable
Reads the name of a variable, and the value for it, in the echo
area and then sets the variable to that value. Completion is
available when reading the variable name; often, completion
is available when reading the value to give to the variable,
but that depends on the variable itself. If a variable does not
supply multiple choices to complete over, it expects a numeric
value.

M-x describe-variable
Reads the name of a variable in the echo area and then dis-
plays a brief description of what the variable affects.

Here is a list of the variables that you can set in Info.

automatic-footnotes
When set to On, footnotes appear and disappear automati-
cally. This variable is On by default. When a node is se-
lected, a window containing the footnotes which appear in
that node is created, and the footnotes are displayed within
the new window. The window that Info creates to contain
the footnotes is called ‘*Footnotes*’. If a node is selected
which contains no footnotes, and a ‘*Footnotes*’ window is
on the screen, the ‘*Footnotes*’ window is deleted. Footnote
windows created in this fashion are not automatically tiled
so that they can use as little of the display as is possible.

automatic-tiling
When set to On, creating or deleting a window resizes other
windows. This variable is Off by default. Normally, typ-
ing ‘C-x 2’ divides the current window into two equal parts.
When automatic-tiling is set to On, all of the windows
are resized automatically, keeping an equal number of lines
visible in each window. There are exceptions to the auto-
matic tiling; specifically, the windows ‘*Completions*’ and
‘*Footnotes*’ are not resized through automatic tiling; they
remain their original size.

visible-bell
When set toOn, GNU Info attempts to flash the screen instead
of ringing the bell. This variable is Off by default. Of course,
Info can only flash the screen if the terminal allows it; in the
case that the terminal does not allow it, the setting of this
variable has no effect. However, you can make Info perform
quietly by setting the errors-ring-bell variable to Off.

c y g n u s s u p p o r t 19

GNU Online Documentation

errors-ring-bell
When set to On, errors cause the bell to ring. The default
setting of this variable is On.

gc-compressed-files
When set to On, Info garbage collects files which had to be
uncompressed. The default value of this variable is Off.
Whenever a node is visited in Info, the info file containing
that node is read into core, and Info reads information about
the tags and nodes contained in that file. Once the tags in-
formation is read by Info, it is never forgotten. However, the
actual text of the nodes does not need to remain in core un-
less a particular info window needs it. For non-compressed
files, the text of the nodes does not remain in core when it
is no longer in use. But de-compressing a file can be a time
consuming operation, and so Info tries hard not to do it twice.
gc-compressed-files tells Info it is okay to garbage collect
the text of the nodes of a file which was compressed on disk.

show-index-match
When set to On, the portion of the matched search string
is highlighted in the message which explains where the
matched search string was found. The default value of this
variable is On. When Info displays the location where an in-
dex match was found, (see Section 1.5 “next-index-match,”
page 9), the portion of the string that you had typed is high-
lighted by displaying it in the inverse case from its surround-
ing characters.

scroll-behaviour
Controls what happens when forward scrolling is requested
at the end of a node, or when backward scrolling is requested
at the beginning of a node. The default value for this vari-
able is Continuous. There are three possible values for this
variable:

Continuous
Tries to get the first item in this node’s menu, or
failing that, the ‘Next’ node, or failing that, the
‘Next’ of the ‘Up’. This behaviour is identical to
using the ‘]’ (global-next-node) and ‘[’ (global-
prev-node) commands.

Next Only
Only tries to get the ‘Next’ node.

20 11 July 1995

Chapter 1: Reading GNU Online Documentation

Page Only
Simply gives up, changing nothing. If scroll-
behaviour is Page Only, no scrolling command
can change the node that is being viewed.

scroll-step
The number of lines to scroll when the cursor moves out of the
window. Scrolling happens automatically if the cursor has
moved out of the visible portion of the node text when it is
time to display. Usually the scrolling is done so as to put the
cursor on the center line of the current window. However, if
the variable scroll-step has a nonzero value, Info attempts
to scroll the node text by that many lines; if that is enough to
bring the cursor back into the window, that is what is done.
The default value of this variable is 0, thus placing the cursor
(and the text it is attached to) in the center of the window.
Setting this variable to 1 causes a kind of "smooth scrolling"
which some people prefer.

ISO-Latin
When set to On, Info accepts and displays ISO Latin char-
acters. By default, Info assumes an ASCII character set.
ISO-Latin tells Info that it is running in an environment
where the European standard character set is in use, and al-
lows you to input such characters to Info, as well as display
them.

c y g n u s s u p p o r t 21

GNU Online Documentation

22 11 July 1995

Chapter 2: Making Info Files from Texinfo Files

2 Making Info Files from Texinfo Files

Makeinfo is the program that builds info files from texinfo files.
Be,fore reading this chapter, you should be familiar with reading info
files.

If you want to run Makeinfo on a texinfo file prepared by someone
else, this chapter contains all you need to know.

However, to write your own texinfo files, you should also read the Tex-
info manual. See section “Texinfo” in Texinfo—the GNU Documentation
Format.

2.1 Controlling Paragraph Formats

In general, Makeinfo fills the paragraphs that it outputs to the info
file. Filling is the process of breaking up and connecting lines such that
the output is nearly justified. With Makeinfo, you can control:
� The width of each paragraph (the fill-column).
� The amount of indentation that the first line of the paragraph re-

ceives (the paragraph-indentation).

2.2 Command Line Options for Makeinfo

The following command line options are available for Makeinfo.

-I dir Adds dir to the directory search list for finding files which
are included with the @include command. By default, only
the current directory is searched.

-D var Defines the texinfo flag var. This is equivalent to ‘@set var’
in the texinfo file.

-U var Makes the texinfo flag var undefined. This is equivalent to
‘@clear var’ in the texinfo file.

--error-limit num
Sets the maximum number of errors that Makeinfo will print
before exiting (on the assumption that continuing would be
useless). The default number of errors printed before Make-
info gives up on processing the input file is 100.

--fill-column num
Specifies the maximum right-hand edge of a line. Para-
graphs that are filled will be filled to this width. The default
value for fill-column is 72.

c y g n u s s u p p o r t 23

GNU Online Documentation

--footnote-style style
Sets the footnote style to style. style should either be
‘separate’ to have Makeinfo create a separate node contain-
ing the footnotes which appear in the current node, or ‘end’ to
have Makeinfo place the footnotes at the end of the current
node.

--no-headers
Suppress the generation of menus and node headers. This
option is useful together with the ‘--output file’ and
‘--no-split’ options (see below) to produce a simple format-
ted file (suitable for printing on a dumb printer) from texinfo
source. If you do not have TEX, these two options may allow
you to get readable hard copy.

--no-split
Suppress the splitting stage of Makeinfo. In general, large
output files (where the size is greater than 70k bytes) are
split into smaller subfiles, each one apporximately 50k bytes.
If you specify ‘--no-split’, Makeinfo will not split up the
output file.

--no-pointer-validate
--no-validate

Suppress the validation phase of Makeinfo. Normally, after
the file is processed, some consistency checks are made to
ensure that cross references can be resolved, etc. See Sec-
tion 2.3 “What Makes a Valid Info File?,” page 25.

--no-warn
Suppress the output of warning messages. This does not sup-
press the output of error messages, simply warnings. You
might want this if the file you are creating has texinfo exam-
ples in it, and the nodes that are referenced don’t actually
exist.

--no-number-footnotes
Suppress the automatic numbering of footnotes. The default
is to number each footnote sequentially in a single node,
resetting the current footnote number to 1 at the start of
each node.

--output file
-o file Specify that the output should be directed to file instead of

the file name specified in the @setfilename command found
in the texinfo source. file can be the special token ‘-’, which
specifies standard output.

24 11 July 1995

Chapter 2: Making Info Files from Texinfo Files

--paragraph-indent num
Sets the paragraph indentation to num. The value of num is
interpreted as follows:
� A value of 0 (or ‘none’) means not to change the existing

indentation (in the source file) at the start of paragraphs.
� A value less than zero means to indent paragraph starts

to column zero by deleting any existing indentation.
� A value greater than zero is the number of spaces to

leave at the front of each paragraph start.

--reference-limit num
When a node has many references in a single texinfo file, this
may indicate an error in the structure of the file. num is the
number of times a given node may be referenced (with @prev,
@next, @note, or appearing in an @menu, for example) before
Makeinfo prints a warning message about it.

--verbose
Causes Makeinfo to inform you as to what it is doing. Nor-
mally Makeinfo only outputs text if there are errors or warn-
ings.

--version
Displays the Makeinfo version number.

2.3 What Makes a Valid Info File?

If you have not used ‘--no-pointer-validate’ to suppress validation,
Makeinfo will check the validity of the final info file. Mostly, this means
ensuring that nodes you have referenced really exist. Here is a complete
list of what is checked:
1. If a node reference such as Prev, Next or Up is a reference to a node

in this file (i.e., not an external reference such as ‘(DIR)’), then the
referenced node must exist.

2. In a given node, if the node referenced by the Prev is different than
the node referenced by the Up, then the node referenced by the Prev
must have a Next which references this node.

3. Every node except Top must have an Up field.
4. The node referenced by Up must contain a reference to this node,

other than a Next reference. Obviously, this includes menu items
and followed references.

5. If the Next reference is not the same as the Next reference of the
Up reference, then the node referenced by Next must have a Prev

c y g n u s s u p p o r t 25

GNU Online Documentation

reference pointing back at this node. This rule still allows the last
node in a section to point to the first node of the next chapter.

2.4 Defaulting the Prev, Next, and Up

If you write the @node commands in your texinfo source file with-
out Next, Prev, and Up pointers, Makeinfo will fill in the pointers from
context (by reference to the menus in your source file).

Although the definition of an info file allows a great deal of flexibility,
there are some conventions that you are urged to follow. By letting
Makeinfo default the Next, Prev, and Up pointers you can follow these
conventions with a minimum of effort.

A common error ocurrs when adding a new node to a menu; often the
nodes which are referenced in the menu do not point to each other in the
same order as they appear in the menu.

Makeinfo node defaulting helps with this particular problem by not
requiring any explicit information beyond adding the new node (so long
as you do include it in a menu).

The node to receive the defaulted pointers must be followed imme-
diately by a sectioning command, such as @chapter or @section, and
must appear in a menu that is one sectioning level or more above the
sectioning level that this node is to have.

Here is an example of how to use this feature.
@setfilename default-nodes.info
@node Top
@chapter Introduction
@menu
* foo:: the foo node
* bar:: the bar node
@end menu

@node foo
@section foo
this is the foo node.

@node bar
@section Bar
This is the Bar node.
@bye

produces
Info file default-nodes.info, produced by Makeinfo, -*- Text -*-

from input file default-nodes.texinfo.

File: default-nodes.info, Node: Top

26 11 July 1995

Chapter 2: Making Info Files from Texinfo Files

Introduction

* Menu:

* foo:: the foo node
* bar:: the bar node

File: default-nodes.info, Node: foo, Next: bar, Up: Top

foo
===

this is the foo node.

File: default-nodes.info, Node: bar, Prev: foo, Up: Top

Bar
===

This is the Bar node.

c y g n u s s u p p o r t 27

GNU Online Documentation

28 11 July 1995

Index

Index

,
, . 10

-
--subnodes, command line option 4

?
?, in Info windows . 17
?, in the echo area . 16

[
[. 8

]
] . 8

>
> . 8

<
< . 8

0
0, in Info windows . 11

1
1 : : : 9, in Info windows 11

A
abort-key . 18
add-digit-to-numeric-arg 18
arguments, command line 3
automatic-footnotes 19
automatic-tiling . 19

B
b, in Info winows . 6
backward-char . 6
backward-word . 6
beginning-of-line . 6

beginning-of-node . 6

C
C-a, in Info windows 6
C-a, in the echo area 14
C-b, in Info windows 6
C-b, in the echo area 14
C-d, in the echo area 15
C-e, in Info windows 6
C-e, in the echo area 14
C-f, in Info windows . 6
C-f, in the echo area 14
C-g, in Info windows 18
C-g, in the echo area 15
C-h. 17
C-k, in the echo area 15
C-l . 7
C-n . 6
C-p . 6
C-q, in the echo area 15
C-r . 10
C-s . 10
C-t, in the echo area 15
C-u. 17
C-v . 6
C-w . 7
C-x ˆ . 14
C-x 0 . 14
C-x 1 . 14
C-x 2 . 13
C-x b . 9
C-x C-b . 9
C-x C-f . 9
C-x DEL, in the echo area 15
C-x k . 9
C-x o . 13
C-x t . 14
C-y, in the echo area 15
cancelling the current operation 18
cancelling typeahead 18
command line options 3
command summary online, Info 3
commands, describing 17

c y g n u s s u p p o r t 29

GNU Online Documentation

cursor, moving . 5

D
d . 8
DEL, in Info windows 7
DEL, in the echo area 15
delete-window . 14
describe-command . 17
describe-key . 17
describe-variable . 19
dir-node . 8
directory path . 4

E
echo area . 14
echo-area-abort . 15
echo-area-backward 14
echo-area-backward-kill-line 15
echo-area-backward-kill-word 15
echo-area-backward-word 15
echo-area-beg-of-line 14
echo-area-complete 16
echo-area-delete . 15
echo-area-end-of-line 14
echo-area-forward. 14
echo-area-forward-word 15
echo-area-insert. 15
echo-area-kill-line . 15
echo-area-kill-word 15
echo-area-newline. 15
echo-area-possible-completions 16
echo-area-quoted-insert 15
echo-area-rubout . 15
echo-area-scroll-completions-window

. 16
echo-area-tab-insert 15
echo-area-transpose-chars 15
echo-area-yank . 15
echo-area-yank-pop 16
end-of-line. 6
end-of-node. 6
errors-ring-bell. 20
ESC C-f . 18
ESC C-v, in Info windows 14
ESC C-v, in the echo area 16

F
f . 12
file, outputting to . 4
filling . 23
find-menu . 11
first-node . 8
footnotes, displaying 18
formatting without TEX 24
forward-char . 6
forward-word. 6
functions, describing 17

G
g . 9
gc-compressed-files 20
get-help-window . 17
get-info-help-node . 17
getting started . 3
global-next-node . 8
global-prev-node . 8
goto-node . 9
grow-window. 14

H
h . 17
hard copy, simple . 24
history-node . 8

I
i. 10
index-search . 10
Info command summary, online 3
info file, selecting . 4
info files, description of 1
INFO PRINT COMMAND, environment

variable . 17
isearch-backward . 10
isearch-forward . 10
ISO Latin characters. 21
ISO-Latin . 21

K
keep-one-window . 14
keys, describing . 17
kill-node . 9

30 11 July 1995

Index

L
l . 8
last-menu-item . 11
last-node . 8
learning Info . 3
line breaking . 23
list-visited-nodes . 9

M
m . 11
M-> . 6
M-< . 6
M-1 : : : M-9 . 18
M-b, in Info winows . 6
M-b, in the echo area. 15
M-d, in the echo area 15
M-DEL, in the echo area 15
M-f, in Info windows 6
M-f, in the echo area 15
M-r . 6
M-TAB, in Info windows 12
M-TAB, in the echo area 15
M-v . 7
M-y, in the echo area 16
makeinfo options . 23
menu, following . 5
menu-digit . 11
menu-item . 11
move-to-next-xref . 12
move-to-prev-xref . 12
move-to-window-line 6

N
n . 8
next-index-match . 10
next-line . 6
next-node . 8
next-window . 13
node pointer defaults 26
node, selecting . 4
nodes, description of 3
nodes, selection of . 7
numeric arguments 17

O
options, makeinfo . 23

outputting to a file . 4

P
p . 8
paragraphing . 23
prev-line . 6
prev-node . 8
prev-window . 13
print-node . 17
printing . 16
printing characters, in the echo area . . 15

Q
q . 18
quit . 18
quitting . 18

R
r . 12
redraw-display . 7
RET, in Info windows 12
RET, in the echo area 15

S
s . 9
screen, changing the height of 18
scroll-backward . 7
scroll-behaviour . 20
scroll-forward . 6
scroll-other-window 14
scroll-step . 21
scrolling . 6
scrolling through node structure 7
search . 9
searching . 9
select-reference-this-line 12
select-visited-node . 9
set-screen-height. 18
set-variable . 19
show-footnotes . 18
show-index-match . 20
single output file, forcing. 24
SPC, in Info windows 6
SPC, in the echo area 16
split-window . 13
splitting info files, avoiding 24

c y g n u s s u p p o r t 31

GNU Online Documentation

T
t . 8
TAB, in Info windows 12
TAB, in the echo area 16
texinfo, description of. 1
tile-windows . 14
tiling . 14
toggle-wrap . 7
top-node . 8
tutorial for Info . 3

U
u . 8
universal-argument 17
up-node . 8

V
valid info file . 25
variables, describing 19
variables, setting . 19
version information . 5
view-file . 9
visible-bell . 19

W
where-is . 17
windows, creating . 13
windows, deleting . 14
windows, manipulating 12
windows, selecting . 13

X
xref-item . 12

32 11 July 1995

Rebuilding From Source
Cygnus Support Developer’s Kit

Cygnus Support

Copyright c 1994, 1995 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

Rebuilding From Source . 1

1 Configuration . 3
1.1 Options to configure . 3
1.2 Specifying names for hosts and targets 5

Host names . 5
Target names . 6
config.guess . 7

1.3 Source and Build Directories . 8
1.4 Rebuilding using gcc . 9

2 Compilation . 11

3 Installation . 13

4 Examples and suggestions . 15
4.1 The Heterogeneous Updateable Toolkit 15

How the HUT works . 15
Configuring for the HUT . 16
Setting links after installation 16
The Heterogeneous part . 16
The Updateable part . 17

Building and installing the HUT . 17
4.2 How your Developer’s Kit was built . 18
4.3 Possible build variations . 19

Building with the defaults . 20
Example: setting prefix and exec-prefix 21
Example: different srcdir and objdir 23
Example: setting prefix/exec-prefix and srcdir . . . 25
Multiple simultaneous builds . 26

c y g n u s s u p p o r t i

Rebuilding From Source

ii 11 July 1995

Rebuilding From Source

Rebuilding From Source

All Cygnus products are free software; your Developer’s Kit includes
complete source code for all programs. Because of this, you have the
freedom to rebuild the tools for any of a variety of reasons, such as
redefining compiled-in pathnames, or installing a source code patch from
Cygnus.

Whatever the reason, we have designed and implemented an auto-
matic configuration scheme to adapt the programs to different environ-
ments.

Rebuilding the programs from source requires these steps:
1. Configuration (see Chapter 1 “Configuration,” page 3)
2. Compilation (see Chapter 2 “Compilation,” page 11)
3. Installation (see Chapter 3 “Installation,” page 13)

The first three chapters of this manual discuss the background behind
each of the three steps involved in completely building and installing
the Cygnus Support Developer’s Kit. See Chapter 4 “Examples and
suggestions,” page 15, for variations on this theme. Follow the examples
in “Building with the defaults,” page 20, to recreate the distribution as
it exists by default.

Note: The procedures described in this note are for Unix sys-
tems. For dos or LynxOS toolkits, contact Cygnus Support for
instructions on rebuilding your Developer’s Kit. In particular,
since we do not provide a native dos compiler, you must either
rebuild on a Unix system or allow Cygnus to rebuild the toolkit
for you.

We strongly recommend that you contact Cygnus Support if you wish
to rebuild the Developer’s Kit for cross-platform development. Contact
your Cygnus technical representative, or get in touch with us at:

Cygnus Support
hotline: +1 415 903 1401
email: support@cygnus.com

Headquarters East Coast
1937 Landings Drive 48 Grove St., Ste. 105
Mountain View, CA 94043 USA Somerville, MA 02144 USA

+1 415 903 1400 +1 617 629 3000
+1 415 903 0122 fax fax +1 617 629 3010

c y g n u s s u p p o r t 1

Rebuilding From Source

2 11 July 1995

Chapter 1: Configuration

1 Configuration
The first and most important step in preparing source code to run on

your system is to configure it so that, when built, the program exhibits
the behavior you expect. The configuration process involves preparing a
Makefile which contains default and/or customized information for your
site and for your hardware/software system. If you are building the
distribution for more than one platform, you must configure, compile,
and install on each platform.

You can configure the software in this release by using the shell script
configure. The shell script accepts one argument, the host type, al-
though if you do not supply it configure is able to determine it under
most circumstances (see “config.guess,” page 7). In fact, in most cases
we recommend you not specify the type of host.

There are also several possible options, including a ‘--target=’ option
to configure for cross-system development. For various examples of these
options, see Chapter 4 “Examples and suggestions,” page 15.

Your Developer’s Kit contains full online documentation for Cygnus
configure. See section “Using configure” in Cygnus configure, to
read about configure in more detail, including information on how the
configure options are related to ‘Makefile’ variables.

1.1 Options to configure

This section summarizes the configure options and arguments used
most often:

configure [hosttype]
[--prefix=dest]
[--exec-prefix=bindest]
[--srcdir=path]
[--target=target]

The ‘--prefix’ and ‘--exec-prefix’ options are particularly impor-
tant. If you don’t specify a dest or bindest directory, the ‘Makefile’ in-
stalls binaries in subdirectories of ‘/usr/cygnus/progressive-release’
(see Section 4.2 “How your Developer’s Kit was built,” page 18). These
options are important because the dest and bindest directories are used
for several purposes, most notably:
� bindest is the directory where binaries are installed.
� bindest is built into the compiler itself for the locations of gcc-

specific include files, the locations of gcc subprograms, and the
location of the gcc-specific library ‘libgcc.a’.

� dest is compiled into info as the default directory for the documen-
tation.

c y g n u s s u p p o r t 3

Rebuilding From Source

See Section 4.1 “The Heterogeneous Updateable Toolkit,” page 15, for
hints on setting up your installation to be accessible and easily updated.

hosttype Configure the development tools to run on the specified host-
type. See “Host names,” page 5. This argument is not usu-
ally required, since configure can automatically determine
what kind of machine it runs on.

--prefix=dest
dest is an installation directory path prefix, the root for
the directories where make install installs programs, li-
braries, and other relevant files. After you configure with
this option, ‘make install install-info’ installs info files
in ‘dest/info’, man pages in ‘dest/man’, and (unless you also
use ‘--exec-prefix’) binary programs in ‘dest/bin’, and li-
braries in ‘dest/lib’. If you specify ‘--prefix=/usr/local’,
for example, make install puts the development tools in
‘/usr/local/bin’. (See Section 4.1 “The Heterogeneous Up-
dateable Toolkit,” page 15, for more detail.)
Cygnus uses a dest of ‘/usr/cygnus/progressive-date’; see
Section 4.2 “How your Developer’s Kit was built,” page 18.
This is also the default dest for your source code. We recom-
mend you always use the ‘--prefix’ option to explicitly set
the destination prefix.

--exec-prefix=bindest
‘--exec-prefix’ serves the same purpose as ‘--prefix’,
but affects only machine-dependent binaries (programs and
precompiled libraries). Specifying both ‘--prefix’ and
‘--exec-prefix’ allows you to segregate machine-dependent
files, so that machine-independent files can be shared
(see Section 4.1 “The Heterogeneous Updateable Toolkit,”
page 15).
The default bindest is normally the value for dest, spec-
ified with ‘--prefix’. Cygnus specifies a bindest value
of ‘/usr/cygnus/progressive-date/H-hosttype’; see Chap-
ter 4 “Examples and suggestions,” page 15. This is also
the default for your source distribution, unless you set
dest with ‘--prefix’. We recommend you always use
the ‘--exec-prefix’ option to explicitly set the machine-
dependent destination prefix.

--srcdir=path
Use this option to configure in directories separate from the
source directories. configure writes configuration-specific
files in the current directory, but arranges for them to use

4 11 July 1995

Chapter 1: Configuration

the source in the directory path. configure creates directo-
ries under the working directory in parallel with the source
directories below path. The default path is the directory in
which configure resides; setting this option is redundant,
but explicit.
Among other things, you can use this to build (or maintain)
several configurations simultaneously, in separate build di-
rectories. See Section 1.3 “Source and Build Directories,”
page 8.

Warning: This option is only supported if you use
gnu Make.

--target=target
Configure the development tools for cross-development (com-
piling, debugging, or other processing) of programs running
on the specified target (see “Target names,” page 6). With-
out this option, the toolkit is configured as native, i.e., to
manage programs that run on the same system as the devel-
opment tools themselves.
Cross-development tools are named with a prefix of target
in order to avoid confusion with the native tools. Thus, if
the toolkit is built for a mips-idt-ecoff target, the com-
piler is named mips-idt-ecoff-gcc, the debugger is named
mips-idt-ecoff-gdb, etc.

1.2 Specifying names for hosts and targets

Your tape is labeled to indicate the host (and target, if applicable) for
which the binaries in the distribution are configured. The specifications
used for hosts and targets in the configure script are based on a three-
part naming scheme, though the scheme is slightly different between
hosts and targets.

Host names

The full naming scheme for hosts encodes three pieces of information
in the following pattern:

architecture-vendor-os

For example, the full name for a Sun sparcstation running SunOS
4.1.3 is

sparc-sun-sunos4.1.3

c y g n u s s u p p o r t 5

Rebuilding From Source

Remember that you can type configure without specifying a host-
type and your host will be divined by configure (see “config.guess,”
page 7). In fact, we recommend this procedure on most systems.

Warning: configure can represent a very large number of com-
binations of architecture, vendor, and operating system. There
is by no means support for all possible combinations!

The following combinations refer to hosts supported by Cygnus Sup-
port. Some common short aliases are included, but these may be obsolete
in the future. (For a matrix which shows all supported host/target com-
binations, see section “Overview” in Release Notes.)

canonical name alias platform
sparc-sun-solaris2 sun4sol2 Sun 4 running Solaris 2
sparc-sun-sunos4.1.3 sun4 Sun-4 running SunOS 4
mips-dec-ultrix decstation DECstation
rs6000-ibm-aix rs6000 IBM RS6000
mips-sgi-irix4 iris SGI Iris running Irix 4
m68k-hp-hpux hp300hpux HP 9000/300
hppa1.1-hp-hpux hp700 HP 9000/700
i386-unknown-sysv4 UnixWare
i386-lynx-lynxos i386-lynx Intel x86 Lynxos 2.2
m68k-lynx-lynxos m68k-lynx Motorola 68k Lynxos 2.2
sparc-lynx-lynxos sparc-lynx SPARC Lynxos 2.2
rs6000-lynx-lynxos rs6000-lynx IBM RS6000 Lynxos 2.2
alpha-dec-osf1.3 DEC Alpha running OSF/1 v1.3

Target names

If you have a cross-development tape, the label also indicates the
target for that configuration. The pattern for target names is

architecture[-vendor]-objfmt

Target names differ slightly from host names in that the last variable
indicates the object format rather than the operating system, and the
second variable is often left out (this practice is becoming obsolete; in
the future, all configuration names will be made up of three parts).

In cross-development configurations, each tool in the Developer’s Kit
is installed with the configured name of the target as a prefix. For
example, if the C compiler is configured to generate coff format code for
the Motorola 680x0 family, the compiler is installed as ‘m68k-coff-gcc’.

Warning: configure can represent a very large number of tar-
get name combinations of architecture, vendor, and object for-
mat. There is by no means support for all possible combinations!

This is a list of some of the more common targets supported by Cygnus
Support. (Not all targets are supported on every host!) The list is not

6 11 July 1995

Chapter 1: Configuration

exhaustive; see section “Overview” in Release Notes, for an up-to-date
matrix which shows the host/target combinations supported by Cygnus.

Motorola 68000 family
m68k-aout a.out object code format
m68k-coff COFF object code format
m68k-vxworks VxWorks environment
m68k-lynx Lynxos 2.2 environment

Motorola 88000 family
m88k-coff COFF object code format

Intel 960 family
i960-vxworks5.0 VxWorks environment (b.out format)
i960-vxworks5.1 VxWorks environment (COFF format
i960-intel-nindy Nindy monitor

amd 29000 family
a29k-amd-udi UDI monitor interface

To use the minimon interface, use this configuration
with the auxiliary program MONTIP, available from AMD.

sparc family
sparc-vxworks VxWorks environment
sparc-aout a.out object code format
sparclite-aout a.out object code format
sparclite-coff COFF object code format

Intel 80x86 family
i386-aout a.out object code format
i386-netware NetWare NLM
i386-lynx LynxOS 2.2 environment

idt/mips r3000
mips-idt-ecoff IDT R3000, big endian ECOFF
mipsel-idt-ecoff IDT R3000, little endian ECOFF
mips64-idt-ecoff IDT R4000 ECOFF

Hitachi h8300
h8300-hms-coff COFF object code format

Hitachi sh
sh-hms-coff COFF object code format

z8000

z8k-coff COFF object code format

config.guess

config.guess is a shell script which attempts to deduce the host
type from which it is called, using system commands like uname if they
are available. config.guess is remarkably adept at deciphering the
proper configuration for your host; if you are building a tree to run on

c y g n u s s u p p o r t 7

Rebuilding From Source

the same host on which you’re building it, we recommend not specifying
the hosttype argument.

config.guess is called by configure; you need never run it by hand,
unless you’re curious about the output.

1.3 Source and Build Directories

Builds are most often done in the same directory where the source
lies. However, if you don’t have enough disk space there, or if you wish
to compile the Developer’s Kit for more than one configuration, you may
find it easiest to configure and build in a different directory from the
source.

To build in a location different from the source directory, first create
the build directory, which we’ll call ‘objdir’:

$ mkdir objdir
$ cd objdir

Then run configure from the top level of the source directory, which
we’ll call ‘srcdir’. You don’t need to specify the ‘--srcdir=path’ option
to configure (see Section 1.1 “configure options,” page 3), but we show
it here for the purposes of the example:

$ srcdir/configure --srcdir=srcdir ...

The default for srcdir is the directory in which configure resides.
configure creates a ‘Makefile’ in the current directory, ‘objdir’.

When you run make here, object files are created in ‘objdir’ from
the source code in ‘srcdir’. For example (assume source code is in
‘/usr/local/src’, and binaries are to be installed under ‘/usr/local’):

$ mkdir /usr/local/obj/sun4
$ cd /usr/local/obj/sun4
$ /usr/local/src/configure --srcdir=/usr/local/src
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
Created "Makefile" in /usr/local/obj/sun4. ..

This is extremely useful if you need to create more than one instal-
lation of the Developer’s Kit. For example, if you wish to rebuild and
install the toolkit for a given host as well as a cross-development system
for the same host, you can use a different build directory for each toolkit,
with different options to configure for each build. In this way, the object
files for each configuration exist simultaneously but independently, even
if they are meant to install finally into the same repository.

See Section 4.3 “Possible build variations,” page 19, for examples of
the build process using separate directories for source and object files.

Again, please contact Cygnus Support if you have any trouble.

8 11 July 1995

Chapter 1: Configuration

1.4 Rebuilding using gcc

If you’ve built and installed the compiler in a native configuration,
you may wish to use it to rebuild itself. To do this, set the environment
variable CC to the installed version of gcc, and reconfigure and rebuild
the toolkit.

$ CC=installed-dir/gcc configure ...
$ make CC=installed-dir/gcc ...

For example, if you installed the Developer’s Kit in ‘/usr/local’, use
the following commands to rebuild with the installed gcc:

$ CC=/usr/local/bin/gcc configure ...
$ make CC=/usr/local/bin/gcc ...

Make sure you specify the same compiler for CC for both the configure
and make steps.

(Note: These examples assumes you are using a Bourne-compatible
shell (sh, bash, ksh); contact Cygnus Support if you encounter any prob-
lems.)

c y g n u s s u p p o r t 9

Rebuilding From Source

10 11 July 1995

Chapter 2: Compilation

2 Compilation

After you’ve run configure, compilation is straightforward. To com-
pile all the programs in the Developer’s Kit, run:

make all info > make.log

The examples suggest capturing the make output in a ‘make.log’ file,
because the output is lengthy.

make creates a set of binaries which run on your hosttype and which
compile code for the specified target (or for the hosttype in a native con-
figuration). Programs which require compiled-in pathnames are built
with the values you specified on the command line to configure with
the options ‘--prefix’ and ‘--exec-prefix’. In cross-development con-
figurations, programs are named with target as a prefix; for example,
the cross-compiler is named target-gcc.

The overall ‘Makefile’ propagates the value of the CC variable explic-
itly, so that you can easily control the compiler used in this step. CFLAGS
is treated the same way. For instance, to build the compiler a second
time, using gcc to compile itself (after building and installing it in the
alternate directory ‘/usr/local’; see Section 1.4 “Rebuilding using gcc,”
page 9), you might follow this example:

$ CC=/usr/local/bin/gcc configure ...
$ make CC=/usr/local/bin/gcc CFLAGS=-O2 all info > make.log

Make sure you specify the same compiler for CC for both the configure
and make steps.

The conventional targets all, install, and clean are supported at
all levels of ‘Makefile’. (Other targets are supported as well, as ap-
propriate in each directory.) Each ‘Makefile’ in the source directories
includes ample comments to help you read it. If you are not familiar
with make, refer to section “Overview of make” in GNU Make: A Program
for Directing Recompilation.

c y g n u s s u p p o r t 11

Rebuilding From Source

12 11 July 1995

Chapter 3: Installation

3 Installation

Once the software is compiled, installation is elementary. Simply
type:

make install install-info >> make.log

make installs the Developer’s Kit into the locations you specified on
the configure command line with ‘--prefix’ and ‘--exec-prefix’.

The Cygnus installation process calls for a few links to be created
after installation, though if you’ve specified values of ‘--prefix’ and/or
‘--exec-prefix’ different from the defaults, your links may be different
or even unnecessary. See Section 4.2 “How your Developer’s Kit was
built,” page 18, for more information on these links.

See Section 4.2 “How your Developer’s Kit was built,” page 18, and
the Installation Notes, for more discussion on installing your Developer’s
Kit.

c y g n u s s u p p o r t 13

Rebuilding From Source

14 11 July 1995

Chapter 4: Examples and suggestions

4 Examples and suggestions

Following are several examples of the build process, and a few sug-
gestions on rebuilding and installing your Cygnus Support Developer’s
Toolkit.

The most useful suggestion we can offer is a process by which you can
make your Developer’s Kit both easily updateable and easily accessible
to your developers, even in a heterogeneous network environment. We
use this process to build the binary distribution of the Developer’s Kit.

4.1 The Heterogeneous Updateable Toolkit

The process described here combines the use of the ‘--prefix’ and
‘--exec-prefix’ options to configure (see Section 1.1 “configure op-
tions,” page 3) with the creation of strategic symbolic links in the instal-
lation directory. See Section 4.2 “How your Developer’s Kit was built,”
page 18, for an example of this process.

In the following examples, the variable release refers to a given
Cygnus Support release number, such as ‘progressive-94q4’ (many of
the examples simply use ‘94q4’). The variable hosttype refers to the
configure name for the given host type, such as ‘sparc-sun-sunos4.1.3’
(see Section 1.2 “Specifying names for hosts and targets,” page 5). These
values are on the distribution tape label.

In order for the Developer’s Kit to be accessible in a heterogeneous
network environment, it must be configured, compiled, and installed on
each host type (one installation for the Sun4s on the network, one for the
DECstations, etc.), using the configuration paradigm discussed below
(for a more general discussion, see “Building and installing the HUT,”
page 17). The symbolic links must also be set up on each host.

How the HUT works

The Heterogeneous Updateable Toolkit depends on the use of the
‘--prefix’ and ‘--exec-prefix’ options to configure, as well as to two
strategic symbolic links in the installation directory.

See “Building and installing the HUT,” page 17, and Section 4.3
“Possible build variations,” page 19, for more general examples and
suggestions.

c y g n u s s u p p o r t 15

Rebuilding From Source

Configuring for the HUT

The binary distribution on your tape is configured with the following
command:

configure --prefix=/usr/cygnus/progressive-release \
--exec-prefix=/usr/cygnus/progressive-release/H-hosttype \
[--target=target]

This configuration is used for each hosttype for a given release. The
‘--target=target’ option is only needed for cross-development config-
urations. If you are building installations for more than one platform,
each platform should follow this standard. This configuration places
machine-independent files (like documentation and library sources) in

/usr/cygnus/progressive-release

and machine-dependent files (like binary programs and precompiled li-
brary archives) in

/usr/cygnus/progressive-release/H-hosttype

Using these installation locations allows us to create multiple Hetero-
geneous Updateable Toolkits from a single source tree by simply putting
two strategic symbolic links in place.

Setting links after installation

We recommend setting two links after building the Heterogeneous
Updateable Toolkit. One makes the toolkit easily updateable; the other
makes the tools available in a heterogeneous network environment.
Note: If you choose not to set the links in place, you must set your
PATH according to the value you choose for exec-prefix.

The Heterogeneous part

The installed distribution is useful in a heterogeneous environment
due to the properties of local public installation directories like ‘/usr’.
‘/usr’ is local to each machine, even machines of the same architecture.
However, subdirectories of ‘/usr’ can be symbolic links to other locations
on disks shared throughout the network.

The HUT creation process (and the Cygnus progressive installation
process) suggests the symbolic link

ln -s /usr/cygnus/progressive/H-hosttype /usr/progressive

on each host for which the toolkit is installed. This way,
users on each system have access to the Developer’s Kit through
‘/usr/progressive/bin’, since ‘/usr/progressive’ on each hosttype
points to the binaries for that hosttype.

16 11 July 1995

Chapter 4: Examples and suggestions

The Updateable part

The installed distribution is easily updated via the symbolic link
ln -s /usr/cygnus/progressive-release /usr/cygnus/progressive

Each time you install a new releasewith a similar configuration, you
only need to change this symbolic link to give your users access to the
new version of the toolkit. You can also revert the change by switching
the symbolic link back to the previous release if needed, as the previous
release is also still available. Once you decide to keep the new release,
you can remove the old one to conserve disk space.

Building and installing the HUT

If you wish to rebuild your Developer’s Kit with the same precom-
piled pathnames as the default (under ‘/usr/cygnus’), simply follow the
example in “Building with the defaults,” page 20.

Otherwise, decide on an installation directory; for the purposes of
these examples, we’ll call it ‘instdir’. Run configure, specifying op-
tions so that the host-dependent files described by ‘--exec-prefix’ re-
side in a level underneath the host-independent files designated by
‘--prefix’, and so that both host-dependent and host-independent files
are designated with the release number release.

This division allows the distribution to be both easily updated and
easily accessed after installation (see “How the HUT works,” page 15).

$ configure --prefix=instdir/release \
--exec-prefix=instdir/release/H-hosttype

You can also build in an object directory, different from that which
holds the sources, allowing more than one compiled tree to be available
simultaneously.

$ mkdir objdir1 (this one is native)
$ cd objdir1
$ srcdir/configure --prefix=instdir/release \

--exec-prefix=instdir/release/H-hosttype

$ mkdir objdir2 (this one is for cross-development)
$ cd objdir2
$ srcdir/configure --prefix=instdir/release \

--exec-prefix=instdir/release/H-hosttype \
--target=target

Once the configuration is set, compilation is straightforward:
$ make all info >> make.log

Installation is straightforward as well (the example shows access to
root; this is usually, though certainly not always, needed to install into
publicly accessible places like ‘/usr’):

c y g n u s s u p p o r t 17

Rebuilding From Source

$ su
make install install-info >> make.log

The final process is to set links in place, so the toolkit is easily accessi-
ble and updateable, and available in a heterogeneous environment. pub,
shown below, indicates a top-level publicly accessible directory, such as
‘/usr’. rel is a truncated version of release, meant to be more general;
if release is ‘progressive-94q4’, rel might be ‘progressive’.

ln -s instdir/release instdir/rel
ln -s instdir/rel/H-hosttype pub/rel
exit (root access not needed beyond this)

Now, anyone who puts ‘pub/rel’ in her or his path has full access
to the installed tools. You can also build and install the tools for other
host types; these other toolkits are available from the “same” location,
‘pub/rel’, because pub is local to each machine. (For more discussion of
these links, see “How the HUT works,” page 15.)

For concrete examples of this process, see Section 4.3 “Possible build
variations,” page 19.

4.2 How your Developer’s Kit was built

The files in your Developer’s Kit distribution are compiled with the
following options to configure (the line is only split so that it fits on the
printed page; it is intended as a single command line):

configure --prefix=/usr/cygnus/progressive-release \
--exec-prefix=/usr/cygnus/progressive-release/H-hosttype

where release indicates the Cygnus release number for this dis-
tribution, e.g., ‘94q4’, and hosttype indicates the architecture and
operating system configuration on which this software is to run,
e.g., ‘sparc-sun-sunos4.1.3’ (see “Host names,” page 5). Cross-
development distributions are configured with

configure --prefix=/usr/cygnus/progressive-release \
--exec-prefix=/usr/cygnus/progressive-release/H-hosttype \
--target=target

where target indicates the architecture and object file format for which
the Developer’s Kit is to generate code (see “Target names,” page 6).

In other words, in both native and cross-development configurations,
host-independent files (text files, library source code, etc.) reside by
default in

/usr/cygnus/progressive-release

while host-dependent files, like precompiled libraries and the tools them-
selves, reside by default in

/usr/cygnus/progressive-release/H-hosttype

18 11 July 1995

Chapter 4: Examples and suggestions

For example, the Sun 4 cross ‘m68k-aout’ cross-compiler for the Pro-
gressive 94q4 release was configured with

configure --prefix=/usr/cygnus/progressive-94q4 \
--exec-prefix=/usr/cygnus/progressive-94q4/H-sparc-sun-sunos4.1.3 \
--target=m68k-aout

Installation

The installation procedure directs you to run the Install script and
then set some links in place so that the distribution may be easily ac-
cessed and updated (see section “Installing your Developer’s Kit” in In-
stallation Notes) as follows:

ln -s /usr/cygnus/progressive-release /usr/cygnus/progressive
ln -s /usr/cygnus/progressive/H-hosttype /usr/progressive

This combination of a separate links provide the following benefits:
� Access is granted to anyone who puts ‘/usr/progressive/bin’ in

her or his path
� Updating is simplified; when you install a new Developer’s Kit (with

a different value for release), you only need to change the link
‘/usr/cygnus/progressive’ to bring the new toolkit online

� Installed toolkits for multiple platforms can coexist in the same
location and share host-independent files, conserving disk space and
easing maintenance; if you install the toolkit for more than one
platform, ‘/usr/progressive’ on each platform points to the host-
dependent files for that platform, yet the host-independent files are
shared (see Section 4.1 “The Heterogeneous Updateable Toolkit,”
page 15)

For more details on installing the default binary distribution from
Cygnus Support, see section “Installing your Developer’s Kit” in Instal-
lation Notes.

4.3 Possible build variations

There are several permutations of variations in building the Cygnus
Support Developer’s Kit. In this section we try to discuss the majority of
the possibilities. Feel free to contact Cygnus Support with any questions
or problems.

In these examples, we assume the source code has been extracted
from the tape into ‘/usr/local/src’ on a Sun 4 running SunOS 4.1.3.
Examples are shown using a Bourne-compatible shell (sh, bash, ksh).
Sample command lines which are too long to fit on the printed page are
wrapped as follows:

c y g n u s s u p p o r t 19

Rebuilding From Source

$./configure --prefix=/usr/local/94q4 \
--exec-prefix=/usr/local/94q4/H-sun4 \
--srcdir=/usr/local/src

Such lines are intended to be typed on one single command line.
Examples show a release number of ‘94q4’, and (often) a hosttype

of sun4. In practice, we recommend the values ‘progressive-94q4’ and
‘sparc-sun-sunos4.1.3’, respectively; see Section 4.2 “How your Devel-
oper’s Kit was built,” page 18. The values are shortened here to make
the examples fit on the printed page.

The examples also show the creation of two links. The links aren’t
necessary, but they do provide an easy way to make your Developer’s Kit
easily updateable and accessible in a heterogeneous environment.

The first is a link to make updating easier, so that when you upgrade
the Developer’s Kit you only need to switch that link to bring it online.
The second link allows the creation of several toolkits in a heterogeneous
network; each different host can have a link to the toolkit configured
for the host’s architecture and operating system. See Section 4.1 “The
Heterogeneous Updateable Toolkit,” page 15.

Building with the defaults

A default build is one in which the configure defaults are used ex-
clusively. The software is built in the same directory as the source code.

The defaults are as follows (the release is shown as ‘94q4’):
prefix /usr/cygnus/progressive-94q4
exec-prefix /usr/cygnus/progressive-94q4/H-hosttype

(we show the hosttype as ‘sparc-sun-sunos4.1.3’)
target nonexistent by default; cross example shows ‘m68k-coff’
srcdir current directory; example shows ‘/usr/local/src’
objdir same as srcdir
release shown on distribution tape (example shows ‘94q4’)

The native and cross examples show a complete walk-through for each
type of build. (The only difference is the use of the ‘--target’ option to
configure for a cross-development toolkit. We’ll use ‘m68k-coff’ as an
example for building a cross-development toolkit.) The programs are to
be accessible after installation via the symbolic link ‘/usr/progressive’
(see Section 4.1 “The Heterogeneous Updateable Toolkit,” page 15).
Builds are shown independently; for an example of a simultaneous build,
see “Multiple simultaneous builds,” page 26.

Native:
$ cd /usr/local/src
$./configure
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...

20 11 July 1995

Chapter 4: Examples and suggestions

$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/cygnus/progressive-94q4
make install install-info >> ./make.log
ln -s /usr/cygnus/progressive-94q4 /usr/cygnus/progressive
ln -s /usr/cygnus/progressive/H-sparc-sun-sunos4.1.3 /usr/progressive
exit
$ ls /usr/progressive/bin
ar gcov objdump
as gdb patch
byacc genclass ranlib
c++ gperf sdiff
c++filt gprof send-pr
cmp info size
diff install-sid sparc-sun-sunos4.1.3-gcc
diff3 ld strings
flex make strip
g++ makeinfo texi2dvi
gasp nm texindex
gcc objcopy

Cross:
$ cd /usr/local/src
$./configure --target=m68k-coff
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/cygnus/progressive-94q4
make install install-info >> ./make.log
ln -s /usr/cygnus/progressive-94q4 /usr/cygnus/progressive
ln -s /usr/cygnus/progressive/H-sparc-sun-sunos4.1.3 /usr/progressive
exit
$ ls /usr/progressive/bin
byacc install-sid m68k-coff-gdb m68k-coff-strip
cmp m68k-coff-ar m68k-coff-ld make
diff m68k-coff-as m68k-coff-nm makeinfo
diff3 m68k-coff-c++ m68k-coff-objcopy patch
flex m68k-coff-c++filt m68k-coff-objdump sdiff
gcov m68k-coff-g++ m68k-coff-ranlib send-pr
genclass m68k-coff-gasp m68k-coff-size texi2dvi
info m68k-coff-gcc m68k-coff-strings texindex

In either of the above examples, you must set your PATH to include
‘/usr/progressive/bin’ in order to access the tools easily.

Example: setting prefix and exec-prefix

Use ‘--prefix’ and ‘--exec-prefix’ to explicitly set installa-
tion directories. These variables are set to subdirectories of

c y g n u s s u p p o r t 21

Rebuilding From Source

‘/usr/cygnus/progressive-date’ by default (see “Building with the
defaults,” page 20). For more involved discussion on the nuances of
these options, see Section 4.1 “The Heterogeneous Updateable Toolkit,”
page 15. For discussion on the options themselves, see Section 1.1
“Options to configure,” page 3.

This example shows different installation directories from the default.
The defaults for this example are as follows (the release is shown as
‘94q4’):

prefix set on command line
exec-prefix set on command line
target nonexistent by default; cross example shows ‘m68k-coff’
srcdir current directory; example shows ‘/usr/local/src’
objdir same as srcdir
release shown on distribution tape (example uses ‘94q4’)

The native and cross examples show a complete walk-through for each
type of build. (The only difference is the use of the ‘--target’ option to
configure for a cross-development toolkit. We’ll use ‘m68k-coff’ as an
example for building a cross-development toolkit.)

For this example, we’ll set the configuration to install host-
independent files (documentation, library source code) in ‘/usr/local’,
and host-dependent files (binary programs, precompiled libraries) in
‘/usr/local/H-sun4’. The programs are to be accessible after instal-
lation via the symbolic link ‘/usr/progressive’ (see Section 4.1 “The
Heterogeneous Updateable Toolkit,” page 15). Builds are shown in-
dependently; for an example of a simultaneous build, see “Multiple
simultaneous builds,” page 26.

Native:
$ cd /usr/local/src
$./configure --prefix=/usr/local/94q4 \

--exec-prefix=/usr/local/94q4/H-sun4
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/local/94q4
make install install-info >> ./make.log
ln -s /usr/local/94q4 /usr/local/progressive
ln -s /usr/local/progressive/H-sun4 /usr/progressive
exit
$ ls /usr/progressive/bin
ar gcov objdump
as gdb patch
byacc genclass ranlib
c++ gperf sdiff
c++filt gprof send-pr
cmp info size

22 11 July 1995

Chapter 4: Examples and suggestions

diff install-sid sparc-sun-sunos4.1.3-gcc
diff3 ld strings
flex make strip
g++ makeinfo texi2dvi
gasp nm texindex
gcc objcopy

Cross:
$ cd /usr/local/src
$./configure --target=m68k-coff --prefix=/usr/local/94q4 \

--exec-prefix=/usr/local/94q4/H-sun4
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/local/94q4
make install install-info >> ./make.log
ln -s /usr/local/94q4 /usr/local/progressive
ln -s /usr/local/progressive/H-sun4 /usr/progressive
exit
$ ls /usr/progressive/bin
byacc install-sid m68k-coff-gdb m68k-coff-strip
cmp m68k-coff-ar m68k-coff-ld make
diff m68k-coff-as m68k-coff-nm makeinfo
diff3 m68k-coff-c++ m68k-coff-objcopy patch
flex m68k-coff-c++filt m68k-coff-objdump sdiff
gcov m68k-coff-g++ m68k-coff-ranlib send-pr
genclass m68k-coff-gasp m68k-coff-size texi2dvi
info m68k-coff-gcc m68k-coff-strings texindex

In either of the above examples, you must set your PATH to include
‘/usr/progressive/bin’ in order to access the tools easily.

Example: different srcdir and objdir

The concept of different source and build directories comes from the
practice of building the same toolkit for several different platforms, in
a heterogeneous environment. It is often convenient to keep object files
separate from the sources from which they were derived. For more
discussion, see Section 1.3 “Source and Build Directories,” page 8.

This example shows different source and object directories only. The
defaults for this example are as follows (the release is shown as ‘94q4’):

prefix /usr/cygnus/progressive-94q4
exec-prefix /usr/cygnus/progressive-94q4/H-hosttype

(we show the hosttype as ‘sparc-sun-sunos4.1.3’)
target nonexistent by default; cross example uses ‘m68k-coff’
srcdir example shows ‘/usr/local/src’
objdir example shows ‘/usr/local/obj/native’ and

‘/usr/local/obj/m68k-coff’

c y g n u s s u p p o r t 23

Rebuilding From Source

release shown on distribution tape (example uses ‘94q4’)

The native and cross examples show a complete walk-through for each
type of build. (The only difference is the use of the ‘--target’ option to
configure for a cross-development toolkit. We’ll use ‘m68k-coff’ as an
example for building a cross-development toolkit.)

Note: The use of ‘--srcdir’ is redundant, as the default source direc-
tory is the one in which configure itself resides. We show it here for
the purposes of the example. Builds are shown independently; for an
example of a simultaneous build, see “Multiple simultaneous builds,”
page 26. This option is only supported when you use gnu make.

Native:
$ cd /usr/local/obj/native
$ /usr/local/src/configure --srcdir=/usr/local/src
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/cygnus/progressive-94q4
make install install-info >> ./make.log
ln -s /usr/cygnus/progressive-94q4 /usr/cygnus/progressive
ln -s /usr/cygnus/progressive/H-sparc-sun-sunos4.1.3 /usr/progressive
exit
$ ls /usr/progressive/bin
ar gcov objdump
as gdb patch
byacc genclass ranlib
c++ gperf sdiff
c++filt gprof send-pr
cmp info size
diff install-sid sparc-sun-sunos4.1.3-gcc
diff3 ld strings
flex make strip
g++ makeinfo texi2dvi
gasp nm texindex
gcc objcopy

Cross:
$ cd /usr/local/obj/m68k-coff
$ /usr/local/src/configure --target=m68k-coff \

--srcdir=/usr/local/src
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/cygnus/progressive-94q4
make install install-info >> ./make.log
ln -s /usr/cygnus/progressive-94q4 /usr/cygnus/progressive
ln -s /usr/cygnus/progressive/H-sparc-sun-sunos4.1.3 /usr/progressive

24 11 July 1995

Chapter 4: Examples and suggestions

exit
$ ls /usr/progressive/bin
byacc install-sid m68k-coff-gdb m68k-coff-strip
cmp m68k-coff-ar m68k-coff-ld make
diff m68k-coff-as m68k-coff-nm makeinfo
diff3 m68k-coff-c++ m68k-coff-objcopy patch
flex m68k-coff-c++filt m68k-coff-objdump sdiff
gcov m68k-coff-g++ m68k-coff-ranlib send-pr
genclass m68k-coff-gasp m68k-coff-size texi2dvi
info m68k-coff-gcc m68k-coff-strings texindex

In either of the above examples, you must set your PATH to include
‘/usr/progressive/bin’ in order to access the tools easily.

Example: setting prefix/exec-prefix and srcdir

This example shows different source and object directories, as well as
different installation directories from the default. The defaults for this
example are as follows (the release is shown as ‘94q4’):

prefix set on command line
exec-prefix set on command line

(we show the hosttype as ‘sparc-sun-sunos4.1.3’)
target nonexistent by default; cross example uses ‘m68k-coff’
srcdir example shows ‘/usr/local/src’
objdir example shows ‘/usr/local/obj/native’ and

‘/usr/local/obj/m68k-coff’
release shown on distribution tape (example uses ‘94q4’)

The native and cross examples show a complete walk-through for each
type of build. (The only difference is the use of the ‘--target’ option to
configure for a cross-development toolkit. We’ll use ‘m68k-coff’ as an
example for building a cross-development toolkit.)

Note: The use of ‘--srcdir’ is redundant, as the default source direc-
tory is the one in which configure itself resides. We show it here for
the purposes of the example. Builds are shown independently; for an
example of a simultaneous build, see “Multiple simultaneous builds,”
page 26. This option is only supported when you use gnu make.

Native:
$ cd /usr/local/obj/native
$ /usr/local/src/configure --srcdir=/usr/local/src \

--prefix=/usr/local/94q4 --exec-prefix=/usr/local/94q4/H-sun4
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/local/94q4
make install install-info >> ./make.log
ln -s /usr/local/94q4 /usr/local/progressive

c y g n u s s u p p o r t 25

Rebuilding From Source

ln -s /usr/local/94q4/H-sun4 /usr/progressive
exit
$ ls /usr/progressive/bin
ar gcov objdump
as gdb patch
byacc genclass ranlib
c++ gperf sdiff
c++filt gprof send-pr
cmp info size
diff install-sid sparc-sun-sunos4.1.3-gcc
diff3 ld strings
flex make strip
g++ makeinfo texi2dvi
gasp nm texindex
gcc objcopy

Cross:
$ cd /usr/local/obj/m68k-coff
$ /usr/local/src/configure --target=m68k-coff --srcdir=/usr/local/src \

--prefix=/usr/local/94q4 --exec-prefix=/usr/local/94q4/H-sun4
Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
mkdir /usr/local/94q4
make install install-info >> ./make.log
ln -s /usr/local/94q4 /usr/local/progressive
ln -s /usr/local/progressive/H-sun4 /usr/progressive
exit
$ ls /usr/progressive/bin
byacc install-sid m68k-coff-gdb m68k-coff-strip
cmp m68k-coff-ar m68k-coff-ld make
diff m68k-coff-as m68k-coff-nm makeinfo
diff3 m68k-coff-c++ m68k-coff-objcopy patch
flex m68k-coff-c++filt m68k-coff-objdump sdiff
gcov m68k-coff-g++ m68k-coff-ranlib send-pr
genclass m68k-coff-gasp m68k-coff-size texi2dvi
info m68k-coff-gcc m68k-coff-strings texindex

In either of the above examples, you must set your PATH environment
variable to include ‘/usr/progressive/bin’ in order to access the tools
easily.

Multiple simultaneous builds

If the source code for your distribution resides on a disk shared by
other machines in the network, you can build for all host types simulta-
neously by using different build directories. See Section 1.3 “Source and
Build Directories,” page 8, for details on building with different source

26 11 July 1995

Chapter 4: Examples and suggestions

and build directories; also see “Example: different srcdir and objdir,”
page 23, for an example.

Multiple simultaneous builds can be conducted on the same source
code simply by using different build directories. For example, assume
we have source code in ‘/usr/local/src’, and wish to build a native
toolkit for our Sun sparcstation running SunOS 4.1.3 (sparky) and our
DECstation running Ultrix (deckard), and that we also wish to build a
cross-development toolkit for each host for a ‘m68k-aout’ target.

Note: this example shows a complete build for all four con-
figurations, one native development system and one cross-
development system for each of two hosts, including installa-
tion and links. See Section 4.1 “The Heterogeneous Updateable
Toolkit,” page 15, for more general discussions and examples.

All of these toolkits are to be installed into
/usr/local/progressive-94q4

(The cross-development tools are installed with the native tools; how-
ever, the cross tools have a prefix of target, e.g., ‘m68k-aout-gcc’.) They
are to be linked so that ‘/usr/progressive/bin’ on each host points
toward the correct binaries for that host:

/usr/local/progressive-94q4/H-hosttype/bin

but the machine-independent files in
/usr/local/progressive-94q4

are shared across platforms. We accomplish this by actually installing
into a shared disk called ‘shared’, and creating links from ‘/usr/local’.

first, set up the shared space in ‘/shared’

$ mkdir /shared/local
$ su (may need root priviledge to put link in ‘/usr’)
ln -s /shared/local /usr/local
mkdir /usr/local/progressive-94q4
exit

now we build the native toolset for the Sun

$ uname -a
SunOS sparky 4.1.3_U1 1 sun4m
$ mkdir /usr/local/obj/sun4native
$ cd /usr/local/obj/sun4native
$ /usr/local/src/configure --prefix=/usr/local/progressive-94q4 \

--exec-prefix=/usr/local/progressive-94q4/H-sun4 \
--srcdir=/usr/local/src

Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...

c y g n u s s u p p o r t 27

Rebuilding From Source

$ su (may need root priviledge to install in ‘/usr’)
make install install-info >> ./make.log
exit

(now the cross toolkit)

$ mkdir /usr/local/obj/sun4-x-m68k
$ cd /usr/local/obj/sun4-x-m68k
$ /usr/local/src/configure --prefix=/usr/local/progressive-94q4 \

--exec-prefix=/usr/local/progressive-94q4/H-sun4 \
--srcdir=/usr/local/src --target=m68k-aout

Configuring for a sparc-sun-sunos4.1.3_U1 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
make install install-info >> ./make.log

now create the links which bring the toolkit online

ln -s /usr/local/progressive-94q4 /usr/local/progressive
ln -s /usr/local/progressive/H-sun4 /usr/progressive
exit

‘/usr/progressive’ on sparky now points to the Sun4-specific installation

‘/shared’ already exists; now we build the native toolset for the DECstation

$ rlogin deckard
$ uname -a
ULTRIX deckard 4.2 0 RISC
$ mkdir /usr/local/obj/decnative
$ cd /usr/local/obj/decnative
$ /usr/local/src/configure --prefix=/usr/local/progressive-94q4 \

--exec-prefix=/usr/local/progressive-94q4/H-decstn \
--srcdir=/usr/local/src

Configuring for a mips-dec-ultrix4.2 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)

remember, ‘/usr/local/progressive-94q4’ already exists
make install install-info >> ./make.log
exit

(continued on next page. . .)

28 11 July 1995

Chapter 4: Examples and suggestions

(now the cross toolkit)

$ mkdir /usr/local/obj/sun4cross
$ cd /usr/local/obj/sun4native
$ /usr/local/src/configure --prefix=/usr/local/progressive-94q4 \

--exec-prefix=/usr/local/progressive-94q4/H-decstn \
--srcdir=/usr/local/src --target=m68k-aout

Configuring for a mips-dec-ultrix4.2 host.
...time passes...
$ make all info > ./make.log
...time passes...
$ su (may need root priviledge to install in ‘/usr’)
make install install-info >> ./make.log

now create the link which brings the toolkit online; remember, the other link
/usr/local/progressive -> /usr/local/progressive-94q4

already exists from the Sun build

ln -s /usr/local/progressive/H-decstn /usr/progressive
exit

‘/usr/progressive’ on deckard now points to the DEC-specific installation

(This example shows a Bourne-compatible shell (sh, bash, ksh); con-
tact Cygnus if you have any trouble.)

‘/usr/progressive/bin’ on each host now points toward the bina-
ries built for that hosttype, while the machine-independent files in
‘/usr/local/progressive’ are shared between the two builds. In addi-
tion, each installation contains both a native development toolkit and a
cross-development toolkit for the ‘m68k-aout’ target.

Please contact Cygnus Support if any of this is unclear, or if you have
any questions.

c y g n u s s u p p o r t 29

Rebuilding From Source

30 11 July 1995

Comparing and Merging Files
diff, diff3, sdiff, cmp, and patch

Edition 1.3, for diff 2.7 and patch 2.1
September 1993

by David MacKenzie, Paul Eggert, and Richard Stallman

Copyright c 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation ap-
proved by the Foundation.

Short Contents
Overview . 1
1 What Comparison Means . 3
2 diff Output Formats . 9
3 Comparing Directories . 29
4 Making diff Output Prettier . 31
5 diff Performance Tradeoffs . 33
6 Comparing Three Files . 35
7 Merging From a Common Ancestor 39
8 Interactive Merging with sdiff . 45
9 Merging with patch . 47
10 Tips for Making Patch Distributions 53
11 Invoking cmp . 55
12 Invoking diff . 57
13 Invoking diff3 . 65
14 Invoking patch . 69
15 Invoking sdiff . 77
16 Incomplete Lines . 81
17 Future Projects . 83
Concept Index . 87

c y g n u s s u p p o r t i

Comparing and Merging Files

ii 11 July 1995

Table of Contents

Overview . 1

1 What Comparison Means . 3
1.1 Hunks . 3
1.2 Suppressing Differences in Blank and Tab Spacing 4
1.3 Suppressing Differences in Blank Lines 5
1.4 Suppressing Case Differences . 5
1.5 Suppressing Lines Matching a Regular Expression 5
1.6 Summarizing Which Files Differ . 6
1.7 Binary Files and Forcing Text Comparisons 6

2 diff Output Formats . 9
2.1 Two Sample Input Files . 9
2.2 Showing Differences Without Context . 9

2.2.1 Detailed Description of Normal Format 10
2.2.2 An Example of Normal Format 11

2.3 Showing Differences in Their Context 11
2.3.1 Context Format . 11

2.3.1.1 Detailed Description of Context Format
. 12

2.3.1.2 An Example of Context Format 12
2.3.1.3 An Example of Context Format with

Less Context . 13
2.3.2 Unified Format . 14

2.3.2.1 Detailed Description of Unified Format
. 14

2.3.2.2 An Example of Unified Format 14
2.3.3 Showing Which Sections Differences Are in 15

2.3.3.1 Showing Lines That Match Regular
Expressions . 15

2.3.3.2 Showing C Function Headings 16
2.3.4 Showing Alternate File Names 16

2.4 Showing Differences Side by Side . 16
2.5 Controlling Side by Side Format . 17

2.5.1 An Example of Side by Side Format 18
2.6 Making Edit Scripts . 18

2.6.1 ed Scripts . 18
2.6.1.1 Detailed Description of ed Format 19
2.6.1.2 Example ed Script . 19

2.6.2 Forward ed Scripts . 20
2.6.3 RCS Scripts . 20

c y g n u s s u p p o r t iii

Comparing and Merging Files

2.7 Merging Files with If-then-else . 21
2.7.1 Line Group Formats . 21
2.7.2 Line Formats . 24
2.7.3 Detailed Description of If-then-else Format 26
2.7.4 An Example of If-then-else Format 27

3 Comparing Directories . 29

4 Making diff Output Prettier 31
4.1 Preserving Tabstop Alignment . 31
4.2 Paginating diff Output . 31

5 diff Performance Tradeoffs 33

6 Comparing Three Files . 35
6.1 A Third Sample Input File . 35
6.2 Detailed Description of diff3 Normal Format 35
6.3 diff3 Hunks . 36
6.4 An Example of diff3 Normal Format 37

7 Merging From a Common Ancestor 39
7.1 Selecting Which Changes to Incorporate 39
7.2 Marking Conflicts . 40
7.3 Generating the Merged Output Directly 41
7.4 How diff3 Merges Incomplete Lines . 42
7.5 Saving the Changed File . 42

8 Interactive Merging with sdiff 45
8.1 Specifying diff Options to sdiff . 45
8.2 Merge Commands . 45

9 Merging with patch . 47
9.1 Selecting the patch Input Format . 47
9.2 Applying Imperfect Patches . 48

9.2.1 Applying Patches with Changed White Space . . 48
9.2.2 Applying Reversed Patches . 48
9.2.3 Helping patch Find Inexact Matches 49

9.3 Removing Empty Files . 50
9.4 Multiple Patches in a File . 50
9.5 Messages and Questions from patch . 51

10 Tips for Making Patch Distributions 53

iv 11 July 1995

11 Invoking cmp . 55
11.1 Options to cmp . 55

12 Invoking diff. 57
12.1 Options to diff . 57

13 Invoking diff3 . 65
13.1 Options to diff3 . 65

14 Invoking patch . 69
14.1 Applying Patches in Other Directories 69
14.2 Backup File Names . 70
14.3 Reject File Names . 71
14.4 Options to patch . 71

15 Invoking sdiff . 77
15.1 Options to sdiff . 77

16 Incomplete Lines . 81

17 Future Projects . 83
17.1 Suggested Projects for Improving GNU diff and patch

. 83
17.1.1 Handling Changes to the Directory Structure

. 83
17.1.2 Files that are Neither Directories Nor Regular

Files . 83
17.1.3 File Names that Contain Unusual Characters

. 84
17.1.4 Arbitrary Limits . 84
17.1.5 Handling Files that Do Not Fit in Memory . . . 84
17.1.6 Ignoring Certain Changes . 84

17.2 Reporting Bugs . 85

Concept Index . 87

c y g n u s s u p p o r t v

Comparing and Merging Files

vi 11 July 1995

Overview

Overview

Computer users often find occasion to ask how two files differ. Per-
haps one file is a newer version of the other file. Or maybe the two files
started out as identical copies but were changed by different people.

You can use the diff command to show differences between two files,
or each corresponding file in two directories. diff outputs differences
between files line by line in any of several formats, selectable by com-
mand line options. This set of differences is often called a diff or patch.
For files that are identical, diff normally produces no output; for binary
(non-text) files, diff normally reports only that they are different.

You can use the cmp command to show the offsets and line numbers
where two files differ. cmp can also show all the characters that differ
between the two files, side by side. Another way to compare two files
character by character is the Emacs command M-x compare-windows.
See section “Other Window” in The GNU Emacs Manual, for more infor-
mation on that command.

You can use the diff3 command to show differences among three
files. When two people have made independent changes to a common
original, diff3 can report the differences between the original and the
two changed versions, and can produce a merged file that contains both
persons’ changes together with warnings about conflicts.

You can use the sdiff command to merge two files interactively.
You can use the set of differences produced by diff to distribute

updates to text files (such as program source code) to other people. This
method is especially useful when the differences are small compared to
the complete files. Given diff output, you can use the patch program
to update, or patch, a copy of the file. If you think of diff as subtracting
one file from another to produce their difference, you can think of patch
as adding the difference to one file to reproduce the other.

This manual first concentrates on making diffs, and later shows how
to use diffs to update files.

GNU diff was written by Mike Haertel, David Hayes, Richard Stall-
man, Len Tower, and Paul Eggert. Wayne Davison designed and imple-
mented the unified output format. The basic algorithm is described in
“An O(ND) Difference Algorithm and its Variations”, Eugene W. Myers,
Algorithmica Vol. 1 No. 2, 1986, pp. 251–266; and in “A File Compar-
ison Program”, Webb Miller and Eugene W. Myers, Software—Practice
and Experience Vol. 15 No. 11, 1985, pp. 1025–1040. The algorithm was
independently discovered as described in “Algorithms for Approximate
String Matching”, E. Ukkonen, Information and Control Vol. 64, 1985,
pp. 100–118.

c y g n u s s u p p o r t 1

Comparing and Merging Files

GNU diff3was written by Randy Smith. GNU sdiff was written by
Thomas Lord. GNU cmp was written by Torbjorn Granlund and David
MacKenzie.

patch was written mainly by Larry Wall; the GNU enhancements
were written mainly by Wayne Davison and David MacKenzie. Parts
of this manual are adapted from a manual page written by Larry Wall,
with his permission.

2 11 July 1995

Chapter 1: What Comparison Means

1 What Comparison Means

There are several ways to think about the differences between two
files. One way to think of the differences is as a series of lines that were
deleted from, inserted in, or changed in one file to produce the other file.
diff compares two files line by line, finds groups of lines that differ, and
reports each group of differing lines. It can report the differing lines in
several formats, which have different purposes.

GNU diff can show whether files are different without detailing the
differences. It also provides ways to suppress certain kinds of differences
that are not important to you. Most commonly, such differences are
changes in the amount of white space between words or lines. diff
also provides ways to suppress differences in alphabetic case or in lines
that match a regular expression that you provide. These options can
accumulate; for example, you can ignore changes in both white space
and alphabetic case.

Another way to think of the differences between two files is as a
sequence of pairs of characters that can be either identical or different.
cmp reports the differences between two files character by character,
instead of line by line. As a result, it is more useful than diff for
comparing binary files. For text files, cmp is useful mainly when you
want to know only whether two files are identical.

To illustrate the effect that considering changes character by charac-
ter can have compared with considering them line by line, think of what
happens if a single newline character is added to the beginning of a file.
If that file is then compared with an otherwise identical file that lacks
the newline at the beginning, diff will report that a blank line has been
added to the file, while cmp will report that almost every character of the
two files differs.

diff3 normally compares three input files line by line, finds groups
of lines that differ, and reports each group of differing lines. Its output
is designed to make it easy to inspect two different sets of changes to the
same file.

1.1 Hunks

When comparing two files, diff finds sequences of lines common
to both files, interspersed with groups of differing lines called hunks.
Comparing two identical files yields one sequence of common lines and
no hunks, because no lines differ. Comparing two entirely different files
yields no common lines and one large hunk that contains all lines of both
files. In general, there are many ways to match up lines between two
given files. diff tries to minimize the total hunk size by finding large

c y g n u s s u p p o r t 3

Comparing and Merging Files

sequences of common lines interspersed with small hunks of differing
lines.

For example, suppose the file ‘F’ contains the three lines ‘a’, ‘b’, ‘c’,
and the file ‘G’ contains the same three lines in reverse order ‘c’, ‘b’, ‘a’. If
diff finds the line ‘c’ as common, then the command ‘diff F G’ produces
this output:

1,2d0
< a
< b
3a2,3
> b
> a

But if diff notices the common line ‘b’ instead, it produces this output:
1c1
< a

> c
3c3
< c

> a

It is also possible to find ‘a’ as the common line. diff does not always
find an optimal matching between the files; it takes shortcuts to run
faster. But its output is usually close to the shortest possible. You
can adjust this tradeoff with the ‘--minimal’ option (see Chapter 5 “diff
Performance,” page 33).

1.2 Suppressing Differences in Blank and Tab
Spacing

The ‘-b’ and ‘--ignore-space-change’ options ignore white space at
line end, and considers all other sequences of one or more white space
characters to be equivalent. With these options, diff considers the
following two lines to be equivalent, where ‘$’ denotes the line end:

Here lyeth muche rychnesse in lytell space. -- John Heywood$
Here lyeth muche rychnesse in lytell space. -- John Heywood $

The ‘-w’ and ‘--ignore-all-space’ options are stronger than ‘-b’.
They ignore difference even if one file has white space where the other
file has none. White space characters include tab, newline, vertical tab,
form feed, carriage return, and space; some locales may define additiona
24 l characters to be white space. With these options, diff considers the
following two lines to be equivalent, where ‘$’ denotes the line end and
‘ˆM’ denotes a carriage return:

Here lyeth muche rychnesse in lytell space.-- John Heywood$
He relyeth much erychnes seinly tells pace. --John Heywood ˆM$

4 11 July 1995

Chapter 1: What Comparison Means

1.3 Suppressing Differences in Blank Lines

The ‘-B’ and ‘--ignore-blank-lines’ options ignore insertions or
deletions of blank lines. These options normally affect only lines that
are completely empty; they do not affect lines that look empty but con-
tain space or tab characters. With these options, for example, a file
containing

1. A point is that which has no part.

2. A line is breadthless length.
-- Euclid, The Elements, I

is considered identical to a file containing
1. A point is that which has no part.
2. A line is breadthless length.

-- Euclid, The Elements, I

1.4 Suppressing Case Differences

GNU diff can treat lowercase letters as equivalent to their uppercase
counterparts, so that, for example, it considers ‘Funky Stuff’, ‘funky
STUFF’, and ‘fUNKy stuFf’ to all be the same. To request this, use the ‘-i’
or ‘--ignore-case’ option.

1.5 Suppressing Lines Matching a Regular
Expression

To ignore insertions and deletions of lines that match a regular ex-
pression, use the ‘-I regexp’ or ‘--ignore-matching-lines=regexp’ op-
tion. You should escape regular expressions that contain shell metachar-
acters to prevent the shell from expanding them. For example, ‘diff -I
’ˆ[0-9]’’ ignores all changes to lines beginning with a digit.

However, ‘-I’ only ignores the insertion or deletion of lines that con-
tain the regular expression if every changed line in the hunk—every
insertion and every deletion—matches the regular expression. In other
words, for each nonignorable change, diff prints the complete set of
changes in its vicinity, including the ignorable ones.

You can specify more than one regular expression for lines to ignore
by using more than one ‘-I’ option. diff tries to match each line against
each regular expression, starting with the last one given.

c y g n u s s u p p o r t 5

Comparing and Merging Files

1.6 Summarizing Which Files Differ

When you only want to find out whether files are different, and you
don’t care what the differences are, you can use the summary output
format. In this format, instead of showing the differences between the
files, diff simply reports whether files differ. The ‘-q’ and ‘--brief’
options select this output format.

This format is especially useful when comparing the contents of two
directories. It is also much faster than doing the normal line by line
comparisons, because diff can stop analyzing the files as soon as it
knows that there are any differences.

You can also get a brief indication of whether two files differ by using
cmp. For files that are identical, cmp produces no output. When the files
differ, by default, cmp outputs the byte offset and line number where
the first difference occurs. You can use the ‘-s’ option to suppress that
information, so that cmp produces no output and reports whether the
files differ using only its exit status (see Chapter 11 “Invoking cmp,”
page 55).

Unlike diff, cmp cannot compare directories; it can only compare two
files.

1.7 Binary Files and Forcing Text Comparisons

If diff thinks that either of the two files it is comparing is binary (a
non-text file), it normally treats that pair of files much as if the summary
output format had been selected (see Section 1.6 “Brief,” page 6), and
reports only that the binary files are different. This is because line by
line comparisons are usually not meaningful for binary files.

diff determines whether a file is text or binary by checking the first
few bytes in the file; the exact number of bytes is system dependent, but
it is typically several thousand. If every character in that part of the file
is non-null, diff considers the file to be text; otherwise it considers the
file to be binary.

Sometimes you might want to force diff to consider files to be text.
For example, you might be comparing text files that contain null char-
acters; diff would erroneously decide that those are non-text files. Or
you might be comparing documents that are in a format used by a word
processing system that uses null characters to indicate special format-
ting. You can force diff to consider all files to be text files, and compare
them line by line, by using the ‘-a’ or ‘--text’ option. If the files you
compare using this option do not in fact contain text, they will proba-
bly contain few newline characters, and the diff output will consist of

6 11 July 1995

Chapter 1: What Comparison Means

hunks showing differences between long lines of whatever characters
the files contain.

You can also force diff to consider all files to be binary files, and
report only whether they differ (but not how). Use the ‘--brief’ option
for this.

In operating systems that distinguish between text and binary files,
diff normally reads and writes all data as text. Use the ‘--binary’
option to force diff to read and write binary data instead. This option
has no effect on a Posix-compliant system like GNU or traditional Unix.
However, many personal computer operating systems represent the end
of a line with a carriage return followed by a newline. On such systems,
diff normally ignores these carriage returns on input and generates
them at the end of each output line, but with the ‘--binary’ option diff
treats each carriage return as just another input character, and does not
generate a carriage return at the end of each output line. This can be
useful when dealing with non-text files that are meant to be interchanged
with Posix-compliant systems.

If you want to compare two files byte by byte, you can use the cmp
program with the ‘-l’ option to show the values of each differing byte in
the two files. With GNU cmp, you can also use the ‘-c’ option to show the
ASCII representation of those bytes. See Chapter 11 “Invoking cmp,”
page 55, for more information.

If diff3 thinks that any of the files it is comparing is binary (a non-
text file), it normally reports an error, because such comparisons are
usually not useful. diff3 uses the same test as diff to decide whether
a file is binary. As with diff, if the input files contain a few non-
text characters but otherwise are like text files, you can force diff3 to
consider all files to be text files and compare them line by line by using
the ‘-a’ or ‘--text’ options.

c y g n u s s u p p o r t 7

Comparing and Merging Files

8 11 July 1995

Chapter 2: diff Output Formats

2 diffOutput Formats

diff has several mutually exclusive options for output format. The
following sections describe each format, illustrating how diff reports
the differences between two sample input files.

2.1 Two Sample Input Files

Here are two sample files that we will use in numerous examples to
illustrate the output of diff and how various options can change it.

This is the file ‘lao’:
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.

This is the file ‘tzu’:
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their outcome.

The two are the same,
But after they are produced,

they have different names.
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

In this example, the first hunk contains just the first two lines of ‘lao’,
the second hunk contains the fourth line of ‘lao’ opposing the second and
third lines of ‘tzu’, and the last hunk contains just the last three lines of
‘tzu’.

2.2 Showing Differences Without Context

The “normal” diff output format shows each hunk of differences
without any surrounding context. Sometimes such output is the clear-
est way to see how lines have changed, without the clutter of nearby

c y g n u s s u p p o r t 9

Comparing and Merging Files

unchanged lines (although you can get similar results with the context
or unified formats by using 0 lines of context). However, this format is no
longer widely used for sending out patches; for that purpose, the context
format (see Section 2.3.1 “Context Format,” page 11) and the unified for-
mat (see Section 2.3.2 “Unified Format,” page 14) are superior. Normal
format is the default for compatibility with older versions of diff and
the Posix standard.

2.2.1 Detailed Description of Normal Format

The normal output format consists of one or more hunks of differences;
each hunk shows one area where the files differ. Normal format hunks
look like this:

change-command
< from-file-line
< from-file-line. ..

> to-file-line
> to-file-line. ..

There are three types of change commands. Each consists of a line
number or comma-separated range of lines in the first file, a single
character indicating the kind of change to make, and a line number or
comma-separated range of lines in the second file. All line numbers are
the original line numbers in each file. The types of change commands
are:

‘lar’ Add the lines in range r of the second file after line l of the
first file. For example, ‘8a12,15’ means append lines 12–15
of file 2 after line 8 of file 1; or, if changing file 2 into file 1,
delete lines 12–15 of file 2.

‘fct’ Replace the lines in range f of the first file with lines in range
t of the second file. This is like a combined add and delete,
but more compact. For example, ‘5,7c8,10’ means change
lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if changing
file 2 into file 1, change lines 8–10 of file 2 to read as lines
5–7 of file 1.

‘rdl’ Delete the lines in range r from the first file; line l is where
they would have appeared in the second file had they not
been deleted. For example, ‘5,7d3’ means delete lines 5–7 of
file 1; or, if changing file 2 into file 1, append lines 5–7 of file
1 after line 3 of file 2.

10 11 July 1995

Chapter 2: diff Output Formats

2.2.2 An Example of Normal Format

Here is the output of the command ‘diff lao tzu’ (see Section 2.1
“Sample diff Input,” page 9, for the complete contents of the two files).
Notice that it shows only the lines that are different between the two
files.

1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name.
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
>
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

2.3 Showing Differences in Their Context

Usually, when you are looking at the differences between files, you
will also want to see the parts of the files near the lines that differ, to
help you understand exactly what has changed. These nearby parts of
the files are called the context.

GNU diff provides two output formats that show context around the
differing lines: context format and unified format. It can optionally show
in which function or section of the file the differing lines are found.

If you are distributing new versions of files to other people in the
form of diff output, you should use one of the output formats that show
context so that they can apply the diffs even if they have made small
changes of their own to the files. patch can apply the diffs in this case by
searching in the files for the lines of context around the differing lines;
if those lines are actually a few lines away from where the diff says they
are, patch can adjust the line numbers accordingly and still apply the
diff correctly. See Section 9.2 “Imperfect,” page 48, for more information
on using patch to apply imperfect diffs.

2.3.1 Context Format

The context output format shows several lines of context around the
lines that differ. It is the standard format for distributing updates to
source code.

To select this output format, use the ‘-C lines’, ‘--context[=lines]’,
or ‘-c’ option. The argument lines that some of these options take is

c y g n u s s u p p o r t 11

Comparing and Merging Files

the number of lines of context to show. If you do not specify lines, it
defaults to three. For proper operation, patch typically needs at least
two lines of context.

2.3.1.1 Detailed Description of Context Format

The context output format starts with a two-line header, which looks
like this:

*** from-file from-file-modification-time
--- to-file to-file-modification time

You can change the header’s content with the ‘-L label’ or
‘--label=label’ option; see Section 2.3.4 “Alternate Names,” page 16.

Next come one or more hunks of differences; each hunk shows one
area where the files differ. Context format hunks look like this:

*** from-file-line-range ****

from-file-line
from-file-line. ..

--- to-file-line-range ----
to-file-line
to-file-line. ..

The lines of context around the lines that differ start with two space
characters. The lines that differ between the two files start with one of
the following indicator characters, followed by a space character:

‘!’ A line that is part of a group of one or more lines that changed
between the two files. There is a corresponding group of lines
marked with ‘!’ in the part of this hunk for the other file.

‘+’ An “inserted” line in the second file that corresponds to noth-
ing in the first file.

‘-’ A “deleted” line in the first file that corresponds to nothing
in the second file.

If all of the changes in a hunk are insertions, the lines of from-file
are omitted. If all of the changes are deletions, the lines of to-file are
omitted.

2.3.1.2 An Example of Context Format

Here is the output of ‘diff -c lao tzu’ (see Section 2.1 “Sample diff
Input,” page 9, for the complete contents of the two files). Notice that up
to three lines that are not different are shown around each line that is
different; they are the context lines. Also notice that the first two hunks
have run together, because their contents overlap.

12 11 July 1995

Chapter 2: diff Output Formats

*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,7 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
--- 1,6 ----

The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,

*** 9,11 ****
--- 8,13 ----

The two are the same,
But after they are produced,

they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

2.3.1.3 An Example of Context Format with Less Context

Here is the output of ‘diff --context=1 lao tzu’ (see Section 2.1
“Sample diff Input,” page 9, for the complete contents of the two files).
Notice that at most one context line is reported here.

*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,5 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.

The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.

Therefore let there always be non-being,
--- 1,4 ----

The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!

Therefore let there always be non-being,

*** 11 ****
--- 10,13 ----

they have different names.
+ They both may be called deep and profound.

c y g n u s s u p p o r t 13

Comparing and Merging Files

+ Deeper and more profound,
+ The door of all subtleties!

2.3.2 Unified Format

The unified output format is a variation on the context format that
is more compact because it omits redundant context lines. To select this
output format, use the ‘-U lines’, ‘--unified[=lines]’, or ‘-u’ option.
The argument lines is the number of lines of context to show. When it
is not given, it defaults to three.

At present, only GNU diff can produce this format and only GNU
patch can automatically apply diffs in this format. For proper operation,
patch typically needs at least two lines of context.

2.3.2.1 Detailed Description of Unified Format

The unified output format starts with a two-line header, which looks
like this:

--- from-file from-file-modification-time
+++ to-file to-file-modification-time

You can change the header’s content with the ‘-L label’ or
‘--label=label’ option; see See Section 2.3.4 “Alternate Names,”
page 16.

Next come one or more hunks of differences; each hunk shows one
area where the files differ. Unified format hunks look like this:

@@ from-file-range to-file-range @@
line-from-either-file
line-from-either-file. ..

The lines common to both files begin with a space character. The
lines that actually differ between the two files have one of the following
indicator characters in the left column:

‘+’ A line was added here to the first file.

‘-’ A line was removed here from the first file.

2.3.2.2 An Example of Unified Format

Here is the output of the command ‘diff -u lao tzu’ (see Section 2.1
“Sample diff Input,” page 9, for the complete contents of the two files):

--- lao Sat Jan 26 23:30:39 1991
+++ tzu Sat Jan 26 23:30:50 1991
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;

14 11 July 1995

Chapter 2: diff Output Formats

-The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
-The Named is the mother of all things.
+The named is the mother of all things.
+
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,
@@ -9,3 +8,6 @@
The two are the same,
But after they are produced,

they have different names.
+They both may be called deep and profound.
+Deeper and more profound,
+The door of all subtleties!

2.3.3 Showing Which Sections Differences Are in

Sometimes you might want to know which part of the files each change
falls in. If the files are source code, this could mean which function was
changed. If the files are documents, it could mean which chapter or
appendix was changed. GNU diff can show this by displaying the
nearest section heading line that precedes the differing lines. Which
lines are “section headings” is determined by a regular expression.

2.3.3.1 Showing Lines That Match Regular Expressions

To show in which sections differences occur for files that are
not source code for C or similar languages, use the ‘-F regexp’ or
‘--show-function-line=regexp’ option. diff considers lines that
match the argument regexp to be the beginning of a section of the file.
Here are suggested regular expressions for some common languages:

‘ˆ[A-Za-z_]’
C, C++, Prolog

‘ˆ(’ Lisp

‘ˆ@\(chapter\|appendix\|unnumbered\|chapheading\)’
Texinfo

This option does not automatically select an output format; in order
to use it, you must select the context format (see Section 2.3.1 “Context
Format,” page 11) or unified format (see Section 2.3.2 “Unified Format,”
page 14). In other output formats it has no effect.

The ‘-F’ and ‘--show-function-line’ options find the nearest un-
changed line that precedes each hunk of differences and matches the
given regular expression. Then they add that line to the end of the line

c y g n u s s u p p o r t 15

Comparing and Merging Files

of asterisks in the context format, or to the ‘@@’ line in unified format. If
no matching line exists, they leave the output for that hunk unchanged.
If that line is more than 40 characters long, they output only the first 40
characters. You can specify more than one regular expression for such
lines; diff tries to match each line against each regular expression,
starting with the last one given. This means that you can use ‘-p’ and
‘-F’ together, if you wish.

2.3.3.2 Showing C Function Headings

To show in which functions differences occur for C and similar lan-
guages, you can use the ‘-p’ or ‘--show-c-function’ option. This option
automatically defaults to the context output format (see Section 2.3.1
“Context Format,” page 11), with the default number of lines of context.
You can override that number with ‘-C lines’ elsewhere in the command
line. You can override both the format and the number with ‘-U lines’
elsewhere in the command line.

The ‘-p’ and ‘--show-c-function’ options are equivalent to
‘-F’ˆ[_a-zA-Z$]’’ if the unified format is specified, otherwise ‘-c
-F’ˆ[_a-zA-Z$]’’ (see Section 2.3.3.1 “Specified Headings,” page 15).
GNU diff provides them for the sake of convenience.

2.3.4 Showing Alternate File Names

If you are comparing two files that have meaningless or uninformative
names, you might want diff to show alternate names in the header of
the context and unified output formats. To do this, use the ‘-L label’ or
‘--label=label’ option. The first time you give this option, its argument
replaces the name and date of the first file in the header; the second time,
its argument replaces the name and date of the second file. If you give
this option more than twice, diff reports an error. The ‘-L’ option does
not affect the file names in the pr header when the ‘-l’ or ‘--paginate’
option is used (see Section 4.2 “Pagination,” page 31).

Here are the first two lines of the output from ‘diff -C2 -Loriginal
-Lmodified lao tzu’:

*** original
--- modified

2.4 Showing Differences Side by Side

diff can produce a side by side difference listing of two files. The
files are listed in two columns with a gutter between them. The gutter
contains one of the following markers:

16 11 July 1995

Chapter 2: diff Output Formats

white space
The corresponding lines are in common. That is, either the
lines are identical, or the difference is ignored because of
one of the ‘--ignore’ options (see Section 1.2 “White Space,”
page 4).

‘|’ The corresponding lines differ, and they are either both com-
plete or both incomplete.

‘<’ The files differ and only the first file contains the line.

‘>’ The files differ and only the second file contains the line.

‘(’ Only the first file contains the line, but the difference is ig-
nored.

‘)’ Only the second file contains the line, but the difference is
ignored.

‘\’ The corresponding lines differ, and only the first line is in-
complete.

‘/’ The corresponding lines differ, and only the second line is
incomplete.

Normally, an output line is incomplete if and only if the lines that it
contains are incomplete; See Chapter 16 “Incomplete Lines,” page 81.
However, when an output line represents two differing lines, one might
be incomplete while the other is not. In this case, the output line is
complete, but its the gutter is marked ‘\’ if the first line is incomplete,
‘/’ if the second line is.

Side by side format is sometimes easiest to read, but it has limitations.
It generates much wider output than usual, and truncates lines that are
too long to fit. Also, it relies on lining up output more heavily than
usual, so its output looks particularly bad if you use varying width fonts,
nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side
differences. See Chapter 8 “Interactive Merging,” page 45, for more
information on merging files.

2.5 Controlling Side by Side Format

The ‘-y’ or ‘--side-by-side’ option selects side by side format. Be-
cause side by side output lines contain two input lines, they are wider
than usual. They are normally 130 columns, which can fit onto a tradi-
tional printer line. You can set the length of output lines with the ‘-W
columns’ or ‘--width=columns’ option. The output line is split into two
halves of equal length, separated by a small gutter to mark differences;

c y g n u s s u p p o r t 17

Comparing and Merging Files

the right half is aligned to a tab stop so that tabs line up. Input lines
that are too long to fit in half of an output line are truncated for output.

The ‘--left-column’ option prints only the left column of two common
lines. The ‘--suppress-common-lines’ option suppresses common lines
entirely.

2.5.1 An Example of Side by Side Format

Here is the output of the command ‘diff -y -W 72 lao tzu’ (see Sec-
tion 2.1 “Sample diff Input,” page 9, for the complete contents of the two
files).

The Way that can be told of is <
The name that can be named is <
The Nameless is the origin of The Nameless is the origin of
The Named is the mother of all | The named is the mother of all

>
Therefore let there always be Therefore let there always be

so we may see their subtlet so we may see their subtlet
And let there always be being And let there always be being

so we may see their outcome so we may see their outcome
The two are the same, The two are the same,
But after they are produced, But after they are produced,

they have different names. they have different names.
> They both may be called deep
> Deeper and more profound,
> The door of all subtleties!

2.6 Making Edit Scripts

Several output modes produce command scripts for editing from-file
to produce to-file.

2.6.1 ed Scripts

diff can produce commands that direct the ed text editor to change
the first file into the second file. Long ago, this was the only output mode
that was suitable for editing one file into another automatically; today,
with patch, it is almost obsolete. Use the ‘-e’ or ‘--ed’ option to select
this output format.

Like the normal format (see Section 2.2 “Normal,” page 9), this output
format does not show any context; unlike the normal format, it does not
include the information necessary to apply the diff in reverse (to produce
the first file if all you have is the second file and the diff).

If the file ‘d’ contains the output of ‘diff -e old new’, then the com-
mand ‘(cat d && echo w) | ed - old’ edits ‘old’ to make it a copy of ‘new’.

18 11 July 1995

Chapter 2: diff Output Formats

More generally, if ‘d1’, ‘d2’, . . ., ‘dN’ contain the outputs of ‘diff -e
old new1’, ‘diff -e new1 new2’, . . ., ‘diff -e newN-1 newN’, respectively,
then the command ‘(cat d1 d2 . .. dN && echo w) | ed - old’ edits ‘old’
to make it a copy of ‘newN’.

2.6.1.1 Detailed Description of ed Format

The ed output format consists of one or more hunks of differences.
The changes closest to the ends of the files come first so that commands
that change the number of lines do not affect how ed interprets line
numbers in succeeding commands. ed format hunks look like this:

change-command
to-file-line
to-file-line. ..
.

Because ed uses a single period on a line to indicate the end of input,
GNU diff protects lines of changes that contain a single period on a line
by writing two periods instead, then writing a subsequent ed command
to change the two periods into one. The ed format cannot represent an
incomplete line, so if the second file ends in a changed incomplete line,
diff reports an error and then pretends that a newline was appended.

There are three types of change commands. Each consists of a line
number or comma-separated range of lines in the first file and a single
character indicating the kind of change to make. All line numbers are
the original line numbers in the file. The types of change commands are:

‘la’ Add text from the second file after line l in the first file. For
example, ‘8a’ means to add the following lines after line 8 of
file 1.

‘rc’ Replace the lines in range r in the first file with the following
lines. Like a combined add and delete, but more compact.
For example, ‘5,7c’ means change lines 5–7 of file 1 to read
as the text file 2.

‘rd’ Delete the lines in range r from the first file. For example,
‘5,7d’ means delete lines 5–7 of file 1.

2.6.1.2 Example ed Script

Here is the output of ‘diff -e lao tzu’ (see Section 2.1 “Sample diff
Input,” page 9, for the complete contents of the two files):

c y g n u s s u p p o r t 19

Comparing and Merging Files

11a

They both may be called deep and profound.

Deeper and more profound,

The door of all subtleties!
.

4c

The named is the mother of all things.

.
1,2d

2.6.2 Forward ed Scripts

diff can produce output that is like an ed script, but with hunks
in forward (front to back) order. The format of the commands is also
changed slightly: command characters precede the lines they modify,
spaces separate line numbers in ranges, and no attempt is made to
disambiguate hunk lines consisting of a single period. Like ed format,
forward ed format cannot represent incomplete lines.

Forward ed format is not very useful, because neither ed nor patch
can apply diffs in this format. It exists mainly for compatibility with
older versions of diff. Use the ‘-f’ or ‘--forward-ed’ option to select it.

2.6.3 RCS Scripts

The RCS output format is designed specifically for use by the Revi-
sion Control System, which is a set of free programs used for organizing
different versions and systems of files. Use the ‘-n’ or ‘--rcs’ option
to select this output format. It is like the forward ed format (see Sec-
tion 2.6.2 “Forward ed,” page 20), but it can represent arbitrary changes
to the contents of a file because it avoids the forward ed format’s prob-
lems with lines consisting of a single period and with incomplete lines.
Instead of ending text sections with a line consisting of a single period,
each command specifies the number of lines it affects; a combination
of the ‘a’ and ‘d’ commands are used instead of ‘c’. Also, if the second
file ends in a changed incomplete line, then the output also ends in an
incomplete line.

Here is the output of ‘diff -n lao tzu’ (see Section 2.1 “Sample diff
Input,” page 9, for the complete contents of the two files):

d1 2
d4 1
a4 2
The named is the mother of all things.

20 11 July 1995

Chapter 2: diff Output Formats

a11 3
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

2.7 Merging Files with If-then-else

You can use diff to merge two files of C source code. The output of
diff in this format contains all the lines of both files. Lines common
to both files are output just once; the differing parts are separated by
the C preprocessor directives #ifdef name or #ifndef name, #else, and
#endif. When compiling the output, you select which version to use by
either defining or leaving undefined the macro name.

To merge two files, use diff with the ‘-D name’ or ‘--ifdef=name’
option. The argument name is the C preprocessor identifier to use in the
#ifdef and #ifndef directives.

For example, if you change an instance of wait (&s) to waitpid
(-1, &s, 0) and then merge the old and new files with the
‘--ifdef=HAVE_WAITPID’ option, then the affected part of your code
might look like this:

do {
#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)
#else /* HAVE_WAITPID */

if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)
#endif /* HAVE_WAITPID */

return w;
} while (w != child);

You can specify formats for languages other than C by using line
group formats and line formats, as described in the next sections.

2.7.1 Line Group Formats

Line group formats let you specify formats suitable for many appli-
cations that allow if-then-else input, including programming languages
and text formatting languages. A line group format specifies the output
format for a contiguous group of similar lines.

For example, the following command compares the TeX files ‘old’ and
‘new’, and outputs a merged file in which old regions are surrounded
by ‘\begin{em}’-‘\end{em}’ lines, and new regions are surrounded by
‘\begin{bf}’-‘\end{bf}’ lines.

diff \
--old-group-format=’\begin{em}

%<\end{em}

c y g n u s s u p p o r t 21

Comparing and Merging Files

’ \
--new-group-format=’\begin{bf}

%>\end{bf}
’ \

old new

The following command is equivalent to the above example, but it is a
little more verbose, because it spells out the default line group formats.

diff \
--old-group-format=’\begin{em}

%<\end{em}
’ \

--new-group-format=’\begin{bf}
%>\end{bf}
’ \

--unchanged-group-format=’%=’ \
--changed-group-format=’\begin{em}

%<\end{em}
\begin{bf}
%>\end{bf}
’ \

old new

Here is a more advanced example, which outputs a diff listing with
headers containing line numbers in a “plain English” style.
diff \
--unchanged-group-format=’’ \
--old-group-format=’-------- %dn line%(n=1?:s) deleted at %df:
%<’ \
--new-group-format=’-------- %dN line%(N=1?:s) added after %de:
%>’ \
--changed-group-format=’-------- %dn line%(n=1?:s) changed at %df:
%<-------- to:
%>’ \
old new

To specify a line group format, use diff with one of the options listed
below. You can specify up to four line group formats, one for each kind of
line group. You should quote format, because it typically contains shell
metacharacters.

‘--old-group-format=format’
These line groups are hunks containing only lines from the
first file. The default old group format is the same as the
changed group format if it is specified; otherwise it is a format
that outputs the line group as-is.

‘--new-group-format=format’
These line groups are hunks containing only lines from the
second file. The default new group format is same as the
the changed group format if it is specified; otherwise it is a
format that outputs the line group as-is.

22 11 July 1995

Chapter 2: diff Output Formats

‘--changed-group-format=format’
These line groups are hunks containing lines from both files.
The default changed group format is the concatenation of the
old and new group formats.

‘--unchanged-group-format=format’
These line groups contain lines common to both files. The
default unchanged group format is a format that outputs the
line group as-is.

In a line group format, ordinary characters represent themselves;
conversion specifications start with ‘%’ and have one of the following
forms.

‘%<’ stands for the lines from the first file, including the trailing
newline. Each line is formatted according to the old line
format (see Section 2.7.2 “Line Formats,” page 24).

‘%>’ stands for the lines from the second file, including the trailing
newline. Each line is formatted according to the new line
format.

‘%=’ stands for the lines common to both files, including the trail-
ing newline. Each line is formatted according to the un-
changed line format.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be a
backslash or an apostrophe. For example, ‘%c’:’’ stands for
a colon, even inside the then-part of an if-then-else format,
which a colon would normally terminate.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the
character with octal code O. For example, ‘%c’\0’’ stands for
a null character.

‘Fn’ where F is a printf conversion specification and n is one of
the following letters, stands for n’s value formatted with F.

‘e’ The line number of the line just before the group
in the old file.

‘f’ The line number of the first line in the group in
the old file; equals e + 1.

‘l’ The line number of the last line in the group in
the old file.

‘m’ The line number of the line just after the group
in the old file; equals l + 1.

c y g n u s s u p p o r t 23

Comparing and Merging Files

‘n’ The number of lines in the group in the old file;
equals l - f + 1.

‘E, F, L, M, N’
Likewise, for lines in the new file.

The printf conversion specification can be ‘%d’, ‘%o’, ‘%x’, or
‘%X’, specifying decimal, octal, lower case hexadecimal, or
upper case hexadecimal output respectively. After the ‘%’ the
following options can appear in sequence: a ‘-’ specifying
left-justification; an integer specifying the minimum field
width; and a period followed by an optional integer specifying
the minimum number of digits. For example, ‘%5dN’ prints
the number of new lines in the group in a field of width 5
characters, using the printf format "%5d".

‘(A=B?T:E)’
If A equals B then T else E. A and B are each either a decimal
constant or a single letter interpreted as above. This format
spec is equivalent to T if A’s value equals B’s; otherwise it is
equivalent to E.
For example, ‘%(N=0?no:%dN) line%(N=1?:s)’ is equivalent
to ‘no lines’ if N (the number of lines in the group in the the
new file) is 0, to ‘1 line’ if N is 1, and to ‘%dN lines’ otherwise.

2.7.2 Line Formats

Line formats control how each line taken from an input file is output
as part of a line group in if-then-else format.

For example, the following command outputs text with a one-column
change indicator to the left of the text. The first column of output is ‘-’
for deleted lines, ‘|’ for added lines, and a space for unchanged lines.
The formats contain newline characters where newlines are desired on
output.

diff \
--old-line-format=’-%l

’ \
--new-line-format=’|%l

’ \
--unchanged-line-format=’ %l

’ \
old new

To specify a line format, use one of the following options. You should
quote format, since it often contains shell metacharacters.

‘--old-line-format=format’
formats lines just from the first file.

24 11 July 1995

Chapter 2: diff Output Formats

‘--new-line-format=format’
formats lines just from the second file.

‘--unchanged-line-format=format’
formats lines common to both files.

‘--line-format=format’
formats all lines; in effect, it sets all three above options
simultaneously.

In a line format, ordinary characters represent themselves; conver-
sion specifications start with ‘%’ and have one of the following forms.

‘%l’ stands for the the contents of the line, not counting its trail-
ing newline (if any). This format ignores whether the line is
incomplete; See Chapter 16 “Incomplete Lines,” page 81.

‘%L’ stands for the the contents of the line, including its trailing
newline (if any). If a line is incomplete, this format preserves
its incompleteness.

‘%%’ stands for ‘%’.

‘%c’C’’ where C is a single character, stands for C. C may not be a
backslash or an apostrophe. For example, ‘%c’:’’ stands for
a colon.

‘%c’\O’’ where O is a string of 1, 2, or 3 octal digits, stands for the
character with octal code O. For example, ‘%c’\0’’ stands for
a null character.

‘Fn’ where F is a printf conversion specification, stands for the
line number formatted with F. For example, ‘%.5dn’ prints
the line number using the printf format "%.5d". See Sec-
tion 2.7.1 “Line Group Formats,” page 21, for more about
printf conversion specifications.

The default line format is ‘%l’ followed by a newline character.
If the input contains tab characters and it is important that they line

up on output, you should ensure that ‘%l’ or ‘%L’ in a line format is just
after a tab stop (e.g. by preceding ‘%l’ or ‘%L’ with a tab character), or you
should use the ‘-t’ or ‘--expand-tabs’ option.

Taken together, the line and line group formats let you specify many
different formats. For example, the following command uses a format
similar to diff’s normal format. You can tailor this command to get fine
control over diff’s output.

diff \
--old-line-format=’< %l

’ \
--new-line-format=’> %l

c y g n u s s u p p o r t 25

Comparing and Merging Files

’ \
--old-group-format=’%df%(f=l?:,%dl)d%dE

%<’ \
--new-group-format=’%dea%dF%(F=L?:,%dL)

%>’ \
--changed-group-format=’%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)

%<---
%>’ \

--unchanged-group-format=’’ \
old new

2.7.3 Detailed Description of If-then-else Format

For lines common to both files, diff uses the unchanged line group
format. For each hunk of differences in the merged output format, if the
hunk contains only lines from the first file, diff uses the old line group
format; if the hunk contains only lines from the second file, diff uses
the new group format; otherwise, diff uses the changed group format.

The old, new, and unchanged line formats specify the output format
of lines from the first file, lines from the second file, and lines common
to both files, respectively.

The option ‘--ifdef=name’ is equivalent to the following sequence of
options using shell syntax:

--old-group-format=’#ifndef name
%<#endif /* not name */
’ \
--new-group-format=’#ifdef name
%>#endif /* name */
’ \
--unchanged-group-format=’%=’ \
--changed-group-format=’#ifndef name
%<#else /* name */
%>#endif /* name */
’

You should carefully check the diff output for proper nesting. For
example, when using the the ‘-D name’ or ‘--ifdef=name’ option, you
should check that if the differing lines contain any of the C preproces-
sor directives ‘#ifdef’, ‘#ifndef’, ‘#else’, ‘#elif’, or ‘#endif’, they are
nested properly and match. If they don’t, you must make corrections
manually. It is a good idea to carefully check the resulting code any-
way to make sure that it really does what you want it to; depending on
how the input files were produced, the output might contain duplicate
or otherwise incorrect code.

The patch ‘-D name’ option behaves just like the diff ‘-D name’ option,
except it operates on a file and a diff to produce a merged file; See
Section 14.4 “patch Options,” page 71.

26 11 July 1995

Chapter 2: diff Output Formats

2.7.4 An Example of If-then-else Format

Here is the output of ‘diff -DTWO lao tzu’ (see Section 2.1 “Sample
diff Input,” page 9, for the complete contents of the two files):

#ifndef TWO
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
#endif /* not TWO */
The Nameless is the origin of Heaven and Earth;
#ifndef TWO
The Named is the mother of all things.
#else /* TWO */
The named is the mother of all things.

#endif /* TWO */
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their outcome.
The two are the same,
But after they are produced,

they have different names.
#ifdef TWO
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
#endif /* TWO */

c y g n u s s u p p o r t 27

Comparing and Merging Files

28 11 July 1995

Chapter 3: Comparing Directories

3 Comparing Directories

You can use diff to compare some or all of the files in two di-
rectory trees. When both file name arguments to diff are directo-
ries, it compares each file that is contained in both directories, ex-
amining file names in alphabetical order. Normally diff is silent
about pairs of files that contain no differences, but if you use the
‘-s’ or ‘--report-identical-files’ option, it reports pairs of identi-
cal files. Normally diff reports subdirectories common to both direc-
tories without comparing subdirectories’ files, but if you use the ‘-r’ or
‘--recursive’ option, it compares every corresponding pair of files in the
directory trees, as many levels deep as they go.

For file names that are in only one of the directories, diff normally
does not show the contents of the file that exists; it reports only that the
file exists in that directory and not in the other. You can make diff act
as though the file existed but was empty in the other directory, so that it
outputs the entire contents of the file that actually exists. (It is output as
either an insertion or a deletion, depending on whether it is in the first
or the second directory given.) To do this, use the ‘-N’ or ‘--new-file’
option.

If the older directory contains one or more large files that are not in
the newer directory, you can make the patch smaller by using the ‘-P’
or ‘--unidirectional-new-file’ option instead of ‘-N’. This option is
like ‘-N’ except that it only inserts the contents of files that appear in
the second directory but not the first (that is, files that were added). At
the top of the patch, write instructions for the user applying the patch
to remove the files that were deleted before applying the patch. See
Chapter 10 “Making Patches,” page 53, for more discussion of making
patches for distribution.

To ignore some files while comparing directories, use the ‘-x pattern’
or ‘--exclude=pattern’ option. This option ignores any files or subdi-
rectories whose base names match the shell pattern pattern. Unlike in
the shell, a period at the start of the base of a file name matches a wild-
card at the start of a pattern. You should enclose pattern in quotes so
that the shell does not expand it. For example, the option ‘-x ’*.[ao]’’
ignores any file whose name ends with ‘.a’ or ‘.o’.

This option accumulates if you specify it more than once. For example,
using the options ‘-x ’RCS’ -x ’*,v’’ ignores any file or subdirectory
whose base name is ‘RCS’ or ends with ‘,v’.

If you need to give this option many times, you can instead put
the patterns in a file, one pattern per line, and use the ‘-X file’ or
‘--exclude-from=file’ option.

c y g n u s s u p p o r t 29

Comparing and Merging Files

If you have been comparing two directories and stopped partway
through, later you might want to continue where you left off. You can do
this by using the ‘-S file’ or ‘--starting-file=file’ option. This com-
pares only the file file and all alphabetically later files in the topmost
directory level.

30 11 July 1995

Chapter 4: Making diff Output Prettier

4 Making diffOutput Prettier

diff provides several ways to adjust the appearance of its output.
These adjustments can be applied to any output format.

4.1 Preserving Tabstop Alignment

The lines of text in some of the diff output formats are preceded by
one or two characters that indicate whether the text is inserted, deleted,
or changed. The addition of those characters can cause tabs to move to
the next tabstop, throwing off the alignment of columns in the line. GNU
diff provides two ways to make tab-aligned columns line up correctly.

The first way is to have diff convert all tabs into the correct number
of spaces before outputting them; select this method with the ‘-t’ or
‘--expand-tabs’ option. diff assumes that tabstops are set every 8
columns. To use this form of output with patch, you must give patch
the ‘-l’ or ‘--ignore-white-space’ option (see Section 9.2.1 “Changed
White Space,” page 48, for more information).

The other method for making tabs line up correctly is to add a tab
character instead of a space after the indicator character at the beginning
of the line. This ensures that all following tab characters are in the same
position relative to tabstops that they were in the original files, so that
the output is aligned correctly. Its disadvantage is that it can make long
lines too long to fit on one line of the screen or the paper. It also does
not work with the unified output format, which does not have a space
character after the change type indicator character. Select this method
with the ‘-T’ or ‘--initial-tab’ option.

4.2 Paginating diff Output

It can be convenient to have long output page-numbered and time-
stamped. The ‘-l’ and ‘--paginate’ options do this by sending the diff
output through the pr program. Here is what the page header might
look like for ‘diff -lc lao tzu’:

Mar 11 13:37 1991 diff -lc lao tzu Page 1

c y g n u s s u p p o r t 31

Comparing and Merging Files

32 11 July 1995

Chapter 5: diff Performance Tradeoffs

5 diffPerformance Tradeoffs

GNU diff runs quite efficiently; however, in some circumstances you
can cause it to run faster or produce a more compact set of changes.
There are two ways that you can affect the performance of GNU diff by
changing the way it compares files.

Performance has more than one dimension. These options improve
one aspect of performance at the cost of another, or they improve perfor-
mance in some cases while hurting it in others.

The way that GNU diff determines which lines have changed al-
ways comes up with a near-minimal set of differences. Usually it is
good enough for practical purposes. If the diff output is large, you
might want diff to use a modified algorithm that sometimes produces
a smaller set of differences. The ‘-d’ or ‘--minimal’ option does this;
however, it can also cause diff to run more slowly than usual, so it is
not the default behavior.

When the files you are comparing are large and have small
groups of changes scattered throughout them, you can use the ‘-H’ or
‘--speed-large-files’ option to make a different modification to the
algorithm that diff uses. If the input files have a constant small den-
sity of changes, this option speeds up the comparisons without changing
the output. If not, diff might produce a larger set of differences; how-
ever, the output will still be correct.

Normally diff discards the prefix and suffix that is common to both
files before it attempts to find a minimal set of differences. This makes
diff run faster, but occasionally it may produce non-minimal output.
The ‘--horizon-lines=lines’ option prevents diff from discarding the
last lines lines of the prefix and the first lines lines of the suffix. This
gives diff further opportunities to find a minimal output.

c y g n u s s u p p o r t 33

Comparing and Merging Files

34 11 July 1995

Chapter 6: Comparing Three Files

6 Comparing Three Files
Use the program diff3 to compare three files and show any differ-

ences among them. (diff3 can also merge files; see Chapter 7 “diff3
Merging,” page 39).

The “normal” diff3 output format shows each hunk of differences
without surrounding context. Hunks are labeled depending on whether
they are two-way or three-way, and lines are annotated by their location
in the input files.

See Chapter 13 “Invoking diff3,” page 65, for more information on
how to run diff3.

6.1 A Third Sample Input File

Here is a third sample file that will be used in examples to illustrate
the output of diff3 and how various options can change it. The first two
files are the same that we used for diff (see Section 2.1 “Sample diff
Input,” page 9). This is the third sample file, called ‘tao’:

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
so we may see their subtlety,

And let there always be being,
so we may see their result.

The two are the same,
But after they are produced,

they have different names.

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

6.2 Detailed Description of diff3 Normal Format

Each hunk begins with a line marked ‘====’. Three-way hunks have
plain ‘====’ lines, and two-way hunks have ‘1’, ‘2’, or ‘3’ appended to
specify which of the three input files differ in that hunk. The hunks
contain copies of two or three sets of input lines each preceded by one or
two commands identifying where the lines came from.

Normally, two spaces precede each copy of an input line to distinguish
it from the commands. But with the ‘-T’ or ‘--initial-tab’ option,
diff3 uses a tab instead of two spaces; this lines up tabs correctly. See
Section 4.1 “Tabs,” page 31, for more information.

Commands take the following forms:

c y g n u s s u p p o r t 35

Comparing and Merging Files

‘file:la’ This hunk appears after line l of file file, and contains no
lines in that file. To edit this file to yield the other files,
one must append hunk lines taken from the other files. For
example, ‘1:11a’ means that the hunk follows line 11 in the
first file and contains no lines from that file.

‘file:rc’ This hunk contains the lines in the range r of file file. The
range r is a comma-separated pair of line numbers, or just
one number if the range is a singleton. To edit this file to yield
the other files, one must change the specified lines to be the
lines taken from the other files. For example, ‘2:11,13c’
means that the hunk contains lines 11 through 13 from the
second file.

If the last line in a set of input lines is incomplete (see Chapter 16
“Incomplete Lines,” page 81), it is distinguished on output from a full
line by a following line that starts with ‘\’.

6.3 diff3 Hunks

Groups of lines that differ in two or three of the input files are called
diff3 hunks, by analogy with diff hunks (see Section 1.1 “Hunks,”
page 3). If all three input files differ in a diff3 hunk, the hunk is
called a three-way hunk; if just two input files differ, it is a two-way
hunk.

As with diff, several solutions are possible. When comparing the
files ‘A’, ‘B’, and ‘C’, diff3 normally finds diff3 hunks by merging the
two-way hunks output by the two commands ‘diff A B’ and ‘diff A C’.
This does not necessarily minimize the size of the output, but exceptions
should be rare.

For example, suppose ‘F’ contains the three lines ‘a’, ‘b’, ‘f’, ‘G’ contains
the lines ‘g’, ‘b’, ‘g’, and ‘H’ contains the lines ‘a’, ‘b’, ‘h’. ‘diff3 F G H’ might
output the following:

====2
1:1c
3:1c

a
2:1c

g
====
1:3c

f
2:3c

g
3:3c

h

36 11 July 1995

Chapter 6: Comparing Three Files

because it found a two-way hunk containing ‘a’ in the first and third files
and ‘g’ in the second file, then the single line ‘b’ common to all three files,
then a three-way hunk containing the last line of each file.

6.4 An Example of diff3 Normal Format

Here is the output of the command ‘diff3 lao tzu tao’ (see Sec-
tion 6.1 “Sample diff3 Input,” page 35, for the complete contents of the
files). Notice that it shows only the lines that are different among the
three files.

====2
1:1,2c
3:1,2c

The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.

2:0a
====1
1:4c

The Named is the mother of all things.
2:2,3c
3:4,5c

The named is the mother of all things.

====3
1:8c
2:7c

so we may see their outcome.
3:9c

so we may see their result.
====
1:11a
2:11,13c

They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

3:13,14c

-- The Way of Lao-Tzu, tr. Wing-tsit Chan

c y g n u s s u p p o r t 37

Comparing and Merging Files

38 11 July 1995

Chapter 7: Merging From a Common Ancestor

7 Merging From a Common Ancestor

When two people have made changes to copies of the same file, diff3
can produce a merged output that contains both sets of changes together
with warnings about conflicts.

One might imagine programs with names like diff4 and diff5 to
compare more than three files simultaneously, but in practice the need
rarely arises. You can use diff3 to merge three or more sets of changes
to a file by merging two change sets at a time.

diff3 can incorporate changes from two modified versions into a
common preceding version. This lets you merge the sets of changes
represented by the two newer files. Specify the common ancestor version
as the second argument and the two newer versions as the first and third
arguments, like this:

diff3 mine older yours

You can remember the order of the arguments by noting that they are in
alphabetical order.

You can think of this as subtracting older from yours and adding
the result to mine, or as merging into mine the changes that would turn
older into yours. This merging is well-defined as long as mine and
older match in the neighborhood of each such change. This fails to be
true when all three input files differ or when only older differs; we call
this a conflict. When all three input files differ, we call the conflict an
overlap.

diff3 gives you several ways to handle overlaps and conflicts. You
can omit overlaps or conflicts, or select only overlaps, or mark conflicts
with special ‘<<<<<<<’ and ‘>>>>>>>’ lines.

diff3 can output the merge results as an ed script that that can be
applied to the first file to yield the merged output. However, it is usually
better to have diff3 generate the merged output directly; this bypasses
some problems with ed.

7.1 Selecting Which Changes to Incorporate

You can select all unmerged changes from older to yours for merging
into mine with the ‘-e’ or ‘--ed’ option. You can select only the nonover-
lapping unmerged changes with ‘-3’ or ‘--easy-only’, and you can select
only the overlapping changes with ‘-x’ or ‘--overlap-only’.

The ‘-e’, ‘-3’ and ‘-x’ options select only unmerged changes, i.e.
changes where mine and yours differ; they ignore changes from older
to yours where mine and yours are identical, because they assume that
such changes have already been merged. If this assumption is not a safe

c y g n u s s u p p o r t 39

Comparing and Merging Files

one, you can use the ‘-A’ or ‘--show-all’ option (see Section 7.2 “Marking
Conflicts,” page 40).

Here is the output of the command diff3 with each of these three
options (see Section 6.1 “Sample diff3 Input,” page 35, for the complete
contents of the files). Notice that ‘-e’ outputs the union of the disjoint
sets of changes output by ‘-3’ and ‘-x’.

Output of ‘diff3 -e lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.
8c

so we may see their result.
.

Output of ‘diff3 -3 lao tzu tao’:
8c

so we may see their result.
.

Output of ‘diff3 -x lao tzu tao’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.

7.2 Marking Conflicts

diff3 can mark conflicts in the merged output by bracketing them
with special marker lines. A conflict that comes from two files A and B is
marked as follows:

<<<<<<< A
lines from A
=======
lines from B
>>>>>>> B

A conflict that comes from three files A, B and C is marked as follows:
<<<<<<< A
lines from A
||||||| B
lines from B
=======
lines from C
>>>>>>> C

The ‘-A’ or ‘--show-all’ option acts like the ‘-e’ option, except that
it brackets conflicts, and it outputs all changes from older to yours,
not just the unmerged changes. Thus, given the sample input files (see

40 11 July 1995

Chapter 7: Merging From a Common Ancestor

Section 6.1 “Sample diff3 Input,” page 35), ‘diff3 -A lao tzu tao’ puts
brackets around the conflict where only ‘tzu’ differs:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao

And it outputs the three-way conflict as follows:
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

The ‘-E’ or ‘--show-overlap’ option outputs less information than the
‘-A’ or ‘--show-all’ option, because it outputs only unmerged changes,
and it never outputs the contents of the second file. Thus the ‘-E’ option
acts like the ‘-e’ option, except that it brackets the first and third files
from three-way overlapping changes. Similarly, ‘-X’ acts like ‘-x’, except
it brackets all its (necessarily overlapping) changes. For example, for
the three-way overlapping change above, the ‘-E’ and ‘-X’ options output
the following:

<<<<<<< lao
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

If you are comparing files that have meaningless or uninformative
names, you can use the ‘-L label’ or ‘--label=label’ option to show
alternate names in the ‘<<<<<<<’, ‘|||||||’ and ‘>>>>>>>’ brackets. This
option can be given up to three times, once for each input file. Thus
‘diff3 -A -L X -L Y -L Z A B C’ acts like ‘diff3 -A A B C’, except that the
output looks like it came from files named ‘X’, ‘Y’ and ‘Z’ rather than from
files named ‘A’, ‘B’ and ‘C’.

7.3 Generating the Merged Output Directly

With the ‘-m’ or ‘--merge’ option, diff3 outputs the merged file di-
rectly. This is more efficient than using ed to generate it, and works
even with non-text files that ed would reject. If you specify ‘-m’ without
an ed script option, ‘-A’ (‘--show-all’) is assumed.

c y g n u s s u p p o r t 41

Comparing and Merging Files

For example, the command ‘diff3 -m lao tzu tao’ (see Section 6.1
“Sample diff3 Input,” page 35 for a copy of the input files) would output
the following:

<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,

so we may see their subtlety,
And let there always be being,

so we may see their result.
The two are the same,
But after they are produced,

they have different names.
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

7.4 How diff3 Merges Incomplete Lines

With ‘-m’, incomplete lines (see Chapter 16 “Incomplete Lines,”
page 81) are simply copied to the output as they are found; if the merged
output ends in an conflict and one of the input files ends in an incom-
plete line, succeeding ‘|||||||’, ‘=======’ or ‘>>>>>>>’ brackets appear
somewhere other than the start of a line because they are appended to
the incomplete line.

Without ‘-m’, if an ed script option is specified and an incomplete line
is found, diff3 generates a warning and acts as if a newline had been
present.

7.5 Saving the Changed File

Traditional Unix diff3 generates an ed script without the trailing ‘w’
and and ‘q’ commands that save the changes. System V diff3 generates
these extra commands. GNU diff3 normally behaves like traditional
Unix diff3, but with the ‘-i’ option it behaves like System V diff3 and
appends the ‘w’ and ‘q’ commands.

42 11 July 1995

Chapter 7: Merging From a Common Ancestor

The ‘-i’ option requires one of the ed script options ‘-AeExX3’, and is
incompatible with the merged output option ‘-m’.

c y g n u s s u p p o r t 43

Comparing and Merging Files

44 11 July 1995

Chapter 8: Interactive Merging with sdiff

8 Interactive Merging with sdiff

With sdiff, you can merge two files interactively based on a side-
by-side ‘-y’ format comparison (see Section 2.4 “Side by Side,” page 16).
Use ‘-o file’ or ‘--output=file’ to specify where to put the merged text.
See Chapter 15 “Invoking sdiff,” page 77, for more details on the options
to sdiff.

Another way to merge files interactively is to use the Emacs Lisp
package emerge. See section “emerge” in The GNU Emacs Manual, for
more information.

8.1 Specifying diff Options to sdiff

The following sdiff options have the same meaning as for diff. See
Section 12.1 “diff Options,” page 57, for the use of these options.

-a -b -d -i -t -v
-B -H -I regexp

--ignore-blank-lines --ignore-case
--ignore-matching-lines=regexp --ignore-space-change
--left-column --minimal --speed-large-files
--suppress-common-lines --expand-tabs
--text --version --width=columns

For historical reasons, sdiff has alternate names for some options.
The ‘-l’ option is equivalent to the ‘--left-column’ option, and similarly
‘-s’ is equivalent to ‘--suppress-common-lines’. The meaning of the
sdiff ‘-w’ and ‘-W’ options is interchanged from that of diff: with sdiff,
‘-w columns’ is equivalent to ‘--width=columns’, and ‘-W’ is equivalent
to ‘--ignore-all-space’. sdiff without the ‘-o’ option is equivalent to
diff with the ‘-y’ or ‘--side-by-side’ option (see Section 2.4 “Side by
Side,” page 16).

8.2 Merge Commands

Groups of common lines, with a blank gutter, are copied from the first
file to the output. After each group of differing lines, sdiff prompts
with ‘%’ and pauses, waiting for one of the following commands. Follow
each command with RET.

‘e’ Discard both versions. Invoke a text editor on an empty
temporary file, then copy the resulting file to the output.

‘eb’ Concatenate the two versions, edit the result in a temporary
file, then copy the edited result to the output.

c y g n u s s u p p o r t 45

Comparing and Merging Files

‘el’ Edit a copy of the left version, then copy the result to the
output.

‘er’ Edit a copy of the right version, then copy the result to the
output.

‘l’ Copy the left version to the output.

‘q’ Quit.

‘r’ Copy the right version to the output.

‘s’ Silently copy common lines.

‘v’ Verbosely copy common lines. This is the default.

The text editor invoked is specified by the EDITOR environment vari-
able if it is set. The default is system-dependent.

46 11 July 1995

Chapter 9: Merging with patch

9 Merging with patch

patch takes comparison output produced by diff and applies the dif-
ferences to a copy of the original file, producing a patched version. With
patch, you can distribute just the changes to a set of files instead of
distributing the entire file set; your correspondents can apply patch to
update their copy of the files with your changes. patch automatically
determines the diff format, skips any leading or trailing headers, and
uses the headers to determine which file to patch. This lets your cor-
respondents feed an article or message containing a difference listing
directly to patch.

patch detects and warns about common problems like forward
patches. It saves the original version of the files it patches, and saves
any patches that it could not apply. It can also maintain a patchlevel.h
file to ensures that your correspondents apply diffs in the proper order.

patch accepts a series of diffs in its standard input, usually separated
by headers that specify which file to patch. It applies diff hunks (see
Section 1.1 “Hunks,” page 3) one by one. If a hunk does not exactly match
the original file, patch uses heuristics to try to patch the file as well as it
can. If no approximate match can be found, patch rejects the hunk and
skips to the next hunk. patch normally replaces each file f with its new
version, saving the original file in ‘f.orig’, and putting reject hunks (if
any) into ‘f.rej’.

See Chapter 14 “Invoking patch,” page 69, for detailed information on
the options to patch. See Section 14.2 “Backups,” page 70, for more in-
formation on how patch names backup files. See Section 14.3 “Rejects,”
page 71, for more information on where patch puts reject hunks.

9.1 Selecting the patch Input Format

patch normally determines which diff format the patch file uses
by examining its contents. For patch files that contain particularly
confusing leading text, you might need to use one of the following options
to force patch to interpret the patch file as a certain format of diff. The
output formats listed here are the only ones that patch can understand.

‘-c’
‘--context’

context diff.

‘-e’
‘--ed’ ed script.

c y g n u s s u p p o r t 47

Comparing and Merging Files

‘-n’
‘--normal’

normal diff.

‘-u’
‘--unified’

unified diff.

9.2 Applying Imperfect Patches

patch tries to skip any leading text in the patch file, apply the diff,
and then skip any trailing text. Thus you can feed a news article or
mail message directly to patch, and it should work. If the entire diff
is indented by a constant amount of white space, patch automatically
ignores the indentation.

However, certain other types of imperfect input require user inter-
vention.

9.2.1 Applying Patches with Changed White Space

Sometimes mailers, editors, or other programs change spaces into
tabs, or vice versa. If this happens to a patch file or an input file, the
files might look the same, but patch will not be able to match them
properly. If this problem occurs, use the ‘-l’ or ‘--ignore-white-space’
option, which makes patch compare white space loosely so that any
sequence of white space in the patch file matches any sequence of white
space in the input files. Non-white-space characters must still match
exactly. Each line of the context must still match a line in the input file.

9.2.2 Applying Reversed Patches

Sometimes people run diff with the new file first instead of second.
This creates a diff that is “reversed”. To apply such patches, give patch
the ‘-R’ or ‘--reverse’ option. patch then attempts to swap each hunk
around before applying it. Rejects come out in the swapped format.
The ‘-R’ option does not work with ed scripts because there is too little
information in them to reconstruct the reverse operation.

Often patch can guess that the patch is reversed. If the first hunk
of a patch fails, patch reverses the hunk to see if it can apply it that
way. If it can, patch asks you if you want to have the ‘-R’ option set; if it
can’t, patch continues to apply the patch normally. This method cannot
detect a reversed patch if it is a normal diff and the first command

48 11 July 1995

Chapter 9: Merging with patch

is an append (which should have been a delete) since appends always
succeed, because a null context matches anywhere. But most patches
add or change lines rather than delete them, so most reversed normal
diffs begin with a delete, which fails, and patch notices.

If you apply a patch that you have already applied, patch thinks
it is a reversed patch and offers to un-apply the patch. This could be
construed as a feature. If you did this inadvertently and you don’t want
to un-apply the patch, just answer ‘n’ to this offer and to the subsequent
“apply anyway” question—or type C-c to kill the patch process.

9.2.3 Helping patch Find Inexact Matches

For context diffs, and to a lesser extent normal diffs, patch can detect
when the line numbers mentioned in the patch are incorrect, and it
attempts to find the correct place to apply each hunk of the patch. As
a first guess, it takes the line number mentioned in the hunk, plus or
minus any offset used in applying the previous hunk. If that is not the
correct place, patch scans both forward and backward for a set of lines
matching the context given in the hunk.

First patch looks for a place where all lines of the context match. If it
cannot find such a place, and it is reading a context or unified diff, and
the maximum fuzz factor is set to 1 or more, then patch makes another
scan, ignoring the first and last line of context. If that fails, and the
maximum fuzz factor is set to 2 or more, it makes another scan, ignoring
the first two and last two lines of context are ignored. It continues
similarly if the maximum fuzz factor is larger.

The ‘-F lines’ or ‘--fuzz=lines’ option sets the maximum fuzz factor
to lines. This option only applies to context and unified diffs; it ignores
up to lines lines while looking for the place to install a hunk. Note that
a larger fuzz factor increases the odds of making a faulty patch. The
default fuzz factor is 2; it may not be set to more than the number of
lines of context in the diff, ordinarily 3.

If patch cannot find a place to install a hunk of the patch, it writes
the hunk out to a reject file (see Section 14.3 “Rejects,” page 71, for
information on how reject files are named). It writes out rejected hunks
in context format no matter what form the input patch is in. If the input
is a normal or ed diff, many of the contexts are simply null. The line
numbers on the hunks in the reject file may be different from those in
the patch file: they show the approximate location where patch thinks
the failed hunks belong in the new file rather than in the old one.

As it completes each hunk, patch tells you whether the hunk suc-
ceeded or failed, and if it failed, on which line (in the new file) patch
thinks the hunk should go. If this is different from the line number

c y g n u s s u p p o r t 49

Comparing and Merging Files

specified in the diff, it tells you the offset. A single large offset may
indicate that patch installed a hunk in the wrong place. patch also tells
you if it used a fuzz factor to make the match, in which case you should
also be slightly suspicious.

patch cannot tell if the line numbers are off in an ed script, and can
only detect wrong line numbers in a normal diff when it finds a change
or delete command. It may have the same problem with a context diff
using a fuzz factor equal to or greater than the number of lines of context
shown in the diff (typically 3). In these cases, you should probably look
at a context diff between your original and patched input files to see
if the changes make sense. Compiling without errors is a pretty good
indication that the patch worked, but not a guarantee.

patch usually produces the correct results, even when it must make
many guesses. However, the results are guaranteed only when the patch
is applied to an exact copy of the file that the patch was generated from.

9.3 Removing Empty Files

Sometimes when comparing two directories, the first directory con-
tains a file that the second directory does not. If you give diff the ‘-N’
or ‘--new-file’ option, it outputs a diff that deletes the contents of this
file. By default, patch leaves an empty file after applying such a diff.
The ‘-E’ or ‘--remove-empty-files’ option to patch deletes output files
that are empty after applying the diff.

9.4 Multiple Patches in a File

If the patch file contains more than one patch, patch tries to apply
each of them as if they came from separate patch files. This means
that it determines the name of the file to patch for each patch, and
that it examines the leading text before each patch for file names and
prerequisite revision level (see Chapter 10 “Making Patches,” page 53,
for more on that topic).

For the second and subsequent patches in the patch file, you can give
options and another original file name by separating their argument
lists with a ‘+’. However, the argument list for a second or subsequent
patch may not specify a new patch file, since that does not make sense.

For example, to tell patch to strip the first three slashes from the
name of the first patch in the patch file and none from subsequent
patches, and to use ‘code.c’ as the first input file, you can use:

patch -p3 code.c + -p0 < patchfile

50 11 July 1995

Chapter 9: Merging with patch

The ‘-S’ or ‘--skip’ option ignores the current patch from the patch
file, but continue looking for the next patch in the file. Thus, to ignore
the first and third patches in the patch file, you can use:

patch -S + + -S + < patch file

9.5 Messages and Questions from patch

patch can produce a variety of messages, especially if it has trouble
decoding its input. In a few situations where it’s not sure how to proceed,
patch normally prompts you for more information from the keyboard.
There are options to suppress printing non-fatal messages and stopping
for keyboard input.

The message ‘Hmm...’ indicates that patch is reading text in the patch
file, attempting to determine whether there is a patch in that text, and
if so, what kind of patch it is.

You can inhibit all terminal output from patch, unless an error occurs,
by using the ‘-s’, ‘--quiet’, or ‘--silent’ option.

There are two ways you can prevent patch from asking you any
questions. The ‘-f’ or ‘--force’ option assumes that you know what
you are doing. It assumes the following:
� skip patches that do not contain file names in their headers;
� patch files even though they have the wrong version for the ‘Prereq:’

line in the patch;
� assume that patches are not reversed even if they look like they are.

The ‘-t’ or ‘--batch’ option is similar to ‘-f’, in that it suppresses
questions, but it makes somewhat different assumptions:
� skip patches that do not contain file names in their headers (the

same as ‘-f’);
� skip patches for which the file has the wrong version for the ‘Prereq:’

line in the patch;
� assume that patches are reversed if they look like they are.

patch exits with a non-zero status if it creates any reject files. When
applying a set of patches in a loop, you should check the exit status, so
you don’t apply a later patch to a partially patched file.

c y g n u s s u p p o r t 51

Comparing and Merging Files

52 11 July 1995

Chapter 10: Tips for Making Patch Distributions

10 Tips for Making Patch Distributions

Here are some things you should keep in mind if you are going to
distribute patches for updating a software package.

Make sure you have specified the file names correctly, either in a
context diff header or with an ‘Index:’ line. If you are patching files in
a subdirectory, be sure to tell the patch user to specify a ‘-p’ or ‘--strip’
option as needed. Take care to not send out reversed patches, since these
make people wonder whether they have already applied the patch.

To save people from partially applying a patch before other patches
that should have gone before it, you can make the first patch in the patch
file update a file with a name like ‘patchlevel.h’ or ‘version.c’, which
contains a patch level or version number. If the input file contains the
wrong version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a ‘Prereq:’ line
before the patch. If the leading text in the patch file contains a line that
starts with ‘Prereq:’, patch takes the next word from that line (normally
a version number) and checks whether the next input file contains that
word, preceded and followed by either white space or a newline. If not,
patch prompts you for confirmation before proceeding. This makes it
difficult to accidentally apply patches in the wrong order.

Since patch does not handle incomplete lines properly, make sure
that all the source files in your program end with a newline whenever
you release a version.

To create a patch that changes an older version of a package into
a newer version, first make a copy of the older version in a scratch
directory. Typically you do that by unpacking a tar or shar archive of
the older version.

You might be able to reduce the size of the patch by renaming or
removing some files before making the patch. If the older version of the
package contains any files that the newer version does not, or if any
files have been renamed between the two versions, make a list of rm and
mv commands for the user to execute in the old version directory before
applying the patch. Then run those commands yourself in the scratch
directory.

If there are any files that you don’t need to include in the patch
because they can easily be rebuilt from other files (for example, ‘TAGS’
and output from yacc and makeinfo), replace the versions in the scratch
directory with the newer versions, using rm and ln or cp.

Now you can create the patch. The de-facto standard diff format
for patch distributions is context format with two lines of context, pro-
duced by giving diff the ‘-C 2’ option. Do not use less than two lines

c y g n u s s u p p o r t 53

Comparing and Merging Files

of context, because patch typically needs at least two lines for proper
operation. Give diff the ‘-P’ option in case the newer version of the
package contains any files that the older one does not. Make sure to
specify the scratch directory first and the newer directory second.

Add to the top of the patch a note telling the user any rm and mv
commands to run before applying the patch. Then you can remove the
scratch directory.

54 11 July 1995

Chapter 11: Invoking cmp

11 Invoking cmp

The cmp command compares two files, and if they differ, tells the first
byte and line number where they differ. Its arguments are as follows:

cmp options. .. from-file [to-file]

The file name ‘-’ is always the standard input. cmp also uses the
standard input if one file name is omitted.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

11.1 Options to cmp

Below is a summary of all of the options that GNU cmp accepts.
Most options have two equivalent names, one of which is a single letter
preceded by ‘-’, and the other of which is a long name preceded by ‘--’.
Multiple single letter options (unless they take an argument) can be
combined into a single command line word: ‘-cl’ is equivalent to ‘-c -l’.

‘-c’ Print the differing characters. Display control characters as
a ‘ˆ’ followed by a letter of the alphabet and precede char-
acters that have the high bit set with ‘M-’ (which stands for
“meta”).

‘--ignore-initial=bytes’
Ignore any differences in the the first bytes bytes of the input
files. Treat files with fewer than bytes bytes as if they are
empty.

‘-l’ Print the (decimal) offsets and (octal) values of all differing
bytes.

‘--print-chars’
Print the differing characters. Display control characters as
a ‘ˆ’ followed by a letter of the alphabet and precede char-
acters that have the high bit set with ‘M-’ (which stands for
“meta”).

‘--quiet’
‘-s’
‘--silent’

Do not print anything; only return an exit status indicating
whether the files differ.

‘--verbose’
Print the (decimal) offsets and (octal) values of all differing
bytes.

c y g n u s s u p p o r t 55

Comparing and Merging Files

‘-v’
‘--version’

Output the version number of cmp.

56 11 July 1995

Chapter 12: Invoking diff

12 Invoking diff

The format for running the diff command is:
diff options. .. from-file to-file

In the simplest case, diff compares the contents of the two files
from-file and to-file. A file name of ‘-’ stands for text read from the
standard input. As a special case, ‘diff - -’ compares a copy of standard
input to itself.

If from-file is a directory and to-file is not, diff compares the file
in from-file whose file name is that of to-file, and vice versa. The
non-directory file must not be ‘-’.

If both from-file and to-file are directories, diff compares corre-
sponding files in both directories, in alphabetical order; this comparison
is not recursive unless the ‘-r’ or ‘--recursive’ option is given. diff
never compares the actual contents of a directory as if it were a file. The
file that is fully specified may not be standard input, because standard
input is nameless and the notion of “file with the same name” does not
apply.

diff options begin with ‘-’, so normally from-file and to-file may
not begin with ‘-’. However, ‘--’ as an argument by itself treats the
remaining arguments as file names even if they begin with ‘-’.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

12.1 Options to diff

Below is a summary of all of the options that GNU diff accepts.
Most options have two equivalent names, one of which is a single letter
preceded by ‘-’, and the other of which is a long name preceded by ‘--’.
Multiple single letter options (unless they take an argument) can be
combined into a single command line word: ‘-ac’ is equivalent to ‘-a
-c’. Long named options can be abbreviated to any unique prefix of
their name. Brackets ([and]) indicate that an option takes an optional
argument.

‘-lines’ Show lines (an integer) lines of context. This option does
not specify an output format by itself; it has no effect unless
it is combined with ‘-c’ (see Section 2.3.1 “Context Format,”
page 11) or ‘-u’ (see Section 2.3.2 “Unified Format,” page 14).
This option is obsolete. For proper operation, patch typically
needs at least two lines of context.

‘-a’ Treat all files as text and compare them line-by-line, even if
they do not seem to be text. See Section 1.7 “Binary,” page 6.

c y g n u s s u p p o r t 57

Comparing and Merging Files

‘-b’ Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘-B’ Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

‘--binary’
Read and write data in binary mode. See Section 1.7 “Bi-
nary,” page 6.

‘--brief’ Report only whether the files differ, not the details of the
differences. See Section 1.6 “Brief,” page 6.

‘-c’ Use the context output format. See Section 2.3.1 “Context
Format,” page 11.

‘-C lines’
‘--context[=lines]’

Use the context output format, showing lines (an integer)
lines of context, or three if lines is not given. See Sec-
tion 2.3.1 “Context Format,” page 11. For proper operation,
patch typically needs at least two lines of context.

‘--changed-group-format=format’
Use format to output a line group containing differing lines
from both files in if-then-else format. See Section 2.7.1 “Line
Group Formats,” page 21.

‘-d’ Change the algorithm perhaps find a smaller set of changes.
This makes diff slower (sometimes much slower). See Chap-
ter 5 “diff Performance,” page 33.

‘-D name’ Make merged ‘#ifdef’ format output, conditional on the pre-
processor macro name. See Section 2.7 “If-then-else,” page 21.

‘-e’
‘--ed’ Make output that is a valid ed script. See Section 2.6.1 “ed

Scripts,” page 18.

‘--exclude=pattern’
When comparing directories, ignore files and subdirectories
whose basenames match pattern. See Chapter 3 “Compar-
ing Directories,” page 29.

‘--exclude-from=file’
When comparing directories, ignore files and subdirectories
whose basenames match any pattern contained in file. See
Chapter 3 “Comparing Directories,” page 29.

58 11 July 1995

Chapter 12: Invoking diff

‘--expand-tabs’
Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘-f’ Make output that looks vaguely like an ed script but has
changes in the order they appear in the file. See Section 2.6.2
“Forward ed,” page 20.

‘-F regexp’
In context and unified format, for each hunk of differences,
show some of the last preceding line that matches regexp.
See Section 2.3.3.1 “Specified Headings,” page 15.

‘--forward-ed’
Make output that looks vaguely like an ed script but has
changes in the order they appear in the file. See Section 2.6.2
“Forward ed,” page 20.

‘-h’ This option currently has no effect; it is present for Unix
compatibility.

‘-H’ Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

‘--horizon-lines=lines’
Do not discard the last lines lines of the common prefix and
the first lines lines of the common suffix. See Chapter 5
“diff Performance,” page 33.

‘-i’ Ignore changes in case; consider upper- and lower-case let-
ters equivalent. See Section 1.4 “Case Folding,” page 5.

‘-I regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ifdef=name’
Make merged if-then-else output using name. See Section 2.7
“If-then-else,” page 21.

‘--ignore-all-space’
Ignore white space when comparing lines. See Section 1.2
“White Space,” page 4.

‘--ignore-blank-lines’
Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

c y g n u s s u p p o r t 59

Comparing and Merging Files

‘--ignore-case’
Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 “Case Folding,” page 5.

‘--ignore-matching-lines=regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ignore-space-change’
Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘--initial-tab’
Output a tab rather than a space before the text of a line in
normal or context format. This causes the alignment of tabs
in the line to look normal. See Section 4.1 “Tabs,” page 31.

‘-l’ Pass the output through pr to paginate it. See Section 4.2
“Pagination,” page 31.

‘-L label’ Use label instead of the file name in the context format (see
Section 2.3.1 “Context Format,” page 11) and unified format
(see Section 2.3.2 “Unified Format,” page 14) headers. See
Section 2.6.3 “RCS,” page 20.

‘--label=label’
Use label instead of the file name in the context format (see
Section 2.3.1 “Context Format,” page 11) and unified format
(see Section 2.3.2 “Unified Format,” page 14) headers.

‘--left-column’
Print only the left column of two common lines in side by side
format. See Section 2.5 “Side by Side Format,” page 17.

‘--line-format=format’
Use format to output all input lines in if-then-else format.
See Section 2.7.2 “Line Formats,” page 24.

‘--minimal’
Change the algorithm to perhaps find a smaller set of
changes. This makes diff slower (sometimes much slower).
See Chapter 5 “diff Performance,” page 33.

‘-n’ Output RCS-format diffs; like ‘-f’ except that each command
specifies the number of lines affected. See Section 2.6.3
“RCS,” page 20.

‘-N’
‘--new-file’

In directory comparison, if a file is found in only one directory,
treat it as present but empty in the other directory. See
Chapter 3 “Comparing Directories,” page 29.

60 11 July 1995

Chapter 12: Invoking diff

‘--new-group-format=format’
Use format to output a group of lines taken from just the
second file in if-then-else format. See Section 2.7.1 “Line
Group Formats,” page 21.

‘--new-line-format=format’
Use format to output a line taken from just the second file
in if-then-else format. See Section 2.7.2 “Line Formats,”
page 24.

‘--old-group-format=format’
Use format to output a group of lines taken from just the
first file in if-then-else format. See Section 2.7.1 “Line Group
Formats,” page 21.

‘--old-line-format=format’
Use format to output a line taken from just the first file in if-
then-else format. See Section 2.7.2 “Line Formats,” page 24.

‘-p’ Show which C function each change is in. See Section 2.3.3.2
“C Function Headings,” page 16.

‘-P’ When comparing directories, if a file appears only in the
second directory of the two, treat it as present but empty in
the other. See Chapter 3 “Comparing Directories,” page 29.

‘--paginate’
Pass the output through pr to paginate it. See Section 4.2
“Pagination,” page 31.

‘-q’ Report only whether the files differ, not the details of the
differences. See Section 1.6 “Brief,” page 6.

‘-r’ When comparing directories, recursively compare any sub-
directories found. See Chapter 3 “Comparing Directories,”
page 29.

‘--rcs’ Output RCS-format diffs; like ‘-f’ except that each command
specifies the number of lines affected. See Section 2.6.3
“RCS,” page 20.

‘--recursive’
When comparing directories, recursively compare any sub-
directories found. See Chapter 3 “Comparing Directories,”
page 29.

‘--report-identical-files’
Report when two files are the same. See Chapter 3 “Compar-
ing Directories,” page 29.

‘-s’ Report when two files are the same. See Chapter 3 “Compar-
ing Directories,” page 29.

c y g n u s s u p p o r t 61

Comparing and Merging Files

‘-S file’ When comparing directories, start with the file file. This
is used for resuming an aborted comparison. See Chapter 3
“Comparing Directories,” page 29.

‘--sdiff-merge-assist’
Print extra information to help sdiff. sdiff uses this option
when it runs diff. This option is not intended for users to
use directly.

‘--show-c-function’
Show which C function each change is in. See Section 2.3.3.2
“C Function Headings,” page 16.

‘--show-function-line=regexp’
In context and unified format, for each hunk of differences,
show some of the last preceding line that matches regexp.
See Section 2.3.3.1 “Specified Headings,” page 15.

‘--side-by-side’
Use the side by side output format. See Section 2.5 “Side by
Side Format,” page 17.

‘--speed-large-files’
Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

‘--starting-file=file’
When comparing directories, start with the file file. This
is used for resuming an aborted comparison. See Chapter 3
“Comparing Directories,” page 29.

‘--suppress-common-lines’
Do not print common lines in side by side format. See Sec-
tion 2.5 “Side by Side Format,” page 17.

‘-t’ Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘-T’ Output a tab rather than a space before the text of a line in
normal or context format. This causes the alignment of tabs
in the line to look normal. See Section 4.1 “Tabs,” page 31.

‘--text’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-u’ Use the unified output format. See Section 2.3.2 “Unified
Format,” page 14.

62 11 July 1995

Chapter 12: Invoking diff

‘--unchanged-group-format=format’
Use format to output a group of common lines taken from
both files in if-then-else format. See Section 2.7.1 “Line
Group Formats,” page 21.

‘--unchanged-line-format=format’
Use format to output a line common to both files in if-then-
else format. See Section 2.7.2 “Line Formats,” page 24.

‘--unidirectional-new-file’
When comparing directories, if a file appears only in the
second directory of the two, treat it as present but empty in
the other. See Chapter 3 “Comparing Directories,” page 29.

‘-U lines’
‘--unified[=lines]’

Use the unified output format, showing lines (an integer)
lines of context, or three if lines is not given. See Sec-
tion 2.3.2 “Unified Format,” page 14. For proper operation,
patch typically needs at least two lines of context.

‘-v’
‘--version’

Output the version number of diff.

‘-w’ Ignore white space when comparing lines. See Section 1.2
“White Space,” page 4.

‘-W columns’
‘--width=columns’

Use an output width of columns in side by side format. See
Section 2.5 “Side by Side Format,” page 17.

‘-x pattern’
When comparing directories, ignore files and subdirectories
whose basenames match pattern. See Chapter 3 “Compar-
ing Directories,” page 29.

‘-X file’ When comparing directories, ignore files and subdirectories
whose basenames match any pattern contained in file. See
Chapter 3 “Comparing Directories,” page 29.

‘-y’ Use the side by side output format. See Section 2.5 “Side by
Side Format,” page 17.

c y g n u s s u p p o r t 63

Comparing and Merging Files

64 11 July 1995

Chapter 13: Invoking diff3

13 Invoking diff3

The diff3 command compares three files and outputs descriptions of
their differences. Its arguments are as follows:

diff3 options. .. mine older yours

The files to compare are mine, older, and yours. At most one of these
three file names may be ‘-’, which tells diff3 to read the standard input
for that file.

An exit status of 0 means diff3 was successful, 1 means some con-
flicts were found, and 2 means trouble.

13.1 Options to diff3

Below is a summary of all of the options that GNU diff3 accepts.
Multiple single letter options (unless they take an argument) can be
combined into a single command line argument.

‘-a’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-A’ Incorporate all changes from older to yours into mine, sur-
rounding all conflicts with bracket lines. See Section 7.2
“Marking Conflicts,” page 40.

‘-e’ Generate an ed script that incorporates all the changes from
older to yours into mine. See Section 7.1 “Which Changes,”
page 39.

‘-E’ Like ‘-e’, except bracket lines from overlapping changes’ first
and third files. See Section 7.2 “Marking Conflicts,” page 40.
With ‘-e’, an overlapping change looks like this:

<<<<<<< mine
lines from mine
=======
lines from yours
>>>>>>> yours

‘--ed’ Generate an ed script that incorporates all the changes from
older to yours into mine. See Section 7.1 “Which Changes,”
page 39.

‘--easy-only’
Like ‘-e’, except output only the nonoverlapping changes.
See Section 7.1 “Which Changes,” page 39.

‘-i’ Generate ‘w’ and ‘q’ commands at the end of the ed script for
System V compatibility. This option must be combined with

c y g n u s s u p p o r t 65

Comparing and Merging Files

one of the ‘-AeExX3’ options, and may not be combined with
‘-m’. See Section 7.5 “Saving the Changed File,” page 42.

‘--initial-tab’
Output a tab rather than two spaces before the text of a line
in normal format. This causes the alignment of tabs in the
line to look normal. See Section 4.1 “Tabs,” page 31.

‘-L label’
‘--label=label’

Use the label label for the brackets output by the ‘-A’, ‘-E’
and ‘-X’ options. This option may be given up to three times,
one for each input file. The default labels are the names
of the input files. Thus ‘diff3 -L X -L Y -L Z -m A B C’ acts
like ‘diff3 -m A B C’, except that the output looks like it came
from files named ‘X’, ‘Y’ and ‘Z’ rather than from files named
‘A’, ‘B’ and ‘C’. See Section 7.2 “Marking Conflicts,” page 40.

‘-m’
‘--merge’ Apply the edit script to the first file and send the result to

standard output. Unlike piping the output from diff3 to ed,
this works even for binary files and incomplete lines. ‘-A’ is
assumed if no edit script option is specified. See Section 7.3
“Bypassing ed,” page 41.

‘--overlap-only’
Like ‘-e’, except output only the overlapping changes. See
Section 7.1 “Which Changes,” page 39.

‘--show-all’
Incorporate all unmerged changes from older to yours into
mine, surrounding all overlapping changes with bracket
lines. See Section 7.2 “Marking Conflicts,” page 40.

‘--show-overlap’
Like ‘-e’, except bracket lines from overlapping changes’ first
and third files. See Section 7.2 “Marking Conflicts,” page 40.

‘-T’ Output a tab rather than two spaces before the text of a line
in normal format. This causes the alignment of tabs in the
line to look normal. See Section 4.1 “Tabs,” page 31.

‘--text’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-v’
‘--version’

Output the version number of diff3.

66 11 July 1995

Chapter 13: Invoking diff3

‘-x’ Like ‘-e’, except output only the overlapping changes. See
Section 7.1 “Which Changes,” page 39.

‘-X’ Like ‘-E’, except output only the overlapping changes. In
other words, like ‘-x’, except bracket changes as in ‘-E’. See
Section 7.2 “Marking Conflicts,” page 40.

‘-3’ Like ‘-e’, except output only the nonoverlapping changes.
See Section 7.1 “Which Changes,” page 39.

c y g n u s s u p p o r t 67

Comparing and Merging Files

68 11 July 1995

Chapter 14: Invoking patch

14 Invoking patch

Normally patch is invoked like this:
patch <patchfile

The full format for invoking patch is:
patch options. .. [origfile [patchfile]] [+ options. .. [origfile]]. ..

If you do not specify patchfile, or if patchfile is ‘-’, patch reads
the patch (that is, the diff output) from the standard input.

You can specify one or more of the original files as orig arguments;
each one and options for interpreting it is separated from the others with
a ‘+’. See Section 9.4 “Multiple Patches,” page 50, for more information.

If you do not specify an input file on the command line, patch tries to
figure out from the leading text (any text in the patch that comes before
the diff output) which file to edit. In the header of a context or unified
diff, patch looks in lines beginning with ‘***’, ‘---’, or ‘+++’; among those,
it chooses the shortest name of an existing file. Otherwise, if there is an
‘Index:’ line in the leading text, patch tries to use the file name from
that line. If patch cannot figure out the name of an existing file from
the leading text, it prompts you for the name of the file to patch.

If the input file does not exist or is read-only, and a suitable RCS
or SCCS file exists, patch attempts to check out or get the file before
proceeding.

By default, patch replaces the original input file with the patched ver-
sion, after renaming the original file into a backup file (see Section 14.2
“Backups,” page 70, for a description of how patch names backup files).
You can also specify where to put the output with the ‘-o output-file’
or ‘--output=output-file’ option.

14.1 Applying Patches in Other Directories

The ‘-d directory’ or ‘--directory=directory’ option to patch
makes directory directory the current directory for interpreting both
file names in the patch file, and file names given as arguments to other
options (such as ‘-B’ and ‘-o’). For example, while in a news reading
program, you can patch a file in the ‘/usr/src/emacs’ directory directly
from the article containing the patch like this:

| patch -d /usr/src/emacs

Sometimes the file names given in a patch contain leading directories,
but you keep your files in a directory different from the one given in the
patch. In those cases, you can use the ‘-p[number]’ or ‘--strip[=number]’
option to set the file name strip count to number. The strip count tells
patch how many slashes, along with the directory names between them,

c y g n u s s u p p o r t 69

Comparing and Merging Files

to strip from the front of file names. ‘-p’ with no number given is equiva-
lent to ‘-p0’. By default, patch strips off all leading directories, leaving
just the base file names, except that when a file name given in the patch
is a relative file name and all of its leading directories already exist,
patch does not strip off the leading directory. (A relative file name is one
that does not start with a slash.)

patch looks for each file (after any slashes have been stripped) in
the current directory, or if you used the ‘-d directory’ option, in that
directory.

For example, suppose the file name in the patch file is
‘/gnu/src/emacs/etc/NEWS’. Using ‘-p’ or ‘-p0’ gives the entire file
name unmodified, ‘-p1’ gives ‘gnu/src/emacs/etc/NEWS’ (no leading
slash), ‘-p4’ gives ‘etc/NEWS’, and not specifying ‘-p’ at all gives ‘NEWS’.

14.2 Backup File Names

Normally, patch renames an original input file into a backup file by
appending to its name the extension ‘.orig’, or ‘˜’ on systems that do not
support long file names. The ‘-b backup-suffix’ or ‘--suffix=backup-
suffix’ option uses backup-suffix as the backup extension instead.

Alternately, you can specify the extension for backup files with the
SIMPLE_BACKUP_SUFFIX environment variable, which the options over-
ride.

patch can also create numbered backup files the way GNU Emacs
does. With this method, instead of having a single backup of each file,
patch makes a new backup file name each time it patches a file. For
example, the backups of a file named ‘sink’ would be called, successively,
‘sink.˜1˜’, ‘sink.˜2˜’, ‘sink.˜3˜’, etc.

The ‘-V backup-style’ or ‘--version-control=backup-style’ option
takes as an argument a method for creating backup file names. You
can alternately control the type of backups that patch makes with the
VERSION_CONTROL environment variable, which the ‘-V’ option overrides.
The value of the VERSION_CONTROL environment variable and the ar-
gument to the ‘-V’ option are like the GNU Emacs version-control
variable (see Section 14.2 “The GNU Emacs Manual,” page 70, for more
information on backup versions in Emacs). They also recognize syn-
onyms that are more descriptive. The valid values are listed below;
unique abbreviations are acceptable.

‘t’
‘numbered’

Always make numbered backups.

70 11 July 1995

Chapter 14: Invoking patch

‘nil’
‘existing’

Make numbered backups of files that already have them,
simple backups of the others. This is the default.

‘never’
‘simple’ Always make simple backups.

Alternately, you can tell patch to prepend a prefix, such as a di-
rectory name, to produce backup file names. The ‘-B backup-prefix’
or ‘--prefix=backup-prefix’ option makes backup files by prepending
backup-prefix to them. If you use this option, patch ignores any ‘-b’
option that you give.

If the backup file already exists, patch creates a new backup file
name by changing the first lowercase letter in the last component of
the file name into uppercase. If there are no more lowercase letters in
the name, it removes the first character from the name. It repeats this
process until it comes up with a backup file name that does not already
exist.

If you specify the output file with the ‘-o’ option, that file is the one
that is backed up, not the input file.

14.3 Reject File Names

The names for reject files (files containing patches that patch could
not find a place to apply) are normally the name of the output file with
‘.rej’ appended (or ‘#’ on systems that do not support long file names).

Alternatively, you can tell patch to place all of the rejected patches
in a single file. The ‘-r reject-file’ or ‘--reject-file=reject-file’
option uses reject-file as the reject file name.

14.4 Options to patch

Here is a summary of all of the options that patch accepts. Older
versions of patch do not accept long-named options or the ‘-t’, ‘-E’, or
‘-V’ options.

Multiple single-letter options that do not take an argument can be
combined into a single command line argument (with only one dash).
Brackets ([and]) indicate that an option takes an optional argument.

‘-b backup-suffix’
Use backup-suffix as the backup extension instead of
‘.orig’ or ‘˜’. See Section 14.2 “Backups,” page 70.

c y g n u s s u p p o r t 71

Comparing and Merging Files

‘-B backup-prefix’
Use backup-prefix as a prefix to the backup file name. If
this option is specified, any ‘-b’ option is ignored. See Sec-
tion 14.2 “Backups,” page 70.

‘--batch’ Do not ask any questions. See Section 9.5 “patch Messages,”
page 51.

‘-c’
‘--context’

Interpret the patch file as a context diff. See Section 9.1
“patch Input,” page 47.

‘-d directory’
‘--directory=directory’

Makes directory directory the current directory for inter-
preting both file names in the patch file, and file names given
as arguments to other options. See Section 14.1 “patch Di-
rectories,” page 69.

‘-D name’ Make merged if-then-else output using format. See Sec-
tion 2.7 “If-then-else,” page 21.

‘--debug=number’
Set internal debugging flags. Of interest only to patch patch-
ers.

‘-e’
‘--ed’ Interpret the patch file as an ed script. See Section 9.1 “patch

Input,” page 47.

‘-E’ Remove output files that are empty after the patches have
been applied. See Section 9.3 “Empty Files,” page 50.

‘-f’ Assume that the user knows exactly what he or she is do-
ing, and do not ask any questions. See Section 9.5 “patch
Messages,” page 51.

‘-F lines’ Set the maximum fuzz factor to lines. See Section 9.2.3
“Inexact,” page 49.

‘--force’ Assume that the user knows exactly what he or she is do-
ing, and do not ask any questions. See Section 9.5 “patch
Messages,” page 51.

‘--forward’
Ignore patches that patch thinks are reversed or already
applied. See also ‘-R’. See Section 9.2.2 “Reversed Patches,”
page 48.

72 11 July 1995

Chapter 14: Invoking patch

‘--fuzz=lines’
Set the maximum fuzz factor to lines. See Section 9.2.3
“Inexact,” page 49.

‘--help’ Print a summary of the options that patch recognizes, then
exit.

‘--ifdef=name’
Make merged if-then-else output using format. See Sec-
tion 2.7 “If-then-else,” page 21.

‘--ignore-white-space’
‘-l’ Let any sequence of white space in the patch file match any

sequence of white space in the input file. See Section 9.2.1
“Changed White Space,” page 48.

‘-n’
‘--normal’

Interpret the patch file as a normal diff. See Section 9.1
“patch Input,” page 47.

‘-N’ Ignore patches that patch thinks are reversed or already
applied. See also ‘-R’. See Section 9.2.2 “Reversed Patches,”
page 48.

‘-o output-file’
‘--output=output-file’

Use output-file as the output file name. See Section 14.4
“patch Options,” page 71.

‘-p[number]’
Set the file name strip count to number. See Section 14.1
“patch Directories,” page 69.

‘--prefix=backup-prefix’
Use backup-prefix as a prefix to the backup file name. If
this option is specified, any ‘-b’ option is ignored. See Sec-
tion 14.2 “Backups,” page 70.

‘--quiet’ Work silently unless an error occurs. See Section 9.5 “patch
Messages,” page 51.

‘-r reject-file’
Use reject-file as the reject file name. See Section 14.3
“Rejects,” page 71.

‘-R’ Assume that this patch was created with the old and new files
swapped. See Section 9.2.2 “Reversed Patches,” page 48.

‘--reject-file=reject-file’
Use reject-file as the reject file name. See Section 14.3
“Rejects,” page 71.

c y g n u s s u p p o r t 73

Comparing and Merging Files

‘--remove-empty-files’
Remove output files that are empty after the patches have
been applied. See Section 9.3 “Empty Files,” page 50.

‘--reverse’
Assume that this patch was created with the old and new files
swapped. See Section 9.2.2 “Reversed Patches,” page 48.

‘-s’ Work silently unless an error occurs. See Section 9.5 “patch
Messages,” page 51.

‘-S’ Ignore this patch from the patch file, but continue looking for
the next patch in the file. See Section 9.4 “Multiple Patches,”
page 50.

‘--silent’
Work silently unless an error occurs. See Section 9.5 “patch
Messages,” page 51.

‘--skip’ Ignore this patch from the patch file, but continue looking for
the next patch in the file. See Section 9.4 “Multiple Patches,”
page 50.

‘--strip[=number]’
Set the file name strip count to number. See Section 14.1
“patch Directories,” page 69.

‘--suffix=backup-suffix’
Use backup-suffix as the backup extension instead of
‘.orig’ or ‘˜’. See Section 14.2 “Backups,” page 70.

‘-t’ Do not ask any questions. See Section 9.5 “patch Messages,”
page 51.

‘-u’
‘--unified’

Interpret the patch file as a unified diff. See Section 9.1
“patch Input,” page 47.

‘-v’ Output the revision header and patch level of patch.

‘-V backup-style’
Select the kind of backups to make. See Section 14.2 “Back-
ups,” page 70.

‘--version’
Output the revision header and patch level of patch, then
exit.

‘--version=control=backup-style’
Select the kind of backups to make. See Section 14.2 “Back-
ups,” page 70.

74 11 July 1995

Chapter 14: Invoking patch

‘-x number’
Set internal debugging flags. Of interest only to patch patch-
ers.

c y g n u s s u p p o r t 75

Comparing and Merging Files

76 11 July 1995

Chapter 15: Invoking sdiff

15 Invoking sdiff

The sdiff command merges two files and interactively outputs the
results. Its arguments are as follows:

sdiff -o outfile options. .. from-file to-file

This merges from-file with to-file, with output to outfile. If
from-file is a directory and to-file is not, sdiff compares the file in
from-filewhose file name is that of to-file, and vice versa. from-file
and to-file may not both be directories.

sdiff options begin with ‘-’, so normally from-file and to-file
may not begin with ‘-’. However, ‘--’ as an argument by itself treats the
remaining arguments as file names even if they begin with ‘-’. You may
not use ‘-’ as an input file.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

sdiff without ‘-o’ (or ‘--output’) produces a side-by-side difference.
This usage is obsolete; use ‘diff --side-by-side’ instead.

15.1 Options to sdiff

Below is a summary of all of the options that GNU sdiff accepts.
Each option has two equivalent names, one of which is a single letter
preceded by ‘-’, and the other of which is a long name preceded by ‘--’.
Multiple single letter options (unless they take an argument) can be
combined into a single command line argument. Long named options
can be abbreviated to any unique prefix of their name.

‘-a’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-b’ Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘-B’ Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

‘-d’ Change the algorithm to perhaps find a smaller set of
changes. This makes sdiff slower (sometimes much slower).
See Chapter 5 “diff Performance,” page 33.

‘-H’ Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

c y g n u s s u p p o r t 77

Comparing and Merging Files

‘--expand-tabs’
Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘-i’ Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 “Case Folding,” page 5.

‘-I regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ignore-all-space’
Ignore white space when comparing lines. See Section 1.2
“White Space,” page 4.

‘--ignore-blank-lines’
Ignore changes that just insert or delete blank lines. See
Section 1.3 “Blank Lines,” page 5.

‘--ignore-case’
Ignore changes in case; consider upper- and lower-case to be
the same. See Section 1.4 “Case Folding,” page 5.

‘--ignore-matching-lines=regexp’
Ignore changes that just insert or delete lines that match
regexp. See Section 1.5 “Specified Folding,” page 5.

‘--ignore-space-change’
Ignore changes in amount of white space. See Section 1.2
“White Space,” page 4.

‘-l’
‘--left-column’

Print only the left column of two common lines. See Sec-
tion 2.5 “Side by Side Format,” page 17.

‘--minimal’
Change the algorithm to perhaps find a smaller set of
changes. This makes sdiff slower (sometimes much slower).
See Chapter 5 “diff Performance,” page 33.

‘-o file’
‘--output=file’

Put merged output into file. This option is required for
merging.

‘-s’
‘--suppress-common-lines’

Do not print common lines. See Section 2.5 “Side by Side
Format,” page 17.

78 11 July 1995

Chapter 15: Invoking sdiff

‘--speed-large-files’
Use heuristics to speed handling of large files that have nu-
merous scattered small changes. See Chapter 5 “diff Perfor-
mance,” page 33.

‘-t’ Expand tabs to spaces in the output, to preserve the align-
ment of tabs in the input files. See Section 4.1 “Tabs,”
page 31.

‘--text’ Treat all files as text and compare them line-by-line, even
if they do not appear to be text. See Section 1.7 “Binary,”
page 6.

‘-v’
‘--version’

Output the version number of sdiff.

‘-w columns’
‘--width=columns’

Use an output width of columns. See Section 2.5 “Side by
Side Format,” page 17. Note that for historical reasons, this
option is ‘-W’ in diff, ‘-w’ in sdiff.

‘-W’ Ignore horizontal white space when comparing lines. See
Section 1.2 “White Space,” page 4. Note that for historical
reasons, this option is ‘-w’ in diff, ‘-W’ in sdiff.

c y g n u s s u p p o r t 79

Comparing and Merging Files

80 11 July 1995

Chapter 16: Incomplete Lines

16 Incomplete Lines

When an input file ends in a non-newline character, its last line is
called an incomplete line because its last character is not a newline. All
other lines are called full lines and end in a newline character. Incom-
plete lines do not match full lines unless differences in white space are
ignored (see Section 1.2 “White Space,” page 4).

An incomplete line is normally distinguished on output from a full line
by a following line that starts with ‘\’. However, the RCS format (see
Section 2.6.3 “RCS,” page 20) outputs the incomplete line as-is, without
any trailing newline or following line. The side by side format normally
represents incomplete lines as-is, but in some cases uses a ‘\’ or ‘/’ gutter
marker; See Section 2.4 “Side by Side,” page 16. The if-then-else line
format preserves a line’s incompleteness with ‘%L’, and discards the new-
line with ‘%l’; See Section 2.7.2 “Line Formats,” page 24. Finally, with
the ed and forward ed output formats (see Chapter 2 “Output Formats,”
page 9) diff cannot represent an incomplete line, so it pretends there
was a newline and reports an error.

For example, suppose ‘F’ and ‘G’ are one-byte files that contain just ‘f’
and ‘g’, respectively. Then ‘diff F G’ outputs

1c1
< f
\ No newline at end of file

> g
\ No newline at end of file

(The exact message may differ in non-English locales.) ‘diff -n F G’
outputs the following without a trailing newline:

d1 1
a1 1
g

‘diff -e F G’ reports two errors and outputs the following:
1c
g
.

c y g n u s s u p p o r t 81

Comparing and Merging Files

82 11 July 1995

Chapter 17: Future Projects

17 Future Projects

Here are some ideas for improving GNU diff and patch. The GNU
project has identified some improvements as potential programming
projects for volunteers. You can also help by reporting any bugs that
you find.

If you are a programmer and would like to contribute something
to the GNU project, please consider volunteering for one of these
projects. If you are seriously contemplating work, please write to
‘gnu@prep.ai.mit.edu’ to coordinate with other volunteers.

17.1 Suggested Projects for Improving GNU diff
and patch

One should be able to use GNU diff to generate a patch from any
pair of directory trees, and given the patch and a copy of one such tree,
use patch to generate a faithful copy of the other. Unfortunately, some
changes to directory trees cannot be expressed using current patch for-
mats; also, patch does not handle some of the existing formats. These
shortcomings motivate the following suggested projects.

17.1.1 Handling Changes to the Directory Structure

diff and patch do not handle some changes to directory structure.
For example, suppose one directory tree contains a directory named ‘D’
with some subsidiary files, and another contains a file with the same
name ‘D’. ‘diff -r’ does not output enough information for patch to
transform the the directory subtree into the file.

There should be a way to specify that a file has been deleted without
having to include its entire contents in the patch file. There should also
be a way to tell patch that a file was renamed, even if there is no way
for diff to generate such information.

These problems can be fixed by extending the diff output format to
represent changes in directory structure, and extending patch to under-
stand these extensions.

17.1.2 Files that are Neither Directories Nor Regular Files

Some files are neither directories nor regular files: they are unusual
files like symbolic links, device special files, named pipes, and sockets.
Currently, diff treats symbolic links like regular files; it treats other
special files like regular files if they are specified at the top level, but

c y g n u s s u p p o r t 83

Comparing and Merging Files

simply reports their presence when comparing directories. This means
that patch cannot represent changes to such files. For example, if you
change which file a symbolic link points to, diff outputs the difference
between the two files, instead of the change to the symbolic link.

diff should optionally report changes to special files specially, and
patch should be extended to understand these extensions.

17.1.3 File Names that Contain Unusual Characters

When a file name contains an unusual character like a newline or
white space, ‘diff -r’ generates a patch that patch cannot parse. The
problem is with format of diff output, not just with patch, because with
odd enough file names one can cause diff to generate a patch that is
syntactically correct but patches the wrong files. The format of diff
output should be extended to handle all possible file names.

17.1.4 Arbitrary Limits

GNU diff can analyze files with arbitrarily long lines and files that
end in incomplete lines. However, patch cannot patch such files. The
patch internal limits on line lengths should be removed, and patch
should be extended to parse diff reports of incomplete lines.

17.1.5 Handling Files that Do Not Fit in Memory

diff operates by reading both files into memory. This method fails if
the files are too large, and diff should have a fallback.

One way to do this is to scan the files sequentially to compute hash
codes of the lines and put the lines in equivalence classes based only on
hash code. Then compare the files normally. This does produce some
false matches.

Then scan the two files sequentially again, checking each match to see
whether it is real. When a match is not real, mark both the “matching”
lines as changed. Then build an edit script as usual.

The output routines would have to be changed to scan the files se-
quentially looking for the text to print.

17.1.6 Ignoring Certain Changes

It would be nice to have a feature for specifying two strings, one in
from-file and one in to-file, which should be considered to match.
Thus, if the two strings are ‘foo’ and ‘bar’, then if two lines differ only

84 11 July 1995

Chapter 17: Future Projects

in that ‘foo’ in file 1 corresponds to ‘bar’ in file 2, the lines are treated
as identical.

It is not clear how general this feature can or should be, or what
syntax should be used for it.

17.2 Reporting Bugs

If you think you have found a bug in GNU cmp, diff,
diff3, sdiff, or patch, please report it by electronic mail to
‘bug-gnu-utils@prep.ai.mit.edu’. Send as precise a description of
the problem as you can, including sample input files that produce the
bug, if applicable.

Because Larry Wall has not released a new version of patch since
mid 1988 and the GNU version of patch has been changed since
then, please send bug reports for patch by electronic mail to both
‘bug-gnu-utils@prep.ai.mit.edu’ and ‘lwall@netlabs.com’.

c y g n u s s u p p o r t 85

Comparing and Merging Files

86 11 July 1995

Concept Index

Concept Index

!
‘!’ output format . 11

+
‘+-’ output format . 14

<
‘<’ output format . 9
‘<<<<<<<’ for marking conflicts 40

A
aligning tabstops. 31
alternate file names 16

B
backup file names . 70
binary file diff . 6
binary file patching 84
blank and tab difference suppression. . . 4
blank line difference suppression 5
brief difference reports 6
bug reports . 85

C
C function headings 16
C if-then-else output format 21
case difference suppression 5
cmp invocation . 55
cmp options . 55
columnar output . 16
comparing three files. 35
conflict . 39
conflict marking . 40
context output format 11

D
diagnostics from patch 51
diff invocation . 57
diff merging . 45
diff options . 57
diff sample input . 9

diff3 hunks. 36
diff3 invocation . 65
diff3 options . 65
diff3 sample input 35
directories and patch. 69
directory structure changes 83

E
ed script output format 18
empty files, removing 50

F
file name alternates 16
file names with unusual characters . . . 84
format of diff output 9
format of diff3 output 35
formats for if-then-else line groups. . . . 21
forward ed script output format 20
full lines . 81
function headings, C 16
fuzz factor when patching 49

H
headings . 15
hunks . 3
hunks for diff3 . 36

I
if-then-else output format 21
ifdef output format. 21
imperfect patch application 48
incomplete line merging 42
incomplete lines . 81
inexact patches . 49
interactive merging 45
introduction . 3
invoking cmp . 55
invoking diff . 57
invoking diff3 . 65
invoking patch . 69
invoking sdiff . 77

c y g n u s s u p p o r t 87

Comparing and Merging Files

L
large files . 84
line formats . 24
line group formats . 21

M
merge commands . 45
merged diff3 format 41
merged output format 21
merging from a common ancestor 39
merging interactively 45
messages from patch 51
multiple patches . 50

N
newline treatment by diff 81
normal output format 9

O
options for cmp . 55
options for diff . 57
options for diff3 . 65
options for patch . 71
options for sdiff . 77
output formats . 9
overlap . 39
overlapping change, selection of. 39
overview of diff and patch 1

P
paginating diff output 31
patch input format 47
patch invocation . 69
patch making tips . 53
patch messages and questions 51
patch options . 71
patching directories 69
performance of diff 33
projects for directories 83

R
RCS script output format 20
regular expression matching headings

. 15
regular expression suppression 5
reject file names . 71
removing empty files 50
reporting bugs . 85
reversed patches . 48

S
sample input for diff. 9
sample input for diff3 35
script output formats 18
sdiff invocation . 77
sdiff options . 77
sdiff output format. 45
section headings . 15
side by side . 16
side by side format . 17
special files . 83
specified headings . 15
summarizing which files differ 6
System V diff3 compatibility 42

T
tab and blank difference suppression. . . 4
tabstop alignment . 31
text versus binary diff 6
tips for patch making 53
two-column output . 16

U
unified output format 14
unmerged change . 39

W
white space in patches 48

88 11 July 1995

Using GNU CC

Richard M. Stallman

Last updated 19 September 1994

for version 2.6

Copyright c 1988, 89, 92, 93, 94, 1995 Free Software Foundation, Inc.

For GCC Version 2.6.
ISBN 1-882114-35-3

Published by the Free Software Foundation
675 Massachusetts Avenue
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the sections entitled “GNU General Public License,” “Funding for Free
Software,” and “Protect Your Freedom—Fight ‘Look And Feel’” are in-
cluded exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice iden-
tical to this one.
Permission is granted to copy and distribute translations of this man-
ual into another language, under the above conditions for modified ver-
sions, except that the sections entitled “GNU General Public License,”
“Funding for Free Software,” and “Protect Your Freedom—Fight ‘Look
And Feel’”, and this permission notice, may be included in translations
approved by the Free Software Foundation instead of in the original
English.

Short Contents
GNU GENERAL PUBLIC LICENSE . 1
Contributors to GNU CC . 11
1 Funding Free Software . 15
2 Protect Your Freedom—Fight “Look And Feel” 17
3 Compile C, C++, or Objective C . 21
4 GNU CC Command Options . 23
5 Installing GNU CC . 103
6 Extensions to the C Language Family 141
7 Extensions to the C++ Language . 189
8 gcov: a Test Coverage Program . 199
9 Known Causes of Trouble with GNU CC. 205
10 Reporting Bugs . 233
11 How To Get Help with GNU CC . 243
12 Using GNU CC on VMS . 245
Index . 251

c y g n u s s u p p o r t i

Using GNU CC

ii 10 July 1995

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 2
How to Apply These Terms to Your New Programs 8

Contributors to GNU CC . 11

1 Funding Free Software . 15

2 Protect Your Freedom—Fight “Look And Feel”
. 17

3 Compile C, C++, or Objective C 21

4 GNU CC Command Options 23
4.1 Option Summary . 23
4.2 Options Controlling the Kind of Output 28
4.3 Compiling C++ Programs . 30
4.4 Options Controlling C Dialect . 31
4.5 Options Controlling C++ Dialect . 35
4.6 Options to Request or Suppress Warnings 40
4.7 Options for Debugging Your Program or GNU CC 48
4.8 Options That Control Optimization . 53
4.9 Options Controlling the Preprocessor 58
4.10 Passing Options to the Assembler . 61
4.11 Options for Linking . 61
4.12 Options for Directory Search . 64
4.13 Specifying Target Machine and Compiler Version 65
4.14 Hardware Models and Configurations 66

4.14.1 M680x0 Options . 67
4.14.2 VAX Options . 68
4.14.3 SPARC Options . 69
4.14.4 Convex Options . 72
4.14.5 AMD29K Options . 73
4.14.6 ARM Options . 74
4.14.7 M88K Options . 75
4.14.8 IBM RS/6000 and PowerPC Options 79
4.14.9 IBM RT Options . 83
4.14.10 MIPS Options . 83

c y g n u s s u p p o r t iii

Using GNU CC

4.14.11 Intel 386 Options . 87
4.14.12 HPPA Options . 88
4.14.13 Intel 960 Options . 90
4.14.14 DEC Alpha Options . 91
4.14.15 Clipper Options . 92
4.14.16 H8/300 Options . 92
4.14.17 Options for System V . 92
4.14.18 Zilog Z8000 Option . 93
4.14.19 Options for the H8/500 . 93

4.15 Options for Code Generation Conventions 94
4.16 Environment Variables Affecting GNU CC 98
4.17 Running Protoize . 100

5 Installing GNU CC . 103
5.1 Configurations Supported by GNU CC 111
5.2 Compilation in a Separate Directory 127
5.3 Building and Installing a Cross-Compiler 127

5.3.1 Steps of Cross-Compilation 128
5.3.2 Configuring a Cross-Compiler 128
5.3.3 Tools and Libraries for a Cross-Compiler 129
5.3.4 ‘libgcc.a’ and Cross-Compilers 130
5.3.5 Cross-Compilers and Header Files 131
5.3.6 Actually Building the Cross-Compiler 132

5.4 Installing GNU CC on the Sun . 133
5.5 Installing GNU CC on VMS . 133
5.6 collect2 . 137
5.7 Standard Header File Directories . 138

6 Extensions to the C Language Family 141
6.1 Statements and Declarations in Expressions 141
6.2 Locally Declared Labels . 142
6.3 Labels as Values . 143
6.4 Nested Functions . 143
6.5 Constructing Function Calls . 146
6.6 Naming an Expression’s Type . 146
6.7 Referring to a Type with typeof . 147
6.8 Generalized Lvalues . 148
6.9 Conditionals with Omitted Operands 149
6.10 Double-Word Integers . 149
6.11 Complex Numbers . 150
6.12 Arrays of Length Zero . 151
6.13 Arrays of Variable Length . 151
6.14 Macros with Variable Numbers of Arguments 152
6.15 Non-Lvalue Arrays May Have Subscripts 153

iv 10 July 1995

6.16 Arithmetic on void- and Function-Pointers 154
6.17 Non-Constant Initializers . 154
6.18 Constructor Expressions . 154
6.19 Labeled Elements in Initializers . 155
6.20 Case Ranges . 156
6.21 Cast to a Union Type . 157
6.22 Declaring Attributes of Functions . 157
6.23 Prototypes and Old-Style Function Definitions 160
6.24 Compiling Functions for Interrupt Calls 161
6.25 Dollar Signs in Identifier Names . 162
6.26 The Character ESC in Constants . 162
6.27 Inquiring on Alignment of Types or Variables 162
6.28 Specifying Attributes of Variables . 163
6.29 Specifying Attributes of Types . 166
6.30 An Inline Function is As Fast As a Macro 169
6.31 Assembler Instructions with C Expression Operands

. 170
6.32 Constraints for asm Operands . 174

6.32.1 Simple Constraints . 174
6.32.2 Multiple Alternative Constraints 177
6.32.3 Constraint Modifier Characters 177
6.32.4 Constraints for Particular Machines 178

6.33 Controlling Names Used in Assembler Code 184
6.34 Variables in Specified Registers . 184

6.34.1 Defining Global Register Variables 185
6.34.2 Specifying Registers for Local Variables 186

6.35 Alternate Keywords . 187
6.36 Incomplete enum Types . 187
6.37 Function Names as Strings . 188

7 Extensions to the C++ Language 189
7.1 Named Return Values in C++ . 189
7.2 Minimum and Maximum Operators in C++ 191
7.3 goto and Destructors in GNU C++ . 191
7.4 Declarations and Definitions in One Header 191
7.5 Where’s the Template? . 193
7.6 Type Abstraction using Signatures . 196

8 gcov: a Test Coverage Program 199
8.1 Introduction to gcov . 199
8.2 Invoking gcov . 200
8.3 Using gcov with GCC Optimization . 202

c y g n u s s u p p o r t v

Using GNU CC

9 Known Causes of Trouble with GNU CC . . . 205
9.1 Actual Bugs We Haven’t Fixed Yet . 205
9.2 Installation Problems . 205
9.3 Cross-Compiler Problems . 211
9.4 Interoperation . 211
9.5 Problems Compiling Certain Programs 217
9.6 Incompatibilities of GNU CC . 218
9.7 Fixed Header Files . 221
9.8 Disappointments and Misunderstandings 222
9.9 Common Misunderstandings with GNU C++ 224

9.9.1 Declare and Define Static Members 224
9.9.2 Temporaries May Vanish Before You Expect . . 224

9.10 Caveats of using protoize . 225
9.11 Certain Changes We Don’t Want to Make 227
9.12 Warning Messages and Error Messages 230

10 Reporting Bugs . 233
10.1 Have You Found a Bug? . 233
10.2 Where to Report Bugs . 234
10.3 How to Report Bugs . 235
10.4 Sending Patches for GNU CC . 239

11 How To Get Help with GNU CC 243

12 Using GNU CC on VMS . 245
12.1 Include Files and VMS . 245
12.2 Global Declarations and VMS . 246
12.3 Other VMS Issues . 248

Index . 251

vi 10 July 1995

GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright c 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software—
to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and
to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free soft-
ware. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

c y g n u s s u p p o r t 1

Using GNU CC

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi-
fication follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as
“you”.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of run-
ning the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Pro-
gram (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicu-
ously and appropriately publish on each copy an appropriate copy-
right notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along
with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

2 10 July 1995

GNU GENERAL PUBLIC LICENSE

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If iden-
tifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of
who wrote it.
Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to ex-
ercise the right to control the distribution of derivative or collective
works based on the Program.
In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program)
on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a. Accompany it with the complete corresponding machine-

readable source code, which must be distributed under the
terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed

c y g n u s s u p p o r t 3

Using GNU CC

under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

c. Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work
for making modifications to it. For an executable work, complete
source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to
copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt oth-
erwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you un-
der this License will not have their licenses terminated so long as
such parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to mod-
ify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.

4 10 July 1995

GNU GENERAL PUBLIC LICENSE

You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is imple-
mented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose
that choice.
This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the orig-
inal copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new ver-
sions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Pro-
gram specifies a version number of this License which applies to it

c y g n u s s u p p o r t 5

Using GNU CC

and “any later version”, you have the option of following the terms
and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the au-
thor to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided
by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES.

6 10 July 1995

GNU GENERAL PUBLIC LICENSE

END OF TERMS AND CONDITIONS

c y g n u s s u p p o r t 7

Using GNU CC

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of
what it does. Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. Of course, the com-
mands you use may be called something other than ‘show w’ and ‘show
c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in
the program ‘Gnomovision’ (which makes passes at compilers)
written by James Hacker.

signature of Ty Coon, 1 April 1989

8 10 July 1995

GNU GENERAL PUBLIC LICENSE

Ty Coon, President of Vice

This General Public License does not permit incorporating your pro-
gram into proprietary programs. If your program is a subroutine library,
you may consider it more useful to permit linking proprietary applica-
tions with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

c y g n u s s u p p o r t 9

Using GNU CC

10 10 July 1995

Contributors to GNU CC

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of
GNU CC.
� The idea of using RTL and some of the optimization ideas came

from the program PO written at the University of Arizona by Jack
Davidson and Christopher Fraser. See “Register Allocation and Ex-
haustive Peephole Optimization”, Software Practice and Experience
14 (9), Sept. 1984, 857-866.

� Paul Rubin wrote most of the preprocessor.
� Leonard Tower wrote parts of the parser, RTL generator, and RTL

definitions, and of the Vax machine description.
� Ted Lemon wrote parts of the RTL reader and printer.
� Jim Wilson implemented loop strength reduction and some other

loop optimizations.
� Nobuyuki Hikichi of Software Research Associates, Tokyo, con-

tributed the support for the Sony NEWS machine.
� Charles LaBrec contributed the support for the Integrated Solutions

68020 system.
� Michael Tiemann of Cygnus Support wrote the front end for C++, as

well as the support for inline functions and instruction scheduling.
Also the descriptions of the National Semiconductor 32000 series
cpu, the SPARC cpu and part of the Motorola 88000 cpu.

� Gerald Baumgartner added the signature extension to the C++ front-
end.

� Jan Stein of the Chalmers Computer Society provided support for
Genix, as well as part of the 32000 machine description.

� Randy Smith finished the Sun FPA support.
� Robert Brown implemented the support for Encore 32000 systems.
� David Kashtan of SRI adapted GNU CC to VMS.
� Alex Crain provided changes for the 3b1.
� Greg Satz and Chris Hanson assisted in making GNU CC work on

HP-UX for the 9000 series 300.
� William Schelter did most of the work on the Intel 80386 support.
� Christopher Smith did the port for Convex machines.
� Paul Petersen wrote the machine description for the Alliant FX/8.
� Dario Dariol contributed the four varieties of sample programs that

print a copy of their source.
� Alain Lichnewsky ported GNU CC to the Mips cpu.

c y g n u s s u p p o r t 11

Using GNU CC

� Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to
the Tahoe.

� Jonathan Stone wrote the machine description for the Pyramid com-
puter.

� Gary Miller ported GNU CC to Charles River Data Systems ma-
chines.

� Richard Kenner of the New York University Ultracomputer Re-
search Laboratory wrote the machine descriptions for the AMD
29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well
as the support for instruction attributes. He also made changes to
better support RISC processors including changes to common subex-
pression elimination, strength reduction, function calling sequence
handling, and condition code support, in addition to generalizing
the code for frame pointer elimination.

� Richard Kenner and Michael Tiemann jointly developed reorg.c, the
delay slot scheduler.

� Mike Meissner and Tom Wood of Data General finished the port to
the Motorola 88000.

� Masanobu Yuhara of Fujitsu Laboratories implemented the machine
description for the Tron architecture (specifically, the Gmicro).

� NeXT, Inc. donated the front end that supports the Objective C
language.

� James van Artsdalen wrote the code that makes efficient use of the
Intel 80387 register stack.

� Mike Meissner at the Open Software Foundation finished the port to
the MIPS cpu, including adding ECOFF debug support, and worked
on the Intel port for the Intel 80386 cpu.

� Ron Guilmette implemented the protoize and unprotoize tools,
the support for Dwarf symbolic debugging information, and much of
the support for System V Release 4. He has also worked heavily on
the Intel 386 and 860 support.

� Torbjorn Granlund of the Swedish Institute of Computer Science im-
plemented multiply-by-constant optimization and better long long
support, and improved leaf function register allocation.

� Mike Stump implemented the support for Elxsi 64 bit CPU.
� John Wehle added the machine description for the Western Electric

32000 processor used in several 3b series machines (no relation to
the National Semiconductor 32000 processor).

� Holger Teutsch provided the support for the Clipper cpu.
� Kresten Krab Thorup wrote the run time support for the Objective

C language.

12 10 July 1995

Contributors to GNU CC

� Stephen Moshier contributed the floating point emulator that assists
in cross-compilation and permits support for floating point numbers
wider than 64 bits.

� David Edelsohn contributed the changes to RS/6000 port to make it
support the PowerPC and POWER2 architectures.

� Steve Chamberlain wrote the support for the Hitachi SH processor.
� Peter Schauer wrote the code to allow debugging to work on the

Alpha.
� Oliver M. Kellogg of Deutsche Aerospace contributed the port to the

MIL-STD-1750A.

c y g n u s s u p p o r t 13

Using GNU CC

14 10 July 1995

Chapter 1: Funding Free Software

1 Funding Free Software

If you want to have more free software a few years from now, it
makes sense for you to help encourage people to contribute funds for
its development. The most effective approach known is to encourage
commercial redistributors to donate.

Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price to
free software developers—the Free Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect
it from them. So when you compare distributors, judge them partly by
how much they give to free software development. Show distributors
they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you
can compare, such as, “We will donate ten dollars to the Frobnitz project
for each disk sold.” Don’t be satisfied with a vague promise, such as
“A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit. If the
price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful
too; but to keep everyone honest, you need to inquire how much they do,
and what kind. Some kinds of development make much more long-term
difference than others. For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of
a program for the whole community contributes much. Easy new ports
contribute little, since someone else would surely do them; difficult ports
such as adding a new CPU to the GNU C compiler contribute more;
major new features or packages contribute the most.

By establishing the idea that supporting further development is “the
proper thing to do” when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.

Copyright (C) 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

c y g n u s s u p p o r t 15

Using GNU CC

16 10 July 1995

Chapter 2: Protect Your Freedom—Fight “Look And Feel”

2 Protect Your Freedom—Fight “Look
And Feel”

This section is a political message from the League for Program-
ming Freedom to the users of GNU CC. We have included it here
because the issue of interface copyright is important to the GNU
project.

Apple and Lotus have tried to create a new form of legal monopoly: a
copyright on a user interface.

An interface is a kind of language—a set of conventions for communi-
cation between two entities, human or machine. Until a few years ago,
the law seemed clear: interfaces were outside the domain of copyright,
so programmers could program freely and implement whatever interface
the users demanded. Imitating de-facto standard interfaces, sometimes
with improvements, was standard practice in the computer field. These
improvements, if accepted by the users, caught on and became the norm;
in this way, much progress took place.

Computer users, and most software developers, were happy with this
state of affairs. However, large companies such as Apple and Lotus
would prefer a different system—one in which they can own interfaces
and thereby rid themselves of all serious competitors. They hope that
interface copyright will give them, in effect, monopolies on major classes
of software.

Other large companies such as IBM and Digital also favor interface
monopolies, for the same reason: if languages become property, they
expect to own many de-facto standard languages. But Apple and Lotus
are the ones who have actually sued. Lotus has won lawsuits against two
small companies, which were thus put out of business. Then they sued
Borland; this case is now before the court of appeals. Apple’s lawsuit
against HP and Microsoft is also being decided by an appeals court.
Widespread rumors that Apple had lost the case are untrue; as of July
1994, the final outcome is unknown.

If the monopolists get their way, they will hobble the software field:
� Gratuitous incompatibilities will burden users. Imagine if each car

manufacturer had to design a different way to start, stop, and steer
a car.

� Users will be “locked in” to whichever interface they learn; then
they will be prisoners of one supplier, who will charge a monopolistic
price.

� Large companies have an unfair advantage wherever lawsuits be-
come commonplace. Since they can afford to sue, they can intimidate

c y g n u s s u p p o r t 17

Using GNU CC

smaller developers with threats even when they don’t really have a
case.

� Interface improvements will come slower, since incremental evolu-
tion through creative partial imitation will no longer occur.

If interface monopolies are accepted, other large companies are wait-
ing to grab theirs:
� Adobe is expected to claim a monopoly on the interfaces of vari-

ous popular application programs, if Borland’s appeal against Lotus
fails.

� Open Computing magazine reported a Microsoft vice president as
threatening to sue people who copy the interface of Windows.

Users invest a great deal of time and money in learning to use com-
puter interfaces. Far more, in fact, than software developers invest in
developing and even implementing the interfaces. Whoever can own an
interface, has made its users into captives, and misappropriated their
investment.

To protect our freedom from monopolies like these, a group of pro-
grammers and users have formed a grass-roots political organization,
the League for Programming Freedom.

The purpose of the League is to oppose monopolistic practices such
as interface copyright and software patents. The League calls for a
return to the legal policies of the recent past, in which programmers
could program freely. The League is not concerned with free software as
an issue, and is not affiliated with the Free Software Foundation.

The League’s activities include publicizing the issue, as is being done
here, and filing friend-of-the-court briefs on behalf of defendants sued
by monopolists. Recently the League filed a friend-of-the-court brief for
Borland in its appeal against Lotus.

The League’s membership rolls include John McCarthy, inventor of
Lisp, Marvin Minsky, founder of the MIT Artificial Intelligence lab, Guy
L. Steele, Jr., author of well-known books on Lisp and C, as well as
Richard Stallman, the developer of GNU CC. Please join and add your
name to the list. Membership dues in the League are $42 per year for
programmers, managers and professionals; $10.50 for students; $21 for
others.

Activist members are especially important, but members who have
no time to give are also important. Surveys at major ACM conferences
have indicated a vast majority of attendees agree with the League. If
just ten percent of the programmers who agree with the League join the
League, we will probably triumph.

To join, or for more information, phone (617) 243-4091 or write to:

18 10 July 1995

Chapter 2: Protect Your Freedom—Fight “Look And Feel”

League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to lpf@uunet.uu.net.
In addition to joining the League, here are some suggestions from

the League for other things you can do to protect your freedom to write
programs:
� Tell your friends and colleagues about this issue and how it threatens

to ruin the computer industry.
� Mention that you are a League member in your ‘.signature’, and

mention the League’s email address for inquiries.
� Ask the companies you consider working for or working with to

make statements against software monopolies, and give preference
to those that do.

� When employers ask you to sign contracts giving them copyright or
patent rights, insist on clauses saying they can use these rights only
defensively. Don’t rely on “company policy,” since that can change at
any time; don’t rely on an individual executive’s private word, since
that person may be replaced. Get a commitment just as binding as
the commitment they get from you.

� Write to Congress to explain the importance of this issue.
House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them
even more.)

Democracy means nothing if you don’t use it. Stand up and be
counted!

c y g n u s s u p p o r t 19

Using GNU CC

20 10 July 1995

Chapter 3: Compile C, C++, or Objective C

3 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated;
the GNU C compiler can compile programs written in C, C++, or Objec-
tive C.

“GCC” is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when
the emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler
“G++”. Since there is only one compiler, it is also accurate to call it
“GCC” no matter what the language context; however, the term “G++” is
more useful when the emphasis is on compiling C++ programs.

We use the name “GNU CC” to refer to the compilation system as
a whole, and more specifically to the language-independent part of the
compiler. For example, we refer to the optimization options as affecting
the behavior of “GNU CC” or sometimes just “the compiler”.

Front ends for other languages, such as Ada 9X, Fortran, Modula-
3, and Pascal, are under development. These front-ends, like that for
C++, are built in subdirectories of GNU CC and link to it. The result
is an integrated compiler that can compile programs written in C, C++,
Objective C, or any of the languages for which you have installed front
ends.

In this manual, we only discuss the options for the C, Objective-C, and
C++ compilers and those of the GNU CC core. Consult the documentation
of the other front ends for the options to use when compiling programs
written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code
directly from your C++ program source. There is no intermediate C ver-
sion of the program. (By contrast, for example, some other implementa-
tions use a program that generates a C program from your C++ source.)
Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU
debugger, GDB, works with this information in the object code to give
you comprehensive C++ source-level editing capabilities (see section “C
and C++” in Debugging with GDB).

c y g n u s s u p p o r t 21

Using GNU CC

22 10 July 1995

Chapter 4: GNU CC Command Options

4 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compila-
tion, assembly and linking. The “overall options” allow you to stop this
process at an intermediate stage. For example, the ‘-c’ option says not
to run the linker. Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other options
control the assembler and linker; most of these are not documented here,
since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another lan-
guage (usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.

See Section 4.3 “Compiling C++ Programs,” page 30, for a summary
of special options for compiling C++ programs.

The gcc program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options
may not be grouped: ‘-dr’ is very different from ‘-d -r’.

You can mix options and other arguments. For the most part, the
order you use doesn’t matter. Order does matter when you use several
options of the same kind; for example, if you specify ‘-L’ more than once,
the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for ex-
ample, ‘-fforce-mem’, ‘-fstrength-reduce’, ‘-Wformat’ and so on. Most
of these have both positive and negative forms; the negative form of
‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of these
two forms, whichever one is not the default.

4.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations
are in the following sections.

Overall Options
See Section 4.2 “Options Controlling the Kind of Output,”
page 28.

-c -S -E -o file -pipe -v -x language

C Language Options
See Section 4.4 “Options Controlling C Dialect,” page 31.

c y g n u s s u p p o r t 23

Using GNU CC

-ansi -fallow-single-precision -fcond-mismatch -fno-
asm
-fno-builtin -fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char
-fwritable-strings -traditional -traditional-cpp
-trigraphs

C++ Language Options
See Section 4.5 “Options Controlling C++ Dialect,” page 35.

-fall-virtual -fdollars-in-identifiers
-felide-constructors -fenum-int-equiv
-fexternal-templates -fhandle-signatures
-fmemoize-lookups -fno-default-inline
-fno-gnu-keywords -fnonnull-objects -foperator-names
-fstrict-prototype -fthis-is-variable -nostdinc++
-traditional +en

Warning Options
See Section 4.6 “Options to Request or Suppress Warnings,”
page 40.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return
-Wbad-function-cast -Wcast-align -Wcast-qual
-Wchar-subscript -Wcomment -Wconversion
-Wenum-clash -Werror -Wformat -Wid-clash-len
-Wimplicit -Wimport -Winline -Wlarger-than-len
-Wmissing-declarations -Wmissing-prototypes
-Wnested-externs -Wno-import -Woverloaded-virtual
-Wparentheses -Wpointer-arith -Wredundant-decls
-Wreorder -Wreturn-type -Wshadow -Wstrict-prototypes
-Wswitch -Wsynth -Wtemplate-debugging -Wtraditional
-Wtrigraphs -Wuninitialized -Wunused
-Wwrite-strings

Debugging Options
See Section 4.7 “Options for Debugging Your Program or
GCC,” page 48.

-a -dletters -fpretend-float
-fprofile-arcs -ftest-coverage
-g -glevel -gcoff -gdwarf -gdwarf+
-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
-p -pg -print-file-name=library
-print-libgcc-file-name -print-prog-name=program
-print-search-dirs -save-temps

Optimization Options
See Section 4.8 “Options that Control Optimization,” page 53.

-fbranch-probabilities
-fcaller-saves -fcse-follow-jumps
-fcse-skip-blocks -fdelayed-branch
-fexpensive-optimizations -ffast-math -ffloat-store
-fforce-addr -fforce-mem -finline-functions

24 10 July 1995

Chapter 4: GNU CC Command Options

-fkeep-inline-functions -fno-default-inline
-fno-defer-pop -fno-function-cse -fno-inline
-fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-O -O0 -O1 -O2 -O3

Preprocessor Options
See Section 4.9 “Options Controlling the Preprocessor,”
page 58.

-Aquestion(answer) -C -dD -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MD -MM -MMD -MG -nostdinc -P -trigraphs
-undef -Umacro -Wp,option

Assembler Option
See Section 4.10 “Passing Options to the Assembler,” page 61.

-Wa,option

Linker Options
See Section 4.11 “Options for Linking,” page 61.

object-file-name
-llibrary -nostartfiles -nostdlib
-s -static -shared -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 4.12 “Options for Directory Search,” page 64.

-Bprefix -Idir -I- -Ldir

Target Options
See Section 4.13 “Target Options,” page 65.

-b machine -V version

Machine Dependent Options
See Section 4.14 “Hardware Models and Configurations,”
page 66.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040
-m68881 -mbitfield -mc68000 -mc68020 -mfpa
-mnobitfield -mrtd -mshort -msoft-float

VAX Options
-mg -mgnu -munix

c y g n u s s u p p o r t 25

Using GNU CC

SPARC Options
-mapp-regs -mcypress -mepilogue -mflat -mfpu
-mhard-float -mhard-quad-float -mno-app-regs
-mno-flat -mno-fpu -mno-epilogue
-mno-unaligned-doubles -msoft-float
-msoft-quad-float -msparclite -msupersparc
-munaligned-doubles -mv8

SPARC V9 compilers support the following options
in addition to the above:

-mmedlow -mmedany
-mint32 -mint64 -mlong32 -mlong64
-mno-stack-bias -mstack-bias

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mvolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall
-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options
-mapcs -m2 -m3 -m6 -mbsd -mxopen -mno-symrename

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options
-mcpu=cpu type
-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mno-powerpc
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mno-new-mnemonics
-mfull-toc -mminimal-toc -mno-fop-in-toc
-mno-sum-in-toc -msoft-float -mhard-float

26 10 July 1995

Chapter 4: GNU CC Command Options

-mmultiple -mno-multiple -mbit-align
-mno-bit-align -mstrict-align -mno-strict-align
-mrelocatable -mno-relocatable -mtraceback
-mno-traceback

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs
-mfp-arg-in-gregs -mfull-fp-blocks
-mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mabicalls -mcpu=cpu type
-membedded-data -membedded-pic -mfp32
-mfp64 -mgas -mgp32 -mgp64 -mgpopt
-mhalf-pic -mhard-float -mint64 -mips1
-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-embedded-pic
-mno-gpopt -mno-long-calls
-mno-memcpy -mno-mips-tfile -mno-rnames
-mno-stats -mrnames -msoft-float
-m4650 -msingle-float -mmad
-mstats -G num -nocpp

i386 Options
-m486 -mieee-fp -mno-486 -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mreg-alloc=list

HPPA Options
-mdisable-fpregs -mdisable-indexing -mfast-indirect-
calls
-mgas -mjump-in-delay -mlong-millicode-calls
-mno-disable-fpregs -mno-disable-indexing
-mno-fast-indirect-calls -mno-gas -mno-jump-in-delay
-mno-millicode-long-calls -mno-portable-runtime
-mno-soft-float -msoft-float
-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime
-mschedule=list

Intel 960 Options
-mcpu type -masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align
-mno-tail-call -mnumerics -mold-align
-msoft-float -mstrict-align -mtail-call

c y g n u s s u p p o r t 27

Using GNU CC

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float

Clipper Options
-mc300 -mc400

H8/300 Options
-mrelax -mh

System V Options
-Qy -Qn -YP,paths -Ym,dir

Z8000 Option
-mz8001

H8/500 Options
-mspace -mspeed
-mint32 -mcode32 -mdata32
-mtiny -msmall
-mmedium -mcompact
-mbig

Code Generation Options
See Section 4.15 “Options for Code Generation Conventions,”
page 94.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -finhibit-size-directive
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -funaligned-pointers
-funaligned-struct-hack -fvolatile -fvolatile-global
-fverbose-asm -fpack-struct -fverbose-asm +e0 +e1

4.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. The first three stages
apply to an individual source file, and end by producing an object file;
linking combines all the object files (those newly compiled, and those
specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of
compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

28 10 July 1995

Chapter 4: GNU CC Command Options

file.m Objective-C source code. Note that you must link with the
library ‘libobjc.a’ to make an Objective-C program work.

file.h C header file (not to be compiled or linked).

file.cc
file.cxx
file.cpp
file.C C++ source code which must be preprocessed. Note that in

‘.cxx’, the last two letters must both be literally ‘x’. Likewise,
‘.C’ refers to a literal capital C.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name
with no recognized suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files
(rather than letting the compiler choose a default based on
the file name suffix). This option applies to all following input
files until the next ‘-x’ option. Possible values for language
are:

c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

-x none Turn off any specification of a language, so that subsequent
files are handled according to their file name suffixes (as they
are if ‘-x’ has not been used at all).

If you only want some of the stages of compilation, you can use ‘-x’
(or filename suffixes) to tell gcc where to start, and one of the options
‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop. Note that some combinations
(for example, ‘-x cpp-output -E’ instruct gcc to do nothing at all.

-c Compile or assemble the source files, but do not link. The
linking stage simply is not done. The ultimate output is in
the form of an object file for each source file.
By default, the object file name for a source file is made by
replacing the suffix ‘.c’, ‘.i’, ‘.s’, etc., with ‘.o’.
Unrecognized input files, not requiring compilation or as-
sembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble.
The output is in the form of an assembler code file for each
non-assembler input file specified.

c y g n u s s u p p o r t 29

Using GNU CC

By default, the assembler file name for a source file is made
by replacing the suffix ‘.c’, ‘.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output.
Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever
sort of output is being produced, whether it be an executable
file, an object file, an assembler file or preprocessed C code.
Since only one output file can be specified, it does not make
sense to use ‘-o’ when compiling more than one input file,
unless you are producing an executable file as output.
If ‘-o’ is not specified, the default is to put an executable file
in ‘a.out’, the object file for ‘source.suffix’ in ‘source.o’,
its assembler file in ‘source.s’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to
run the stages of compilation. Also print the version number
of the compiler driver program and of the preprocessor and
the compiler proper.

-pipe Use pipes rather than temporary files for communication
between the various stages of compilation. This fails to work
on some systems where the assembler is unable to read from
a pipe; but the GNU assembler has no trouble.

4.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘cpp’,
or ‘.cxx’; preprocessed C++ files use the suffix ‘.ii’. GNU CC recognizes
files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name gcc).

However, C++ programs often require class libraries as well as a
compiler that understands the C++ language—and under some circum-
stances, you might want to compile programs from standard input, or
otherwise without a suffix that flags them as C++ programs. g++ is a
program that calls GNU CC with the default language set to C++, and
automatically specifies linking against the GNU class library libg++.

30 10 July 1995

Chapter 4: GNU CC Command Options

1 On many systems, the script g++ is also installed
with the name c++.

When you compile C++ programs, you may specify many of the same
command-line options that you use for compiling programs in any lan-
guage; or command-line options meaningful for C and related languages;
or options that are meaningful only for C++ programs. See Section 4.4
“Options Controlling C Dialect,” page 31, for explanations of options for
languages related to C. See Section 4.5 “Options Controlling C++ Di-
alect,” page 35, for explanations of options that are meaningful only for
C++ programs.

4.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived
from C, such as C++ and Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.
This turns off certain features of GNU C that are incom-
patible with ANSI C, such as the asm, inline and typeof
keywords, and predefined macros such as unix and vax that
identify the type of system you are using. It also enables
the undesirable and rarely used ANSI trigraph feature, and
disallows ‘$’ as part of identifiers.
The alternate keywords __asm__, __extension__, __
inline__ and __typeof__ continue to work despite ‘-ansi’.
You would not want to use them in an ANSI C program, of
course, but it is useful to put them in header files that might
be included in compilations done with ‘-ansi’. Alternate
predefined macros such as __unix__ and __vax__ are also
available, with or without ‘-ansi’.
The ‘-ansi’ option does not cause non-ANSI programs to be
rejected gratuitously. For that, ‘-pedantic’ is required in ad-
dition to ‘-ansi’. See Section 4.6 “Warning Options,” page 40.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’
option is used. Some header files may notice this macro and
refrain from declaring certain functions or defining certain

1 Prior to release 2 of the compiler, there was a separate g++ compiler.
That version was based on GNU CC, but not integrated with it. Ver-
sions of g++ with a ‘1.xx’ version number—for example, g++ version
1.37 or 1.42—are much less reliable than the versions integrated with
GCC 2. Moreover, combining G++ ‘1.xx’ with a version 2 GCC will
simply not work.

c y g n u s s u p p o r t 31

Using GNU CC

macros that the ANSI standard doesn’t call for; this is to
avoid interfering with any programs that might use these
names for other things.
The functions alloca, abort, exit, and _exit are not builtin
functions when ‘-ansi’ is used.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__ and __typeof__ instead.
‘-ansi’ implies ‘-fno-asm’.
In C++, this switch only affects the typeof keyword, since
asm and inline are standard keywords. You may want to
use the ‘-fno-gnu-keywords’ flag instead, as it also disables
the other, C++-specific, extension keywords such as headof.

-fno-builtin
Don’t recognize builtin functions that do not begin with two
leading underscores. Currently, the functions affected in-
clude abort, abs, alloca, cos, exit, fabs, ffs, labs, memcmp,
memcpy, sin, sqrt, strcmp, strcpy, and strlen.
GCC normally generates special code to handle certain
builtin functions more efficiently; for instance, calls to
alloca may become single instructions that adjust the stack
directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since
the function calls no longer appear as such, you cannot set a
breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library.
The ‘-ansi’ option prevents alloca and ffs from being
builtin functions, since these functions do not have an ANSI
standard meaning.

-trigraphs
Support ANSI C trigraphs. You don’t want to know about
this brain-damage. The ‘-ansi’ option implies ‘-trigraphs’.

-traditional
Attempt to support some aspects of traditional C compilers.
Specifically:
� All extern declarations take effect globally even if they

are written inside of a function definition. This includes
implicit declarations of functions.

� The newer keywords typeof, inline, signed, const and
volatile are not recognized. (You can still use the alter-
native keywords such as __typeof__, __inline__, and
so on.)

32 10 July 1995

Chapter 4: GNU CC Command Options

� Comparisons between pointers and integers are always
allowed.

� Integer types unsigned short and unsigned char pro-
mote to unsigned int.

� Out-of-range floating point literals are not an error.
� Certain constructs which ANSI regards as a single

invalid preprocessing number, such as ‘0xe-0xd’, are
treated as expressions instead.

� String “constants” are not necessarily constant; they are
stored in writable space, and identical looking constants
are allocated separately. (This is the same as the effect
of ‘-fwritable-strings’.)

� All automatic variables not declared register are pre-
served by longjmp. Ordinarily, GNU C follows ANSI
C: automatic variables not declared volatile may be
clobbered.

� The character escape sequences
‘\x’ and ‘\a’ evaluate as the literal characters ‘x’ and ‘a’
respectively. Without ‘-traditional’, ‘\x’ is a prefix for
the hexadecimal representation of a character, and ‘\a’
produces a bell.

� In C++ programs, assignment to this is permitted with
‘-traditional’. (The option ‘-fthis-is-variable’ also
has this effect.)

You may wish to use ‘-fno-builtin’ as well as ‘-traditional’
if your program uses names that are normally GNU C builtin
functions for other purposes of its own.
You cannot use ‘-traditional’ if you include any header files
that rely on ANSI C features. Some vendors are starting to
ship systems with ANSI C header files and you cannot use
‘-traditional’ on such systems to compile files that include
any system headers.
In the preprocessor, comments convert to nothing at all,
rather than to a space. This allows traditional token con-
catenation.
In preprocessing directive, the ‘#’ symbol must appear as the
first character of a line.
In the preprocessor, macro arguments are recognized within
string constants in a macro definition (and their values are
stringified, though without additional quote marks, when
they appear in such a context). The preprocessor always
considers a string constant to end at a newline.

c y g n u s s u p p o r t 33

Using GNU CC

The predefined macro __STDC__ is not defined
when you use ‘-traditional’, but __GNUC__ is (since the
GNU extensions which __GNUC__ indicates are not affected
by ‘-traditional’). If you need to write header files that
work differently depending on whether ‘-traditional’ is in
use, by testing both of these predefined macros you can dis-
tinguish four situations: GNU C, traditional GNU C, other
ANSI C compilers, and other old C compilers. The predefined
macro __STDC_VERSION__ is also not defined when you use
‘-traditional’. See section “Standard Predefined Macros”
in The C Preprocessor, for more discussion of these and other
predefined macros.

The preprocessor considers a string constant
to end at a newline (unless the newline is escaped with ‘\’).
(Without ‘-traditional’, string constants can contain the
newline character as typed.)

-traditional-cpp
Attempt to support some aspects of traditional C preproces-
sors. This includes the last five items in the table immedi-
ately above, but none of the other effects of ‘-traditional’.

-fcond-mismatch
Allow conditional expressions with mismatched types in the
second and third arguments. The value of such an expression
is void.

-funsigned-char
Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be.
It is either like unsigned char by default or like signed char
by default.
Ideally, a portable program should always use signed char
or unsigned char when it depends on the signedness of an
object. But many programs have been written to use plain
char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This op-
tion, and its inverse, let you make such a program work with
the opposite default.
The type char is always a distinct type from each of signed
char or unsigned char, even though its behavior is always
just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

34 10 July 1995

Chapter 4: GNU CC Command Options

Note that this is equivalent to ‘-fno-unsigned-char’, which
is the negative form of ‘-funsigned-char’. Likewise, the op-
tion ‘-fno-signed-char’ is equivalent to ‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bitfield is signed or un-
signed, when the declaration does not use either signed or
unsigned. By default, such a bitfield is signed, because this
is consistent: the basic integer types such as int are signed
types.
However, when ‘-traditional’ is used, bitfields are all un-
signed no matter what.

-fwritable-strings
Store string constants in the writable data segment and don’t
uniquize them. This is for compatibility with old programs
which assume they can write into string constants. The op-
tion ‘-traditional’ also has this effect.
Writing into string constants is a very bad idea; “constants”
should be constant.

-fallow-single-precision
Do not promote single precision math operations to double
precision, even when compiling with ‘-traditional’.
Traditional K&R C promotes all floating point operations to
double precision, regardless of the sizes of the operands. On
the architecture for which you are compiling, single preci-
sion may be faster than double precision. If you must use
‘-traditional’, but want to use single precision operations
when the operands are single precision, use this option. This
option has no effect when compiling with ANSI or GNU C
conventions (the default).

4.5 Options Controlling C++ Dialect

This section describes the command-line options that are only mean-
ingful for C++ programs; but you can also use most of the GNU compiler
options regardless of what language your program is in. For example,
you might compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

c y g n u s s u p p o r t 35

Using GNU CC

In this example, only ‘-felide-constructors’ is an option meant only
for C++ programs; you can use the other options with any language
supported by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control
Turn off all access checking. This switch is mainly useful for
working around bugs in the access control code.

-fall-virtual
Treat all possible member functions as virtual, implicitly. All
member functions (except for constructor functions and new
or deletemember operators) are treated as virtual functions
of the class where they appear.
This does not mean that all calls to these member functions
will be made through the internal table of virtual functions.
Under some circumstances, the compiler can determine that
a call to a given virtual function can be made directly; in
these cases the calls are direct in any case.

-fcheck-new
Check that the pointer returned by operator new is non-null
before attempting to modify the storage allocated. The cur-
rent Working Paper requires that operator new never return
a null pointer, so this check is normally unnecessary.

-fconserve-space
Put uninitialized or runtime-initialized global variables into
the common segment, as C does. This saves space in the
executable at the cost of not diagnosing duplicate definitions.
If you compile with this flag and your program mysteriously
crashes after main() has completed, you may have an object
that is being destroyed twice because two definitions were
merged.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of
‘$’ with the option ‘-fno-dollars-in-identifiers’. (GNU
C++ allows ‘$’ by default on some target systems but not
others.) Traditional C allowed the character ‘$’ to form part of
identifiers. However, ANSI C and C++ forbid ‘$’ in identifiers.

-fenum-int-equiv
Anachronistically permit implicit conversion of int to enu-
meration types. Current C++ allows conversion of enum to
int, but not the other way around.

36 10 July 1995

Chapter 4: GNU CC Command Options

-fexternal-templates
Cause template instantiations to obey ‘#pragma interface’
and ‘implementation’; template instances are emitted or not
according to the location of the template definition. See Sec-
tion 7.5 “Template Instantiation,” page 193, for more infor-
mation.

-falt-external-templates
Similar to -fexternal-templates, but template instances are
emitted or not according to the place where they are first
instantiated. See Section 7.5 “Template Instantiation,”
page 193, for more information.

-fno-gnu-keywords
Do not recognize classof, headof, signature, sigof or
typeof as a keyword, so that code can use these words
as identifiers. You can use the keywords __classof__, __
headof__, __signature__, __sigof__, and __typeof__ in-
stead. ‘-ansi’ implies ‘-fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for templates which are instantiated implic-
itly (i.e. by use); only emit code for explicit instantiations.
See Section 7.5 “Template Instantiation,” page 193, for more
information.

-fhandle-signatures
Recognize the signature and sigof keywords for specifying
abstract types. The default (‘-fno-handle-signatures’) is
not to recognize them. See Section 7.6 “C++ Signatures,”
page 196.

-fhuge-objects
Support virtual function calls for objects that exceed the size
representable by a ‘short int’. Users should not use this
flag by default; if you need to use it, the compiler will tell you
so. If you compile any of your code with this flag, you must
compile all of your code with this flag (including libg++, if
you use it).
This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline func-
tions controlled by ‘#pragma implementation’. This will
cause linker errors if these functions are not inlined every-
where they are called.

c y g n u s s u p p o r t 37

Using GNU CC

-fmemoize-lookups
-fsave-memoized

Use heuristics to compile faster. These heuristics are not
enabled by default, since they are only effective for certain
input files. Other input files compile more slowly.

The first time the compiler must build a call to a member
function (or reference to a data member), it must (1) deter-
mine whether the class implements member functions of that
name; (2) resolve which member function to call (which in-
volves figuring out what sorts of type conversions need to be
made); and (3) check the visibility of the member function
to the caller. All of this adds up to slower compilation. Nor-
mally, the second time a call is made to that member function
(or reference to that data member), it must go through the
same lengthy process again. This means that code like this:

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a soft-
ware cache, a “hit” significantly reduces this cost. Unfortu-
nately, using the cache introduces another layer of mecha-
nisms which must be implemented, and so incurs its own
overhead. ‘-fmemoize-lookups’ enables the software cache.

Because access privileges (visibility) to members and mem-
ber functions may differ from one function context to
the next, G++ may need to flush the cache. With the
‘-fmemoize-lookups’ flag, the cache is flushed after every
function that is compiled. The ‘-fsave-memoized’ flag en-
ables the same software cache, but when the compiler deter-
mines that the context of the last function compiled would
yield the same access privileges of the next function to com-
pile, it preserves the cache. This is most helpful when defin-
ing many member functions for the same class: with the
exception of member functions which are friends of other
classes, each member function has exactly the same access
privileges as every other, and the cache need not be flushed.

The code that implements these flags has rotted; you should
probably avoid using them.

-fstrict-prototype
Within an ‘extern "C"’ linkage specification, treat a func-
tion declaration with no arguments, such as ‘int foo
();’, as declaring the function to take no arguments.
Normally, such a declaration means that the function
foo can take any combination of arguments, as in C.

38 10 July 1995

Chapter 4: GNU CC Command Options

‘-pedantic’ implies ‘-fstrict-prototype’ unless overridden
with ‘-fno-strict-prototype’.
This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects
Don’t assume that a reference is initialized to refer to a valid
object. Although the current C++ Working Paper prohibits
null references, some old code may rely on them, and you can
use ‘-fno-nonnull-objects’ to turn on checking.
At the moment, the compiler only does this checking for con-
versions to virtual base classes.

-foperator-names
Recognize the operator name keywords and, bitand, bitor,
compl, not, or and xor as synonyms for the symbols they
refer to. ‘-ansi’ implies ‘-foperator-names’.

-fthis-is-variable
Permit assignment to this. The incorporation of user-
defined free store management into C++ has made assign-
ment to ‘this’ an anachronism. Therefore, by default it is
invalid to assign to this within a class member function;
that is, GNU C++ treats ‘this’ in a member function of class
X as a non-lvalue of type ‘X *’. However, for backwards com-
patibility, you can make it valid with ‘-fthis-is-variable’.

-fvtable-thunks
Use ‘thunks’ to implement the virtual function dispatch table
(‘vtable’). The traditional (cfront-style) approach to imple-
menting vtables was to store a pointer to the function and two
offsets for adjusting the ‘this’ pointer at the call site. Newer
implementations store a single pointer to a ‘thunk’ function
which does any necessary adjustment and then calls the tar-
get function.
This option also enables a heuristic for controlling emission
of vtables; if a class has any non-inline virtual functions, the
vtable will be emitted in the translation unit containing the
first one of those.

-nostdinc++
Do not search for header files in the standard directories spe-
cific to C++, but do still search the other standard directories.
(This option is used when building libg++.)

-traditional
For C++ programs (in addition to the effects that ap-
ply to both C and C++), this has the same effect as

c y g n u s s u p p o r t 39

Using GNU CC

‘-fthis-is-variable’. See Section 4.4 “Options Controlling
C Dialect,” page 31.

In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class
scope. See Section 4.8 “Options That Control Optimization,”
page 53.

-Wenum-clash
-Woverloaded-virtual
-Wtemplate-debugging

Warnings that apply only to C++ programs. See Section 4.6
“Options to Request or Suppress Warnings,” page 40.

+en Control how virtual function definitions are used, in a fashion
compatible with cfront 1.x. See Section 4.15 “Options for
Code Generation Conventions,” page 94.

4.6 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there may
have been an error.

You can request many specific warnings with options beginning ‘-W’,
for example ‘-Wimplicit’ to request warnings on implicit declarations.
Each of these specific warning options also has a negative form beginning
‘-Wno-’ to turn off warnings; for example, ‘-Wno-implicit’. This manual
lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by
GNU CC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything be-
yond that.

-w Inhibit all warning messages.

-Wno-import
Inhibit warning messages about the use of ‘#import’.

-pedantic
Issue all the warnings demanded by strict ANSI standard C;
reject all programs that use forbidden extensions.
Valid ANSI standard C programs should compile properly
with or without this option (though a rare few will require

40 10 July 1995

Chapter 4: GNU CC Command Options

‘-ansi’). However, without this option, certain GNU exten-
sions and traditional C features are supported as well. With
this option, they are rejected.
‘-pedantic’ does not cause warning messages for use of
the alternate keywords whose names begin and end with
‘__’. Pedantic warnings are also disabled in the expression
that follows __extension__. However, only system header
files should use these escape routes; application programs
should avoid them. See Section 6.35 “Alternate Keywords,”
page 187.
This option is not intended to be useful; it exists only to
satisfy pedants who would otherwise claim that GNU CC
fails to support the ANSI standard.
Some users try to use ‘-pedantic’ to check programs for strict
ANSI C conformance. They soon find that it does not do quite
what they want: it finds some non-ANSI practices, but not
all—only those for which ANSI C requires a diagnostic.
A feature to report any failure to conform to ANSI C might be
useful in some instances, but would require considerable ad-
ditional work and would be quite different from ‘-pedantic’.
We recommend, rather, that users take advantage of the ex-
tensions of GNU C and disregard the limitations of other
compilers. Aside from certain supercomputers and obsolete
small machines, there is less and less reason ever to use any
other C compiler other than for bootstrapping GNU CC.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than
warnings.

-W Print extra warning messages for these events:

� A nonvolatile automatic variable might be changed by
a call to longjmp. These warnings as well are possible
only in optimizing compilation.
The compiler sees only the calls to setjmp. It cannot
know where longjmp will be called; in fact, a signal han-
dler could call it at any point in the code. As a result,
you may get a warning even when there is in fact no
problem because longjmp cannot in fact be called at the
place which would cause a problem.

� A function can return either with or without a value.
(Falling off the end of the function body is considered
returning without a value.) For example, this function
would evoke such a warning:

c y g n u s s u p p o r t 41

Using GNU CC

foo (a)

{

if (a > 0)

return a;
}

� An expression-statement contains no side effects.
� An unsigned value is compared against zero with ‘<’ or

‘<=’.
� A comparison like ‘x<=y<=z’ appears; this is equivalent to

‘(x<=y ? 1 : 0) <= z’, which is a different interpretation
from that of ordinary mathematical notation.

� Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard,
this usage is obsolescent.

� An aggregate has a partly bracketed initializer. For ex-
ample, the following code would evoke such a warning,
because braces are missing around the initializer for x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

-Wimplicit
Warn whenever a function or parameter is implicitly de-
clared.

-Wreturn-type
Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wunused Warn whenever a variable is unused aside from its declara-
tion, whenever a function is declared static but never defined,
whenever a label is declared but not used, and whenever a
statement computes a result that is explicitly not used.
To suppress this warning for a local variable or expression,
simply cast it to void. This will also work for file-scope vari-
ables, but if you want to mark them used at the point of
definition, you can use this macro:

#define USE(var) \
static void *const use_##var = (&use_##var, &var, 0)

USE (string);

-Wswitch Warn whenever a switch statement has an index of enu-
meral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label

42 10 July 1995

Chapter 4: GNU CC Command Options

prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a
comment.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are
enabled).

-Wformat Check calls to printf and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format
string specified.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common
cause of error, as programmers often forget that this type is
signed on some machines.

-Wuninitialized
An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation,
because they require data flow information that is computed
only when optimizing. If you don’t specify ‘-O’, you simply
won’t get these warnings.

These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a vari-
able that is declared volatile, or whose address is taken, or
whose size is other than 1, 2, 4 or 8 bytes. Also, they do not
occur for structures, unions or arrays, even when they are in
registers.

Note that there may be no warning about a variable that is
used only to compute a value that itself is never used, because
such computations may be deleted by data flow analysis be-
fore the warnings are printed.

These warnings are made optional because GNU CC is not
smart enough to see all the reasons why the code might be
correct despite appearing to have an error. Here is one ex-
ample of how this can happen:

c y g n u s s u p p o r t 43

Using GNU CC

{

int x;

switch (y)

{
case 1: x = 1;

break;

case 2: x = 4;

break;

case 3: x = 5;
}

foo (x);

}

If the value of y is always 1, 2 or 3, thenx is always initialized,
but GNU CC doesn’t know this. Here is another common
case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.
Some spurious warnings can be avoided if you declare all
the functions you use that never return as noreturn. See
Section 6.22 “Function Attributes,” page 157.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence
people often get confused about.

-Wenum-clash
Warn about conversion between different enumeration types.
(C++ only).

-Wtemplate-debugging
When using templates in a C++ program, warn if debugging
is not yet fully available (C++ only).

-Wreorder (C++ only)
Warn when the order of member initializers given in the code
does not match the order in which they must be executed. For
instance:

struct A {
int i;
int j;
A(): j (0), i (1) { }

44 10 July 1995

Chapter 4: GNU CC Command Options

};

Here the compiler will warn that the member initializers for
‘i’ and ‘j’ will be rearranged to match the declaration order
of the members.

-Wall All of the above ‘-W’ options combined. These are all the
options which pertain to usage that we recommend avoiding
and that we believe is easy to avoid, even in conjunction with
macros.

The remaining ‘-W.. .’ options are not implied by ‘-Wall’ because
they warn about constructions that we consider reasonable to use, on
occasion, in clean programs.

-Wtraditional
Warn about certain constructs that behave differently in tra-
ditional and ANSI C.
� Macro arguments occurring within string constants in

the macro body. These would substitute the argument
in traditional C, but are part of the constant in ANSI C.

� A function declared external in one block and then used
after the end of the block.

� A switch statement has an operand of type long.

-Wshadow Warn whenever a local variable shadows another local vari-
able.

-Wid-clash-len
Warn whenever two distinct identifiers match in the first len
characters. This may help you prepare a program that will
compile with certain obsolete, brain-damaged compilers.

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function
type or of void. GNU C assigns these types a size of 1, for
convenience in calculations with void * pointers and pointers
to functions.

-Wbad-function-cast
Warn whenever a function call is cast to a non-matching type.
For example, warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qual-
ifier from the target type. For example, warn if a const char
* is cast to an ordinary char *.

c y g n u s s u p p o r t 45

Using GNU CC

-Wcast-align
Warn whenever a pointer is cast such that the required align-
ment of the target is increased. For example, warn if a char
* is cast to an int * on machines where integers can only be
accessed at two- or four-byte boundaries.

-Wwrite-strings
Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
will get a warning. These warnings will help you find at
compile time code that can try to write into a string constant,
but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these
warnings.

-Wconversion
Warn if a prototype causes a type conversion that is differ-
ent from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except
when the same as the default promotion.
Also, warn if a negative integer constant expression is im-
plicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not warn
about explicit casts like (unsigned) -1.

-Waggregate-return
Warn if any functions that return structures or unions are
defined or called. (In languages where you can return an
array, this also elicits a warning.)

-Wstrict-prototypes
Warn if a function is declared or defined without specifying
the argument types. (An old-style function definition is per-
mitted without a warning if preceded by a declaration which
specifies the argument types.)

-Wmissing-prototypes
Warn if a global function is defined without a previous proto-
type declaration. This warning is issued even if the definition
itself provides a prototype. The aim is to detect global func-
tions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous dec-
laration. Do so even if the definition itself provides a proto-

46 10 July 1995

Chapter 4: GNU CC Command Options

type. Use this option to detect global functions that are not
declared in header files.

-Wredundant-decls
Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wnested-externs
Warn if an extern declaration is encountered within an func-
tion.

-Winline Warn if a function can not be inlined, and either it was de-
clared as inline, or else the ‘-finline-functions’ option was
given.

-Woverloaded-virtual
Warn when a derived class function declaration may be an
error in defining a virtual function (C++ only). In a derived
class, the definitions of virtual functions must match the type
signature of a virtual function declared in the base class.
With this option, the compiler warns when you define a func-
tion with the same name as a virtual function, but with a
type signature that does not match any declarations from
the base class.

-Wsynth (C++ only)
Warn when g++’s synthesis behavior does not match that of
cfront. For instance:

struct A {
operator int ();
A& operator = (int);

};

main ()
{

A a,b;
a = b;

}

In this example, g++ will synthesize a default ‘A& operator
= (const A&);’, while cfront will use the user-defined
‘operator =’.

-Werror Make all warnings into errors.

c y g n u s s u p p o r t 47

Using GNU CC

4.7 Options for Debugging Your Program or GNU
CC

GNU CC has various special options that are used for debugging
either your program or GCC:

-g Produce debugging information in the operating system’s na-
tive format (stabs, COFF, XCOFF, or DWARF). GDB can
work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of
extra debugging information that only GDB can use; this
extra information makes debugging work better in GDB but
will probably make other debuggers crash or refuse to read
the program. If you want to control for certain whether to
generate the extra information, use ‘-gstabs+’, ‘-gstabs’,
‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf+’, or ‘-gdwarf’ (see below).

Unlike most other C compilers, GNU CC allows you to use
‘-g’ with ‘-O’. The shortcuts taken by optimized code may
occasionally produce surprising results: some variables you
declared may not exist at all; flow of control may briefly
move where you did not expect it; some statements may not
be executed because they compute constant results or their
values were already at hand; some statements may execute
in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output.
This makes it reasonable to use the optimizer for programs
that might have bugs.

The following options are useful when GNU CC is generated
with the capability for more than one debugging format.

-ggdb Produce debugging information in the native format (if that
is supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is
supported), without GDB extensions. This is the format used
by DBX on most BSD systems. On MIPS, Alpha and System
V Release 4 systems this option produces stabs debugging
output which is not understood by DBX or SDB. On System
V Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is
supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

48 10 July 1995

Chapter 4: GNU CC Command Options

-gcoff Produce debugging information in COFF format (if that is
supported). This is the format used by SDB on most System
V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is
supported). This is the format used by the DBX debugger on
IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that
is supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely to
make other debuggers crash or refuse to read the program,
and may cause assemblers other than the GNU assembler
(GAS) to fail with an error.

-gdwarf Produce debugging information in DWARF format (if that is
supported). This is the format used by SDB on most System
V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF format (if that is
supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gdwarflevel

Request debugging information and also use level to specify
how much information. The default level is 2.
Level 1 produces minimal information, enough for making
backtraces in parts of the program that you don’t plan to
debug. This includes descriptions of functions and external
variables, but no information about local variables and no
line numbers.
Level 3 includes extra information, such as all the macro
definitions present in the program. Some debuggers support
macro expansion when you use ‘-g3’.

-p Generate extra code to write profile information suitable for
the analysis program prof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

-pg Generate extra code to write profile information suitable for
the analysis program gprof. You must use this option when

c y g n u s s u p p o r t 49

Using GNU CC

compiling the source files you want data about, and you must
also use it when linking.

-a Generate extra code to write profile information for basic
blocks, which will record the number of times each basic block
is executed, the basic block start address, and the function
name containing the basic block. If ‘-g’ is used, the line
number and filename of the start of the basic block will also
be recorded. If not overridden by the machine description,
the default action is to append to the text file ‘bb.out’.

This data could be analyzed by a program like tcov. Note,
however, that the format of the data is not what tcov expects.
Eventually GNU gprof should be extended to process this
data.

-fprofile-arcs
Instrument arcs during compilation. For each function of
your program, GNU CC creates a program flow graph, then
finds a spanning tree for the graph. Only arcs that are not
on the spanning tree have to be instrumented: the compiler
adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to
a block, the instrumentation code can be added to the block;
otherwise, a new basic block must be created to hold the
instrumentation code.

Since not every arc in the program must be instrumented,
programs compiled with this option run faster than programs
compiled with ‘-a’, which adds instrumentation code to every
basic block in the program. The tradeoff: since gcov does not
have execution counts for all branches, it must start with the
execution counts for the instrumented branches, and then
iterate over the program flow graph until the entire graph
has been solved. Hence, gcov runs a little more slowly than
a program which uses information from ‘-a’.

‘-fprofile-arcs’ also makes it possible to estimate branch
probabilities, and to calculate basic block execution counts.
In general, basic block execution counts do not give enough
information to estimate all branch probabilities. When the
compiled program exits, it saves the arc execution counts
to a file called ‘sourcename.da’. Use the compiler option
‘-fbranch-probabilities’ (see Section 4.8 “Options that
Control Optimization,” page 53) when recompiling, to op-
timize using estimated branch probabilities.

50 10 July 1995

Chapter 4: GNU CC Command Options

-ftest-coverage
Create data files for the gcov code-coverage utility (see Chap-
ter 8 “gcov: a GNU CC Test Coverage Program,” page 199).
The data file names begin with the name of your source file:

sourcename.bb
A mapping from basic blocks to line numbers,
which gcov uses to associate basic block execu-
tion counts with line numbers.

sourcename.bbg
A list of all arcs in the program flow graph.
This allows gcov to reconstruct the program flow
graph, so that it can compute all basic block and
arc execution counts from the information in the
sourcename.da file (this last file is the output
from ‘-fprofile-arcs’).

-dletters
Says to make debugging dumps during compilation at times
specified by letters. This is used for debugging the com-
piler. The file names for most of the dumps are made by
appending a word to the source file name (e.g. ‘foo.c.rtl’
or ‘foo.c.jump’). Here are the possible letters for use in
letters, and their meanings:

‘M’ Dump all macro definitions, at the end of prepro-
cessing, and write no output.

‘N’ Dump all macro names, at the end of preprocess-
ing.

‘D’ Dump all macro definitions, at the end of prepro-
cessing, in addition to normal output.

‘y’ Dump debugging information during parsing, to
standard error.

‘r’ Dump after RTL generation, to ‘file.rtl’.

‘x’ Just generate RTL for a function instead of com-
piling it. Usually used with ‘r’.

‘j’ Dump after first jump optimization, to
‘file.jump’.

‘s’ Dump after CSE (including the jump optimiza-
tion that sometimes follows CSE), to ‘file.cse’.

‘L’ Dump after loop optimization, to ‘file.loop’.

c y g n u s s u p p o r t 51

Using GNU CC

‘t’ Dump after the second CSE pass (including the
jump optimization that sometimes follows CSE),
to ‘file.cse2’.

‘f’ Dump after flow analysis, to ‘file.flow’.

‘c’ Dump after instruction combination, to the file
‘file.combine’.

‘S’ Dump after the first instruction scheduling pass,
to ‘file.sched’.

‘l’ Dump after local register allocation, to
‘file.lreg’.

‘g’ Dump after global register allocation, to
‘file.greg’.

‘R’ Dump after the second instruction scheduling
pass, to ‘file.sched2’.

‘J’ Dump after last jump optimization, to ‘file.jump2’.

‘d’ Dump after delayed branch scheduling, to
‘file.dbr’.

‘k’ Dump after conversion from registers to stack, to
‘file.stack’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of
the run, to standard error.

‘p’ Annotate the assembler output with a comment
indicating which pattern and alternative was
used.

-fpretend-float
When running a cross-compiler, pretend that the target ma-
chine uses the same floating point format as the host ma-
chine. This causes incorrect output of the actual floating
constants, but the actual instruction sequence will probably
be the same as GNU CC would make when running on the
target machine.

-save-temps
Store the usual “temporary” intermediate files permanently;
place them in the current directory and name them based
on the source file. Thus, compiling ‘foo.c’ with ‘-c
-save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’.

52 10 July 1995

Chapter 4: GNU CC Command Options

-print-file-name=library
Print the full absolute name of the library file library that
would be used when linking—and don’t do anything else.
With this option, GNU CC does not compile or link anything;
it just prints the file name.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such
as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ but you do want to
link with ‘libgcc.a’. You can do

gcc -nostdlib files. .. ‘gcc -print-libgcc-file-name‘

-print-search-dirs
Print the name of the configured installation directory and a
list of program and library directories gcc will search—and
don’t do anything else.
This is useful when gcc prints the error message
‘installation problem, cannot exec cpp: No such file or
directory’. To resolve this you either need to put ‘cpp’ and
the other compiler components where gcc expects to find
them, or you can set the environment variable GCC_EXEC_
PREFIX to the directory where you installed them. Don’t
forget the trailing ’/’. See Section 4.16 “Environment Vari-
ables,” page 98.

4.8 Options That Control Optimization

These options control various sorts of optimizations:

-O
-O1 Optimize. Optimizing compilation takes somewhat more

time, and a lot more memory for a large function.
Without ‘-O’, the compiler’s goal is to reduce the cost of compi-
lation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any
other statement in the function and get exactly the results
you would expect from the source code.
Without ‘-O’, the compiler only allocates variables declared
register in registers. The resulting compiled code is a little
worse than produced by PCC without ‘-O’.

c y g n u s s u p p o r t 53

Using GNU CC

With ‘-O’, the compiler tries to reduce code size and execution
time.
When you specify ‘-O’, the compiler turns on ‘-fthread-jumps’
and ‘-fdefer-pop’ on all machines. The compiler turns on
‘-fdelayed-branch’ on machines that have delay slots, and
‘-fomit-frame-pointer’ on machines that can support de-
bugging even without a frame pointer. On some machines
the compiler also turns on other flags.

-O2 Optimize even more. GNU CC performs nearly all supported
optimizations that do not involve a space-speed tradeoff. The
compiler does not perform loop unrolling or function inlining
when you specify ‘-O2’. As compared to ‘-O’, this option in-
creases both compilation time and the performance of the
generated code.
‘-O2’ turns on all optional optimizations except for loop un-
rolling and function inlining. It also turns on frame pointer
elimination on machines where doing so does not interfer
with debugging.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations specified
by ‘-O2’ and also turns on the ‘inline-functions’ option.

-O0 Do not optimize.
If you use multiple ‘-O’ options, with or without level num-
bers, the last such option is the one that is effective.

Options of the form ‘-fflag ’ specify machine-independent flags. Most
flags have both positive and negative forms; the negative form of ‘-ffoo’
would be ‘-fno-foo’. In the table below, only one of the forms is listed—
the one which is not the default. You can figure out the other form by
either removing ‘no-’ or adding it.

-ffloat-store
Do not store floating point variables in registers, and inhibit
other options that might change whether a floating point
value is taken from a register or memory.
This option prevents undesirable excess precision on ma-
chines such as the 68000 where the floating registers (of
the 68881) keep more precision than a double is supposed
to have. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of
IEEE floating point. Use ‘-ffloat-store’ for such programs.

-fno-default-inline
Do not make member functions inline by default merely be-
cause they are defined inside the class scope (C++ only). Oth-

54 10 July 1995

Chapter 4: GNU CC Command Options

erwise, when you specify ‘-O’, member functions defined in-
side class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as
that function returns. For machines which must pop argu-
ments after a function call, the compiler normally lets argu-
ments accumulate on the stack for several function calls and
pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before do-
ing arithmetic on them. This may produce better code by
making all memory references potential common subexpres-
sions. When they are not common subexpressions, instruc-
tion combination should eliminate the separate register-load.
I am interested in hearing about the difference this makes.

-fforce-addr
Force memory address constants to be copied into registers
before doing arithmetic on them. This may produce better
code just as ‘-fforce-mem’ may. I am interested in hearing
about the difference this makes.

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that
don’t need one. This avoids the instructions to save, set up
and restore frame pointers; it also makes an extra register
available in many functions. It also makes debugging
impossible on some machines.

On some machines, such as the Vax, this flag has no ef-
fect, because the standard calling sequence automatically
handles the frame pointer and nothing is saved by pretend-
ing it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine sup-
ports this flag. See section “Register Usage” in Using and
Porting GCC.

-fno-inline
Don’t pay attention to the inline keyword. Normally this
option is used to keep the compiler from expanding any func-
tions inline. Note that if you are not optimizing, no functions
can be expanded inline.

c y g n u s s u p p o r t 55

Using GNU CC

-finline-functions
Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be
worth integrating in this way.
If all calls to a given function are integrated, and the function
is declared static, then the function is normally not output
as assembler code in its own right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the
function is declared static, nevertheless output a separate
run-time callable version of the function.

-fno-function-cse
Do not put function addresses in registers; make each in-
struction that calls a constant function contain the function’s
address explicitly.
This option results in less efficient code, but some strange
hacks that alter the assembler output may be confused by
the optimizations performed when this option is not used.

-ffast-math
This option allows GCC to violate some ANSI or IEEE rules
and/or specifications in the interest of optimizing code for
speed. For example, it allows the compiler to assume argu-
ments to the sqrt function are non-negative numbers and
that no floating-point values are NaNs.
This option should never be turned on by any ‘-O’ op-
tion since it can result in incorrect output for programs
which depend on an exact implementation of IEEE or ANSI
rules/specifications for math functions.

The following options control specific optimizations. The ‘-O2’ op-
tion turns on all of these optimizations except ‘-funroll-loops’ and
‘-funroll-all-loops’. On most machines, the ‘-O’ option turns on
the ‘-fthread-jumps’ and ‘-fdelayed-branch’ options, but specific ma-
chines may handle it differently.

You can use the following flags in the rare cases when “fine-tuning”
of optimizations to be performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fthread-jumps
Perform optimizations where we check to see if a jump
branches to a location where another comparison subsumed

56 10 July 1995

Chapter 4: GNU CC Command Options

by the first is found. If so, the first branch is redirected to
either the destination of the second branch or a point imme-
diately following it, depending on whether the condition is
known to be true or false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by
any other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump
when the condition tested is false.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to
follow jumps which conditionally skip over blocks. When
CSE encounters a simple if statement with no else clause,
‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop opti-
mizations has been performed.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively
expensive.

-fdelayed-branch
If supported for the target machine, attempt to reorder in-
structions to exploit instruction slots available after delayed
branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder in-
structions to eliminate execution stalls due to required data
being unavailable. This helps machines that have slow float-
ing point or memory load instructions by allowing other in-
structions to be issued until the result of the load or floating
point instruction is required.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional
pass of instruction scheduling after register allocation has
been done. This is especially useful on machines with a
relatively small number of registers and where memory load
instructions take more than one cycle.

-fcaller-saves
Enable values to be allocated in registers that will be clob-
bered by function calls, by emitting extra instructions to save

c y g n u s s u p p o r t 57

Using GNU CC

and restore the registers around such calls. Such allocation
is done only when it seems to result in better code than would
otherwise be produced.
This option is enabled by default on certain machines, usu-
ally those which have no call-preserved registers to use in-
stead.

-funroll-loops
Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or run time. ‘-funroll-loop’ implies both
‘-fstrength-reduce’ and ‘-frerun-cse-after-loop’.

-funroll-all-loops
Perform the optimization of loop unrolling. This is done
for all loops and usually makes programs run more slowly.
‘-funroll-all-loops’ implies ‘-fstrength-reduce’ as well
as ‘-frerun-cse-after-loop’.

-fno-peephole
Disable any machine-specific peephole optimizations.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’
(see Section 4.7 “Options for Debugging Your Program or
gcc,” page 48), you can compile it a second time using
‘-fbranch-probabilities’, to improve optimizations based
on guessing the path a branch might take.

4.9 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C
source file before actual compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some
of these options make sense only together with ‘-E’ because they cause
the preprocessor output to be unsuitable for actual compilation.

-include file
Process file as input before processing the regular input
file. In effect, the contents of file are compiled first. Any ‘-D’
and ‘-U’ options on the command line are always processed
before ‘-include file’, regardless of the order in which they
are written. All the ‘-include’ and ‘-imacros’ options are
processed in the order in which they are written.

58 10 July 1995

Chapter 4: GNU CC Command Options

-imacros file
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output gener-
ated from file is discarded, the only effect of ‘-imacros file’
is to make the macros defined in file available for use in the
main input.
Any ‘-D’ and ‘-U’ options on the command line are always
processed before ‘-imacros file’, regardless of the order in
which they are written. All the ‘-include’ and ‘-imacros’
options are processed in the order in which they are written.

-idirafter dir
Add the directory dir to the second include path. The direc-
tories on the second include path are searched when a header
file is not found in any of the directories in the main include
path (the one that ‘-I’ adds to).

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’
options.

-iwithprefix dir
Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where pre-
fix was specified previously with ‘-iprefix’. If you have not
specified a prefix yet, the directory containing the installed
passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s
name is made by concatenating prefix and dir, as in the
case of ‘-iwithprefix’.

-isystem dir
Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same
special treatment as is applied to the standard system direc-
tories.

-nostdinc
Do not search the standard system directories for header
files. Only the directories you have specified with ‘-I’ options
(and the current directory, if appropriate) are searched. See
Section 4.12 “Directory Options,” page 64, for information on
‘-I’.
By using both ‘-nostdinc’ and ‘-I-’, you can limit the
include-file search path to only those directories you spec-
ify explicitly.

c y g n u s s u p p o r t 59

Using GNU CC

-undef Do not predefine any nonstandard macros. (Including archi-
tecture flags).

-E Run only the C preprocessor. Preprocess all the C source files
specified and output the results to standard output or to the
specified output file.

-C Tell the preprocessor not to discard comments. Used with
the ‘-E’ option.

-P Tell the preprocessor not to generate ‘#line’ directives. Used
with the ‘-E’ option.

-M Tell the preprocessor to output a rule suitable for make de-
scribing the dependencies of each object file. For each source
file, the preprocessor outputs one make-rule whose target is
the object file name for that source file and whose dependen-
cies are all the #include header files it uses. This rule may
be a single line or may be continued with ‘\’-newline if it is
long. The list of rules is printed on standard output instead
of the preprocessed C program.
‘-M’ implies ‘-E’.
Another way to specify output of a make rule is by setting
the environment variable DEPENDENCIES_OUTPUT (see Sec-
tion 4.16 “Environment Variables,” page 98).

-MM Like ‘-M’ but the output mentions only the user header files
included with ‘#include "file"’. System header files in-
cluded with ‘#include <file>’ are omitted.

-MD Like ‘-M’ but the dependency information is written to a file
made by replacing ".c" with ".d" at the end of the input file
names. This is in addition to compiling the file as specified—
‘-MD’ does not inhibit ordinary compilation the way ‘-M’ does.
In Mach, you can use the utility md to merge multiple depen-
dency files into a single dependency file suitable for using
with the ‘make’ command.

-MMD Like ‘-MD’ except mention only user header files, not system
header files.

-MG Treat missing header files as generated files and assume they
live in the same directory as the source file. If you specify
‘-MG’, you must also specify either ‘-M’ or ‘-MM’. ‘-MG’ is not
supported with ‘-MD’ or ‘-MMD’.

-H Print the name of each header file used, in addition to other
normal activities.

60 10 July 1995

Chapter 4: GNU CC Command Options

-Aquestion(answer)
Assert the answer answer for question, in case it is
tested with a preprocessing conditional such as ‘#if #ques-
tion(answer)’. ‘-A-’ disables the standard assertions that
normally describe the target machine.

-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn
Define macro macro as defn. All instances of ‘-D’ on the
command line are processed before any ‘-U’ options.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’
options, but before any ‘-include’ and ‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro defi-
nitions that are in effect at the end of preprocessing. Used
with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the
output, in their proper sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are
omitted. Only ‘#define name’ is included in the output.

-trigraphs
Support ANSI C trigraphs. The ‘-ansi’ option also has this
effect.

-Wp,option
Pass option as an option to the preprocessor. If option con-
tains commas, it is split into multiple options at the commas.

4.10 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

4.11 Options for Linking

These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is not
doing a link step.

c y g n u s s u p p o r t 61

Using GNU CC

object-file-name
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the
file contents.) If linking is done, these object files are used as
input to the linker.

-c
-S
-E If any of these options is used, then the linker is not run,

and object file names should not be used as arguments. See
Section 4.2 “Overall Options,” page 28.

-llibrary
Search the library named library when linking.
It makes a difference where in the command you write this
option; the linker searches processes libraries and object
files in the order they are specified. Thus, ‘foo.o -lz bar.o’
searches library ‘z’ after file ‘foo.o’ but before ‘bar.o’. If
‘bar.o’ refers to functions in ‘z’, those functions may not be
loaded.
The linker searches a standard list of directories for the li-
brary, which is actually a file named ‘liblibrary.a’. The
linker then uses this file as if it had been specified precisely
by name.
The directories searched include several standard system
directories plus any that you specify with ‘-L’.
Normally the files found this way are library files—archive
files whose members are object files. The linker handles an
archive file by scanning through it for members which define
symbols that have so far been referenced but not defined. But
if the file that is found is an ordinary object file, it is linked
in the usual fashion. The only difference between using an
‘-l’ option and specifying a file name is that ‘-l’ surrounds
library with ‘lib’ and ‘.a’ and searches several directories.

-lobjc You need this special case of the ‘-l’ option in order to link
an Objective C program.

-nostartfiles
Do not use the standard system startup files when linking.
The standard libraries are used normally.

-nostdlib
Do not use the standard system libraries and startup files
when linking. Only the files you specify will be passed to the
linker.

62 10 July 1995

Chapter 4: GNU CC Command Options

One of the standard libraries bypassed by ‘-nostdlib’ is
‘libgcc.a’, a library of internal subroutines that GNU CC
uses to overcome shortcomings of particular machines, or
special needs for some languages. (See section “Interfacing
to GNU CC Output” in Porting GNU CC, for more discus-
sion of ‘libgcc.a’.) In most cases, you need ‘libgcc.a’ even
when you want to avoid other standard libraries. In other
words, when you specify ‘-nostdlib’ you should usually spec-
ify ‘-lgcc’ as well. This ensures that you have no unresolved
references to internal GNU CC library subroutines. (For
example, ‘__main’, used to ensure C++ constructors will be
called; see Section 5.6 “collect2,” page 137.)

-s Remove all symbol table and relocation information from the
executable.

-static On systems that support dynamic linking, this prevents link-
ing with the shared libraries. On other systems, this option
has no effect.

-shared Produce a shared object which can then be linked with other
objects to form an executable. Only a few systems support
this option.

-symbolic
Bind references to global symbols when building a shared ob-
ject. Warn about any unresolved references (unless overrid-
den by the link editor option ‘-Xlinker -z -Xlinker defs’).
Only a few systems support this option.

-Xlinker option
Pass option as an option to the linker. You can use this to
supply system-specific linker options which GNU CC does
not know how to recognize.
If you want to pass an option that takes an argument, you
must use ‘-Xlinker’ twice, once for the option and once for
the argument. For example, to pass ‘-assert definitions’,
you must write ‘-Xlinker -assert -Xlinker definitions’.
It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument,
which is not what the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas.

-u symbol
Pretend the symbol symbol is undefined, to force linking of
library modules to define it. You can use ‘-u’ multiple times

c y g n u s s u p p o r t 63

Using GNU CC

with different symbols to force loading of additional library
modules.

4.12 Options for Directory Search

These options specify directories to search for header files, for li-
braries and for parts of the compiler:

-Idir Append directory dir to the list of directories searched for
include files.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’
option are searched only for the case of ‘#include "file"’;
they are not searched for ‘#include <file>’.
If additional directories are specified with ‘-I’ options after
the ‘-I-’, these directories are searched for all ‘#include’
directives. (Ordinarily all ‘-I’ directories are used this way.)
In addition, the ‘-I-’ option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for ‘#include "file"’. There is no way to
override this effect of ‘-I-’. With ‘-I.’ you can specify search-
ing the directory which was current when the compiler was
invoked. That is not exactly the same as what the preproces-
sor does by default, but it is often satisfactory.
‘-I-’ does not inhibit the use of the standard system direc-
tories for header files. Thus, ‘-I-’ and ‘-nostdinc’ are inde-
pendent.

-Ldir Add directory dir to the list of directories to be searched for
‘-l’.

-Bprefix This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.
The compiler driver program runs one or more of the sub-
programs ‘cpp’, ‘cc1’, ‘as’ and ‘ld’. It tries prefix as a pre-
fix for each program it tries to run, both with and with-
out ‘machine/version/’ (see Section 4.13 “Target Options,”
page 65).
For each subprogram to be run, the compiler driver first
tries the ‘-B’ prefix, if any. If that name is not found, or if
‘-B’ was not specified, the driver tries two standard prefixes,
which are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc-lib/’.
If neither of those results in a file name that is found, the un-
modified program name is searched for using the directories
specified in your ‘PATH’ environment variable.

64 10 July 1995

Chapter 4: GNU CC Command Options

‘-B’ prefixes that effectively specify directory names also ap-
ply to libraries in the linker, because the compiler translates
these options into ‘-L’ options for the linker. They also ap-
ply to includes files in the preprocessor, because the compiler
translates these options into ‘-isystem’ options for the pre-
processor. In this case, the compiler appends ‘include’ to the
prefix.
The run-time support file ‘libgcc.a’ can also be searched for
using the ‘-B’ prefix, if needed. If it is not found there, the
two standard prefixes above are tried, and that is all. The
file is left out of the link if it is not found by those means.
Another way to specify a prefix much like the ‘-B’ prefix is
to use the environment variable GCC_EXEC_PREFIX. See Sec-
tion 4.16 “Environment Variables,” page 98.

4.13 Specifying Target Machine and Compiler
Version

By default, GNU CC compiles code for the same type of machine that
you are using. However, it can also be installed as a cross-compiler,
to compile for some other type of machine. In fact, several different
configurations of GNU CC, for different target machines, can be installed
side by side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GNU CC can be installed
side by side. One of them (probably the newest) will be the default, but
you may sometimes wish to use another.

-b machine
The argument machine specifies the target machine for com-
pilation. This is useful when you have installed GNU CC as
a cross-compiler.
The value to use for machine is the same as was specified
as the machine type when configuring GNU CC as a cross-
compiler. For example, if a cross-compiler was configured
with ‘configure i386v’, meaning to compile for an 80386
running System V, then you would specify ‘-b i386v’ to run
that cross compiler.
When you do not specify ‘-b’, it normally means to compile
for the same type of machine that you are using.

-V version
The argument version specifies which version of GNU CC
to run. This is useful when multiple versions are installed.

c y g n u s s u p p o r t 65

Using GNU CC

For example, version might be ‘2.0’, meaning to run GNU
CC version 2.0.
The default version, when you do not specify ‘-V’, is controlled
by the way GNU CC is installed. Normally, it will be a version
that is recommended for general use.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file
name used for the executable files and libraries used for compilation. A
given version of GNU CC, for a given target machine, is normally kept
in the directory ‘/usr/local/lib/gcc-lib/machine/version’.

Thus, sites can customize the effect of ‘-b’ or ‘-V’ either by changing
the names of these directories or adding alternate names (or symbolic
links). If in directory ‘/usr/local/lib/gcc-lib/’ the file ‘80386’ is a
link to the file ‘i386v’, then ‘-b 80386’ becomes an alias for ‘-b i386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different
compiler: the top-level driver program gcc that you originally invoked
continues to run and invoke the other executables (preprocessor, com-
piler per se, assembler and linker) that do the real work. However, since
no real work is done in the driver program, it usually does not matter
that the driver program in use is not the one for the specified target and
version.

The only way that the driver program depends on the target machine
is in the parsing and handling of special machine-specific options. How-
ever, this is controlled by a file which is found, along with the other ex-
ecutables, in the directory for the specified version and target machine.
As a result, a single installed driver program adapts to any specified
target machine and compiler version.

The driver program executable does control one significant thing,
however: the default version and target machine. Therefore, you can
install different instances of the driver program, compiled for different
targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and
that for version 2.1 is installed as gcc, then the command gcc will use
version 2.1 by default, while ogcc will use 2.0 by default. However, you
can choose either version with either command with the ‘-V’ option.

4.14 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among
different installed compilers for completely different target machines,
such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own spe-
cial options, starting with ‘-m’, to choose among various hardware models

66 10 July 1995

Chapter 4: GNU CC Command Options

or configurations—for example, 68010 vs 68020, floating coprocessor or
none. A single installed version of the compiler can compile for any
model or configuration, according to the options specified.

Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same plat-
form.

4.14.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default
values for these options depends on which style of 68000 was selected
when the compiler was configured; the defaults for the most common
choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the

compiler is configured for 68000-based systems.

-m68020
-mc68020 Generate output for a 68020. This is the default when the

compiler is configured for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating
point. This is the default for most 68020 systems unless
‘-nfp’ was specified when the compiler was configured.

-m68030 Generate output for a 68030. This is the default when the
compiler is configured for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the
compiler is configured for 68040-based systems.
This option inhibits the use of 68881/68882 instructions that
have to be emulated by software on the 68040. If your
68040 does not have code to emulate those instructions, use
‘-m68040’.

-m68020-40
Generate output for a 68040, without using any of the new
instructions. This results in code which can run relatively
efficiently on either a 68020/68881 or a 68030 or a 68040.
The generated code does use the 68881 instructions that are
emulated on the 68040.

-mfpa Generate output containing Sun FPA instructions for floating
point.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all

c y g n u s s u p p o r t 67

Using GNU CC

m68k targets. Normally the facilities of the machine’s usual
C compiler are used, but this can’t be done directly in cross-
compilation. You must make your own arrangements to pro-
vide suitable library functions for cross-compilation. The
embedded targets ‘m68k-*-aout’ and ‘m68k-*-coff’ do pro-
vide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’ option
implies ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies
‘-mbitfield’. This is the default if you use a configuration
designed for a 68020.

-mrtd Use a different function-calling convention, in which func-
tions that take a fixed number of arguments return with the
rtd instruction, which pops their arguments while return-
ing. This saves one instruction in the caller since there is no
need to pop the arguments there.
This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including printf);
otherwise incorrect code will be generated for calls to those
functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra argu-
ments are harmlessly ignored.)
The rtd instruction is supported by the 68010 and 68020
processors, but not by the 68000.

4.14.2 VAX Options

These ‘-m’ options are defined for the Vax:

-munix Do not output certain jump instructions (aobleq and so on)
that the Unix assembler for the Vax cannot handle across
long ranges.

-mgnu Do output those jump instructions, on the assumption that
you will assemble with the GNU assembler.

68 10 July 1995

Chapter 4: GNU CC Command Options

-mg Output code for g-format floating point numbers instead of
d-format.

4.14.3 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global reg-
isters 2 through 4, which the SPARC SVR4 ABI reserves for
applications. This is the default.
To be fully SVR4 ABI compliant at the cost of some per-
formance loss, specify ‘-mno-app-regs’. You should compile
libraries and system software with this option.

-mfpu
-mhard-float

Generate output containing floating point instructions. This
is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
SPARC targets. Normally the facilities of the machine’s
usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements
to provide suitable library functions for cross-compilation.
The embedded targets ‘sparc-*-aout’ and ‘sparclite-*-*’
do provide software floating point support.
‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating
point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long
double) floating point instructions. The functions called are
those specified in the SPARC ABI. This is the default.

c y g n u s s u p p o r t 69

Using GNU CC

As of this writing, there are no sparc implementations that
have hardware support for the quad-word floating point in-
structions. They all invoke a trap handler for one of these
instructions, and then the trap handler emulates the effect of
the instruction. Because of the trap handler overhead, this
is much slower than calling the ABI library routines. Thus
the ‘-msoft-quad-float’ option is the default.

-mno-epilogue
-mepilogue

With ‘-mepilogue’ (the default), the compiler always emits
code for function exit at the end of each function. Any func-
tion exit in the middle of the function (such as a return state-
ment in C) will generate a jump to the exit code at the end of
the function.
With ‘-mno-epilogue’, the compiler tries to emit exit code
inline at every function exit.

-mno-flat
-mflat With ‘-mflat’, the compiler does not generate save/restore

instructions and will use a "flat" or single register window
calling convention. This model uses %i7 as the frame pointer
and is compatible with the normal register window model.
Code from either may be intermixed although debugger sup-
port is still incomplete. The local registers and the input
registers (0-5) are still treated as "call saved" registers and
will be saved on the stack as necessary.
With ‘-mno-flat’ (the default), the compiler emits
save/restore instructions (except for leaf functions) and is
the normal mode of operation.

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the
default.
With ‘-munaligned-doubles’, GNU CC assumes that dou-
bles have 8 byte alignment only if they are contained in an-
other type, or if they have an absolute address. Otherwise, it
assumes they have 4 byte alignment. Specifying this option
avoids some rare compatibility problems with code generated
by other compilers. It is not the default because it results in
a performance loss, especially for floating point code.

-mv8
-msparclite

These two options select variations on the SPARC architec-
ture.

70 10 July 1995

Chapter 4: GNU CC Command Options

By default (unless specifically configured for the Fujitsu
SPARClite), GCC generates code for the v7 variant of the
SPARC architecture.
‘-mv8’ will give you SPARC v8 code. The only difference from
v7 code is that the compiler emits the integer multiply and
integer divide instructions which exist in SPARC v8 but not
in SPARC v7.
‘-msparclite’ will give you SPARClite code. This adds the
integer multiply, integer divide step and scan (ffs) instruc-
tions which exist in SPARClite but not in SPARC v7.

-mcypress
-msupersparc

These two options select the processor for which the code is
optimised.
With ‘-mcypress’ (the default), the compiler optimizes code
for the Cypress CY7C602 chip, as used in the SparcSta-
tion/SparcServer 3xx series. This is also apropriate for the
older SparcStation 1, 2, IPX etc.
With ‘-msupersparc’ the compiler optimizes code for the Su-
perSparc cpu, as used in the SparcStation 10, 1000 and 2000
series. This flag also enables use of the full SPARC v8 in-
struction set.

In a future version of GCC, these options will very likely be renamed
to ‘-mcpu=cypress’ and ‘-mcpu=supersparc’.

These ‘-m’ switches are supported in addition to the above on SPARC
V9 processors:

-mmedlow Generate code for the Medium/Low code model: assume a 32
bit address space. Programs are statically linked, PIC is not
supported. Pointers are still 64 bits.
It is very likely that a future version of GCC will rename this
option.

-mmedany Generate code for the Medium/Anywhere code model: as-
sume a 32 bit text segment starting at offset 0, and a 32 bit
data segment starting anywhere (determined at link time).
Programs are statically linked, PIC is not supported. Point-
ers are still 64 bits.
It is very likely that a future version of GCC will rename this
option.

-mint64 Types long and int are 64 bits.

-mlong32 Types long and int are 32 bits.

c y g n u s s u p p o r t 71

Using GNU CC

-mlong64
-mint32 Type long is 64 bits, and type int is 32 bits.

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GNU CC assumes that the stack
pointer, and frame pointer if present, are offset by -2047
which must be added back when making stack frame refer-
ences. Otherwise, assume no such offset is present.

4.14.4 Convex Options

These ‘-m’ options are defined for Convex:

-mc1 Generate output for C1. The code will run on any Convex
machine. The preprocessor symbol __convex__c1__ is de-
fined.

-mc2 Generate output for C2. Uses instructions not available on
C1. Scheduling and other optimizations are chosen for max
performance on C2. The preprocessor symbol __convex_c2_
_ is defined.

-mc32 Generate output for C32xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C32. The preprocessor symbol __
convex_c32__ is defined.

-mc34 Generate output for C34xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C34. The preprocessor symbol __
convex_c34__ is defined.

-mc38 Generate output for C38xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C38. The preprocessor symbol __
convex_c38__ is defined.

-margcount
Generate code which puts an argument count in the word
preceding each argument list. This is compatible with reg-
ular CC, and a few programs may need the argument count
word. GDB and other source-level debuggers do not need it;
this info is in the symbol table.

-mnoargcount
Omit the argument count word. This is the default.

-mvolatile-cache
Allow volatile references to be cached. This is the default.

72 10 July 1995

Chapter 4: GNU CC Command Options

-mvolatile-nocache
Volatile references bypass the data cache, going all the way
to memory. This is only needed for multi-processor code that
does not use standard synchronization instructions. Making
non-volatile references to volatile locations will not necessar-
ily work.

-mlong32 Type long is 32 bits, the same as type int. This is the default.

-mlong64 Type long is 64 bits, the same as type long long. This option
is useless, because no library support exists for it.

4.14.5 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

-mdw Generate code that assumes the DW bit is set, i.e.,
that byte and halfword operations are directly supported by
the hardware. This is the default.

-mndw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports
byte and halfword write operations. This is the default.

-mnbw Generate code that assumes the systems does not
support byte and halfword write operations. ‘-mnbw’ implies
‘-mndw’.

-msmall Use a small memory model that assumes
that all function addresses are either within a single 256 KB
segment or at an absolute address of less than 256k. This
allows the call instruction to be used instead of a const,
consth, calli sequence.

-mnormal Use the normal memory model: Generate call
instructions only when calling functions in the same file and
calli instructions otherwise. This works if each file occupies
less than 256 KB but allows the entire executable to be larger
than 256 KB. This is the default.

-mlarge Always use calli instructions. Specify this option if you
expect a single file to compile into more than 256 KB of code.

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers
Generate references to registers gr64-gr95 instead of to reg-
isters gr96-gr127. This option can be used when compiling

c y g n u s s u p p o r t 73

Using GNU CC

kernel code that wants a set of global registers disjoint from
that used by user-mode code.
Note that when this option is used, register names in ‘-f’
flags must use the normal, user-mode, names.

-muser-registers
Use the normal set of global registers, gr96-gr127. This is
the default.

-mstack-check
-mno-stack-check

Insert (or do not insert) a call to __msp_checkafter each stack
adjustment. This is often used for kernel code.

-mstorem-bug
-mno-storem-bug

‘-mstorem-bug’ handles 29k processors which cannot handle
the separation of a mtsrim insn and a storem instruction
(most 29000 chips to date, but not the 29050).

-mno-reuse-arg-regs
-mreuse-arg-regs

‘-mno-reuse-arg-regs’ tells the compiler to only use incom-
ing argument registers for copying out arguments. This
helps detect calling a function with fewer arguments than
it was declared with.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.

4.14.6 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM)
architectures:

-m2
-m3 These options are identical. Generate code for

the ARM2 and ARM3 processors. This option is the default.
You should also use this option to generate code for ARM6
processors that are running with a 26-bit program counter.

-m6 Generate code for the ARM6 processor when running
with a 32-bit program counter.

74 10 July 1995

Chapter 4: GNU CC Command Options

-mapcs Generate a stack frame that is compliant with the
ARM Proceedure Call Standard for all functions, even if this
is not strictly necessary for correct execution of the code.

-mbsd This option only applies to RISC iX. Emulate the
native BSD-mode compiler. This is the default if ‘-ansi’ is
not specified.

-mxopen This option only applies to RISC iX. Emulate the
native X/Open-mode compiler.

-mno-symrename
This option only applies to RISC iX. Do not run the assembler
post-processor, ‘symrename’, after code has been assembled.
Normally it is necessary to modify some of the standard sym-
bols in preparation for linking with the RISC iX C library;
this option suppresses this pass. The post-processor is never
run when the compiler is built for cross-compilation.

4.14.7 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100
and the m88110.

-m88100 Generate code that works best for the m88100, but
that also runs on the m88110.

-m88110 Generate code that works best for the m88110, and
may not run on the m88100.

-mbig-pic
Obsolete option to be removed from the next revision. Use
‘-fPIC’.

-midentify-revision
Include an ident directive in the assembler output recording
the source file name, compiler name and version, timestamp,
and compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an
underscore character at the beginning of each name. The
default is to use an underscore as prefix on each name.

-mocs-debug-info
-mno-ocs-debug-info

Include (or omit) additional debugging information (about
registers used in each stack frame) as specified in the 88open

c y g n u s s u p p o r t 75

Using GNU CC

Object Compatibility Standard, “OCS”. This extra informa-
tion allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88
SVr3.2 is to include this information; other 88k configura-
tions omit this information by default.

-mocs-frame-position
When emitting COFF debugging information for automatic
variables and parameters stored on the stack, use the
offset from the canonical frame address, which is the
stack pointer (register 31) on entry to the function. The
DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use
‘-mocs-frame-position’; other 88k configurations have the
default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic
variables and parameters stored on the stack, use the offset
from the frame pointer register (register 30). When this
option is in effect, the frame pointer is not eliminated when
debugging information is selected by the -g switch.

-moptimize-arg-area
-mno-optimize-arg-area

Control how function arguments are stored in stack frames.
‘-moptimize-arg-area’ saves space by optimizing them, but
this conflicts with the 88open specifications. The opposite
alternative, ‘-mno-optimize-arg-area’, agrees with 88open
standards. By default GNU CC does not optimize the argu-
ment area.

-mshort-data-num
Generate smaller data references by making them relative
to r0, which allows loading a value using a single instruction
(rather than the usual two). You control which data refer-
ences are affected by specifying num with this option. For
example, if you specify ‘-mshort-data-512’, then the data
references affected are those involving displacements of less
than 512 bytes. ‘-mshort-data-num’ is not effective for num
greater than 64k.

-mserialize-volatile
-mno-serialize-volatile

Do, or don’t, generate code to guarantee sequential consis-
tency of volatile memory references. By default, consistency
is guaranteed.
The order of memory references made by the MC88110 pro-
cessor does not always match the order of the instructions

76 10 July 1995

Chapter 4: GNU CC Command Options

requesting those references. In particular, a load instruc-
tion may execute before a preceding store instruction. Such
reordering violates sequential consistency of volatile mem-
ory references, when there are multiple processors. When
consistency must be guaranteed, GNU C generates special
instructions, as needed, to force execution in the proper or-
der.
The MC88100 processor does not reorder memory references
and so always provides sequential consistency. However, by
default, GNU C generates the special instructions to guar-
antee consistency even when you use ‘-m88100’, so that the
code may be run on an MC88110 processor. If you intend to
run your code only on the MC88100 processor, you may use
‘-mno-serialize-volatile’.
The extra code generated to guarantee consistency may
affect the performance of your application. If you know
that you can safely forgo this guarantee, you may use
‘-mno-serialize-volatile’.

-msvr4
-msvr3 Turn on (‘-msvr4’) or off

(‘-msvr3’) compiler extensions related to System V release 4
(SVr4). This controls the following:
1. Which variant of the assembler syntax to emit.
2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma

weak’ that is used on System V release 4.
3. ‘-msvr4’ makes GNU CC issue additional declaration di-

rectives used in SVr4.

‘-msvr4’ is the default for the m88k-motorola-sysv4 and
m88k-dg-dgux m88k configurations. ‘-msvr3’ is the default
for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.

-mno-check-zero-division
-mcheck-zero-division

Do, or don’t, generate code to guarantee that integer division
by zero will be detected. By default, detection is guaranteed.
Some models of the MC88100 processor fail to trap upon
integer division by zero under certain conditions. By default,
when compiling code that might be run on such a processor,
GNU C generates code that explicitly checks for zero-valued
divisors and traps with exception number 503 when one is

c y g n u s s u p p o r t 77

Using GNU CC

detected. Use of mno-check-zero-division suppresses such
checking for code generated to run on an MC88100 processor.
GNU C assumes that the MC88110 processor correctly
detects all instances of integer division by zero. When
‘-m88110’ is specified, both ‘-mcheck-zero-division’ and
‘-mno-check-zero-division’ are ignored, and no explicit
checks for zero-valued divisors are generated.

-muse-div-instruction
Use the div instruction for signed integer division on the
MC88100 processor. By default, the div instruction is not
used.
On the MC88100 processor the signed integer division in-
struction div) traps to the operating system on a negative
operand. The operating system transparently completes the
operation, but at a large cost in execution time. By default,
when compiling code that might be run on an MC88100 pro-
cessor, GNU C emulates signed integer division using the
unsigned integer division instruction divu), thereby avoid-
ing the large penalty of a trap to the operating system. Such
emulation has its own, smaller, execution cost in both time
and space. To the extent that your code’s important signed
integer division operations are performed on two nonnega-
tive operands, it may be desirable to use the div instruction
directly.
On the MC88110 processor the div instruction (also known
as the divs instruction) processes negative operands with-
out trapping to the operating system. When ‘-m88110’ is
specified, ‘-muse-div-instruction’ is ignored, and the div
instruction is used for signed integer division.
Note that the result of dividing INT MIN by -1 is undefined.
In particular, the behavior of such a division with and with-
out ‘-muse-div-instruction’ may differ.

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respec-
tively, trap such shifts or emit code to handle them properly.
By default GNU CC makes no special provision for large bit
shifts.

-mwarn-passed-structs
Warn when a function passes a struct as an argument or
result. Structure-passing conventions have changed during
the evolution of the C language, and are often the source of

78 10 July 1995

Chapter 4: GNU CC Command Options

portability problems. By default, GNU CC issues no such
warning.

4.14.8 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt

GNU CC supports two related instruction set architectures
for the RS/6000 and PowerPC. The POWER instruction set
are those instructions supported by the ‘rios’ chip set used in
the original RS/6000 systems and the PowerPC instruction
set is the architecture of the Motorola MPC6xx microproces-
sors. The PowerPC architecture defines 64-bit instructions,
but they are not supported by any current processors.
Neither architecture is a subset of the other. However there
is a large common subset of instructions supported by both.
An MQ register is included in processors supporting the
POWER architecture.
You use these options to specify which instructions are avail-
able on the processor you are using. The default value
of these options is determined when configuring GNU CC.
Specifying the ‘-mcpu=cpu_type’ overrides the specification
of these options. We recommend you use that option rather
than these.
The ‘-mpower’ option allows GNU CC to generate instructions
that are found only in the POWER architecture and to use the
MQ register. Specifying ‘-mpower2’ implies ‘-power’ and also
allows GNU CC to generate instructions that are present
in the POWER2 architecture but not the original POWER
architecture.
The ‘-mpowerpc’ option allows GNU CC to generate in-
structions that are found only in the 32-bit subset of the
PowerPC architecture. Specifying ‘-mpowerpc-gpopt’ im-
plies ‘-mpowerpc’ and also allows GNU CC to use the op-

c y g n u s s u p p o r t 79

Using GNU CC

tional PowerPC architecture instructions in the General Pur-
pose group, including floating-point square root. Specify-
ing ‘-mpowerpc-gfxopt’ implies ‘-mpowerpc’ and also allows
GNU CC to use the optional PowerPC architecture instruc-
tions in the Graphics group, including floating-point select.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GNU
CC will use only the instructions in the common subset
of both architectures plus some special AIX common-mode
calls, and will not use the MQ register. Specifying both
‘-mpower’ and ‘-mpowerpc’ permits GNU CC to use any in-
struction from either architecture and to allow use of the
MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler
code. ‘-mnew-mnemonics’ requests output that uses the as-
sembler mnemonics defined for the PowerPC architecture,
while ‘-mold-mnemonics’ requests the assembler mnemonics
defined for the POWER architecture. Instructions defined
in only one architecture have only one mnemonic; GNU CC
uses that mnemonic irrespective of which of thse options is
specified.

PowerPC assemblers support both the old and new mnemon-
ics, as will later POWER assemblers. Current POWER
assemblers only support the old mnemonics. Specify
‘-mnew-mnemonics’ if you have an assembler that supports
them, otherwise specify ‘-mold-mnemonics’.

The default value of these options depends on how GNU
CC was configured. Specifing ‘-mcpu=cpu_type’ sometimes
overrides the value of these option. Unless you are build-
ing a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead
accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemon-
ics, and instruction scheduling parameters for machine type
cpu_type. By default, cpu_type is the target system de-
fined when GNU CC was configured. Supported values
for cpu_type are ‘rios1’, ‘rios2’, ‘rsc’, ‘601’, ‘603’, ‘604’,
‘power’, ‘powerpc’, ‘403’, and ‘common’. ‘-mcpu=power’ and
‘-mcpu=powerpc’ specify generic POWER and pure PowerPC
(i.e., not MPC601) architecture machine types, with an ap-

80 10 July 1995

Chapter 4: GNU CC Command Options

propriate, generic processor model assumed for scheduling
purposes.

Specifying ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’, or
‘-mcpu=power’ enables the ‘-mpower’ option and disables
the ‘-mpowerpc’ option; ‘-mcpu=601’ enables both the
‘-mpower’ and ‘-mpowerpc’ options; ‘-mcpu=603’, ‘-mcpu=604’,
‘-mcpu=403’, and ‘-mcpu=powerpc’ enable the ‘-mpowerpc’
option and disable the ‘-mpower’ option; ‘-mcpu=common’ dis-
ables both the ‘-mpower’ and ‘-mpowerpc’ options.

To generate code that will operate on all members of the
RS/6000 and PowerPC families, specify ‘-mcpu=common’. In
that case, GNU CC will use only the instructions in the
common subset of both architectures plus some special AIX
common-mode calls, and will not use the MQ register. GNU
CC assumes a generic processor model for scheduling pur-
poses.

Specifying ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’, or
‘-mcpu=power’ also disables the ‘new-mnemonics’ option.
Specifying ‘-mcpu=601’, ‘-mcpu=603’, ‘-mcpu=604’, ‘403’, or
‘-mcpu=powerpc’ also enables the ‘new-mnemonics’ option.

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is
created for every executable file. The ‘-mfull-toc’ option is
selected by default. In that case, GNU CC will allocate at
least one TOC entry for each unique non-automatic variable
reference in your program. GNU CC will also place floating-
point constants in the TOC. However, only 16,384 entries are
available in the TOC.

If you receive a linker error message that saying you have
overflowed the available TOC space, you can reduce the
amount of TOC space used with the ‘-mno-fp-in-toc’ and
‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents GNU
CC from putting floating-point constants in the TOC and
‘-mno-sum-in-toc’ forces GNU CC to generate code to cal-
culate the sum of an address and a constant at run-time
instead of putting that sum into the TOC. You may specify
one or both of these options. Each causes GNU CC to pro-
duce very slightly slower and larger code at the expense of
conserving TOC space.

c y g n u s s u p p o r t 81

Using GNU CC

If you still run out of space in the TOC even when you specify
both of these options, specify ‘-mminimal-toc’ instead. This
option causes GNU CC to make only one TOC entry for every
file. When you specify this option, GNU CC will produce code
that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that
contain less frequently executed code.

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point reg-
ister set. Software floating point emulation is provided if you
use the ‘-msoft-float’ option.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems,
and not generated on PowerPC system.

-mno-bit-align
-mbit-align

On embedded PowerPC systems do not (do) force structures
and unions that contain bit fields to be aligned to the base
type of the bit field.
For example, by default a structure containing nothing
but 8 unsigned bitfields of length 1 would be aligned to
a 4 byte boundary and have a size of 4 bytes. By using
‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align
-mstrict-align

On embedded PowerPC systems do not (do) assume that un-
aligned memory references will be handled by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows
(does not allow) the program to be relocated to a different
address at runtime.

-mno-traceback
-mtraceback

On embedded PowerPC systems do not (do) generate a trace-
back tag before the start of the function. This tag can be used
by the debugger to identify where the start of a function is.

82 10 July 1995

Chapter 4: GNU CC Command Options

4.14.9 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is
the default.

-mcall-lib-mul
Call lmul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the
minimum amount of scratch space recommended by IBM.
This is the default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data
blocks. This results in smaller code, but slower execution,
since scratch space must be allocated dynamically.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling
convention in which floating point arguments are passed in
floating point registers. Note that varargs.h and stdargs.h
will not work with floating point operands if this option is
specified.

-mfp-arg-in-gregs
Use the normal calling convention for floating point argu-
ments. This is the default.

-mhc-struct-return
Return structures of more than one word in memory,
rather than in a register. This provides compatibility
with the MetaWare HighC (hc) compiler. Use the option
‘-fpcc-struct-return’ for compatibility with the Portable
C Compiler (pcc).

-mnohc-struct-return
Return some structures of more than one word in regis-
ters, when convenient. This is the default. For com-
patibility with the IBM-supplied compilers, use the option
‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

4.14.10 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

c y g n u s s u p p o r t 83

Using GNU CC

-mcpu=cpu type
Assume the defaults for the machine type cpu type when
scheduling instructions. The choices for cpu type are
‘r2000’, ‘r3000’, ‘r4000’, ‘r4400’, ‘r4600’, and ‘r6000’. While
picking a specific cpu type will schedule things appropri-
ately for that particular chip, the compiler will not generate
any code that does not meet level 1 of the MIPS ISA (in-
struction set architecture) without the ‘-mips2’ or ‘-mips3’
switches being used.

-mips1 Issue instructions from level 1 of the MIPS ISA. This is the
default. ‘r3000’ is the default cpu type at this ISA level.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely,
square root instructions). ‘r6000’ is the default cpu type at
this ISA level.

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit in-
structions). ‘r4000’ is the default cpu type at this ISA level.
This option does not change the sizes of any of the C data
types.

-mfp32 Assume that 32 32-bit floating point registers are available.
This is the default.

-mfp64 Assume that 32 64-bit floating point registers are available.
This is the default when the ‘-mips3’ option is used.

-mgp32 Assume that 32 32-bit general purpose registers are avail-
able. This is the default.

-mgp64 Assume that 32 64-bit general purpose registers are avail-
able. This is the default when the ‘-mips3’ option is used.

-mint64 Types long, int, and pointer are 64 bits. This works only if
‘-mips3’ is also specified.

-mlong64 Types long and pointer are 64 bits, and type int is 32 bits.
This works only if ‘-mips3’ is also specified.

-mmips-as
Generate code for the MIPS assembler, and invoke
‘mips-tfile’ to add normal debug information. This is the
default for all platforms except for the OSF/1 reference plat-
form, using the OSF/rose object format. If the either of the
‘-gstabs’ or ‘-gstabs+’ switches are used, the ‘mips-tfile’
program will encapsulate the stabs within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default
on the OSF/1 reference platform, using the OSF/rose object
format.

84 10 July 1995

Chapter 4: GNU CC Command Options

-mrnames
-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS
software names for the registers, instead of the hardware
names (ie, a0 instead of $4). The only known assembler that
supports this option is the Algorithmics assembler.

-mgpopt
-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations
before the instructions in the text section, this allows the
MIPS assembler to generate one word memory references
instead of using two words for short global or static data
items. This is on by default if optimization is selected.

-mstats
-mno-stats

For each non-inline function processed, the ‘-mstats’ switch
causes the compiler to emit one line to the standard error file
to print statistics about the program (number of registers
saved, stack size, etc.).

-mmemcpy
-mno-memcpy

The ‘-mmemcpy’ switch makes all block moves call the appro-
priate string function (‘memcpy’ or ‘bcopy’) instead of possibly
generating inline code.

-mmips-tfile
-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not post-
process the object file with the ‘mips-tfile’ program, after
the MIPS assembler has generated it to add debug support.
If ‘mips-tfile’ is not run, then no local variables will be
available to the debugger. In addition, ‘stage2’ and ‘stage3’
objects will have the temporary file names passed to the as-
sembler embedded in the object file, which means the objects
will not compare the same. The ‘-mno-mips-tfile’ switch
should only be used when there are bugs in the ‘mips-tfile’
program that prevents compilation.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.

c y g n u s s u p p o r t 85

Using GNU CC

-mhard-float
Generate output containing floating point instructions. This
is the default if you use the unmodified sources.

-mabicalls
-mno-abicalls

Emit (or do not emit) the pseudo operations ‘.abicalls’,
‘.cpload’, and ‘.cprestore’ that some System V.4 ports use
for position independent code.

-mlong-calls
-mno-long-calls

Do all calls with the ‘JALR’ instruction, which requires load-
ing up a function’s address into a register before the call. You
need to use this switch, if you call outside of the current 512
megabyte segment to functions that are not through point-
ers.

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and
load them up, rather than put the references in the text
section.

-membedded-pic
-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All
calls are made using PC relative address, and all data is
addressed using the $gp register. This requires GNU as and
GNU ld which do most of the work.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possi-
ble, then next in the small data section if possible, otherwise
in data. This gives slightly slower code than the default, but
reduces the amount of RAM required when executing, and
thus may be preferred for some embedded systems.

-msingle-float
-mdouble-float

The ‘-msingle-float’ switch tells gcc to assume that the
floating point coprocessor only supports single precision op-
erations, as on the ‘r4650’ chip. The ‘-mdouble-float’ switch
permits gcc to use double precision operations. This is the
default.

-mmad

86 10 July 1995

Chapter 4: GNU CC Command Options

-mno-mad Permit use of the ‘mad’, ‘madu’ and ‘mul’ instructions, as on
the ‘r4650’ chip.

-m4650 Turns on ‘-msingle-float’, ‘-mmad’, and, at least for now,
‘-mcpu=r4650’.

-G num Put global and static items less than or equal
to num bytes into the small data or bss sections instead of the
normal data or bss section. This allows the assembler to emit
one word memory reference instructions based on the global
pointer (gp or $28), instead of the normal two words used.
By default, num is 8 when the MIPS assembler is used, and
0 when the GNU assembler is used. The ‘-G num’ switch is
also passed to the assembler and linker. All modules should
be compiled with the same ‘-G num’ value.

-nocpp Tell the MIPS assembler to not run it’s preprocessor over user
assembler files (with a ‘.s’ suffix) when assembling them.

4.14.11 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-m486
-mno-486 Control whether or not code is optimized for a 486 instead of

an 386. Code generated for an 486 will run on a 386 and vice
versa.

-mieee-fp
-m-no-ieee-fp

Control whether or not the compiler uses IEEE floating point
comparisons. These handle correctly the case where the re-
sult of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.
On machines where a function returns floating point results
in the 80387 register stack, some floating point opcodes may
be emitted even if ‘-msoft-float’ is used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

c y g n u s s u p p o r t 87

Using GNU CC

The usual calling convention has functions return values of
types float and double in an FPU register, even if there is no
FPU. The idea is that the operating system should emulate
an FPU.
The option ‘-mno-fp-ret-in-387’ causes such values to be
returned in ordinary CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt in-
structions for the 387. Specify this option to avoid generating
those instructions. This option is the default on FreeBSD. As
of revision 2.6.1, these instructions are not generated unless
you also use the ‘-ffast-math’ switch.

-msvr3-shlib
-mno-svr3-shlib

Control whether GNU CC places uninitialized locals into bss
or data. ‘-msvr3-shlib’ places these locals into bss. These
options are meaningful only on System V Release 3.

-mno-wide-multiply
-mwide-multiply

Control whether GNU CC uses the mul and imul that produce
64 bit results in eax:edx from 32 bit operands to do long long
multiplies and 32-bit division by constants.

-mreg-alloc=regs
Control the default allocation order of integer registers. The
string regs is a series of letters specifing a register. The
supported letters are: a allocate EAX; b allocate EBX; c al-
locate ECX; d allocate EDX; S allocate ESI; D allocate EDI; B
allocate EBP.

4.14.12 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-mpa-risc-1-0
Generate code for a PA 1.0 processor.

-mpa-risc-1-1
Generate code for a PA 1.1 processor.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump in-
structions by modifying the return pointer for the function
call to be the target of the conditional jump.

88 10 July 1995

Chapter 4: GNU CC Command Options

-mmillicode-long-calls
Generate code which assumes millicode routines can not
be reached by the standard millicode call sequence, linker-
generated long-calls, or linker-modified millicode calls. In
practice this should only be needed for dynamicly linked ex-
ecutables with extremely large SHLIB INFO sections.

-mdisable-fpregs
Prevent floating point registers from being used in any man-
ner. This is necessary for compiling kernels which perform
lazy context switching of floating point registers. If you use
this option and attempt to perform floating point operations,
the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes.
This avoids some rather obscure problems when compiling
MIG generated code under MACH.

-mfast-indirect-calls
Generate code which performs faster indirect calls. Such
code is suitable for kernels and for static linking. The fast in-
direct call code will fail miserably if it’s part of a dynamically
linked executable and in the presense of nested functions.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF
systems.

-mgas Enable the use of assembler directives only GAS under-
stands.

-mschedule=cpu type
Schedule code according to the constraints for the machine
type cpu type. The choices for cpu type are ‘700’ for 7n0 ma-
chines, ‘7100’ for 7n5 machines, and ‘7100’ for 7n2 machines.
‘700’ is the default for cpu type.
Note the ‘7100LC’ scheduling information is incomplete and
using ‘7100LC’ often leads to bad schedules. For now it’s
probably best to use ‘7100’ instead of ‘7100LC’ for the 7n2
machines.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
HPPA targets. Normally the facilities of the machine’s usual
C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to pro-

c y g n u s s u p p o r t 89

Using GNU CC

vide suitable library functions for cross-compilation. The em-
bedded target ‘hppa1.1-*-pro’ does provide software floating
point support.

‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

4.14.13 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu type
Assume the defaults for the machine type cpu type for some
of the other options, including instruction scheduling, float-
ing point support, and addressing modes. The choices for cpu
type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The default is
‘kb’.

-mnumerics
-msoft-float

The ‘-mnumerics’ option indicates that the processor does
support floating-point instructions. The ‘-msoft-float’ op-
tion indicates that floating-point support should not be as-
sumed.

-mleaf-procedures
-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable
with the bal instruction as well as call. This will result in
more efficient code for explicit calls when the bal instruction
can be substituted by the assembler or linker, but less effi-
cient code in other cases, such as calls via function pointers,
or using a linker that doesn’t support this optimization.

-mtail-call
-mno-tail-call

Do (or do not) make additional attempts (beyond those of the
machine-independent portions of the compiler) to optimize
tail-recursive calls into branches. You may not want to do
this because the detection of cases where this is not valid is
not totally complete. The default is ‘-mno-tail-call’.

90 10 July 1995

Chapter 4: GNU CC Command Options

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex ad-
dressing mode is a win on this implementation of the i960.
Complex addressing modes may not be worthwhile on the K-
series, but they definitely are on the C-series. The default is
currently ‘-mcomplex-addr’ for all processors except the CB
and CC.

-mcode-align
-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t
bother). Currently turned on by default for C-series imple-
mentations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align
-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align
Enable structure-alignment compatibility with Intel’s gcc re-
lease version 1.3 (based on gcc 1.37). Currently this is buggy
in that ‘#pragma align 1’ is always assumed as well, and
cannot be turned off.

4.14.14 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for
floating-point operations. When -msoft-float is specified,
functions in ‘libgcc1.c’ will be used to perform floating-
point operations. Unless they are replaced by routines that
emulate the floating-point operations, or compiled in such
a way as to call such emulations routines, these routines
will issue floating-point operations. If you are compiling for

c y g n u s s u p p o r t 91

Using GNU CC

an Alpha without floating-point operations, you must ensure
that the library is built so as not to call them.
Note that Alpha implementations without floating-point op-
erations are required to have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point
register set. -mno-fp-regs implies -msoft-float. If the
floating-point register set is not used, floating point operands
are passed in integer registers as if they were integers and
floating-point results are passed in $0 instead of $f0. This
is a non-standard calling sequence, so any function with a
floating-point argument or return value called by code com-
piled with -mno-fp-regs must also be compiled with that
option.
A typical use of this option is building a kernel that does not
use, and hence need not save and restore, any floating-point
registers.

4.14.15 Clipper Options

These ‘-m’ options are defined for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the de-
fault.

-mc400 Produce code for a C400 Clipper processor i.e. use floting
point registers f8..f15.

4.14.16 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possi-
ble; uses the linker option ‘-relax’. See section “ld and the
H8/300” in Using ld, for a fuller description.

-mh Generate code for the H8/300H.

4.14.17 Options for System V

These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:

-Qy Identify the versions of each tool used by the compiler, in a
.ident assembler directive in the output.

92 10 July 1995

Chapter 4: GNU CC Command Options

-Qn Refrain from adding .ident directives to the output file (this
is the default).

-YP,dirs Search the directories dirs, and no others, for libraries spec-
ified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The
assembler uses this option.

4.14.18 Zilog Z8000 Option

GNU CC recognizes one special option when configured to generate
code for the Z8000 family:

-mz8001 Generate code for the segmented variant of the Z8000 archi-
tecture. (Without this option, gcc generates unsegmented
Z8000 code; suitable, for example, for the Z8002.)

4.14.19 Options for the H8/500

These options control some compilation choices specific to the Hitachi
H8/500:

-mspace When a tradeoff is available between code size and speed,
generate smaller code.

-mspeed When a tradeoff is available between code size and speed,
generate faster code.

-mint32 Make int data 32 bits by default.
-mcode32 Compile code for a 32 bit address space.
-mdata32 Compile data for a 32 bit address space.
-mtiny Compile both data and code sections using the same 16-bit

address space.
-msmall Compile both data and code sections for 16-bit address

spaces, but use different link segments.
-mmedium Compile code for a 32-bit address space, but data for a 16-

bit address space. This is the same as specifying ‘-mcode32’
without ‘-mdata32’.

-mcompact
Compile data for a 32-bit address space, but code for a 16-
bit address space. This is the same as specifying ‘-mdata32’
without ‘-mcode32’.

-mbig Compile both data and code sections for 32-bit address
spaces. This is the same as specifying both ‘-mdata32’ and
‘-mcode32’.

c y g n u s s u p p o r t 93

Using GNU CC

4.15 Options for Code Generation Conventions

These machine-independent options control the interface conventions
used in code generation.

Most of them have both positive and negative forms; the negative
form of ‘-ffoo’ would be ‘-fno-foo’. In the table below, only one of the
forms is listed—the one which is not the default. You can figure out the
other form by either removing ‘no-’ or adding it.

-fpcc-struct-return
Return “short” struct and union values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallabil-
ity between GNU CC-compiled files and files compiled with
other compilers.
The precise convention for returning structures in memory
depends on the target configuration macros.
Short structures and unions are those whose size and align-
ment match that of some integer type.

-freg-struct-return
Use the convention that struct and union values are re-
turned in registers when possible. This is more efficient for
small structures than ‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor its contrary
‘-freg-struct-return’, GNU CC defaults to whichever con-
vention is standard for the target. If there is no standard
convention, GNU CC defaults to ‘-fpcc-struct-return’, ex-
cept on targets where GNU CC is the principal compiler. In
those cases, we can choose the standard, and we chose the
more efficient register return alternative.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for
the declared range of possible values. Specifically, the enum
type will be equivalent to the smallest integer type which
has enough room.

-fshort-double
Use the same size for double as for float.

-fshared-data
Requests that the data and non-const variables of this com-
pilation be shared data rather than private data. The distinc-
tion makes sense only on certain operating systems, where
shared data is shared between processes running the same
program, while private data exists in one copy per process.

94 10 July 1995

Chapter 4: GNU CC Command Options

-fno-common
Allocate even uninitialized global variables in the bss section
of the object file, rather than generating them as common
blocks. This has the effect that if the same variable is de-
clared (without extern) in two different compilations, you
will get an error when you link them. The only reason this
might be useful is if you wish to verify that the program will
work on other systems which always work this way.

-fno-ident
Ignore the ‘#ident’ directive.

-fno-gnu-linker
Do not output global initializations (such as C++ construc-
tors and destructors) in the form used by the GNU linker
(on systems where the GNU linker is the standard method
of handling them). Use this option when you want to use
a non-GNU linker, which also requires using the collect2
program to make sure the system linker includes construc-
tors and destructors. (collect2 is included in the GNU CC
distribution.) For systems which must use collect2, the
compiler driver gcc is configured to do this automatically.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else
that would cause trouble if the function is split in the mid-
dle, and the two halves are placed at locations far apart in
memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assem-
bly code to make it more readable. This option is generally
only of use to those who actually need to read the generated
assembly code (perhaps while debugging the compiler itself).

-fvolatile
Consider all memory references through pointers to be
volatile.

-fvolatile-global
Consider all memory references to extern and global data
items to be volatile.

-fpic Generate position-independent code (PIC)
suitable for use in a shared library, if supported for the target
machine. Such code accesses all constant addresses through
a global offset table (GOT). If the GOT size for the linked

c y g n u s s u p p o r t 95

Using GNU CC

executable exceeds a machine-specific maximum size, you
get an error message from the linker indicating that ‘-fpic’
does not work; in that case, recompile with ‘-fPIC’ instead.
(These maximums are 16k on the m88k, 8k on the Sparc, and
32k on the m68k and RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and
therefore works only on certain machines. For the 386,
GNU CC supports PIC for System V but not for the Sun
386i. Code generated for the IBM RS/6000 is always position-
independent.
The GNU assembler does not fully support PIC. Currently,
you must use some other assembler in order for PIC to work.
We would welcome volunteers to upgrade GAS to handle this;
the first part of the job is to figure out what the assembler
must do differently.

-fPIC If supported for the target machine, emit position-
independent code, suitable for dynamic linking and avoiding
any limit on the size of the global offset table. This option
makes a difference on the m68k, m88k and the Sparc.
Position-independent code requires special support, and
therefore works only on certain machines.

-ffixed-reg
Treat the register named reg as a fixed register; gener-
ated code should never refer to it (except perhaps as a stack
pointer, frame pointer or in some other fixed role).
reg must be the name of a register. The register names ac-
cepted are machine-specific and are defined in the REGISTER_
NAMES macro in the machine description macro file.
This flag does not have a negative form, because it specifies
a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocatable register that
is clobbered by function calls. It may be allocated for tempo-
raries or variables that do not live across a call. Functions
compiled this way will not save and restore the register reg.
Use of this flag for a register that has a fixed pervasive role
in the machine’s execution model, such as the stack pointer
or frame pointer, will produce disastrous results.
This flag does not have a negative form, because it specifies
a three-way choice.

96 10 July 1995

Chapter 4: GNU CC Command Options

-fcall-saved-reg
Treat the register named reg as an allocatable register saved
by functions. It may be allocated even for temporaries or
variables that live across a call. Functions compiled this
way will save and restore the register reg if they use it.
Use of this flag for a register that has a fixed pervasive role
in the machine’s execution model, such as the stack pointer
or frame pointer, will produce disastrous results.
A different sort of disaster will result from the use of this flag
for a register in which function values may be returned.
This flag does not have a negative form, because it specifies
a three-way choice.

-fpack-struct
Pack all structure members together without holes. Usually
you would not want to use this option, since it makes the
code suboptimal, and the offsets of structure members won’t
agree with system libraries.

+e0
+e1 Control whether virtual function definitions in classes are

used to generate code, or only to define interfaces for their
callers. (C++ only).
These options are provided for compatibility with cfront 1.x
usage; the recommended alternative GNU C++ usage is in
flux. See Section 7.4 “Declarations and Definitions in One
Header,” page 191.
With ‘+e0’, virtual function definitions in classes are declared
extern; the declaration is used only as an interface specifi-
cation, not to generate code for the virtual functions (in this
compilation).
With ‘+e1’, G++ actually generates the code implementing
virtual functions defined in the code, and makes them pub-
licly visible.

-funaligned-pointers
Assume that all pointers contain unaligned addresses. On
machines where unaligned memory accesses trap, this will
result in much larger and slower code for all pointer derefer-
ences, but the code will work even if addresses are unaligned.

-funaligned-struct-hack
Always access structure fields using loads and stores of the
declared size. This option is useful for code that derefences
pointers to unaligned structures, but only accesses fields that

c y g n u s s u p p o r t 97

Using GNU CC

are themselves aligned. Without this option, gcc may try to
use a memory access larger than the field. This might give
an unaligned access fault on some hardware.
This option makes some invalid code work at the expense of
disabling some optimizations. It is strongly recommended
that this option not be used.

4.16 Environment Variables Affecting GNU CC

This section describes several environment variables that affect how
GNU CC operates. They work by specifying directories or prefixes to use
when searching for various kinds of files.

Note that you can also specify places to search using options such
as ‘-B’, ‘-I’ and ‘-L’ (see Section 4.12 “Directory Options,” page 64).
These take precedence over places specified using environment vari-
ables, which in turn take precedence over those specified by the config-
uration of GNU CC.

TMPDIR If TMPDIR is set, it specifies the directory to use
for temporary files. GNU CC uses temporary files to hold
the output of one stage of compilation which is to be used
as input to the next stage: for example, the output of the
preprocessor, which is the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No
slash is added when this prefix is combined with the name of
a subprogram, but you can specify a prefix that ends with a
slash if you wish.
If GNU CC cannot find the subprogram using the specified
prefix, it tries looking in the usual places for the subprogram.
The default of GCC_EXEC_PREFIX is ‘prefix/lib/gcc-lib/’,
where prefix is the value of prefix when you ran the
‘configure’ script.
Other prefixes specified with ‘-B’ take precedence over this
prefix.
This prefix is also used for finding files such as ‘crt0.o’ that
are used for linking.
In addition, the prefix is used in an unusual way in find-
ing the directories to search for header files. For each of
the standard directories whose name normally begins with
‘/usr/local/lib/gcc-lib’ (more precisely, with the value of

98 10 July 1995

Chapter 4: GNU CC Command Options

GCC_INCLUDE_DIR), GNU CC tries replacing that beginning
with the specified prefix to produce an alternate directory
name. Thus, with ‘-Bfoo/’, GNU CC will search ‘foo/bar’
where it would normally search ‘/usr/local/lib/bar’.
These alternate directories are searched first; the standard
directories come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of di-
rectories, much like PATH. GNU CC tries the directories thus
specified when searching for subprograms, if it can’t find the
subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of direc-
tories, much like PATH. GNU CC tries the directories thus
specified when searching for special linker files, if it can’t find
them using GCC_EXEC_PREFIX. Linking using GNU CC also
uses these directories when searching for ordinary libraries
for the ‘-l’ option (but directories specified with ‘-L’ come
first).

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

These environment variables pertain to particular lan-
guages. Each variable’s value is a colon-separated list of
directories, much like PATH. When GNU CC searches for
header files, it tries the directories listed in the variable for
the language you are using, after the directories specified
with ‘-I’ but before the standard header file directories.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output depen-
dencies for Make based on the header files processed by the
compiler. This output looks much like the output from the
‘-M’ option (see Section 4.9 “Preprocessor Options,” page 58),
but it goes to a separate file, and is in addition to the usual
results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in
which case the Make rules are written to that file, guessing
the target name from the source file name. Or the value
can have the form ‘file target’, in which case the rules are
written to file file using target as the target name.

c y g n u s s u p p o r t 99

Using GNU CC

4.17 Running Protoize

The program protoize is an optional part of GNU C. You can use it
to add prototypes to a program, thus converting the program to ANSI C
in one respect. The companion program unprotoize does the reverse: it
removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files
as command line arguments. The conversion programs start out by
compiling these files to see what functions they define. The information
gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all
eligible to be converted; any files they include (whether sources or just
headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and
unprotoize convert only source and header files in the current directory.
You can specify additional directories whose files should be converted
with the ‘-d directory’ option. You can also specify particular files to
exclude with the ‘-x file’ option. A file is converted if it is eligible, its
directory name matches one of the specified directory names, and its
name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function
definitions and function declarations to specify the types of the argu-
ments. The only ones not rewritten are those for varargs functions.

protoize optionally inserts prototype declarations at the beginning
of the source file, to make them available for any calls that precede the
function’s definition. Or it can insert prototype declarations with block
scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most func-
tion declarations to remove any argument types, and rewriting function
definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function decla-
ration or definition that they can’t convert. You can suppress these
warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source
file. The original file is renamed to a name ending with ‘.save’. If the
‘.save’ file already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the
program and collect information about the functions it uses. So neither
of these programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and
unprotoize. Each option works with both programs unless otherwise
stated.

100 10 July 1995

Chapter 4: GNU CC Command Options

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of
the usual directory (normally ‘/usr/local/lib’). This file
contains prototype information about standard system func-
tions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc
to produce the ‘.X’ files. The special option ‘-aux-info’ is
always passed in addition, to tell gcc to write a ‘.X’ file.
Note that the compilation options must be given as a sin-
gle argument to protoize or unprotoize. If you want to
specify several gcc options, you must quote the entire set of
compilation options to make them a single word in the shell.
There are certain gcc arguments that you cannot use, be-
cause they would produce the wrong kind of output. These
include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’ If you include these in the
compilation-options, they are ignored.

-C Rename files to end in ‘.C’ instead of ‘.c’. This is convenient
if you are converting a C program to C++. This option applies
only to protoize.

-g Add explicit global declarations. This means inserting ex-
plicit declarations at the beginning of each source file for
each function that is called in the file and was not declared.
These declarations precede the first function definition that
contains a call to an undeclared function. This option applies
only to protoize.

-i string
Indent old-style parameter declarations with the string
string. This option applies only to protoize.
unprotoize converts prototyped function definitions to old-
style function definitions, where the arguments are declared
between the argument list and the initial ‘{’. By default,
unprotoize uses five spaces as the indentation. If you want
to indent with just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conver-
sion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a
prototype declaration for each function in each block which
calls the function without any declaration. This option ap-
plies only to protoize.

c y g n u s s u p p o r t 101

Using GNU CC

-n Make no real changes. This mode just prints information
about the conversions that would have been done without
‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted.
Use this option with caution.

-p program
Use the program program as the compiler. Normally, the
name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s
source files, then you should generate that file’s ‘.X’ file specially, by run-
ning gcc on that source file with the appropriate options and the option
‘-aux-info’. Then run protoize on the entire set of files. protoize will
use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

You need to include the special files along with the rest in the protoize
command, even though their ‘.X’ files already exist, because otherwise
they won’t get converted.

See Section 9.10 “Protoize Caveats,” page 225, for more information
on how to use protoize successfully.

102 10 July 1995

Chapter 5: Installing GNU CC

5 Installing GNU CC

Here is the procedure for installing GNU CC on a Unix system. See
Section 5.5 “VMS Install,” page 133, for VMS systems. In this section
we assume you compile in the same directory that contains the source
files; see Section 5.2 “Other Dir,” page 127, to find out how to compile in
a separate directory on Unix systems.

You cannot install GNU C by itself on MSDOS; it will not compile
under any MSDOS compiler except itself. You need to get the complete
compilation package DJGPP, which includes binaries as well as sources,
and includes all the necessary compilation tools and libraries.
1. If you have built GNU CC previously in the same directory for a

different target machine, do ‘make distclean’ to delete all files that
might be invalid. One of the files this deletes is ‘Makefile’; if ‘make
distclean’ complains that ‘Makefile’ does not exist, it probably
means that the directory is already suitably clean.

2. On a System V release 4 system, make sure ‘/usr/bin’ precedes
‘/usr/ucb’ in PATH. The cc command in ‘/usr/ucb’ uses libraries
which have bugs.

3. Specify the host, build and target machine configurations. You do
this by running the file ‘configure’.
The build machine is the system which you are using, the host
machine is the system where you want to run the resulting compiler
(normally the build machine), and the target machine is the system
for which you want the compiler to generate code.
If you are building a compiler to produce code for the machine it
runs on (a native compiler), you normally do not need to specify any
operands to ‘configure’; it will try to guess the type of machine you
are on and use that as the build, host and target machines. So you
don’t need to specify a configuration when building a native compiler
unless ‘configure’ cannot figure out what your configuration is or
guesses wrong.
In those cases, specify the build machine’s configuration name with
the ‘--build’ option; the host and target will default to be the same
as the build machine. (If you are building a cross-compiler, see
Section 5.3 “Cross-Compiler,” page 127.)
Here is an example:
from an MSDOS console window or from the program manager di-
alog box. Configure.bat assumes that you have already installed
and in your path a Unix-like sed program which is used to modify
Makefile.in to create a working Makefile.

./configure --build=sparc-sun-sunos4.1

c y g n u s s u p p o r t 103

Using GNU CC

A configuration name may be canonical or it may be more or less
abbreviated.
A canonical configuration name has three parts, separated by
dashes. It looks like this: ‘cpu-company-system’. (The three parts
may themselves contain dashes; ‘configure’ can figure out which
dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.
You can also replace parts of the configuration by nicknames
or aliases. For example, ‘sun3’ stands for ‘m68k-sun’, so
‘sun3-sunos4.1’ is another way to specify a Sun 3. You can also
use simply ‘sun3-sunos’, since the version of SunOS is assumed by
default to be version 4. ‘sun3-bsd’ also works, since ‘configure’
knows that the only BSD variant on a Sun 3 is SunOS.
You can specify a version number after any of the system types, and
some of the CPU types. In most cases, the version is irrelevant, and
will be ignored. So you might as well specify the version if you know
it.
See Section 5.1 “Configurations,” page 111, for a list of supported
configuration names and notes on many of the configurations. You
should check the notes in that section before proceding any further
with the installation of GNU CC.
There are four additional options you can specify independently to
describe variant hardware and software configurations. These are
‘--with-gnu-as’, ‘--with-gnu-ld’, ‘--with-stabs’ and ‘--nfp’.

‘--with-gnu-as’
If you will use GNU CC with the GNU assembler (GAS),
you should declare this by using the ‘--with-gnu-as’
option when you run ‘configure’.
Using this option does not install GAS. It only modifies
the output of GNU CC to work with GAS. Building and
installing GAS is up to you.
Conversely, if you do not wish to use GAS and do not
specify ‘--with-gnu-as’ when building GNU CC, it is up
to you to make sure that GAS is not installed. GNU CC
searches for a program named as in various directories;
if the program it finds is GAS, then it runs GAS. If you
are not sure where GNU CC finds the assembler it is
using, try specifying ‘-v’ when you run it.
The systems where it makes a difference whether you
use GAS are
‘hppa1.0-any-any’, ‘hppa1.1-any-any’, ‘i386-any-sysv’,
‘i386-any-isc’,

104 10 July 1995

Chapter 5: Installing GNU CC

‘i860-any-bsd’, ‘m68k-bull-sysv’, ‘m68k-hp-hpux’,
‘m68k-sony-bsd’,
‘m68k-altos-sysv’, ‘m68000-hp-hpux’, ‘m68000-att-sysv’,
‘any-lynx-lynxos’, and ‘mips-any’). On any other sys-
tem, ‘--with-gnu-as’ has no effect.
On the systems listed above (except for the HP-PA, for
ISC on the 386, and for ‘mips-sgi-irix5.*’), if you use
GAS, you should also use the GNU linker (and specify
‘--with-gnu-ld’).

‘--with-gnu-ld’
Specify the option ‘--with-gnu-ld’ if you plan to use the
GNU linker with GNU CC.
This option does not cause the GNU linker to be in-
stalled; it just modifies the behavior of GNU CC to work
with the GNU linker. Specifically, it inhibits the installa-
tion of collect2, a program which otherwise serves as a
front-end for the system’s linker on most configurations.

‘--with-stabs’
On MIPS based systems and on Alphas, you must specify
whether you want GNU CC to create the normal ECOFF
debugging format, or to use BSD-style stabs passed
through the ECOFF symbol table. The normal ECOFF
debug format cannot fully handle languages other than
C. BSD stabs format can handle other languages, but it
only works with the GNU debugger GDB.
Normally, GNU CC uses the ECOFF debugging for-
mat by default; if you prefer BSD stabs, specify
‘--with-stabs’ when you configure GNU CC.
No matter which default you choose when you configure
GNU CC, the user can use the ‘-gcoff’ and ‘-gstabs+’
options to specify explicitly the debug format for a par-
ticular compilation.
‘--with-stabs’ is meaningful on the ISC system on the
386, also, if ‘--with-gas’ is used. It selects use of stabs
debugging information embedded in COFF output. This
kind of debugging information supports C++ well; ordi-
nary COFF debugging information does not.
‘--with-stabs’ is also meaningful on 386 systems run-
ning SVR4. It selects use of stabs debugging information
embedded in ELF output. The C++ compiler currently
(2.6.0) does not support the DWARF debugging informa-
tion normally used on 386 SVR4 platforms; stabs provide

c y g n u s s u p p o r t 105

Using GNU CC

a workable alternative. This requires gas and gdb, as the
normal SVR4 tools can not generate or interpret stabs.

‘--nfp’ On certain systems, you must specify whether the ma-
chine has a floating point unit. These systems include
‘m68k-sun-sunosn’ and ‘m68k-isi-bsd’. On any other
system, ‘--nfp’ currently has no effect, though perhaps
there are other systems where it could usefully make a
difference.

The ‘configure’ script searches subdirectories of the source direc-
tory for other compilers that are to be integrated into GNU CC.
The GNU compiler for C++, called G++ is in a subdirectory named
‘cp’. ‘configure’ inserts rules into ‘Makefile’ to build all of those
compilers.
Here we spell out what files will be set up by configure. Normally
you need not be concerned with these files.
� A symbolic link named ‘config.h’ is made to the top-level config

file for the machine you plan to run the compiler on (see section
“The Configuration File” in Using and Porting GCC). This file
is responsible for defining information about the host machine.
It includes ‘tm.h’.
The top-level config file is located in the subdirectory ‘config’.
Its name is always ‘xm-something.h’; usually ‘xm-machine.h’,
but there are some exceptions.
If your system does not support symbolic links, you might want
to set up ‘config.h’ to contain a ‘#include’ command which
refers to the appropriate file.

� A symbolic link named ‘tconfig.h’ is made to the top-level con-
fig file for your target machine. This is used for compiling cer-
tain programs to run on that machine.

� A symbolic link named ‘tm.h’ is made to the machine-description
macro file for your target machine. It should be in the subdirec-
tory ‘config’ and its name is often ‘machine.h’.

� A symbolic link named ‘md’ will be made to the machine descrip-
tion pattern file. It should be in the ‘config’ subdirectory and
its name should be ‘machine.md’; but machine is often not the
same as the name used in the ‘tm.h’ file because the ‘md’ files
are more general.

� A symbolic link named ‘aux-output.c’ will be made to the out-
put subroutine file for your machine. It should be in the ‘config’
subdirectory and its name should be ‘machine.c’.

� The command file ‘configure’ also constructs the file ‘Makefile’
by adding some text to the template file ‘Makefile.in’. The

106 10 July 1995

Chapter 5: Installing GNU CC

additional text comes from files in the ‘config’ directory, named
‘t-target’ and ‘x-host’. If these files do not exist, it means
nothing needs to be added for a given target or host.

4. The standard directory for installing GNU CC is ‘/usr/local/lib’.
If you want to install its files somewhere else, specify ‘--prefix=dir’
when you run ‘configure’. Here dir is a directory name to use
instead of ‘/usr/local’ for all purposes with one exception: the
directory ‘/usr/local/include’ is searched for header files no mat-
ter where you install the compiler. To override this name, use the
--local-prefix option below.

5. Specify ‘--local-prefix=dir’ if you want the compiler to search
directory ‘dir/include’ for locally installed header files instead of
‘/usr/local/include’.
You should specify ‘--local-prefix’ only if your site has a different
convention (not ‘/usr/local’) for where to put site-specific files.
Do not specify ‘/usr’ as the ‘--local-prefix’! The directory you use
for ‘--local-prefix’ must not contain any of the system’s standard
header files. If it did contain them, certain programs would be
miscompiled (including GNU Emacs, on certain targets), because
this would override and nullify the header file corrections made by
the fixincludes script.

6. Make sure the Bison parser generator is installed. (This is unnec-
essary if the Bison output files ‘c-parse.c’ and ‘cexp.c’ are more
recent than ‘c-parse.y’ and ‘cexp.y’ and you do not plan to change
the ‘.y’ files.)
Bison versions older than Sept 8, 1988 will produce incorrect output
for ‘c-parse.c’.

7. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the build directory under
the names ‘as’, ‘ld’ or whatever is appropriate. This will enable
the compiler to find the proper tools for compilation of the program
‘enquire’.
Alternatively, you can do subsequent compilation using a value of
the PATH environment variable such that the necessary GNU tools
come before the standard system tools.

8. Build the compiler. Just type ‘make LANGUAGES=c’ in the compiler
directory.
‘LANGUAGES=c’ specifies that only the C compiler should be compiled.
The makefile normally builds compilers for all the supported lan-
guages; currently, C, C++ and Objective C. However, C is the only
language that is sure to work when you build with other non-GNU

c y g n u s s u p p o r t 107

Using GNU CC

C compilers. In addition, building anything but C at this stage is a
waste of time.
In general, you can specify the languages to build by typing the
argument ‘LANGUAGES="list"’, where list is one or more words
from the list ‘c’, ‘c++’, and ‘objective-c’. If you have any additional
GNU compilers as subdirectories of the GNU CC source directory,
you may also specify their names in this list.
Ignore any warnings you may see about “statement not reached” in
‘insn-emit.c’; they are normal. Also, warnings about “unknown
escape sequence” are normal in ‘genopinit.c’ and perhaps some
other files. Likewise, you should ignore warnings about “constant
is so large that it is unsigned” in ‘insn-emit.c’ and ‘insn-recog.c’.
Any other compilation errors may represent bugs in the port to
your machine or operating system, and should be investigated and
reported (see Chapter 10 “Bugs,” page 233).
Some commercial compilers fail to compile GNU CC because they
have bugs or limitations. For example, the Microsoft compiler is
said to run out of macro space. Some Ultrix compilers run out of
expression space; then you need to break up the statement where
the problem happens.

9. If you are building a cross-compiler, stop here. See Section 5.3
“Cross-Compiler,” page 127.

10. Move the first-stage object files and executables into a subdirectory
with this command:

make stage1

The files are moved into a subdirectory named ‘stage1’. Once in-
stallation is complete, you may wish to delete these files with rm -r
stage1.

11. If you have chosen a configuration for GNU CC which requires other
GNU tools (such as GAS or the GNU linker) instead of the standard
system tools, install the required tools in the ‘stage1’ subdirectory
under the names ‘as’, ‘ld’ or whatever is appropriate. This will
enable the stage 1 compiler to find the proper tools in the following
stage.
Alternatively, you can do subsequent compilation using a value of
the PATH environment variable such that the necessary GNU tools
come before the standard system tools.

12. Recompile the compiler with itself, with this command:
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O"

This is called making the stage 2 compiler.
The command shown above builds compilers for all the supported
languages. If you don’t want them all, you can specify the languages

108 10 July 1995

Chapter 5: Installing GNU CC

to build by typing the argument ‘LANGUAGES="list"’. list should
contain one or more words from the list ‘c’, ‘c++’, ‘objective-c’, and
‘proto’. Separate the words with spaces. ‘proto’ stands for the pro-
grams protoize and unprotoize; they are not a separate language,
but you use LANGUAGES to enable or disable their installation.
If you are going to build the stage 3 compiler, then you might want
to build only the C language in stage 2.
Once you have built the stage 2 compiler, if you are short of disk
space, you can delete the subdirectory ‘stage1’.
On a 68000 or 68020 system lacking floating point hardware, unless
you have selected a ‘tm.h’ file that expects by default that there is
no such hardware, do this instead:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O -msoft-float"

13. If you wish to test the compiler by compiling it with itself one more
time, install any other necessary GNU tools (such as GAS or the
GNU linker) in the ‘stage2’ subdirectory as you did in the ‘stage1’
subdirectory, then do this:

make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

This is called making the stage 3 compiler. Aside from the ‘-B’
option, the compiler options should be the same as when you made
the stage 2 compiler. But theLANGUAGES option need not be the same.
The command shown above builds compilers for all the supported
languages; if you don’t want them all, you can specify the languages
to build by typing the argument ‘LANGUAGES="list"’, as described
above.
If you do not have to install any additional GNU tools, you may use
the command

make bootstrap LANGUAGES=language-list
BOOT_CFLAGS=option-list

instead of making ‘stage1’, ‘stage2’, and performing the two com-
piler builds.

14. Then compare the latest object files with the stage 2 object files—
they ought to be identical, aside from time stamps (if any).
On some systems, meaningful comparison of object files is impossi-
ble; they always appear “different.” This is currently true on Solaris
and probably on all systems that use ELF object file format. On
some versions of Irix on SGI machines and OSF/1 on Alpha sys-
tems, you will not be able to compare the files without specifying
‘-save-temps’; see the description of individual systems above to
see if you get comparison failures. You may have similar problems
on other systems.
Use this command to compare the files:

c y g n u s s u p p o r t 109

Using GNU CC

make compare

This will mention any object files that differ between stage 2 and
stage 3. Any difference, no matter how innocuous, indicates that the
stage 2 compiler has compiled GNU CC incorrectly, and is therefore
a potentially serious bug which you should investigate and report
(see Chapter 10 “Bugs,” page 233).
If your system does not put time stamps in the object files, then this
is a faster way to compare them (using the Bourne shell):

for file in *.o; do
cmp $file stage2/$file
done

If you have built the compiler with the ‘-mno-mips-tfile’ option on
MIPS machines, you will not be able to compare the files.

15. Build the Objective C library (if you have built the Objective C
compiler). Here is the command to do this:

make objc-runtime CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

16. Install the compiler driver, the compiler’s passes and run-time sup-
port with ‘make install’. Use the same value for CC, CFLAGS and
LANGUAGES that you used when compiling the files that are being in-
stalled. One reason this is necessary is that some versions of Make
have bugs and recompile files gratuitously when you do this step.
If you use the same variable values, those files will be recompiled
properly.
For example, if you have built the stage 2 compiler, you can use the
following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"
LANGUAGES="list"

This command copies the three files ‘cc1’, ‘cpp’ and ‘libgcc.a’ into
the files ‘cc1’, ‘cpp’ and ‘libgcc.a’ and puts them in the direc-
tory ‘/usr/local/lib/gcc-lib/target/version’, which is where
the compiler driver program looks for them. Here target is the tar-
get machine type specified when you ran ‘configure’, and version
is the version number of GNU CC. This naming scheme permits
various versions and/or cross-compilers to coexist.
This also copies the driver program ‘xgcc’ into ‘/usr/local/bin/gcc’,
so that it appears in typical execution search paths.
On some systems, this command causes recompilation of some files.
This is usually due to bugs in make. You should either ignore this
problem, or use GNU Make.
Warning: there is a bug in alloca in the Sun library. To
avoid this bug, be sure to install the executables of GNU CC
that were compiled by GNU CC. (That is, the executables

110 10 July 1995

Chapter 5: Installing GNU CC

from stage 2 or 3, not stage 1.) They use alloca as a built-in
function and never the one in the library.
(It is usually better to install GNU CC executables from stage 2 or
3, since they usually run faster than the ones compiled with some
other compiler.)

17. Install the Objective C library (if you are installing the Objective C
compiler). Here is the command to do this:

make install-libobjc CC="stage2/xgcc -Bstage2/" CFLAGS="-g -
O"

18. If you’re going to use C++, it’s likely that you need to also install
the libg++ distribution. It should be available from the same place
where you got the GNU C distribution. Just as GNU C does not
distribute a C runtime library, it also does not include a C++ run-
time library. All I/O functionality, special class libraries, etc., are
available in the libg++ distribution.

5.1 Configurations Supported by GNU CC

Here are the possible CPU types:
1750a, a29k, alpha, arm, cn, clipper, dsp16xx, elxsi, h8300,
hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m68000,
m68k, m88k, mips, mipsel, mips64, mips64el, ns32k, pow-
erpc, pyramid, romp, rs6000, sh, sparc, sparclite, sparc64, vax,
we32k.

Here are the recognized company names. As you can see, customary
abbreviations are used rather than the longer official names.

acorn, alliant, altos, apollo, att, bull, cbm, convergent, convex,
crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm,
intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus,
sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the
rest of the information supplied is insufficient. You can omit it, writing
just ‘cpu-system’, if it is not needed. For example, ‘vax-ultrix4.2’ is
equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:
386bsd, aix, acis, amigados, aos, aout, bosx, bsd, clix, coff, ctix,
cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix,
gnu, gnu/linux, hiux, hpux, iris, irix, isc, luna, lynxos, mach,
minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx,
riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix,
unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

c y g n u s s u p p o r t 111

Using GNU CC

You can omit the system type; then ‘configure’ guesses the operating
system from the CPU and company.

You can add a version number to the system type; this may or may
not make a difference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’
to distinguish versions of BSD. In practice, the version number is most
needed for ‘sysv3’ and ‘sysv4’, which are often treated differently.

If you specify an impossible combination such as ‘i860-dg-vms’, then
you may get an error message from ‘configure’, or it may ignore part of
the information and do the best it can with the rest. ‘configure’ always
prints the canonical name for the alternative that it used. GNU CC does
not support all possible alternatives.

Often a particular model of machine has a name. Many machine
names are recognized as aliases for CPU/company combinations. Thus,
the machine name ‘sun3’, mentioned above, is an alias for ‘m68k-sun’.
Sometimes we accept a company name as a machine name, when the
name is popularly used for a particular machine. Here is a table of the
known machine names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300,
balance, convex-cn, crds, decstation-3100, decstation, delta,
encore, fx2800, gmicro, hp7nn, hp8nn, hp9k2nn, hp9k3nn,
hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd,
pc532, pmax, powerpc, ps2, risc-news, rtpc, sun2, sun386i,
sun386, sun3, sun4, symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the
company name. If you want to install your own homemade configuration
files, you can use ‘local’ as the company name to access them. If you
use configuration ‘cpu-local’, the configuration name without the cpu
prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, configuration uses files ‘m68k.md’,
‘local.h’, ‘m68k.c’, ‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the
directory ‘config/m68k’.

Here is a list of configurations that have special treatment or special
things you must know:

‘1750a-*-*’
MIL-STD-1750A processors.
Starting with GCC 2.6.1, the MIL-STD-1750A cross config-
uration no longer supports the Tektronix Assembler, but in-
stead produces output for as1750, an assembler/linker avail-
able under the GNU Public License for the 1750A. Con-
tact okellogg@salyko.cube.net for more details on obtaining

112 10 July 1995

Chapter 5: Installing GNU CC

‘as1750’. A similarly licensed simulator for the 1750A is
available from same address.
You should ignore a fatal error during the building of libgcc
(libgcc is not yet implemented for the 1750A.)
The as1750 assembler requires the file ‘ms1750.inc’, which
is found in the directory ‘config/1750a’.
GNU CC produced the same sections as the Fairchild F9450
C Compiler, namely:

NREL The program code section.

SREL The read/write (RAM) data section.

KREL The read-only (ROM) constants section.

IREL Initialization section (code to copy KREL to
SREL).

The smallest addressable unit is 16 bits (BITS PER UNIT is
16). This means that type ‘char’ is represented with a 16-bit
word per character. The 1750A’s "Load/Store Upper/Lower
Byte" instructions are not used by GNU CC.
There is a problem with long argument lists to functions.
The compiler aborts if the sum of space needed by all argu-
ments exceeds 14 words. This is because the arguments are
passed in registers (R0..R13) not on the stack, and there is a
problem with passing further arguments (i.e. beyond those
in R0..R13) via the stack.
If efficiency is less important than using long argument lists,
you can change the definition of the FUNCTION_ARG macro in
‘config/1750/1750a.h’ to always return zero. If you do that,
GNU CC will pass all parameters on the stack.

‘alpha-*-osf1’
Systems using processors that implement the DEC Alpha
architecture and are running the OSF/1 operating system,
for example the DEC Alpha AXP systems. (VMS on the
Alpha is not currently supported by GNU CC.)
GNU CC writes a ‘.verstamp’ directive to the assem-
bler output file unless it is built as a cross-compiler.
It gets the version to use from the system header file
‘/usr/include/stamp.h’. If you install a new version of
OSF/1, you should rebuild GCC to pick up the new version
stamp.
Note that since the Alpha is a 64-bit architecture, cross-
compilers from 32-bit machines will not generate code as

c y g n u s s u p p o r t 113

Using GNU CC

efficient as that generated when the compiler is running on
a 64-bit machine because many optimizations that depend
on being able to represent a word on the target in an inte-
gral value on the host cannot be performed. Building cross-
compilers on the Alpha for 32-bit machines has only been
tested in a few cases and may not work properly.
make compare may fail on old versions of OSF/1 unless you
add ‘-save-temps’ to CFLAGS. On these systems, the name
of the assembler input file is stored in the object file, and
that makes comparison fail if it differs between the stage1
and stage2 compilations. The option ‘-save-temps’ forces a
fixed name to be used for the assembler input file, instead of
a randomly chosen name in ‘/tmp’. Do not add ‘-save-temps’
unless the comparisons fail without that option. If you add
‘-save-temps’, you will have to manually delete the ‘.i’ and
‘.s’ files after each series of compilations.
GNU CC now supports both the native (ECOFF) debugging
format used by DBX and GDB and an encapsulated STABS
format for use only with GDB. See the discussion of the
‘--with-stabs’ option of ‘configure’ above for more infor-
mation on these formats and how to select them.
There is a bug in DEC’s assembler that produces incorrect
line numbers for ECOFF format when the ‘.align’ directive
is used. To work around this problem, GNU CC will not emit
such alignment directives while writing ECOFF format de-
bugging information even if optimization is being performed.
Unfortunately, this has the very undesirable side-effect that
code addresses when ‘-O’ is specified are different depending
on whether or not ‘-g’ is also specified.
To avoid this behavior, specify ‘-gstabs+’ and use GDB in-
stead of DBX. DEC is now aware of this problem with the
assembler and hopes to provide a fix shortly.

‘arm’ Advanced RISC Machines ARM-family processors. These are
often used in embedded applications. There are no standard
Unix configurations. This configuration corresponds to the
basic instruction sequences and will produce a.out format
object modules.
You may need to make a variant of the file ‘arm.h’ for your
particular configuration.

‘arm-*-riscix’
The ARM2 or ARM3 processor running RISC iX, Acorn’s port
of BSD Unix. If you are running a version of RISC iX prior to

114 10 July 1995

Chapter 5: Installing GNU CC

1.2 then you must specify the version number during config-
uration. Note that the assembler shipped with RISC iX does
not support stabs debugging information; a new version of
the assembler, with stabs support included, is now available
from Acorn.

‘a29k’ AMD Am29k-family processors. These are normally used in
embedded applications. There are no standard Unix config-
urations. This configuration corresponds to AMD’s standard
calling sequence and binary interface and is compatible with
other 29k tools.
You may need to make a variant of the file ‘a29k.h’ for your
particular configuration.

‘a29k-*-bsd’
AMD Am29050 used in a system running a variant of BSD
Unix.

‘decstation-*’
DECstations can support three different personalities: Ul-
trix, DEC OSF/1, and OSF/rose. To configure GCC for these
platforms use the following configurations:

‘decstation-ultrix’
Ultrix configuration.

‘decstation-osf1’
Dec’s version of OSF/1.

‘decstation-osfrose’
Open Software Foundation reference port of
OSF/1 which uses the OSF/rose object file for-
mat instead of ECOFF. Normally, you would not
select this configuration.

The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC
make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.

‘elxsi-elxsi-bsd’
The Elxsi’s C compiler has known limitations that prevent it
from compiling GNU C. Please contact mrs@cygnus.com for
more details.

c y g n u s s u p p o r t 115

Using GNU CC

‘dsp16xx’ A port to the AT&T DSP1610 family of processors.

‘h8300-*-*’
The calling convention and structure layout has changed in
release 2.6. All code must be recompiled. The calling conven-
tion now passes the first three arguments in function calls in
registers. Structures are no longer a multiple of 2 bytes.

‘hppa*-*-*’
There are two variants of this CPU, called 1.0 and 1.1, which
have different machine descriptions. You must use the right
one for your machine. All 7nn machines and 8n7 machines
use 1.1, while all other 8nn machines use 1.0.
The easiest way to handle this problem is to use ‘configure
hpnnn’ or ‘configure hpnnn-hpux’, where nnn is the model
number of the machine. Then ‘configure’ will figure out if
the machine is a 1.0 or 1.1. Use ‘uname -a’ to find out the
model number of your machine.
‘-g’ does not work on HP-UX, since that system uses a pecu-
liar debugging format which GNU CC does not know about.
However, ‘-g’ will work if you also use GAS and GDB in con-
junction with GCC. We highly recommend using GAS for all
HP-PA configurations.
You should be using GAS-2.3 (or later) along with GDB-4.12
(or later). These can be retrieved from all the traditional
GNU ftp archive sites.
Build GAS and install the resulting binary as:

/usr/local/lib/gcc-lib/configuration/gccversion/as

where configuration is the configuration name (perhaps
‘hpnnn-hpux’) and gccversion is the GNU CC version num-
ber. Do this before starting the build process, otherwise
you will get errors from the HPUX assembler while build-
ing ‘libgcc2.a’. The command

make install-dir

will create the necessary directory hierarchy so you can in-
stall GAS before building GCC.
To enable debugging, configure GNU CC with the
‘--with-gnu-as’ option before building.
It has been reported that GNU CC produces invalid assembly
code for 1.1 machines running HP-UX 8.02 when using the
HP assembler. Typically the errors look like this:

as: bug.s @line#15 [err#1060]
Argument 0 or 2 in FARG upper

- lookahead = ARGW1=FR,RTNVAL=GR

116 10 July 1995

Chapter 5: Installing GNU CC

as: foo.s @line#28 [err#1060]
Argument 0 or 2 in FARG upper

- lookahead = ARGW1=FR

You can check the version of HP-UX you are running by ex-
ecuting the command ‘uname -r’. If you are indeed running
HP-UX 8.02 on a PA and using the HP assembler then con-
figure GCC with "hpnnn-hpux8.02".

‘i370-*-*’
This port is very preliminary and has many known bugs. We
hope to have a higher-quality port for this machine soon.

‘i386-*-linuxaout’
Use this configuration to generate a.out binaries on Linux.
This is an obsolete configuration.

‘i386-*-linux’
Use this configuration to generate ELF binaries on Linux.
You must use gas/binutils version 2.5.2 or later.

‘i386-*-sco’
Compilation with RCC is recommended. Also, it may be a
good idea to link with GNU malloc instead of the malloc that
comes with the system.

‘i386-*-sco3.2v4’
Use this configuration for SCO release 3.2 version 4.

‘i386-*-isc’
It may be a good idea to link with GNU malloc instead of the
malloc that comes with the system.
In ISC version 4.1, ‘sed’ core dumps when building
‘deduced.h’. Use the version of ‘sed’ from version 4.0.

‘i386-*-esix’
It may be good idea to link with GNU malloc instead of the
malloc that comes with the system.

‘i386-ibm-aix’
You need to use GAS version 2.1 or later, and and LD from
GNU binutils version 2.2 or later.

‘i386-sequent-bsd’
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named ‘string.h’ contain-
ing just one line: ‘#include <strings.h>’.

‘i386-sequent-ptx1*’
Sequent DYNIX/ptx 1.x.

c y g n u s s u p p o r t 117

Using GNU CC

‘i386-sequent-ptx2*’
Sequent DYNIX/ptx 2.x.

‘i386-sun-sunos4’
You may find that you need another version of GNU CC to be-
gin bootstrapping with, since the current version when built
with the system’s own compiler seems to get an infinite loop
compiling part of ‘libgcc2.c’. GNU CC version 2 compiled
with GNU CC (any version) seems not to have this problem.
See Section 5.4 “Sun Install,” page 133, for information on
installing GNU CC on Sun systems.

‘i[345]86-*-winnt3.5’
This version requires a GAS that has not let been re-
leased. Until it is, you can get a prebuilt binary version
via anonymous ftp from ‘cs.washington.edu:pub/gnat’ or
‘cs.nyu.edu:pub/gnat’. You must also use the Microsoft
header files from the Windows NT 3.5 SDK. Find these on
the CDROM in the ‘/mstools/h’ directory dated 9/4/94. You
must use a fixed version of Microsoft linker made especially
for NT 3.5, which is also is available on the NT 3.5 SDK
CDROM. If you do not have this linker, can you also use the
linker from Visual C/C++ 1.0 or 2.0.
Installing GNU CC for NT builds a wrapper linker, called
‘ld.exe’, which mimics the behaviour of Unix ‘ld’ in the speci-
fication of libraries (‘-L’ and ‘-l’). ‘ld.exe’ looks for both Unix
and Microsoft named libraries. For example, if you specify
‘-lfoo’, ‘ld.exe’ will look first for ‘libfoo.a’ and then for
‘foo.lib’.
You may install GNU CC for Windows NT in one of two ways,
depending on whether or not you have a Unix-like shell and
various Unix-like utilities.
1. If you do not have a Unix-like shell and few Unix-like

utilities, you will use a DOS style batch script called
‘configure.bat’. Invoke it as configure winnt from an
MSDOS console window or from the program manager
dialog box. ‘configure.bat’ assumes you have already
installed and have in your path a Unix-like ‘sed’ pro-
gram which is used to create a working ‘Makefile’ from
‘Makefile.in’.
‘Makefile’ uses the Microsoft Nmake program mainte-
nance utility and the Visual C/C++ V8.00 compiler to
build GNU CC. You need only have the utilities ‘sed’
and ‘touch’ to use this installation method, which only
automatically builds the compiler itself. You must then

118 10 July 1995

Chapter 5: Installing GNU CC

examine what ‘fixinc.winnt’ does, edit the header files
by hand and build ‘libgcc.a’ manually.

2. The second type of installation assumes you are run-
ning a Unix-like shell, have a complete suite of Unix-
like utilities in your path, and have a previous version
of GNU CC already installed, either through building
it via the above installation method or acquiring a pre-
built binary. In this case, use the ‘configure’ script in
the normal fashion.

‘i860-intel-osf1’
This is the Paragon. If you have version 1.0 of the operating
system, see Section 9.2 “Installation Problems,” page 205, for
special things you need to do to compensate for peculiarities
in the system.

‘*-lynx-lynxos’
LynxOS 2.2 and earlier comes with GNU CC 1.x already in-
stalled as ‘/bin/gcc’. You should compile with this instead
of ‘/bin/cc’. You can tell GNU CC to use the GNU assembler
and linker, by specifying ‘--with-gnu-as --with-gnu-ld’
when configuring. These will produce COFF format object
files and executables; otherwise GNU CC will use the in-
stalled tools, which produce a.out format executables.

‘m68000-hp-bsd’
HP 9000 series 200 running BSD. Note that the C compiler
that comes with this system cannot compile GNU CC; contact
law@cs.utah.edu to get binaries of GNU CC for bootstrap-
ping.

‘m68k-altos’
Altos 3068. You must use the GNU assembler, linker and
debugger. Also, you must fix a kernel bug. Details in the file
‘README.ALTOS’.

‘m68k-att-sysv’
AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to
compile GNU CC with this machine’s standard C compiler,
due to bugs in that compiler. You can bootstrap it more easily
with previous versions of GNU CC if you have them.

Installing GNU CC on the 3b1 is difficult if you do not al-
ready have GNU CC running, due to bugs in the installed C
compiler. However, the following procedure might work. We
are unable to test it.

c y g n u s s u p p o r t 119

Using GNU CC

1. Comment out the ‘#include "config.h"’ line on line 37
of ‘cccp.c’ and do ‘make cpp’. This makes a preliminary
version of GNU cpp.

2. Save the old ‘/lib/cpp’ and copy the preliminary GNU
cpp to that file name.

3. Undo your change in ‘cccp.c’, or reinstall the original
version, and do ‘make cpp’ again.

4. Copy this final version of GNU cpp into ‘/lib/cpp’.
5. Replace every occurrence of obstack_free in the file

‘tree.c’ with _obstack_free.
6. Run make to get the first-stage GNU CC.
7. Reinstall the original version of ‘/lib/cpp’.
8. Now you can compile GNU CC with itself and install it

in the normal fashion.

‘m68k-bull-sysv’
Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-
2.01. GNU CC works either with native assembler or GNU
assembler. You can use GNU assembler with native coff gen-
eration by providing ‘--with-gnu-as’ to the configure script
or use GNU assembler with dbx-in-coff encapsulation by pro-
viding ‘--with-gnu-as --stabs’. For any problem with na-
tive assembler or for availability of the DPX/2 port of GAS,
contact F.Pierresteguy@frcl.bull.fr.

‘m68k-crds-unox’
Use ‘configure unos’ for building on Unos.
The Unos assembler is named casm instead of as. For some
strange reason linking ‘/bin/as’ to ‘/bin/casm’ changes the
behavior, and does not work. So, when installing GNU CC,
you should install the following script as ‘as’ in the subdirec-
tory where the passes of GCC are installed:

#!/bin/sh
casm $*

The default Unos library is named ‘libunos.a’ instead of
‘libc.a’. To allow GNU CC to function, either change all
references to ‘-lc’ in ‘gcc.c’ to ‘-lunos’ or link ‘/lib/libc.a’
to ‘/lib/libunos.a’.
When compiling GNU CC with the standard compiler, to
overcome bugs in the support of alloca, do not use ‘-O’ when
making stage 2. Then use the stage 2 compiler with ‘-O’
to make the stage 3 compiler. This compiler will have the
same characteristics as the usual stage 2 compiler on other

120 10 July 1995

Chapter 5: Installing GNU CC

systems. Use it to make a stage 4 compiler and compare that
with stage 3 to verify proper compilation.
(Perhaps simply defining ALLOCA in ‘x-crds’ as described in
the comments there will make the above paragraph super-
fluous. Please inform us of whether this works.)
Unos uses memory segmentation instead of demand paging,
so you will need a lot of memory. 5 Mb is barely enough if no
other tasks are running. If linking ‘cc1’ fails, try putting the
object files into a library and linking from that library.

‘m68k-hp-hpux’
HP 9000 series 300 or 400 running HP-UX. HP-UX version
8.0 has a bug in the assembler that prevents compilation of
GNU CC. To fix it, get patch PHCO 4484 from HP.
In addition, if you wish to use gas ‘--with-gnu-as’ you must
use gas version 2.1 or later, and you must use the GNU
linker version 2.1 or later. Earlier versions of gas relied upon
a program which converted the gas output into the native
HP/UX format, but that program has not been kept up to
date. gdb does not understand that native HP/UX format, so
you must use gas if you wish to use gdb.

‘m68k-sun’
Sun 3. We do not provide a configuration file to use the
Sun FPA by default, because programs that establish signal
handlers for floating point traps inherently cannot work with
the FPA.
See Section 5.4 “Sun Install,” page 133, for information on
installing GNU CC on Sun systems.

‘m88k-*-svr3’
Motorola m88k running the AT&T/Unisoft/Motorola V.3 ref-
erence port. These systems tend to use the Green Hills C,
revision 1.8.5, as the standard C compiler. There are appar-
ently bugs in this compiler that result in object files differ-
ences between stage 2 and stage 3. If this happens, make the
stage 4 compiler and compare it to the stage 3 compiler. If
the stage 3 and stage 4 object files are identical, this suggests
you encountered a problem with the standard C compiler; the
stage 3 and 4 compilers may be usable.
It is best, however, to use an older version of GNU CC for
bootstrapping if you have one.

‘m88k-*-dgux’
Motorola m88k running DG/UX. To build 88open BCS na-
tive or cross compilers on DG/UX, specify the configuration

c y g n u s s u p p o r t 121

Using GNU CC

name as ‘m88k-*-dguxbcs’ and build in the 88open BCS soft-
ware development environment. To build ELF native or
cross compilers on DG/UX, specify ‘m88k-*-dgux’ and build
in the DG/UX ELF development environment. You set the
software development environment by issuing ‘sde-target’
command and specifying either ‘m88kbcs’ or ‘m88kdguxelf’ as
the operand.
If you do not specify a configuration name, ‘configure’
guesses the configuration based on the current software de-
velopment environment.

‘m88k-tektronix-sysv3’
Tektronix XD88 running UTekV 3.2e. Do not turn on op-
timization while building stage1 if you bootstrap with the
buggy Green Hills compiler. Also, The bundled LAI System
V NFS is buggy so if you build in an NFS mounted direc-
tory, start from a fresh reboot, or avoid NFS all together.
Otherwise you may have trouble getting clean comparisons
between stages.

‘mips-mips-bsd’
MIPS machines running the MIPS operating system in BSD
mode. It’s possible that some old versions of the system
lack the functions memcpy, memcmp, and memset. If your sys-
tem lacks these, you must remove or undo the definition of
TARGET_MEM_FUNCTIONS in ‘mips-bsd.h’.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC
make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.

‘mips-mips-riscos*’
The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC
make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.
MIPS computers running RISC-OS can support four differ-
ent personalities: default, BSD 4.3, System V.3, and System

122 10 July 1995

Chapter 5: Installing GNU CC

V.4 (older versions of RISC-OS don’t support V.4). To config-
ure GCC for these platforms use the following configurations:

‘mips-mips-riscosrev’
Default configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevbsd’
BSD 4.3 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv4’
System V.4 configuration for RISC-OS, revision
rev.

‘mips-mips-riscosrevsysv’
System V.3 configuration for RISC-OS, revision
rev.

The revision rev mentioned above is the revision of RISC-
OS to use. You must reconfigure GCC when going from a
RISC-OS revision 4 to RISC-OS revision 5. This has the
effect of avoiding a linker bug (see Section 9.2 “Installation
Problems,” page 205, for more details).

‘mips-sgi-*’
In order to compile GCC on an SGI running IRIX 4, the
"c.hdr.lib" option must be installed from the CD-ROM sup-
plied from Silicon Graphics. This is found on the 2nd CD in
release 4.0.1.
In order to compile GCC on an SGI running IRIX 5, the
"compiler dev.hdr" subsystem must be installed from the
IDO CD-ROM supplied by Silicon Graphics.
make compare may fail on version 5 of IRIX unless you add
‘-save-temps’ to CFLAGS. On these systems, the name of
the assembler input file is stored in the object file, and that
makes comparison fail if it differs between the stage1 and
stage2 compilations. The option ‘-save-temps’ forces a fixed
name to be used for the assembler input file, instead of a
randomly chosen name in ‘/tmp’. Do not add ‘-save-temps’
unless the comparisons fail without that option. If you do
you ‘-save-temps’, you will have to manually delete the ‘.i’
and ‘.s’ files after each series of compilations.
The MIPS C compiler needs to be told to increase its table size
for switch statements with the ‘-Wf,-XNg1500’ option in order
to compile ‘cp/parse.c’. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’. Both of these
options are automatically generated in the ‘Makefile’ that
the shell script ‘configure’ builds. If you override the CC

c y g n u s s u p p o r t 123

Using GNU CC

make variable and use the MIPS compilers, you may need to
add ‘-Wf,-XNg1500 -Olimit 3000’.
On Irix version 4.0.5F, and perhaps on some other versions
as well, there is an assembler bug that reorders instructions
incorrectly. To work around it, specify the target configu-
ration ‘mips-sgi-irix4loser’. This configuration inhibits
assembler optimization.
In a compiler configured with target ‘mips-sgi-irix4’, you
can turn off assembler optimization by using the ‘-noasmopt’
option. This compiler option passes the option ‘-O0’ to the
assembler, to inhibit reordering.
The ‘-noasmopt’ option can be useful for testing whether a
problem is due to erroneous assembler reordering. Even if
a problem does not go away with ‘-noasmopt’, it may still be
due to assembler reordering—perhaps GNU CC itself was
miscompiled as a result.
To enable debugging under Irix 5, you must use GNU as 2.5
or later, and use the ‘--with-gnu-as’ configure option when
configuring gcc. GNU as is distributed as part of the binutils
package.

‘mips-sony-sysv’
Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in
5.0.2 (which uses ELF instead of COFF). Support for 5.0.2
will probably be provided soon by volunteers. In particular,
the linker does not like the code generated by GCC when
shared libraries are linked in.

‘ns32k-encore’
Encore ns32000 system. Encore systems are supported only
under BSD.

‘ns32k-*-genix’
National Semiconductor ns32000 system. Genix has bugs in
alloca and malloc; you must get the compiled versions of
these from GNU Emacs.

‘ns32k-sequent’
Go to the Berkeley universe before compiling. In addition,
you probably need to create a file named ‘string.h’ contain-
ing just one line: ‘#include <strings.h>’.

‘ns32k-utek’
UTEK ns32000 system (“merlin”). The C compiler that
comes with this system cannot compile GNU CC; contact
‘tektronix!reed!mason’ to get binaries of GNU CC for boot-
strapping.

124 10 July 1995

Chapter 5: Installing GNU CC

‘romp-*-aos’
‘romp-*-mach’

The only operating systems supported for the IBM RT PC
are AOS and MACH. GNU CC does not support AIX running
on the RT. We recommend you compile GNU CC with an
earlier version of itself; if you compile GNU CC with hc, the
Metaware compiler, it will work, but you will get mismatches
between the stage 2 and stage 3 compilers in various files.
These errors are minor differences in some floating-point
constants and can be safely ignored; the stage 3 compiler
is correct.

‘rs6000-*-aix’
‘powerpc-*-aix’

Various early versions of each release of the IBM XLC com-
piler will not bootstrap GNU CC. Symptoms include differ-
ences between the stage2 and stage3 object files, and errors
when compiling ‘libgcc.a’ or ‘enquire’. Known problematic
releases include: xlc-1.2.1.8, xlc-1.3.0.0 (distributed with AIX
3.2.5), and xlc-1.3.0.19. Both xlc-1.2.1.28 and xlc-1.3.0.24
(PTF 432238) are known to produce working versions of GNU
CC, but most other recent releases correctly bootstrap GNU
CC. Also, releases of AIX prior to AIX 3.2.4 include a version
of the IBM assembler which does not accept debugging direc-
tives: assembler updates are available as PTFs. See the file
‘README.RS6000’ for more details on both of these problems.

Only AIX is supported on the PowerPC. GNU CC does not
yet support the 64-bit PowerPC instructions.

Objective C does not work on this architecture.

AIX on the RS/6000 provides support (NLS) for environments
outside of the United States. Compilers and assemblers use
NLS to support locale-specific representations of various ob-
jects including floating-point numbers ("." vs "," for separat-
ing decimal fractions). There have been problems reported
where the library linked with GNU CC does not produce the
same floating-point formats that the assembler accepts. If
you have this problem, set the LANG environment variable
to "C" or "En US".

‘powerpc-*-elf’
‘powerpc-*-eabi’
‘powerpc-*-sysv4’

These systems are currently under development.

c y g n u s s u p p o r t 125

Using GNU CC

‘vax-dec-ultrix’
Don’t try compiling with Vax C (vcc). It produces incorrect
code in some cases (for example, when alloca is used).

Meanwhile, compiling ‘cp/parse.c’ with pcc does not work
because of an internal table size limitation in that compiler.
To avoid this problem, compile just the GNU C compiler first,
and use it to recompile building all the languages that you
want to run.

‘sparc-sun-*’
See Section 5.4 “Sun Install,” page 133, for information on
installing GNU CC on Sun systems.

‘vax-dec-vms’
See Section 5.5 “VMS Install,” page 133, for details on how
to install GNU CC on VMS.

‘we32k-*-*’
These computers are also known as the 3b2, 3b5, 3b20 and
other similar names. (However, the 3b1 is actually a 68000;
see Section 5.1 “Configurations,” page 111.)

Don’t use ‘-g’ when compiling with the system’s compiler.
The system’s linker seems to be unable to handle such a
large program with debugging information.

The system’s compiler runs out of capacity when compiling
‘stmt.c’ in GNU CC. You can work around this by build-
ing ‘cpp’ in GNU CC first, then use that instead of the sys-
tem’s preprocessor with the system’s C compiler to compile
‘stmt.c’. Here is how:

mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo ’/lib/cpp.gnu -traditional ${1+"$@"}’ > /lib/cpp
chmod +x /lib/cpp

The system’s compiler produces bad code for some of the GNU
CC optimization files. So you must build the stage 2 compiler
without optimization. Then build a stage 3 compiler with
optimization. That executable should work. Here are the
necessary commands:

make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"

You may need to raise the ULIMIT setting to build a C++
compiler, as the file ‘cc1plus’ is larger than one megabyte.

126 10 July 1995

Chapter 5: Installing GNU CC

5.2 Compilation in a Separate Directory

If you wish to build the object files and executables in a directory
other than the one containing the source files, here is what you must do
differently:
1. Make sure you have a version of Make that supports the VPATH

feature. (GNU Make supports it, as do Make versions on most BSD
systems.)

2. If you have ever run ‘configure’ in the source directory, you must
undo the configuration. Do this by running:

make distclean

3. Go to the directory in which you want to build the compiler before
running ‘configure’:

mkdir gcc-sun3
cd gcc-sun3

On systems that do not support symbolic links, this directory must
be on the same file system as the source code directory.

4. Specify where to find ‘configure’ when you run it:
../gcc/configure ...

This also tells configure where to find the compiler sources;
configure takes the directory from the file name that was used
to invoke it. But if you want to be sure, you can specify the source
directory with the ‘--srcdir’ option, like this:

../gcc/configure --srcdir=../gcc other options

The directory you specify with ‘--srcdir’ need not be the same as
the one that configure is found in.

Now, you can run make in that directory. You need not repeat the
configuration steps shown above, when ordinary source files change.
You must, however, run configure again when the configuration files
change, if your system does not support symbolic links.

5.3 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not
all.
� Cross-compilers for the Mips as target using the Mips assembler cur-

rently do not work, because the auxiliary programs ‘mips-tdump.c’
and ‘mips-tfile.c’ can’t be compiled on anything but a Mips. It
does work to cross compile for a Mips if you use the GNU assembler
and linker.

� Cross-compilers between machines with different floating point for-
mats have not all been made to work. GNU CC now has a floating

c y g n u s s u p p o r t 127

Using GNU CC

point emulator with which these can work, but each target machine
description needs to be updated to take advantage of it.

� Cross-compilation between machines of different word sizes is some-
what problematic and sometimes does not work.

Since GNU CC generates assembler code, you probably need a cross-
assembler that GNU CC can run, in order to produce object files. If you
want to link on other than the target machine, you need a cross-linker
as well. You also need header files and libraries suitable for the target
machine that you can install on the host machine.

5.3.1 Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several
steps:

� Run the cross-compiler on the host machine to produce assembler
files for the target machine. This requires header files for the target
machine.

� Assemble the files produced by the cross-compiler. You can do this
either with an assembler on the target machine, or with a cross-
assembler on the host machine.

� Link those files to make an executable. You can do this either
with a linker on the target machine, or with a cross-linker on the
host machine. Whichever machine you use, you need libraries and
certain startup files (typically ‘crt. ...o’) for the target machine.

It is most convenient to do all of these steps on the same host machine,
since then you can do it all with a single invocation of GNU CC. This
requires a suitable cross-assembler and cross-linker. For some targets,
the GNU assembler and linker are available.

5.3.2 Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running
‘configure’. Use the ‘--target=target’ to specify the target type. If
‘configure’ was unable to correctly identify the system you are running
on, also specify the ‘--build=build’ option. For example, here is how to
configure for a cross-compiler that produces code for an HP 68030 system
running BSD on a system that ‘configure’ can correctly identify:

./configure --target=m68k-hp-bsd4.3

128 10 July 1995

Chapter 5: Installing GNU CC

5.3.3 Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should
install them now. Put them in the directory ‘/usr/local/target/bin’.
Here is a table of the tools you should put in this directory:

‘as’ This should be the cross-assembler.

‘ld’ This should be the cross-linker.

‘ar’ This should be the cross-archiver: a program which can
manipulate archive files (linker libraries) in the target ma-
chine’s format.

‘ranlib’ This should be a program to construct a symbol table in an
archive file.

The installation of GNU CC will find these programs in that directory,
and copy or link them to the proper place to for the cross-compiler to find
them when run later.

The easiest way to provide these files is to build the Binutils package
and GAS. Configure them with the same ‘--host’ and ‘--target’ options
that you use for configuring GNU CC, then build and install them. They
install their executables automatically into the proper directory. Alas,
they do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a
standard C library, put them in the directory ‘/usr/local/target/lib’;
installation of GNU CC copies all all the files in that subdirectory into
the proper place for GNU CC to find them and link with them. Here’s
an example of copying some libraries from a target machine:

ftp target-machine
lcd /usr/local/target/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit

The precise set of libraries you’ll need, and their locations on the target
machine, vary depending on its operating system.

Many targets require “start files” such as ‘crt0.o’ and ‘crtn.o’
which are linked into each executable; these too should be placed
in ‘/usr/local/target/lib’. There may be several alternatives for
‘crt0.o’, for use with profiling or other compilation options. Check your
target’s definition of STARTFILE_SPEC to find out what start files it uses.
Here’s an example of copying these files from a target machine:

ftp target-machine

c y g n u s s u p p o r t 129

Using GNU CC

lcd /usr/local/target/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

5.3.4 ‘libgcc.a’ and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions
implicitly. Some of these functions can be compiled successfully with
GNU CC itself, but a few cannot be. These problem functions are in the
source file ‘libgcc1.c’; the library made from them is called ‘libgcc1.a’.

When you build a native compiler, these functions are compiled with
some other compiler–the one that you use for bootstrapping GNU CC.
Presumably it knows how to open code these operations, or else knows
how to call the run-time emulation facilities that the machine comes
with. But this approach doesn’t work for building a cross-compiler. The
compiler that you use for building knows about the host system, not the
target system.

So, when you build a cross-compiler you have to supply a suitable
library ‘libgcc1.a’ that does the job it is expected to do.

To compile ‘libgcc1.c’ with the cross-compiler itself does not work.
The functions in this file are supposed to implement arithmetic oper-
ations that GNU CC does not know how to open code, for your target
machine. If these functions are compiled with GNU CC itself, they will
compile into infinite recursion.

On any given target, most of these functions are not needed. If GNU
CC can open code an arithmetic operation, it will not call these functions
to perform the operation. It is possible that on your target machine,
none of these functions is needed. If so, you can supply an empty library
as ‘libgcc1.a’.

Many targets need library support only for multiplication and di-
vision. If you are linking with a library that contains functions for
multiplication and division, you can tell GNU CC to call them directly
by defining the macros MULSI3_LIBCALL, and the like. These macros
need to be defined in the target description macro file. For some targets,
they are defined already. This may be sufficient to avoid the need for
libgcc1.a; if so, you can supply an empty library.

Some targets do not have floating point instructions; they need other
functions in ‘libgcc1.a’, which do floating arithmetic. Recent versions
of GNU CC have a file which emulates floating point. With a certain
amount of work, you should be able to construct a floating point emulator

130 10 July 1995

Chapter 5: Installing GNU CC

that can be used as ‘libgcc1.a’. Perhaps future versions will contain
code to do this automatically and conveniently. That depends on whether
someone wants to implement it.

If your target system has another C compiler, you can configure GNU
CC as a native compiler on that machine, build just ‘libgcc1.a’ with
‘make libgcc1.a’ on that machine, and use the resulting file with the
cross-compiler. To do this, execute the following on the target machine:

cd target-build-dir
./configure --host=sparc --target=sun3
make libgcc1.a

And then this on the host machine:
ftp target-machine
binary
cd target-build-dir
get libgcc1.a
quit

Another way to provide the functions you need in ‘libgcc1.a’ is to
define the appropriate perform_... macros for those functions. If these
definitions do not use the C arithmetic operators that they are meant to
implement, you should be able to compile them with the cross-compiler
you are building. (If these definitions already exist for your target file,
then you are all set.)

To build ‘libgcc1.a’ using the perform macros, build the compiler
using ‘LIBGCC1=libgcc1.a OLDCC=./xgcc’. Otherwise, you should place
your replacement library under the name ‘libgcc1.a’ in the directory in
which you will build the cross-compiler, before you run make.

5.3.5 Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an
embedded system, then you may not need any header files except the few
that are part of GNU CC (and those of your program). However, if you
intend to link your program with a standard C library such as ‘libc.a’,
then you probably need to compile with the header files that go with the
library you use.

The GNU C compiler does not come with these files, because (1) they
are system-specific, and (2) they belong in a C library, not in a compiler.

If the GNU C library supports your target machine, then you can get
the header files from there (assuming you actually use the GNU library
when you link your program).

If your target machine comes with a C compiler, it probably comes
with suitable header files also. If you make these files accessible from
the host machine, the cross-compiler can use them also.

c y g n u s s u p p o r t 131

Using GNU CC

Otherwise, you’re on your own in finding header files to use when
cross-compiling.

When you have found suitable header files, put them in
‘/usr/local/target/include’, before building the cross compiler. Then
installation will run fixincludes properly and install the corrected ver-
sions of the header files where the compiler will use them.

Provide the header files before you build the cross-compiler, because
the build stage actually runs the cross-compiler to produce parts of
‘libgcc.a’. (These are the parts that can be compiled with GNU CC.)
Some of them need suitable header files.

Here’s an example showing how to copy the header files from a target
machine. On the target machine, do this:

(cd /usr/include; tar cf - .) > tarfile

Then, on the host machine, do this:
ftp target-machine
lcd /usr/local/target/include
get tarfile
quit
tar xf tarfile

5.3.6 Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler
through the step of building stage 1. If you have not provided some
sort of ‘libgcc1.a’, then compilation will give up at the point where
it needs that file, printing a suitable error message. If you do provide
‘libgcc1.a’, then building the compiler will automatically compile and
link a test program called ‘cross-test’; if you get errors in the linking, it
means that not all of the necessary routines in ‘libgcc1.a’ are available.

If you are making a cross-compiler for an embedded system, and
there is no ‘stdio.h’ header for it, then the compilation of ‘enquire’ will
probably fail. The job of ‘enquire’ is to run on the target machine and
figure out by experiment the nature of its floating point representation.
‘enquire’ records its findings in the header file ‘float.h’. If you can’t
produce this file by running ‘enquire’ on the target machine, then you
will need to come up with a suitable ‘float.h’ in some other way (or else,
avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn’t work to
rebuild GNU CC as a cross-compiler using the cross-compiler, because
that would produce a program that runs on the target machine, not
on the host. For example, if you compile a 386-to-68030 cross-compiler
with itself, the result will not be right either for the 386 (because it was
compiled into 68030 code) or for the 68030 (because it was configured

132 10 July 1995

Chapter 5: Installing GNU CC

for a 386 as the host). If you want to compile GNU CC into 68030 code,
whether you compile it on a 68030 or with a cross-compiler on a 386, you
must specify a 68030 as the host when you configure it.

To install the cross-compiler, use ‘make install’, as usual.

5.4 Installing GNU CC on the Sun

On Solaris (version 2.1), do not use the linker or other tools in
‘/usr/ucb’ to build GNU CC. Use /usr/ccs/bin.

Make sure the environment variable FLOAT_OPTION is not set when
you compile ‘libgcc.a’. If this option were set to f68881when ‘libgcc.a’
is compiled, the resulting code would demand to be linked with a special
startup file and would not link properly without special pains.

There is a bug in alloca in certain versions of the Sun library. To
avoid this bug, install the binaries of GNU CC that were compiled by
GNU CC. They use alloca as a built-in function and never the one in
the library.

Some versions of the Sun compiler crash when compiling GNU CC.
The problem is a segmentation fault in cpp. This problem seems to be
due to the bulk of data in the environment variables. You may be able to
avoid it by using the following command to compile GNU CC with Sun
CC:

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

5.5 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset con-
taining both source code and precompiled binaries.

To install the ‘gcc’ command so you can use the compiler easily, in the
same manner as you use the VMS C compiler, you must install the VMS
CLD file for GNU CC as follows:
1. Define the VMS logical names ‘GNU_CC’ and ‘GNU_CC_INCLUDE’

to point to the directories where the GNU CC executables
(‘gcc-cpp.exe’, ‘gcc-cc1.exe’, etc.) and the C include files are
kept respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands
can be placed in your system startup file so they will be executed

c y g n u s s u p p o r t 133

Using GNU CC

whenever the machine is rebooted. You may, if you choose, do this
via the ‘GCC_INSTALL.COM’ script in the ‘[GCC]’ directory.

2. Install the ‘GCC’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -

/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
$ install replace sys$common:[syslib]dcltables

3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like ‘gcc /verbose
file.c’, which is equivalent to the command ‘gcc -v -c file.c’ in
Unix.

If you wish to use GNU C++ you must first install GNU CC, and then
perform the following steps:
1. Define the VMS logical name ‘GNU_GXX_INCLUDE’ to point to the di-

rectory where the preprocessor will search for the C++ header files.
This can be done with the command:

$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to be
using libg++, this is where the libg++ install procedure will install
the libg++ header files.

2. Obtain the file ‘gcc-cc1plus.exe’, and place this in the same direc-
tory that ‘gcc-cc1.exe’ is kept.
The GNU C++ compiler can be invoked with a command like ‘gcc
/plus /verbose file.cc’, which is equivalent to the command ‘g++
-v -c file.cc’ in Unix.

We try to put corresponding binaries and sources on the VMS distri-
bution tape. But sometimes the binaries will be from an older version
than the sources, because we don’t always have time to update them.
(Use the ‘/version’ option to determine the version number of the bina-
ries and compare it with the source file ‘version.c’ to tell whether this
is so.) In this case, you should use the binaries you get to recompile the
sources. If you must recompile, here is how:
1. Execute the command procedure ‘vmsconfig.com’ to set up the files

‘tm.h’, ‘config.h’, ‘aux-output.c’, and ‘md.’, and to create files
‘tconfig.h’ and ‘hconfig.h’. This procedure also creates several
linker option files used by ‘make-cc1.com’ and a data file used by
‘make-l2.com’.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In
addition, define the VMS logical name ‘GNU_BISON’ to point at the to

134 10 July 1995

Chapter 5: Installing GNU CC

the directories where the Bison executable is kept. This should be
done with the command:

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the ‘INSTALL_BISON.COM’ script in the
‘[BISON]’ directory.

3. Install the ‘BISON’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -

/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type ‘@make-gcc’ to recompile everything (alternatively, submit the
file ‘make-gcc.com’ to a batch queue). If you wish to build the GNU
C++ compiler as well as the GNU CC compiler, you must first edit
‘make-gcc.com’ and follow the instructions that appear in the com-
ments.

5. In order to use GCC, you need a library of functions which GCC
compiled code will call to perform certain tasks, and these functions
are defined in the file ‘libgcc2.c’. To compile this you should use the
command procedure ‘make-l2.com’, which will generate the library
‘libgcc2.olb’. ‘libgcc2.olb’ should be built using the compiler
built from the same distribution that ‘libgcc2.c’ came from, and
‘make-gcc.com’ will automatically do all of this for you.
To install the library, use the following commands:

$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

The first command simply removes old modules that will be re-
placed with modules from ‘libgcc2’ under different module names.
The modules new and eprintf may not actually be present in your
‘gcclib.olb’—if the VMS librarian complains about those modules
not being present, simply ignore the message and continue on with
the next command. The second command removes the modules that
came from the previous version of the library ‘libgcc2.c’.
Whenever you update the compiler on your system, you should also
update the library with the above procedure.

6. You may wish to build GCC in such a way that no files are written
to the directory where the source files reside. An example would be
the when the source files are on a read-only disk. In these cases,
execute the following DCL commands (substituting your actual path
names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed

gcc_build

c y g n u s s u p p o r t 135

Using GNU CC

$ set default gcc_build:[000000]

where the directory ‘dua1:[gcc.source_dir]’ contains the source
code, and the directory ‘dua0:[gcc.build_dir]’ is meant to contain
all of the generated object files and executables. Once you have
done this, you can proceed building GCC as described above. (Keep
in mind that ‘gcc_build’ is a rooted logical name, and thus the
device names in each element of the search list must be an actual
physical device name rather than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU
CC, you also should check to see that you have the newest
version of the assembler. In particular, GNU CC version 2 treats
global constant variables slightly differently from GNU CC version
1, and GAS version 1.38.1 does not have the patches required to
work with GCC version 2. If you use GAS 1.38.1, then extern
const variables will not have the read-only bit set, and the linker
will generate warning messages about mismatched psect attributes
for these variables. These warning messages are merely a nuisance,
and can safely be ignored.

If you are compiling with a version of GNU CC older than 1.33,
specify ‘/DEFINE=("inline=")’ as an option in all the compilations.
This requires editing all the gcc commands in ‘make-cc1.com’. (The
older versions had problems supporting inline.) Once you have a
working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need
to make minor changes in ‘make-cccp.com’ and ‘make-cc1.com’ to
choose alternate definitions of CC, CFLAGS, and LIBS. See comments
in those files. However, you must also have a working version of the
GNU assembler (GNU as, aka GAS) as it is used as the back-end
for GNU CC to produce binary object modules and is not included
in the GNU CC sources. GAS is also needed to compile ‘libgcc2’ in
order to build ‘gcclib’ (see above); ‘make-l2.com’ expects to be able
to find it operational in ‘gnu_cc:[000000]gnu-as.exe’.

To use GNU CC on VMS, you need the VMS driver programs
‘gcc.exe’, ‘gcc.com’, and ‘gcc.cld’. They are distributed with the
VMS binaries (‘gcc-vms’) rather than the GNU CC sources. GAS is
also included in ‘gcc-vms’, as is Bison.

Once you have successfully built GNU CC with VAX C, you should
use the resulting compiler to rebuild itself. Before doing this, be sure
to restore the CC, CFLAGS, and LIBS definitions in ‘make-cccp.com’
and ‘make-cc1.com’. The second generation compiler will be able
to take advantage of many optimizations that must be suppressed
when building with other compilers.

136 10 July 1995

Chapter 5: Installing GNU CC

Under previous versions of GNU CC, the generated code would oc-
casionally give strange results when linked with the sharable ‘VAXCRTL’
library. Now this should work.

Even with this version, however, GNU CC itself should not be linked
with the sharable ‘VAXCRTL’. The version of qsort in ‘VAXCRTL’ has a bug
(known to be present in VMS versions V4.6 through V5.5) which causes
the compiler to fail.

The executables are generated by ‘make-cc1.com’ and ‘make-cccp.com’.
Use the object library version of ‘VAXCRTL’ in order to make use of the
qsort routine in ‘gcclib.olb’. If you wish to link the compiler ex-
ecutables with the shareable image version of ‘VAXCRTL’, you should
edit the file ‘tm.h’ (created by ‘vmsconfig.com’) to define the macro
QSORT_WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with
VAX C, to avoid a problem in case ‘gcclib.olb’ is not yet available.

5.6 collect2

Many target systems do not have support in the assembler and linker
for “constructors”—initialization functions to be called before the official
“start” of main. On such systems, GNU CC uses a utility called collect2
to arrange to call these functions at start time.

The program collect2 works by linking the program once and look-
ing through the linker output file for symbols with particular names
indicating they are constructor functions. If it finds any, it creates a new
temporary ‘.c’ file containing a table of them, compiles it, and links the
program a second time including that file.

The actual calls to the constructors are carried out by a subroutine
called __main, which is called (automatically) at the beginning of the
body of main (provided main was compiled with GNU CC). Calling __
main is necessary, even when compiling C code, to allow linking C and
C++ object code together. (If you use ‘-nostdlib’, you get an unresolved
reference to __main, since it’s defined in the standard GCC library. In-
clude ‘-lgcc’ at the end of your compiler command line to resolve this
reference.)

The program collect2 is installed as ld in the directory where the
passes of the compiler are installed. When collect2 needs to find the
real ld, it tries the following file names:
� ‘real-ld’ in the directories listed in the compiler’s search directories.
� ‘real-ld’ in the directories listed in the environment variable PATH.
� The file specified in the REAL_LD_FILE_NAME configuration macro, if

specified.

c y g n u s s u p p o r t 137

Using GNU CC

� ‘ld’ in the compiler’s search directories, except that collect2 will
not execute itself recursively.

� ‘ld’ in PATH.

“The compiler’s search directories” means all the directories where
gcc searches for passes of the compiler. This includes directories that
you specify with ‘-B’.

Cross-compilers search a little differently:
� ‘real-ld’ in the compiler’s search directories.
� ‘target-real-ld’ in PATH.
� The file specified in the REAL_LD_FILE_NAME configuration macro, if

specified.
� ‘ld’ in the compiler’s search directories.
� ‘target-ld’ in PATH.

collect2 explicitly avoids running ld using the file name under
which collect2 itself was invoked. In fact, it remembers up a list of such
names—in case one copy of collect2 finds another copy (or version) of
collect2 installed as ld in a second place in the search path.

collect2 searches for the utilities nm and strip using the same al-
gorithm as above for ld.

5.7 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is
where GNU CC stores its private include files, and also where GNU
CC stores the fixed include files. A cross compiled GNU CC runs
fixincludes on the header files in ‘$(tooldir)/include’. (If the cross
compilation header files need to be fixed, they must be installed before
GNU CC is built. If the cross compilation header files are already suit-
able for ANSI C and GNU CC, nothing special need be done).

GPLUS_INCLUDE_DIR means the same thing for native and cross. It
is where g++ looks first for header files. libg++ installs only target
independent header files in that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is normally
‘/usr/local/include’. GNU CC searches this directory so that users
can install header files in ‘/usr/local/include’.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn’t
install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is
the place for other packages to install header files that GNU CC will use.
For a cross-compiler, this is the equivalent of ‘/usr/include’. When you

138 10 July 1995

Chapter 5: Installing GNU CC

build a cross-compiler, fixincludes processes any header files in this
directory.

c y g n u s s u p p o r t 139

Using GNU CC

140 10 July 1995

Chapter 6: Extensions to the C Language Family

6 Extensions to the C Language Family

GNU C provides several language features not found in ANSI stan-
dard C. (The ‘-pedantic’ option directs GNU CC to print a warning
message if any of these features is used.) To test for the availability of
these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GNU CC.

These extensions are available in C and Objective C. Most of them are
also available in C++. See Chapter 7 “Extensions to the C++ Language,”
page 189, for extensions that apply only to C++.

6.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.

Recall that a compound statement is a sequence of statements sur-
rounded by braces; in this construct, parentheses go around the braces.
For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type void, and thus effectively
no value.)

This feature is especially useful in making macro definitions “safe”
(so that they evaluate each operand exactly once). For example, the
“maximum” function is commonly defined as a macro in standard C as
follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results
if the operand has side effects. In GNU C, if you know the type of the
operands (here let’s assume int), you can define the macro safely as
follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

c y g n u s s u p p o r t 141

Using GNU CC

Embedded statements are not allowed in constant expressions, such
as the value of an enumeration constant, the width of a bit field, or the
initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but
you must use typeof (see Section 6.7 “Typeof,” page 147) or type naming
(see Section 6.6 “Naming Types,” page 146).

6.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be
declared. A local label is simply an identifier; you can jump to it with an
ordinary goto statement, but only from within the statement expression
it belongs to.

A local label declaration looks like this:
__label__ label;

or
__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the
label itself. You must do this in the usual way, with label:, within the
statements of the statement expression.

The local label feature is useful because statement expressions are
often used in macros. If the macro contains nested loops, a goto can
be useful for breaking out of them. However, an ordinary label whose
scope is the whole function cannot be used: if the macro can be expanded
several times in one function, the label will be multiply defined in that
function. A local label avoids this problem. For example:

#define SEARCH(array, target) \
({ \

__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \
value = -1; \

found: \
value; \

})

142 10 July 1995

Chapter 6: Extensions to the C Language Family

6.3 Labels as Values

You can get the address of a label defined in the current function (or
a containing function) with the unary operator ‘&&’. The value has type
void *. This value is a constant and can be used wherever a constant of
that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done
with the computed goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.
One way of using these constants is in initializing a static array that

will serve as a jump table:
static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:
goto *array[i];

Note that this does not check whether the subscript is in bounds—array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
switch statement. The switch statement is cleaner, so use that rather
than an array unless the problem does not fit a switch statement very
well.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded code
for super-fast dispatching.

You can use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.

6.4 Nested Functions

A nested function is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested func-
tion’s name is local to the block where it is defined. For example, here
we define a nested function named square, and call it twice:

1 The analogous feature in Fortran is called an assigned goto, but that
name seems inappropriate in C, where one can do more than simply
store label addresses in label variables.

c y g n u s s u p p o r t 143

Using GNU CC

foo (double a, double b)

{

double square (double z) { return z * z; }

return square (a) + square (b);

}

The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is called
lexical scoping. For example, here we show a nested function which uses
an inherited variable named offset:

bar (int *array, int offset, int size)
{

int access (int *array, int index)
{ return array[index + offset]; }

int i;
...
for (i = 0; i < size; i++)

... access (array, i) ...
}

Nested function definitions are permitted within functions in the
places where variable definitions are allowed; that is, in any block, before
the first statement in the block.

It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:

hack (int *array, int size)
{

void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an
argument. If intermediate calls store, the arguments given to store
are used to store into array. But this technique works only so long as
the containing function (hack, in this example) does not exit.

If you try to call the nested function through its address after the
containing function has exited, all hell will break loose. If you try to call
it after a containing scope level has exited, and if it refers to some of
the variables that are no longer in scope, you may be lucky, but it’s not
wise to take the risk. If, however, the nested function does not refer to
anything that has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a
technique called trampolines. A paper describing them is available from
‘maya.idiap.ch’ in directory ‘pub/tmb’, file ‘usenix88-lexic.ps.Z’.

144 10 July 1995

Chapter 6: Extensions to the C Language Family

A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (see Section 6.2 “Local Labels,” page 142). Such a jump returns
instantly to the containing function, exiting the nested function which
did the goto and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)

{

__label__ failure;

int access (int *array, int index)

{
if (index > size)

goto failure;

return array[index + offset];

}

int i;

...
for (i = 0; i < size; i++)

... access (array, i) ...

...

return 0;

/* Control comes here from access

if it detects an error. */

failure:

return -1;

}

A nested function always has internal linkage. Declaring one with
extern is erroneous. If you need to declare the nested function before
its definition, use auto (which is otherwise meaningless for function
declarations).

bar (int *array, int offset, int size)
{

__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
...

}

c y g n u s s u p p o r t 145

Using GNU CC

6.5 Constructing Function Calls

Using the built-in functions described below, you can record the ar-
guments a function received, and call another function with the same
arguments, without knowing the number or types of the arguments.

You can also record the return value of that function call, and later
return that value, without knowing what data type the function tried to
return (as long as your caller expects that data type).

__builtin_apply_args ()
This built-in function returns a pointer of type void * to data
describing how to perform a call with the same arguments
as were passed to the current function.
The function saves the arg pointer register, structure value
address, and all registers that might be used to pass argu-
ments to a function into a block of memory allocated on the
stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)
This built-in function invokes function (type void (*)())
with a copy of the parameters described by arguments (type
void *) and size (type int).
The value of arguments should be the value returned by __
builtin_apply_args. The argument size specifies the size
of the stack argument data, in bytes.
This function returns a pointer of type void * to data describ-
ing how to return whatever value was returned by function.
The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for
size. The value is used by __builtin_apply to compute
the amount of data that should be pushed on the stack and
copied from the incoming argument area.

__builtin_return (result)
This built-in function returns the value described by result
from the containing function. You should specify, for result,
a value returned by __builtin_apply.

6.6 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef
declaration with an initializer. Here is how to define name as a type
name for the type of exp:

146 10 July 1995

Chapter 6: Extensions to the C Language Family

typedef name = exp;

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
“maximum” macro that operates on any arithmetic type:

#define max(a,b) \

({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \

_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for a and b. Eventually we hope
to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.

6.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The
syntax of using of this keyword looks like sizeof, but the construct acts
semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an
expression or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that
of the values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.
If you are writing a header file that must work when included in

ANSI C programs, write __typeof__ instead of typeof. See Section 6.35
“Alternate Keywords,” page 187.

A typeof-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or inside of
sizeof or typeof.
� This declares y with the type of what x points to.

typeof (*x) y;

� This declares y as an array of such values.
typeof (*x) y[4];

� This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

c y g n u s s u p p o r t 147

Using GNU CC

char *y[4];

To see the meaning of the declaration using typeof, and why it
might be a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers
to char.

6.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed
as lvalues provided their operands are lvalues. This means that you can
take their addresses or store values into them.

Standard C++ allows compound expressions and conditional expres-
sions as lvalues, and permits casts to reference type, so use of this
extension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the
last expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken.
These two expressions are equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and
the true and false branches are both valid lvalues. For example, these
two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assign-
ment whose left-hand side is a cast works by converting the right-hand
side first to the specified type, then to the type of the inner left-hand
side expression. After this is stored, the value is converted back to the
specified type to become the value of the assignment. Thus, if a has type
char *, the following two expressions are equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a
cast performs the arithmetic using the type resulting from the cast, and

148 10 July 1995

Chapter 6: Extensions to the C Language Family

then continues as in the previous case. Therefore, these two expressions
are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of
its address would not work out coherently. Suppose that &(int)f were
permitted, where f has type float. Then the following statement would
try to store an integer bit-pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would
convert 1 to floating point and store it. Rather than cause this inconsis-
tency, we think it is better to prohibit use of ‘&’ on a cast.

If you really do want an int * pointer with the address of f, you can
simply write (int *)&f.

6.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to
x ? x : y

In this simple case, the ability to omit the middle operand is not espe-
cially useful. When it becomes useful is when the first operand does, or
may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omit-
ting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

6.10 Double-Word Integers

GNU C supports data types for integers that are twice as long as
long int. Simply write long long int for a signed integer, or unsigned
long long int for an unsigned integer. To make an integer constant
of type long long int, add the suffix LL to the integer. To make an
integer constant of type unsigned long long int, add the suffix ULL to
the integer.

c y g n u s s u p p o r t 149

Using GNU CC

You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types are
open-coded on all types of machines. Multiplication is open-coded if the
machine supports fullword-to-doubleword a widening multiply instruc-
tion. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special
library routines that come with GNU CC.

There may be pitfalls when you use long long types for function
arguments, unless you declare function prototypes. If a function expects
type int for its argument, and you pass a value of type long long int,
confusion will result because the caller and the subroutine will disagree
about the number of bytes for the argument. Likewise, if the function
expects long long int and you pass int. The best way to avoid such
problems is to use prototypes.

6.11 Complex Numbers

GNU C supports complex data types. You can declare both complex
integer types and complex floating types, using the keyword __complex_
_.

For example, ‘__complex__ double x;’ declares x as a variable whose
real part and imaginary part are both of type double. ‘__complex__
short int y;’ declares y to have real and imaginary parts of type short
int; this is not likely to be useful, but it shows that the set of complex
types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or
‘j’ (either one; they are equivalent). For example, 2.5fi has type __
complex__ float and 3i has type __complex__ int. Such a constant
always has a pure imaginary value, but you can form any complex value
you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write
__real__ exp. Likewise, use __imag__ to extract the imaginary part.

The operator ‘˜’ performs complex conjugation when used on a value
with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous
fashion; it’s even possible for the real part to be in a register while the
imaginary part is on the stack (or vice-versa). None of the supported
debugging info formats has a way to represent noncontiguous allocation
like this, so GNU CC describes a noncontiguous complex variable as
if it were two separate variables of noncomplex type. If the variable’s
actual name is foo, the two fictitious variables are named foo$real and

150 10 July 1995

Chapter 6: Extensions to the C Language Family

foo$imag. You can examine and set these two fictitious variables with
your debugger.

A future version of GDB will know how to recognize such pairs and
treat them as a single variable with a complex type.

6.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the
last element of a structure which is really a header for a variable-length
object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);
thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which
means either you waste space or complicate the argument to malloc.

6.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays
are declared like any other automatic arrays, but with a length that is not
a constant expression. The storage is allocated at the point of declaration
and deallocated when the brace-level is exited. For example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{

char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates
the storage. Jumping into the scope is not allowed; you get an error
message for it.

You can use the function alloca to get an effect much like variable-
length arrays. The function alloca is available in many other C imple-
mentations (but not in all). On the other hand, variable-length arrays
are more elegant.

c y g n u s s u p p o r t 151

Using GNU CC

There are other differences between these two methods. Space al-
located with alloca exists until the containing function returns. The
space for a variable-length array is deallocated as soon as the array
name’s scope ends. (If you use both variable-length arrays and alloca
in the same function, deallocation of a variable-length array will also
deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:
struct entry
tester (int len, char data[len][len])
{

...
}

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
sizeof.

If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list—another GNU exten-
sion.

struct entry
tester (int len; char data[len][len], int len)
{

...
}

The ‘int len’ before the semicolon is a parameter forward declaration,
and it serves the purpose of making the name len known when the
declaration of data is parsed.

You can write any number of such parameter forward declarations in
the parameter list. They can be separated by commas or semicolons, but
the last one must end with a semicolon, which is followed by the “real”
parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type.

6.14 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much
as a function can. The syntax for defining the macro looks much like
that used for a function. Here is an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as
many as the call contains. All of them plus the commas between them
form the value of args, which is substituted into the macro body where
args is used. Thus, we have this expansion:

152 10 July 1995

Chapter 6: Extensions to the C Language Family

eprintf ("%s:%d: ", input_file_name, line_number)
7!

fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note that the comma after the string constant comes from the definition
of eprintf, whereas the last comma comes from the value of args.

The reason for using ‘##’ is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this case,
the second comma in the definition becomes an embarrassment: if it got
through to the expansion of the macro, we would get something like this:

fprintf (stderr, "success!\n" ,)

which is invalid C syntax. ‘##’ gets rid of the comma, so we get the
following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: ‘##’ before a
rest argument that is empty discards the preceding sequence of non-
whitespace characters from the macro definition. (If another macro
argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the
last preceding sequence of non-whitespace characters; in fact, we may
someday change this feature to do so. We advise you to write the macro
definition so that the preceding sequence of non-whitespace characters
is just a single token, so that the meaning will not change if we change
the definition of this feature.

6.15 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though
the unary ‘&’ operator is not. For example, this is valid in GNU C though
not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{

return f().a[index];

}

c y g n u s s u p p o r t 153

Using GNU CC

6.16 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on
pointers to void and on pointers to functions. This is done by treating
the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on
function types, and returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions
are used.

6.17 Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU
C. Here is an example of an initializer with run-time varying elements:

foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
...

}

6.18 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a
cast containing an initializer. Its value is an object of the type specified
in the cast, containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo
and structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{

struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the constructor
are (made up of) simple constant expressions, suitable for use in initial-
izers, then the constructor is an lvalue and can be coerced to a pointer
to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not
very useful, because the constructor is not an lvalue. There are only two

154 10 July 1995

Chapter 6: Extensions to the C Language Family

valid ways to use it: to subscript it, or initialize an array variable with
it. The former is probably slower than a switch statement, while the
latter does the same thing an ordinary C initializer would do. Here is
an example of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also
allowed, but then the constructor expression is equivalent to a cast.

6.19 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.

In GNU C you can give the elements in any order, specifying the
array indices or structure field names they apply to. This extension is
not implemented in GNU C++.

To specify an array index, write ‘[index]’ or ‘[index] =’ before the
element value. For example,

int a[6] = { [4] 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write ‘[first ...
last] = value’. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.
In a structure initializer, specify the name of a field to initialize with

‘fieldname:’ before the element value. For example, given the following
structure,

struct point { int x, y; };

the following initialization
struct point p = { y: yvalue, x: xvalue };

is equivalent to
struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is ‘.fieldname =’., as
shown here:

struct point p = { .y = yvalue, .x = xvalue };

c y g n u s s u p p o r t 155

Using GNU CC

You can also use an element label (with either the colon syntax or the
period-equal syntax) when initializing a union, to specify which element
of the union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second
element. By contrast, casting 4 to type union foo would store it into the
union as the integer i, since it is an integer. (See Section 6.21 “Cast to
Union,” page 157.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that does
not have a label applies to the next consecutive element of the array or
structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when
the indices are characters or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

6.20 Case Ranges

You can specify a range of consecutive values in a single case label,
like this:

case low ... high:

This has the same effect as the proper number of individual case labels,
one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be
parsed wrong when you use it with integer values. For example, write
this:

case 1 ... 5:

rather than this:
case 1...5:

156 10 July 1995

Chapter 6: Extensions to the C Language Family

6.21 Cast to a Union Type

A cast to union type is similar to other casts, except that the type
specified is a union type. You can specify the type either with union tag
or with a typedef name. A cast to union is actually a constructor though,
not a cast, and hence does not yield an lvalue like normal casts. (See
Section 6.18 “Constructors,” page 154.)

The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable

of union type is equivalent to storing in a member of the union:
union foo u;
...
u = (union foo) x � u.i = x
u = (union foo) y � u.d = y

You can also use the union cast as a function argument:
void hack (union foo);
...
hack ((union foo) x);

6.22 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your
program which help the compiler optimize function calls and check your
code more carefully.

The keyword __attribute__ allows you to specify special attributes
when making a declaration. This keyword is followed by an attribute
specification inside double parentheses. Six attributes, noreturn, const,
format, section, constructor, and destructor are currently defined
for functions. Other attributes, including section are supported for
variables declarations (see Section 6.28 “Variable Attributes,” page 163)
and for types (see Section 6.29 “Type Attributes,” page 166)..

You may also specify attributes with ‘__’ preceeding and following
each keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you
may use __noreturn__ instead of noreturn.

noreturn A few standard library functions, such as abort and exit,
cannot return. GNU CC knows this automatically. Some
programs define their own functions that never return. You

c y g n u s s u p p o r t 157

Using GNU CC

can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void
fatal (. ..)
{

... /* Print error message. */ ...
exit (1);

}

The noreturn keyword tells the compiler to assume that
fatal cannot return. It can then optimize without regard
to what would happen if fatal ever did return. This makes
slightly better code. More importantly, it helps avoid spuri-
ous warnings of uninitialized variables.
Do not assume that registers saved by the calling function
are restored before calling the noreturn function.
It does not make sense for a noreturn function to have a
return type other than void.
The attribute noreturn is not implemented in GNU C ver-
sions earlier than 2.5. An alternative way to declare that a
function does not return, which works in the current version
and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const Many functions do not examine any values except their argu-
ments, and have no effects except the return value. Such a
function can be subject to common subexpression elimination
and loop optimization just as an arithmetic operator would
be. These functions should be declared with the attribute
const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call
fewer times than the program says.
The attribute const is not implemented in GNU C versions
earlier than 2.5. An alternative way to declare that a function
has no side effects, which works in the current version and
in some older versions, is as follows:

typedef int intfn ();
extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since
the language specifies that the ‘const’ must be attached to
the return value.

158 10 July 1995

Chapter 6: Extensions to the C Language Family

Note that a function that has pointer arguments and exam-
ines the data pointed to must not be declared const. Like-
wise, a function that calls a non-const function usually must
not be const. It does not make sense for a const function to
return void.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf
or scanf style arguments which should be type-checked
against a format string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format,...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_
printf for consistency with the printf style format string
argument my_format.
The parameter archetype determines how the format string
is interpreted, and should be either printf or scanf. The
parameter string-index specifies which argument is the
format string argument (starting from 1), while first-to-
check is the number of the first argument to check against
the format string. For functions where the arguments are not
available to be checked (such as vprintf), specify the third
parameter as zero. In this case the compiler only checks the
format string for consistency.
In the example above, the format string (my_format) is the
second argument of the function my_print, and the argu-
ments to check start with the third argument, so the correct
parameters for the format attribute are 2 and 3.
The format attribute allows you to identify your own func-
tions which take format strings as arguments, so that GNU
CC can check the calls to these functions for errors. The com-
piler always checks formats for the ANSI library functions
printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf,
vfprintf and vsprintf whenever such warnings are re-
quested (using ‘-Wformat’), so there is no need to modify the
header file ‘stdio.h’.

section ("section-name")
Normally, the compiler places the code it generates in the
text section. Sometimes, however, you need additional sec-
tions, or you need certain particular functions to appear in
special sections. The section attribute specifies that a func-
tion lives in a particular section. For example, the declara-
tion:

c y g n u s s u p p o r t 159

Using GNU CC

extern void foobar (void) __attribute__
((section (".init")));

puts the function foobar in the .init section.
Some file formats do not support arbitrary sections so the
section attribute is not available on all platforms. If you
need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

constructor
destructor

The constructor attribute causes the function to be called
automatically before execution enters main (). Similarly, the
destructor attribute causes the function to be called auto-
matically after main () has completed or exit () has been
called. Functions with these attributes are useful for initial-
izing data that will be used implicitly during the execution
of the program.
These attributes are not currently implemented for Objective
C.

You can specify multiple attributes in a declaration by separating
them by commas within the double parentheses or by immediately fol-
lowing an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that
ANSI C’s #pragma should be used instead. There are two reasons for not
doing this.
1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another

compiler.

These two reasons apply to almost any application that might be pro-
posed for #pragma. It is basically a mistake to use #pragma for anything.

6.23 Prototypes and Old-Style Function
Definitions

GNU C extends ANSI C to allow a function prototype to override a
later old-style non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

160 10 July 1995

Chapter 6: Extensions to the C Language Family

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{

return x == 0;
}

Suppose the type uid_t happens to be short. ANSI C does not allow
this example, because subword arguments in old-style non-prototype
definitions are promoted. Therefore in this example the function defi-
nition’s argument is really an int, which does not match the prototype
argument type of short.

This restriction of ANSI C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the uid_t type is short, int, or long. Therefore, in cases
like these GNU C allows a prototype to override a later old-style defi-
nition. More precisely, in GNU C, a function prototype argument type
overrides the argument type specified by a later old-style definition if
the former type is the same as the latter type before promotion. Thus in
GNU C the above example is equivalent to the following:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;
}

GNU C++ does not support old-style function definitions, so this ex-
tension is irrelevant.

6.24 Compiling Functions for Interrupt Calls

When compiling code for certain platforms (currently the Hitachi
H8/300 and the Tandem ST-2000), you can instruct GCC that certain
functions are meant to be called from hardware interrupts.

To mark a function as callable from interrupt, include the line
‘#pragma interrupt’ somewhere before the beginning of the function’s
definition. (For maximum readability, you might place it immediately
before the definition of the appropriate function.) ‘#pragma interrupt’
will affect only the next function defined; if you want to define more than
one function with this property, include ‘#pragma interrupt’ before each
of them.

c y g n u s s u p p o r t 161

Using GNU CC

When you define a function with ‘#pragma interrupt’, GCC alters
its usual calling convention, to provide the right environment when the
function is called from an interrupt. Such functions cannot be called in
the usual way from your program.

You must use other facilities to actually associate these functions with
particular interrupts; GCC can only compile them in the appropriate
way.

6.25 Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is
because many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify
‘-traditional’. On a few systems they are allowed by default, even if
you do not use ‘-traditional’. But they are never allowed if you specify
‘-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For
example:

#define foo(a) #a
#define lose(b) foo (b)
#define test$
lose (test)

6.26 The Character ESC in Constants

You can use the sequence ‘\e’ in a string or character constant to
stand for the ASCII character ESC.

6.27 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type. Its
syntax is just like sizeof.

For example, if the target machine requires a double value to be
aligned on an 8-byte boundary, then __alignof__ (double) is 8. This
is true on many RISC machines. On more traditional machine designs,
__alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow refer-
ence to any data type even at an odd addresses. For these machines,
__alignof__ reports the recommended alignment of a type.

162 10 July 1995

Chapter 6: Extensions to the C Language Family

When the operand of __alignof__ is an lvalue rather than a type,
the value is the largest alignment that the lvalue is known to have. It
may have this alignment as a result of its data type, or because it is part
of a structure and inherits alignment from that structure. For example,
after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __
alignof__ (int), even though the data type of foo1.y does not itself
demand any alignment.

A related feature which lets you specify the alignment of an object is
__attribute__ ((aligned (alignment))); see the following section.

6.28 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes
of variables or structure fields. This keyword is followed by an attribute
specification inside double parentheses. Six attributes are currently
defined for variables: aligned, mode, nocommon, packed, section, and
transparent_union. Other attributes are available for functions (see
Section 6.22 “Function Attributes,” page 157) and for types (see Sec-
tion 6.29 “Type Attributes,” page 166).

You may also specify attributes with ‘__’ preceeding and following
each keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you
may use __aligned__ instead of aligned.

aligned (alignment)
This attribute specifies a minimum alignment for the vari-
able or structure field, measured in bytes. For example, the
declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a
16-byte boundary. On a 68040, this could be used in conjunc-
tion with an asm expression to access the move16 instruction
which requires 16-byte aligned operands.
You can also specify the alignment of structure fields. For
example, to create a double-word aligned int pair, you could
write:

struct foo { int x[2] __attribute__
((aligned (8))); };

This is an alternative to creating a union with a double
member that forces the union to be double-word aligned.

c y g n u s s u p p o r t 163

Using GNU CC

It is not possible to specify the alignment of functions; the
alignment of functions is determined by the machine’s re-
quirements and cannot be changed. You cannot specify align-
ment for a typedef name because such a name is just an alias,
not a distinct type.
As in the preceeding examples, you can explicitly specify the
alignment (in bytes) that you wish the compiler to use for a
given variable or structure field. Alternatively, you can leave
out the alignment factor and just ask the compiler to align
a variable or field to the maximum useful alignment for the
target machine you are compiling for. For example, you could
write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned
attribute specification, the compiler automatically sets the
alignment for the declared variable or field to the largest
alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make
copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory
when performing copies to or from the variables or fields
that you have aligned this way.
The aligned attribute can only increase the alignment; but
you can decrease it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be lim-
ited by inherent limitations in your linker. On many sys-
tems, the linker is only able to arrange for variables to be
aligned up to a certain maximum alignment. (For some link-
ers, the maximum supported alignment may be very very
small.) If your linker is only able to align variables up to a
maximum of 8 byte alignment, then specifying aligned(16)
in an __attribute__ will still only provide you with 8 byte
alignment. See your linker documentation for further infor-
mation.

mode (mode)
This attribute specifies the data type for the declaration—
whichever type corresponds to the mode mode. This in effect
lets you request an integer or floating point type according
to its width.
You may also specify a mode of ‘byte’ or ‘__byte__’ to indi-
cate the mode corresponding to a one-byte integer, ‘word’ or
‘__word__’ for the mode of a one-word integer, and ‘pointer’
or ‘__pointer__’ for the mode used to represent pointers.

164 10 July 1995

Chapter 6: Extensions to the C Language Family

nocommon This attribute specifies requests GNU CC not to
place a variable “common” but instead to allocate space for it
directly. If you specify the ‘-fno-common’ flag, GNU CC will
do this for all variables.
Specifying the nocommon attribute for a variable provides an
initialization of zeros. A variable may only be initialized in
one source file.

packed The packed attribute specifies that a variable or
structure field should have the smallest possible alignment—
one byte for a variable, and one bit for a field, unless you
specify a larger value with the aligned attribute.
Here is a structure in which the field x is packed, so that it
immediately follows a:

struct foo
{

char a;
int x[2] __attribute__ ((packed));

};

section ("section-name")
Normally, the compiler places the objects it generates in sec-
tions like data and bss. Sometimes, however, you need ad-
ditional sections, or you need certain particular variables
to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable
(or function) lives in a particular section. For example, this
small program uses several specific section names:

struct duart a __attribute__
((section ("DUART_A"))) = { 0 };

struct duart b __attribute__
((section ("DUART_B"))) = { 0 };

char stack[10000] __attribute__
((section ("STACK"))) = { 0 };

int init_data_copy __attribute__
((section ("INITDATACOPY"))) = 0;

main()
{

/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data_copy, &data, &edata - &data);

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

}

c y g n u s s u p p o r t 165

Using GNU CC

Use the section attribute with an initialized definition of a
global variable, as shown in the example. GNU CC issues
a warning and otherwise ignores the section attribute in
uninitialized variable declarations.
You may only use the section attribute with a fully initial-
ized global definition because of the way linkers work. The
linker requires each object be defined once, with the excep-
tion that uninitialized variables tentatively go in the common
(or bss) section and can be multiply "defined". You can force
a variable to be initialized with the ‘-fno-common’ flag or the
nocommon attribute.
Some file formats do not support arbitrary sections so the
section attribute is not available on all platforms. If you
need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

transparent_union
This attribute, attached to a function argument variable
which is a union, means to pass the argument in the same
way that the first union member would be passed. You can
also use this attribute on a typedef for a union data type;
then it applies to all function arguments with that type.

To specify multiple attributes, separate them by commas within
the double parentheses: for example, ‘__attribute__ ((aligned (16),
packed))’.

6.29 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes
of struct and union types when you define such types. This keyword
is followed by an attribute specification inside double parentheses. Two
attributes are currently defined for types: aligned, and transparent_
union. Other attributes are defined for functions (see Section 6.22 “Func-
tion Attributes,” page 157) and for variables (see Section 6.28 “Variable
Attributes,” page 163).

You may also specify any one of these attributes with ‘__’ preceeding
and following its keyword. This allows you to use these attributes in
header files without being concerned about a possible macro of the same
name. For example, you may use __aligned__ instead of aligned.

The defined type attributes are supported only for struct and union
types. Furthermore, these attributes are only relevant for complete
struct and union types, and so they are only allowed to appear just past

166 10 July 1995

Chapter 6: Extensions to the C Language Family

the closing curly brace of a complete struct or union type definition. This
point is illustrated by the examples given below.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for
variables whose type is the relevant struct or union type. For
example, the declaration:

struct S { short f[3]; } __attribute__
((aligned (8)));

forces the compiler to insure (as fas as it can) that each vari-
able whose type is struct S will be allocated and aligned
at least on a 8-byte boundary. On a Sparc, having all vari-
ables of type struct S aligned to 8-byte boundaries allows
the compiler to use the ldd and std (doubleword load and
store) instructions when copying one variable of type struct
S to another, thus improving run-time efficiency.
Note that the alignment of any given struct or union type is
required by the ANSI C standard to be at least a perfect mul-
tiple of the lowest common multiple of the alignments of all of
the members of the struct or union in question. This means
that you can effectively adjust the alignment of a struct or
union type by attaching an aligned attribute to any one of
the members of such a type, but the notation illustrated in
the example above is a more obvious, intutive, and readable
way to request the compiler to adjust the alignment of an
entire struct or union type.
As in the preceeding example, you can explicitly specify the
alignment (in bytes) that you wish the compiler to use for a
given struct or union type. Alternatively, you can leave out
the alignment factor and just ask the compiler to align a type
to the maximum useful alignment for the target machine you
are compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned
attribute specification, the compiler automatically sets the
alignment for the type to the largest alignment which is ever
used for any data type on the target machine you are com-
piling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions
copy the biggest chunks of memory when performing copies
to or from the variables which have types that you have
aligned this way.
In the example above, if the size of each short is 2 bytes, then
the size of the entire struct S type is 6 bytes. The smallest

c y g n u s s u p p o r t 167

Using GNU CC

power of two which is greater than or equal to that is 8, so
the compiler sets the alignment for the entire struct S type
to 8 bytes.

Note that although you can ask the compiler to select a time-
efficient alignment for a given type and then declare only
individual stand-alone objects of that type, the compiler’s
ability to select a time-efficient alignment is primarily use-
ful only when you plan to create arrays of variables having
the relevant (efficiently aligned) type. If you declare or use
arrays of variables of an efficiently-aligned type, then it is
likely that your program will also be doing pointer arith-
metic (or subscripting, which amounts to the same thing) on
pointers to the relevant type, and the code that the compiler
generates for these pointer artihmetic operations will often
be more efficient for efficiently-aligned types than for other
types.

The aligned attribute can only increase the alignment; but
you can decrease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be lim-
ited by inherent limitations in your linker. On many sys-
tems, the linker is only able to arrange for variables to be
aligned up to a certain maximum alignment. (For some link-
ers, the maximum supported alignment may be very very
small.) If your linker is only able to align variables up to a
maximum of 8 byte alignment, then specifying aligned(16)
in an __attribute__ will still only provide you with 8 byte
alignment. See your linker documentation for further infor-
mation.

transparent_union
This attribute, attached to a union type definition, indicates
that any variable having that union type should, if passed
to a function, be passed in the same way that the first union
member would be passed. For example:

union foo
{

char a;
int x[2];

} __attribute__ ((transparent_union));

To specify multiple attributes, separate them by commas within
the double parentheses: for example, ‘__attribute__ ((aligned (16),
packed))’.

168 10 July 1995

Chapter 6: Extensions to the C Language Family

6.30 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate
that function’s code into the code for its callers. This makes execution
faster by eliminating the function-call overhead; in addition, if any of the
actual argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s
code needs to be included. The effect on code size is less predictable;
object code may be larger or smaller with function inlining, depending
on the particular case. Inlining of functions is an optimization and it
really “works” only in optimizing compilation. If you don’t use ‘-O’, no
function is really inline.

To declare a function inline, use theinline keyword in its declaration,
like this:

inline int
inc (int *a)
{

(*a)++;
}

(If you are writing a header file to be included in ANSI C programs,
write __inline__ instead of inline. See Section 6.35 “Alternate Key-
words,” page 187.)

You can also make all “simple enough” functions inline with the option
‘-finline-functions’. Note that certain usages in a function definition
can make it unsuitable for inline substitution.

Note that in C and Objective C, unlike C++, the inline keyword does
not affect the linkage of the function.

GNU CC automatically inlines member functions defined within the
class body of C++ programs even if they are not explicitly declared
inline. (You can override this with ‘-fno-default-inline’; see Sec-
tion 4.5 “Options Controlling C++ Dialect,” page 35.)

When a function is both inline and static, if all calls to the function
are integrated into the caller, and the function’s address is never used,
then the function’s own assembler code is never referenced. In this
case, GNU CC does not actually output assembler code for the function,
unless you specify the option ‘-fkeep-inline-functions’. Some calls
cannot be integrated for various reasons (in particular, calls that precede
the function’s definition cannot be integrated, and neither can recursive
calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also
be compiled as usual if the program refers to its address, because that
can’t be inlined.

c y g n u s s u p p o r t 169

Using GNU CC

When an inline function is not static, then the compiler must as-
sume that there may be calls from other source files; since a global
symbol can be defined only once in any program, the function must not
be defined in the other source files, so the calls therein cannot be inte-
grated. Therefore, a non-static inline function is always compiled on
its own in the usual fashion.

If you specify both inline and extern in the function definition, then
the definition is used only for inlining. In no case is the function compiled
on its own, not even if you refer to its address explicitly. Such an address
becomes an external reference, as if you had only declared the function,
and had not defined it.

This combination of inline and extern has almost the effect of a
macro. The way to use it is to put a function definition in a header
file with these keywords, and put another copy of the definition (lacking
inline and extern) in a library file. The definition in the header file will
cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not
clear whether it is better to inline or not, in this case, but we found that
a correct implementation when not optimizing was difficult. So we did
the easy thing, and turned it off.

6.31 Assembler Instructions with C Expression
Operands

In an assembler instruction using asm, you can now specify the
operands of the instruction using C expressions. This means no more
guessing which registers or memory locations will contain the data you
want to use.

You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is
that of the output operand. Each has ‘"f"’ as its operand constraint,
saying that a floating point register is required. The ‘=’ in ‘=f’ indicates
that the operand is an output; all output operands’ constraints must
use ‘=’. The constraints use the same language used in the machine
description (see Section 6.32 “Constraints,” page 174).

Each operand is described by an operand-constraint string followed
by the C expression in parentheses. A colon separates the assembler

170 10 July 1995

Chapter 6: Extensions to the C Language Family

template from the first output operand, and another separates the last
output operand from the first input, if any. Commas separate output
operands and separate inputs. The total number of operands is limited
to ten or to the maximum number of operands in any instruction pattern
in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then
there must be two consecutive colons surrounding the place where the
output operands would go.

Output operand expressions must be lvalues; the compiler can check
this. The input operands need not be lvalues. The compiler cannot
check whether the operands have data types that are reasonable for the
instruction being executed. It does not parse the assembler instruction
template and does not know what it means, or whether it is valid as-
sembler input. The extended asm feature is most often used for machine
instructions that the compiler itself does not know exist.

The output operands must be write-only; GNU CC will assume that
the values in these operands before the instruction are dead and need not
be generated. Extended asm does not support input-output or read-write
operands. For this reason, the constraint character ‘+’, which indicates
such an operand, may not be used.

When the assembler instruction has a read-write operand, or an
operand in which only some of the bits are to be changed, you must
logically split its function into two separate operands, one input operand
and one write-only output operand. The connection between them is
expressed by constraints which say they need to be in the same location
when the instruction executes. You can use the same C expression for
both operands, or different expressions. For example, here we write the
(fictitious) ‘combine’ instruction with bar as its read-only source operand
and foo as its read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same
location as operand 0. A digit in constraint is allowed only in an input
operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be
in the same place as another. The mere fact that foo is the value of both
operands is not enough to guarantee that they will be in the same place
in the generated assembler code. The following would not work:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to
be in different registers; GNU CC knows no reason not to do so. For
example, the compiler might find a copy of the value of foo in one register
and use it for operand 1, but generate the output operand 0 in a different

c y g n u s s u p p o r t 171

Using GNU CC

register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the
result will not work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this,
write a third colon after the input operands, followed by the names
of the clobbered hard registers (given as strings). Here is a realistic
example for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

If you refer to a particular hardware register from the assembler code,
then you will probably have to list the register after the third colon to tell
the compiler that the register’s value is modified. In many assemblers,
the register names begin with ‘%’; to produce one ‘%’ in the assembler
code, you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register,
add ‘cc’ to the list of clobbered registers. GNU CC on some machines
represents the condition codes as a specific hardware register; ‘cc’ serves
to name this register. On other machines, the condition code is handled
differently, and specifying ‘cc’ has no effect. But it is valid no matter
what the machine.

If your assembler instruction modifies memory in an unpredictable
fashion, add ‘memory’ to the list of clobbered registers. This will cause
GNU CC to not keep memory values cached in registers across the as-
sembler instruction.

You can put multiple assembler instructions together in a single asm
template, separated either with newlines (written as ‘\n’) or with semi-
colons if the assembler allows such semicolons. The GNU assembler
allows semicolons and all Unix assemblers seem to do so. The input
operands are guaranteed not to use any of the clobbered registers, and
neither will the output operands’ addresses, so you can read and write
the clobbered registers as many times as you like. Here is an example
of multiple instructions in a template; it assumes that the subroutine
_foo accepts arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GNU CC
may allocate it in the same register as an unrelated input operand, on
the assumption that the inputs are consumed before the outputs are
produced. This assumption may be false if the assembler code actu-
ally consists of more than one instruction. In such a case, use ‘&’ for

172 10 July 1995

Chapter 6: Extensions to the C Language Family

each output operand that may not overlap an input. See Section 6.32.3
“Modifiers,” page 177.

If you want to test the condition code produced by an assembler in-
struction, you must include a branch and a label in the asm construct, as
follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assem-
bler and most Unix assemblers do.

Speaking of labels, jumps from one asm to another are not supported.
The compiler’s optimizers do not know about these jumps, and therefore
they cannot take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to
encapsulate them in macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction op-
erates on a proper double value, and to accept only those arguments x
which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data
type is to use a cast in the asm. This is different from using a variable __
arg in that it converts more different types. For example, if the desired
type were int, casting the argument to int would accept a pointer with
no complaint, while assigning the argument to an int variable named
__arg would warn about using a pointer unless the caller explicitly casts
it.

If an asm has output operands, GNU CC assumes for optimization
purposes that the instruction has no side effects except to change the
output operands. This does not mean that instructions with a side effect
cannot be used, but you must be careful, because the compiler may elim-
inate them if the output operands aren’t used, or move them out of loops,
or replace two with one if they constitute a common subexpression. Also,
if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved signifi-
cantly, or combined, by writing the keyword volatile after the asm. For
example:

#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))

c y g n u s s u p p o r t 173

Using GNU CC

An instruction without output operands will not be deleted or moved
significantly, regardless, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that
appear insignificant to the compiler, such as across jump instructions.
You can’t expect a sequence of volatile asm instructions to remain per-
fectly consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition
code left by the assembler instruction. However, when we attempted
to implement this, we found no way to make it work reliably. The
problem is that output operands might need reloading, which would
result in additional following “store” instructions. On most machines,
these instructions would alter the condition code before there was time
to test it. This problem doesn’t arise for ordinary “test” and “compare”
instructions because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI
C programs, write __asm__ instead of asm. See Section 6.35 “Alternate
Keywords,” page 187.

6.32 Constraints for asm Operands

Here are specific details on what constraint letters you can use with
asm operands. Constraints can say whether an operand may be in a
register, and which kinds of register; whether the operand can be a
memory reference, and which kinds of address; whether the operand
may be an immediate constant, and which possible values it may have.
Constraints can also require two operands to match.

6.32.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which
describes one kind of operand that is permitted. Here are the letters that
are allowed:

‘m’ A memory operand is allowed, with any kind of address that
the machine supports in general.

‘o’ A memory operand is allowed, but only if the address is off-
settable. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its ma-
chine mode) may be added to the address and the result is
also a valid memory address.
For example, an address which is constant is offsettable; so
is an address that is the sum of a register and a constant
(as long as a slightly larger constant is also within the range

174 10 July 1995

Chapter 6: Extensions to the C Language Family

of address-offsets supported by the machine); but an autoin-
crement or autodecrement address is not offsettable. More
complicated indirect/indexed addresses may or may not be
offsettable depending on the other addressing modes that
the machine supports.
Note that in an output operand which can be matched by
another operand, the constraint letter ‘o’ is valid only when
accompanied by both ‘<’ (if the target machine has predecre-
ment addressing) and ‘>’ (if the target machine has preincre-
ment addressing).

‘V’ A memory operand that is not offsettable. In other words,
anything that would fit the ‘m’ constraint but not the ‘o’ con-
straint.

‘<’ A memory operand with autodecrement addressing (either
predecrement or postdecrement) is allowed.

‘>’ A memory operand with autoincrement addressing (either
preincrement or postincrement) is allowed.

‘r’ A register operand is allowed provided that it is in a general
register.

‘d’, ‘a’, ‘f’, . . .
Other letters can be defined in machine-dependent fashion
to stand for particular classes of registers. ‘d’, ‘a’ and ‘f’ are
defined on the 68000/68020 to stand for data, address and
floating point registers.

‘i’ An immediate integer operand (one with constant value) is
allowed. This includes symbolic constants whose values will
be known only at assembly time.

‘n’ An immediate integer operand with a known numeric value
is allowed. Many systems cannot support assembly-time con-
stants for operands less than a word wide. Constraints for
these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in
a machine-dependent fashion to permit immediate integer
operands with explicit integer values in specified ranges. For
example, on the 68000, ‘I’ is defined to stand for the range of
values 1 to 8. This is the range permitted as a shift count in
the shift instructions.

‘E’ An immediate floating operand (expression code const_
double) is allowed, but only if the target floating point format

c y g n u s s u p p o r t 175

Using GNU CC

is the same as that of the host machine (on which the com-
piler is running).

‘F’ An immediate floating operand (expression code const_
double) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of
values.

‘s’ An immediate integer operand whose value is not an explicit
integer is allowed.
This might appear strange; if an insn allows a constant
operand with a value not known at compile time, it certainly
must allow any known value. So why use ‘s’ instead of ‘i’?
Sometimes it allows better code to be generated.
For example, on the 68000 in a fullword instruction it is
possible to use an immediate operand; but if the immediate
value is between -128 and 127, better code results from load-
ing the value into a register and using the register. This is
because the load into the register can be done with a ‘moveq’
instruction. We arrange for this to happen by defining the
letter ‘K’ to mean “any integer outside the range -128 to 127”,
and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is al-
lowed, except for registers that are not general registers.

‘X’ Any operand whatsoever is allowed.

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is
allowed. If a digit is used together with letters within the
same alternative, the digit should come last.
This is called a matching constraint and what it really means
is that the assembler has only a single operand that fills
two roles which asm distinguishes. For example, an add
instruction uses two input operands and an output operand,
but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More
precisely, the two operands that match must include one
input-only operand and one output-only operand. Moreover,
the digit must be a smaller number than the number of the
operand that uses it in the constraint.

176 10 July 1995

Chapter 6: Extensions to the C Language Family

‘p’ An operand that is a valid memory address is allowed. This
is for “load address” and “push address” instructions.
‘p’ in the constraint must be accompanied by address_
operand as the predicate in the match_operand. This pred-
icate interprets the mode specified in the match_operand as
the mode of the memory reference for which the address
would be valid.

‘Q’, ‘R’, ‘S’, . . . ‘U’
Letters in the range ‘Q’ through ‘U’ may be defined in a
machine-dependent fashion to stand for arbitrary operand
types.

6.32.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of pos-
sible operands. For example, on the 68000, a logical-or instruction can
combine register or an immediate value into memory, or it can combine
any kind of operand into a register; but it cannot combine one memory
location into another.

These constraints are represented as multiple alternatives. An alter-
native can be described by a series of letters for each operand. The over-
all constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from the
second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid.
Otherwise, for each alternative, the compiler counts how many instruc-
tions must be added to copy the operands so that that alternative applies.
The alternative requiring the least copying is chosen. If two alternatives
need the same amount of copying, the one that comes first is chosen.
These choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as
a choice when no alternative applies exactly. The compiler
regards this alternative as one unit more costly for each ‘?’
that appears in it.

! Disparage severely the alternative that the ‘!’ appears in.
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be
used.

6.32.3 Constraint Modifier Characters

Here are constraint modifier characters.

c y g n u s s u p p o r t 177

Using GNU CC

‘=’ Means that this operand is write-only for this instruction:
the previous value is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the
instruction.
When the compiler fixes up the operands to satisfy the con-
straints, it needs to know which operands are inputs to the
instruction and which are outputs from it. ‘=’ identifies an
output; ‘+’ identifies an operand that is both input and out-
put; all other operands are assumed to be input only.

‘&’ Means (in a particular alternative) that this operand is
written before the instruction is finished using the input
operands. Therefore, this operand may not lie in a register
that is used as an input operand or as part of any memory
address.
‘&’ applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alter-
native requires ‘&’ while others do not. See, for example, the
‘movdf’ insn of the 68000.
‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand
and the following operand. This means that the compiler
may interchange the two operands if that is the cheapest
way to make all operands fit the constraints.

‘#’ Says that all following characters, up to the next comma, are
to be ignored as a constraint. They are significant only for
choosing register preferences.

6.32.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint
letters in asm arguments, since they will convey meaning more read-
ily to people reading your code. Failing that, use the constraint let-
ters that usually have very similar meanings across architectures.
The most commonly used constraints are ‘m’ and ‘r’ (for memory and
general-purpose registers respectively; see Section 6.32.1 “Simple Con-
straints,” page 174), and ‘I’, usually the letter indicating the most com-
mon immediate-constant format.

For each machine architecture, the ‘config/machine.h’ file defines
additional constraints. These constraints are used by the compiler it-
self for instruction generation, as well as for asm statements; therefore,
some of the constraints are not particularly interesting for asm. The
constraints are defined through these macros:

178 10 July 1995

Chapter 6: Extensions to the C Language Family

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point con-
stants of word size or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point con-
stants and for constants of greater than word size precision
(usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not re-
quired, and is only defined for some machines.

Inspecting these macro definitions in the compiler source for your ma-
chine is the best way to be certain you have the right constraints. How-
ever, here is a summary of the machine-dependent constraints available
on some particular machines.

ARM family—‘arm.h’
f Floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0,
2.0, 3.0, 4.0, 5.0 or 10.0

G Floating-point constant that would satisfy the
constraint ‘F’ if it were negated

I Integer that is valid as an immediate operand in
a data processing instruction. That is, an integer
in the range 0 to 255 rotated by a multiple of 2

J Integer in the range -4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted
(ones complement)

L Integer that satisfies constraint ‘I’ when negated
(twos complement)

M Integer in the range 0 to 32

Q A memory reference where the exact address is
in a single register (“m’’ is preferable for asm state-
ments)

R An item in the constant pool

S A symbol in the text segment of the current file

AMD 29000 family—‘a29k.h’

c y g n u s s u p p o r t 179

Using GNU CC

l Local register 0

b Byte Pointer (‘BP’) register

q ‘Q’ register

h Special purpose register

A First accumulator register

a Other accumulator register

f Floating point register

I Constant greater than 0, less than 0x100

J Constant greater than 0, less than 0x10000

K Constant whose high 24 bits are on (1)

L 16 bit constant whose high 8 bits are on (1)

M 32 bit constant whose high 16 bits are on (1)

N 32 bit negative constant that fits in 8 bits

O The constant 0x80000000 or, on the 29050, any
32 bit constant whose low 16 bits are 0.

P 16 bit negative constant that fits in 8 bits

G
H A floating point constant (in asm statements, use

the machine independent ‘E’ or ‘F’ instead)

IBM RS6000—‘rs6000.h’
b Address base register

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

I Signed 16 bit constant

J Constant whose low 16 bits are 0

K Constant whose high 16 bits are 0

180 10 July 1995

Chapter 6: Extensions to the C Language Family

L Constant suitable as a mask operand

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16 bit con-
stant

G Floating point constant that can be loaded into a
register with one instruction per word

Q Memory operand that is an offset from a register
(‘m’ is preferable for asm statements)

Intel 386—‘i386.h’
q ‘a’, b, c, or d register

A ‘a’, or d register (for 64-bit ints)

f Floating point register

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

b ‘b’ register

c ‘c’ register

d ‘d’ register

D ‘di’ register

S ‘si’ register

I Constant in range 0 to 31 (for 32 bit shifts)

J Constant in range 0 to 63 (for 64 bit shifts)

K ‘0xff’

L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

G Standard 80387 floating point constant

Intel 960—‘i960.h’
f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

c y g n u s s u p p o r t 181

Using GNU CC

d Any local or global register

I Integers from 0 to 31

J 0

K Integers from -31 to 0

G Floating point 0

H Floating point 1

MIPS—‘mips.h’
d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

z Floating-point status register

I Signed 16 bit constant (for arithmetic instruc-
tions)

J Zero

K Zero-extended 16-bit constant (for logic instruc-
tions)

L Constant with low 16 bits zero (can be loaded
with lui)

M 32 bit constant which requires two instructions
to load (a constant which is not ‘I’, ‘K’, or ‘L’)

N Negative 16 bit constant

O Exact power of two

P Positive 16 bit constant

G Floating point zero

Q Memory reference that can be loaded with more
than one instruction (‘m’ is preferable for asm
statements)

R Memory reference that can be loaded with one
instruction (‘m’ is preferable for asm statements)

182 10 July 1995

Chapter 6: Extensions to the C Language Family

S Memory reference in external OSF/rose PIC for-
mat (‘m’ is preferable for asm statements)

Motorola 680x0—‘m68k.h’
a Address register

d Data register

f 68881 floating-point register, if available

x Sun FPA (floating-point) register, if available

y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16 bit signed number

K Signed number whose magnitude is greater than
0x80

L Integer in the range -8 to -1

G Floating point constant that is not a 68881 con-
stant

H Floating point constant that can be used by Sun
FPA

SPARC—‘sparc.h’
f Floating-point register

I Signed 13 bit constant

J Zero

K 32 bit constant with the low 12 bits clear (a con-
stant that can be loaded with the sethi instruc-
tion)

G Floating-point zero

H Signed 13 bit constant, sign-extended to 32 or 64
bits

Q Memory reference that can be loaded with one
instruction (‘m’ is more appropriate for asm state-
ments)

S Constant, or memory address

T Memory address aligned to an 8-byte boundary

U Even register

c y g n u s s u p p o r t 183

Using GNU CC

6.33 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C
function or variable by writing the asm (or __asm__) keyword after the
declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the as-
sembler code should be ‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name
of a C function or variable, this feature allows you to define names for
the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can
get the same effect by writing a declaration for the function before its
definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

...

It is up to you to make sure that the assembler names you choose
do not conflict with any other assembler symbols. Also, you must not
use a register name; that would produce completely invalid assembler
code. GNU CC does not as yet have the ability to store static variables
in registers. Perhaps that will be added.

6.34 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hard-
ware registers. You can also specify the register in which an ordinary
register variable should be allocated.
� Global register variables reserve registers throughout the program.

This may be useful in programs such as programming language in-
terpreters which have a couple of global variables that are accessed
very often.

� Local register variables in specific registers do not reserve the reg-
isters. The compiler’s data flow analysis is capable of determining
where the specified registers contain live values, and where they are
available for other uses.
These local variables are sometimes convenient for use with the
extended asm feature (see Section 6.31 “Extended Asm,” page 170),
if you want to write one output of the assembler instruction directly
into a particular register. (This will work provided the register you
specify fits the constraints specified for that operand in the asm.)

184 10 July 1995

Chapter 6: Extensions to the C Language Family

6.34.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need
to conditionalize your program according to cpu type. The register a5
would be a good choice on a 68000 for a variable of pointer type. On
machines with register windows, be sure to choose a “global” register
that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is evident.

Defining a global register variable in a certain register reserves that
register entirely for this use, at least within the current compilation.
The register will not be allocated for any other purpose in the functions
in the current compilation. The register will not be saved and restored
by these functions. Stores into this register are never deleted even if
they would appear to be dead, but references may be deleted or moved
or simplified.

It is not safe to access the global register variables from signal han-
dlers, or from more than one thread of control, because the system library
routines may temporarily use the register for other things (unless you
recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to
call another such function foo by way of a third function lose that was
compiled without knowledge of this variable (i.e. in a different source
file in which the variable wasn’t declared). This is because lose might
save the register and put some other value there. For example, you
can’t expect a global register variable to be available in the comparison-
function that you pass to qsort, since qsort might have put something
else in that register. (If you are prepared to recompile qsort with the
same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not ac-
tually use your global register variable, so that they will not use that
register for any other purpose, then it suffices to specify the compiler

c y g n u s s u p p o r t 185

Using GNU CC

option ‘-ffixed-reg ’. You need not actually add a global register decla-
ration to their source code.

A function which can alter the value of a global register variable
cannot safely be called from a function compiled without this variable,
because it could clobber the value the caller expects to find there on
return. Therefore, the function which is the entry point into the part of
the program that uses the global register variable must explicitly save
and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register vari-
able the value it had at the time of the setjmp. On some machines,
however, longjmp will not change the value of global register variables.
To be portable, the function that called setjmp should make other ar-
rangements to save the values of the global register variables, and to
restore them in a longjmp. This way, the same thing will happen re-
gardless of what longjmp does.

All global register variable declarations must precede all function
definitions. If such a declaration could appear after function definitions,
the declaration would be too late to prevent the register from being used
for other purposes in the preceding functions.

Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers,
but certain library functions, such as getwd, as well as the subroutines
for division and remainder, modify g3 and g4. g1 and g2 are local tem-
poraries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of
course, it will not do to use more than a few of those.

6.34.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like
this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this
is the same syntax used for defining global register variables, but for a
local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a prob-
lem, since specific registers are most often useful with explicit assembler
instructions (see Section 6.31 “Extended Asm,” page 170). Both of these
things generally require that you conditionalize your program according
to cpu type.

186 10 July 1995

Chapter 6: Extensions to the C Language Family

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is evident.

Defining such a register variable does not reserve the register; it re-
mains available for other uses in places where flow control determines
the variable’s value is not live. However, these registers are made un-
available for use in the reload pass. I would not be surprised if excessive
use of this feature leaves the compiler too few available registers to
compile certain functions.

6.35 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ disables
certain others. This causes trouble when you want to use GNU C exten-
sions, or ANSI C features, in a general-purpose header file that should
be usable by all programs, including ANSI C programs and traditional
ones. The keywords asm, typeof and inline cannot be used since they
won’t work in a program compiled with ‘-ansi’, while the keywords
const, volatile, signed, typeof and inline won’t work in a program
compiled with ‘-traditional’.

The way to solve these problems is to put ‘__’ at the beginning and
end of each problematical keyword. For example, use __asm__ instead
of asm, __const__ instead of const, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you
want to compile with another compiler, you can define the alternate
keywords as macros to replace them with the customary keywords. It
looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

‘-pedantic’ causes warnings for many GNU C extensions. You can
prevent such warnings within one expression by writing __extension__
before the expression. __extension__ has no effect aside from this.

6.36 Incomplete enum Types

You can define an enum tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write

c y g n u s s u p p o r t 187

Using GNU CC

struct foo without describing the elements. A later declaration which
does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is in-
complete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of
enum more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.

6.37 Function Names as Strings

GNU CC predefines two string variables to be the name of the current
function. The variable __FUNCTION__ is the name of the function as it
appears in the source. The variable __PRETTY_FUNCTION__ is the name
of the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++
function they may be different. For example, this program:

extern "C" {
extern int printf (char *, ...);
}

class a {
public:
sub (int i)

{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}
};

int
main (void)
{

a ax;
ax.sub (0);
return 0;

}

gives this output:
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

188 10 July 1995

Chapter 7: Extensions to the C++ Language

7 Extensions to the C++ Language
The GNU compiler provides these extensions to the C++ language

(and you can also use most of the C language extensions in your C++
programs). If you want to write code that checks whether these features
are available, you can test for the GNU compiler the same way as for C
programs: check for a predefined macro __GNUC__. You can also use __
GNUG__ to test specifically for GNU C++ (see section “Standard Predefined
Macros” in The C Preprocessor).

7.1 Named Return Values in C++

GNU C++ extends the function-definition syntax to allow you to spec-
ify a name for the result of a function outside the body of the definition,
in C++ programs:

type
functionname (args) return resultname;
{

...

body
...

}

You can use this feature to avoid an extra constructor call when a
function result has a class type. For example, consider a function m,
declared as ‘X v = m ();’, whose result is of class X:

X
m ()
{

X b;
b.a = 23;
return b;

}

Although m appears to have no arguments, in fact it has one implicit
argument: the address of the return value. At invocation, the address
of enough space to hold v is sent in as the implicit argument. Then
b is constructed and its a field is set to the value 23. Finally, a copy
constructor (a constructor of the form ‘X(X&)’) is applied to b, with the
(implicit) return value location as the target, so that v is now bound to
the return value.

But this is wasteful. The local b is declared just to hold something
that will be copied right out. While a compiler that combined an “eli-
sion” algorithm with interprocedural data flow analysis could conceiv-
ably eliminate all of this, it is much more practical to allow you to assist
the compiler in generating efficient code by manipulating the return

c y g n u s s u p p o r t 189

Using GNU CC

value explicitly, thus avoiding the local variable and copy constructor
altogether.

Using the extended GNU C++ function-definition syntax, you can
avoid the temporary allocation and copying by naming r as your return
value at the outset, and assigning to its a field directly:

X
m () return r;
{

r.a = 23;
}

The declaration of r is a standard, proper declaration, whose effects are
executed before any of the body of m.

Functions of this type impose no additional restrictions; in particular,
you can execute return statements, or return implicitly by reaching the
end of the function body (“falling off the edge”). Cases like

X
m () return r (23);
{

return;
}

(or even ‘X m () return r (23); { }’) are unambiguous, since the return
value r has been initialized in either case. The following code may be
hard to read, but also works predictably:

X
m () return r;
{

X b;
return b;

}

The return value slot denoted by r is initialized at the outset, but the
statement ‘return b;’ overrides this value. The compiler deals with this
by destroying r (calling the destructor if there is one, or doing nothing if
there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use over-
loaded operators, where there is a great need to control not just the
arguments, but the return values of functions. For classes where the
copy constructor incurs a heavy performance penalty (especially in the
common case where there is a quick default constructor), this is a major
savings. The disadvantage of this extension is that you do not control
when the default constructor for the return value is called: it is always
called at the beginning.

190 10 July 1995

Chapter 7: Extensions to the C++ Language

7.2 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum”
or the “maximum” of two arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the
numeric values a and b;

a >? b is the maximum, returning the larger of the
numeric values a and b.

These operations are not primitive in ordinary C++, since you can use
a macro to return the minimum of two things in C++, as in the following
example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use ‘int min = MIN (i, j);’ to set min to the minimum
value of variables i and j.

However, side effects in X or Ymay cause unintended behavior. For ex-
ample, MIN (i++, j++) will fail, incrementing the smaller counter twice.
A GNU C extension allows you to write safe macros that avoid this kind
of problem (see Section 6.6 “Naming an Expression’s Type,” page 146).
However, writing MIN and MAX as macros also forces you to use function-
call notation notation for a fundamental arithmetic operation. Using
GNU C++ extensions, you can write ‘int min = i <? j;’ instead.

Since <? and >? are built into the compiler, they properly handle
expressions with side-effects; ‘int min = i++ <? j++;’ works correctly.

7.3 goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you
use it to exit a block which contains aggregates requiring destructors,
the destructors will run before the goto transfers control. (In ANSI C++,
goto is restricted to targets within the current block.)

The compiler still forbids using goto to enter a scope that requires
constructors.

7.4 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source
code will need two kinds of things for each object that you use across
more than one source file. First, you need an interface specification,
describing its structure with type declarations and function prototypes.
Second, you need the implementation itself. It can be tedious to main-
tain a separate interface description in a header file, in parallel to the

c y g n u s s u p p o r t 191

Using GNU CC

actual implementation. It is also dangerous, since separate interface
and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the
nonce, you must use one of two #pragma commands; in a future
release of GNU C++, an alternative mechanism will make these
#pragma commands unnecessary.

The header file contains the full definitions, but is marked with
‘#pragma interface’ in the source code. This allows the compiler to use
the header file only as an interface specification when ordinary source
files incorporate it with #include. In the single source file where the
full implementation belongs, you can use either a naming convention or
‘#pragma implementation’ to indicate this alternate use of the header
file.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to
save space in most of the object files that use those classes.
Normally, local copies of certain information (backup copies
of inline member functions, debugging information, and the
internal tables that implement virtual functions) must be
kept in each object file that includes class definitions. You can
use this pragma to avoid such duplication. When a header file
containing ‘#pragma interface’ is included in a compilation,
this auxiliary information will not be generated (unless the
main input source file itself uses ‘#pragma implementation’).
Instead, the object files will contain references to be resolved
at link time.

The second form of this directive is useful for the case where
you have multiple headers with the same name in different
directories. If you use this form, you must specify the same
string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full
output from included header files to be generated (and made
globally visible). The included header file, in turn, should use
‘#pragma interface’. Backup copies of inline member func-
tions, debugging information, and the internal tables used to
implement virtual functions are all generated in implemen-
tation files.

192 10 July 1995

Chapter 7: Extensions to the C++ Language

If you use ‘#pragma implementation’ with no argument,
it applies to an include file with the same basename1
as your source file. For example, in ‘allclass.cc’,
‘#pragma implementation’ by itself is equivalent to ‘#pragma
implementation "allclass.h"’.
In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was
treated as an implementation file whenever you would in-
clude it from ‘allclass.cc’ even if you never specified
‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.
If you use an explicit ‘#pragma implementation’, it must ap-
pear in your source file before you include the affected header
files.
Use the string argument if you want a single implementa-
tion file to include code from multiple header files. (You
must also use ‘#include’ to include the header file; ‘#pragma
implementation’ only specifies how to use the file—it doesn’t
actually include it.)
There is no way to split up the contents of a single header
file into multiple implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an ef-
fect on function inlining.

If you define a class in a header file marked with ‘#pragma interface’,
the effect on a function defined in that class is similar to an explicit
extern declaration—the compiler emits no code at all to define an inde-
pendent version of the function. Its definition is used only for inlining
with its callers.

Conversely, when you include the same header file in a main source
file that declares it as ‘#pragma implementation’, the compiler emits
code for the function itself; this defines a version of the function that can
be found via pointers (or by callers compiled without inlining). If all calls
to the function can be inlined, you can avoid emitting the function by
compiling with ‘-fno-implement-inlines’. If any calls were not inlined,
you will get linker errors.

7.5 Where’s the Template?

C++ templates are the first language feature to require more intelli-
gence from the environment than one usually finds on a UNIX system.

1 A file’s basename was the name stripped of all leading path informa-
tion and of trailing suffixes, such as ‘.h’ or ‘.C’ or ‘.cc’.

c y g n u s s u p p o r t 193

Using GNU CC

Somehow the compiler and linker have to make sure that each template
instance occurs exactly once in the executable if it is needed, and not at
all otherwise. There are two basic approaches to this problem, which I
will refer to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by
adding the code equivalent of common blocks to their linker;
template instances are emitted in each translation unit that
uses them, and they are collapsed together at run time. The
advantage of this model is that the linker only has to consider
the object files themselves; there is no external complexity
to worry about. This disadvantage is that compilation time
is increased because the template code is being compiled re-
peatedly. Code written for this model tends to include defi-
nitions of all member templates in the header file, since they
must be seen to be compiled.

Cfront model
The AT&T C++ translator, Cfront, solved the template in-
stantiation problem by creating the notion of a template
repository, an automatically maintained place where tem-
plate instances are stored. As individual object files are
built, notes are placed in the repository to record where tem-
plates and potential type arguments were seen so that the
subsequent instantiation step knows where to find them. At
link time, any needed instances are generated and linked in.
The advantages of this model are more optimal compilation
speed and the ability to use the system linker; to implement
the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complex-
ity, and thus potential for error; theoretically, this should
be just as transparent, but in practice it has been very dif-
ficult to build multiple programs in one directory and one
program in multiple directories using Cfront. Code writ-
ten for this model tends to separate definitions of non-inline
member templates into a separate file, which is magically
found by the link preprocessor when a template needs to be
instantiated.

Currently, g++ implements neither automatic model. The g++ team
hopes to have a repository working for 2.7.0. In the mean time, you have
three options for dealing with template instantiations:
1. Do nothing. Pretend g++ does implement automatic instantiation

management. Code written for the Borland model will work fine, but
each translation unit will contain instances of each of the templates

194 10 July 1995

Chapter 7: Extensions to the C++ Language

it uses. In a large program, this can lead to an unacceptable amount
of code duplication.

2. Add ‘#pragma interface’ to all files containing template definitions.
For each of these files, add ‘#pragma implementation "filename"’
to the top of some ‘.C’ file which ‘#include’s it. Then compile ev-
erything with -fexternal-templates. The templates will then only be
expanded in the translation unit which implements them (i.e. has a
‘#pragma implementation’ line for the file where they live); all other
files will use external references. If you’re lucky, everything should
work properly. If you get undefined symbol errors, you need to make
sure that each template instance which is used in the program is
used in the file which implements that template. If you don’t have
any use for a particular instance in that file, you can just instantiate
it explicitly, using the syntax from the latest C++ working paper:

template class A<int>;
template ostream& operator << (ostream&, const A<int>&);

This strategy will work with code written for either model. If you
are using code written for the Cfront model, the file containing a
class template and the file containing its member templates should
be implemented in the same translation unit.
A slight variation on this approach is to use the flag -falt-external-
templates instead; this flag causes template instances to be emitted
in the translation unit that implements the header where they are
first instantiated, rather than the one which implements the file
where the templates are defined. This header must be the same in
all translation units, or things are likely to break.
See Section 7.4 “Declarations and Definitions in One Header,”
page 191, for more discussion of these pragmas.

3. Explicitly instantiate all the template instances you use, and com-
pile with -fno-implicit-templates. This is probably your best bet;
it may require more knowledge of exactly which templates you are
using, but it’s less mysterious than the previous approach, and it
doesn’t require any ‘#pragma’s or other g++-specific code. You can
scatter the instantiations throughout your program, you can create
one big file to do all the instantiations, or you can create tiny files
like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;

for each instance you need, and create a template instantiation li-
brary from those. I’m partial to the last, but your mileage may vary.
If you are using Cfront-model code, you can probably get away with

c y g n u s s u p p o r t 195

Using GNU CC

not using -fno-implicit-templates when compiling files that don’t
‘#include’ the member template definitions.

7.6 Type Abstraction using Signatures

In GNU C++, you can use the keyword signature to define a com-
pletely abstract class interface as a datatype. You can connect this
abstraction with actual classes using signature pointers. If you want to
use signatures, run the GNU compiler with the ‘-fhandle-signatures’
command-line option. (With this option, the compiler reserves a second
keyword sigof as well, for a future extension.)

Roughly, signatures are type abstractions or interfaces of classes.
Some other languages have similar facilities. C++ signatures are related
to ML’s signatures, Haskell’s type classes, definition modules in Modula-
2, interface modules in Modula-3, abstract types in Emerald, type mod-
ules in Trellis/Owl, categories in Scratchpad II, and types in POOL-I.
For a more detailed discussion of signatures, see Signatures: A C++
Extension for Type Abstraction and Subtype Polymorphism by Gerald
Baumgartner and Vincent F. Russo (Tech report CSD–TR–93–059, Dept.
of Computer Sciences, Purdue University, September 1993, to appear in
Software Practice & Experience). You can get the tech report by anony-
mous FTP from ftp.cs.purdue.edu in ‘pub/reports/TR93-059.PS.Z’.

Syntactically, a signature declaration is a collection of member func-
tion declarations and nested type declarations. For example, this signa-
ture declaration defines a new abstract type S with member functions
‘int foo ()’ and ‘int bar (int)’:

signature S
{

int foo ();

int bar (int);

};

Since signature types do not include implementation definitions, you
cannot write an instance of a signature directly. Instead, you can define
a pointer to any class that contains the required interfaces as a signature
pointer. Such a class implements the signature type.

To use a class as an implementation of S, you must ensure that the
class has public member functions ‘int foo ()’ and ‘int bar (int)’. The
class can have other member functions as well, public or not; as long as
it offers what’s declared in the signature, it is suitable as an implemen-
tation of that signature type.

For example, suppose that C is a class that meets the requirements
of signature S (C conforms to S). Then

196 10 July 1995

Chapter 7: Extensions to the C++ Language

C obj;

S * p = &obj;

defines a signature pointer p and initializes it to point to an object of
type C. The member function call ‘int i = p->foo ();’ executes ‘obj.foo
()’.

Abstract virtual classes provide somewhat similar facilities in stan-
dard C++. There are two main advantages to using signatures instead:
1. Subtyping becomes independent from inheritance. A class or signa-

ture type T is a subtype of a signature type S independent of any
inheritance hierarchy as long as all the member functions declared
in S are also found in T. So you can define a subtype hierarchy that
is completely independent from any inheritance (implementation)
hierarchy, instead of being forced to use types that mirror the class
inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as im-
plementations of a signature type. If those class hierarchies are
only available in compiled form, you’re out of luck with abstract vir-
tual classes, since an abstract virtual class cannot be retrofitted on
top of existing class hierarchies. So you would be required to write
interface classes as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration
can contain member function definitions as well as member function dec-
larations. A signature member function with a full definition is called
a default implementation; classes need not contain that particular in-
terface in order to conform. For example, a class C can conform to the
signature

signature T
{

int f (int);
int f0 () { return f (0); };

};

whether or not C implements the member function ‘int f0 ()’. If you
define C::f0, that definition takes precedence; otherwise, the default
implementation S::f0 applies.

c y g n u s s u p p o r t 197

Using GNU CC

198 10 July 1995

Chapter 8: gcov: a Test Coverage Program

8 gcov: a Test Coverage Program

gcov is a tool you can use, together with GNU CC, to test code coverage
in your programs. gcov is free software, but for the moment it is only
available from Cygnus Support (pending discussions with the FSF about
how they think Cygnus should really write it).

This chapter describes version 1.5 of gcov.
Jim Wilson wrote gcov, and the original form of this note. Pat Mc-

Gregor edited the documentation.

8.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with GNU CC
to analyze your programs to help create more efficient, faster running
code. You can use gcov as a profiling tool, to help discover where your
optimization efforts will best affect your code. You can also use gcov in
concert with the other profiling tool, gprof, to assess which parts of your
code use the greatest amount of computing time.

Profiling tools help you analyze your code’s performance. Using a
profiler such as gcov or gprof, you can find out some basic performance
statistics, such as:
� how often each line of code executes
� what lines of code are actually executed
� how much computing time each section of code uses

Once you know these things about how your code works when com-
piled, you can look at each module to see which modules should be
optimized. gcov helps you determine where to work on optimization.

Software developers also use coverage testing in concert with test-
suites, to make sure software is actually good enough for a release.
Testsuites can verify that a program works as expected; a coverage pro-
gram tests to see how much of the program is exercised by the testsuite.
Developers can then determine what kinds of test cases need to be added
to the testsuites to create both better testing and a better final product.

You should compile your code without optimization if you plan to use
gcov, because the optimization, by combining some lines of code into
one function, may not give you as much information as you need to look
for ‘hot spots’ where the code is using a great deal of computer time.
Likewise, because gcov accumulates statistics by line (at the lowest
resolution), it works best with a programming style that places only one
statement on each line. If you use complicated macros that expand to
loops or to other control structures, the statistics are less helpful—they

c y g n u s s u p p o r t 199

Using GNU CC

only report on the line where the macro call appears. If your complex
macros behave like functions, you can replace them with inline functions
to solve this problem.

gcov creates a logfile called ‘sourcename.gcov’ which indicates how
many times each line of a source file ‘sourcename.c’ has executed. You
can use these logfiles in conjuction with gprof to aid in fine-tuning the
performance of your programs. gprof gives timing information you can
use along with the information you get from gcov.

gcov works only on code compiled with GNU CC; it is not compatible
with any other profiling or test coverage mechanism.

8.2 Invoking gcov

gcov [-b] [-v] [-n] [-l] [-f] [-o directory] sourcefile

-b Write branch frequencies to the output file. Write branch
summary info to standard output. This option allows you to
see how often each branch was taken.

-v Display the gcov version number (on the standard error
stream).

-n Do not create the gcov output file.

-l Create long file names for included source files. For example,
if the header file ‘x.h’ contains code, and was included in the
file ‘a.c’, then running gcov on the file ‘a.c’ will produce an
output file called ‘a.c.x.h.gcov’ instead of ‘x.h.gcov’. This
can be useful if ‘x.h’ is included in multiple source files.

-f Output summaries for each function in addition to the file
level summary.

-o The directory where the object files live. Gcov will search for
.bb, .bbg, and .da files in this directory.

200 10 July 1995

Chapter 8: gcov: a Test Coverage Program

To use gcov, first compile your program with two special GNU CC
options: ‘-fprofile-arcs -ftest-coverage’. Then run the program.
Then run gcov with your program’s source file names as arguments. For
example, if your program is called ‘tmp.c’, this is what you see when you
use the basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage tmp.c
$ a.out
$ gcov tmp.c
87.50% of 8 source lines executed in file tmp.c
Creating tmp.c.gcov.

The file ‘tmp.c.gcov’ contains output from gcov. Here is a sample:
main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
10 total += i;

1 if (total != 45)
printf ("Failure\n");

else
1 printf ("Success\n");
1 }

When you use the ‘-b’ option, your output looks like this:
$ gcov -b tmp.c
87.50% of 8 source lines executed in file tmp.c
80.00% of 5 branches executed in file tmp.c
80.00% of 5 branches taken at least once in file tmp.c
50.00% of 2 calls executed in file tmp.c
Creating tmp.c.gcov.

Here is a sample of a resulting ‘tmp.c.gcov’ file:
main()
{

1 int i, total;

1 total = 0;

11 for (i = 0; i < 10; i++)
branch 0 taken = 91%
branch 1 taken = 100%
branch 2 taken = 100%

10 total += i;

1 if (total != 45)
branch 0 taken = 100%

printf ("Failure\n");
call 0 never executed

c y g n u s s u p p o r t 201

Using GNU CC

branch 1 never executed
else

1 printf ("Success\n");
call 0 returns = 100%

1 }

For each basic block, a line is printed after the last line of the basic
block describing the branch or call that ends the basic block. There can
be multiple branches and calls listed for a single source line if there are
multiple basic blocks that end on that line. In this case, the branches
and calls are each given a number. There is no simple way to map these
branches and calls back to source constructs. In general, though, the
lowest numbered branch or call will correspond to the leftmost construct
on the source line.

For a branch, if it was executed at least once, then a percentage
indicating the number of times the branch was taken divided by the
number of times the branch was executed will be printed. Otherwise,
the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating
the number of times the call returned divided by the number of times
the call was executed will be printed. This will usually be 100%, but
may be less for functions call exit or longjmp, and thus may not return
everytime they are called.

8.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first com-
pile your program with two special GNU CC options: ‘-fprofile-arcs
-ftest-coverage’. Aside from that, you can use any other GNU CC op-
tions; but if you want to prove that every single line in your program was
executed, you should not compile with optimization at the same time.
On some machines the optimizer can eliminate some simple code lines
by combining them with other lines. For example, code like this:

if (a != b)
c = 1;

else
c = 0;

can be compiled into one instruction on some machines. In this case,
there is no way for gcov to calculate separate execution counts for each
line because there isn’t separate code for each line. Hence the gcov
output looks like this if you compiled the program with optimization:

100 if (a != b)
100 c = 1;
100 else
100 c = 0;

202 10 July 1995

Chapter 8: gcov: a Test Coverage Program

The output shows that this block of code, combined by optimization,
executed 100 times. In one sense this result is correct, because there
was only one instruction representing all four of these lines. However,
the output does not indicate how many times the result was 0 and how
many times the result was 1.

c y g n u s s u p p o r t 203

Using GNU CC

204 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

9 Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC.
Most of these are not GNU CC bugs per se—if they were, we would fix
them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people’s opinions differ as to what is best.

9.1 Actual Bugs We Haven’t Fixed Yet

� The fixincludes script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be un-
mounted while fixincludes is running. This would seem to be
a bug in the automounter. We don’t know any good way to work
around it.

� The fixproto script will sometimes add prototypes for the
sigsetjmp and siglongjmp functions that reference the jmp_buf
type before that type is defined. To work around this, edit the
offending file and place the typedef in front of the prototypes.

� There are several obscure case of mis-using struct, union, and enum
tags that are not detected as errors by the compiler.

� When ‘-pedantic-errors’ is specified, GNU C will incorrectly give
an error message when a function name is specified in an expression
involving the comma operator.

� Loop unrolling doesn’t work properly for certain C++ programs. This
is a bug in the C++ front end. It sometimes emits incorrect debug
info, and the loop unrolling code is unable to recover from this error.

9.2 Installation Problems

This is a list of problems (and some apparent problems which don’t
really mean anything is wrong) that show up during installation of GNU
CC.
� On certain systems, defining certain environment variables such as

CC can interfere with the functioning of make.
� If you encounter seemingly strange errors when trying to build the

compiler in a directory other than the source directory, it could be
because you have previously configured the compiler in the source
directory. Make sure you have done all the necessary preparations.
See Section 5.2 “Other Dir,” page 127.

c y g n u s s u p p o r t 205

Using GNU CC

� If you build GNU CC on a BSD system using a directory stored in a
System V file system, problems may occur in running fixincludes
if the System V file system doesn’t support symbolic links. These
problems result in a failure to fix the declaration of size_t in
‘sys/types.h’. If you find that size_t is a signed type and that
type mismatches occur, this could be the cause.
The solution is not to use such a directory for building GNU CC.

� In previous versions of GNU CC, the gcc driver program looked for
as and ld in various places; for example, in files beginning with
‘/usr/local/lib/gcc-’. GNU CC version 2 looks for them in the
directory ‘/usr/local/lib/gcc-lib/target/version’.
Thus, to use a version of as or ld that is not the system default, for
example gas or GNU ld, you must put them in that directory (or
make links to them from that directory).

� Some commands executed when making the compiler may fail (re-
turn a non-zero status) and be ignored by make. These failures,
which are often due to files that were not found, are expected, and
can safely be ignored.

� It is normal to have warnings in compiling certain files about un-
reachable code and about enumeration type clashes. These files’
names begin with ‘insn-’. Also, ‘real.c’ may get some warnings
that you can ignore.

� Sometimes make recompiles parts of the compiler when installing
the compiler. In one case, this was traced down to a bug in make.
Either ignore the problem or switch to GNU Make.

� If you have installed a program known as purify, you may find that it
causes errors while linking enquire, which is part of building GNU
CC. The fix is to get rid of the file real-ld which purify installs—so
that GNU CC won’t try to use it.

� On Linux SLS 1.01, there is a problem with ‘libc.a’: it does not
contain the obstack functions. However, GNU CC assumes that the
obstack functions are in ‘libc.a’ when it is the GNU C library. To
work around this problem, change the __GNU_LIBRARY__ conditional
around line 31 to ‘#if 1’.

� On some 386 systems, building the compiler never finishes because
enquire hangs due to a hardware problem in the motherboard—it
reports floating point exceptions to the kernel incorrectly. You can
install GNU CC except for ‘float.h’ by patching out the command
to run enquire. You may also be able to fix the problem for real by
getting a replacement motherboard. This problem was observed in
Revision E of the Micronics motherboard, and is fixed in Revision F.
It has also been observed in the MYLEX MXA-33 motherboard.

206 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

If you encounter this problem, you may also want to consider remov-
ing the FPU from the socket during the compilation. Alternatively,
if you are running SCO Unix, you can reboot and force the FPU to
be ignored. To do this, type ‘hd(40)unix auto ignorefpu’.

� On some 386 systems, GNU CC crashes trying to compile
‘enquire.c’. This happens on machines that don’t have a 387
FPU chip. On 386 machines, the system kernel is supposed to
emulate the 387 when you don’t have one. The crash is due to a bug
in the emulator.
One of these systems is the Unix from Interactive Systems: 386/ix.
On this system, an alternate emulator is provided, and it does work.
To use it, execute this command as super-user:

ln /etc/emulator.rel1 /etc/emulator

and then reboot the system. (The default emulator file remains
present under the name ‘emulator.dflt’.)
Try using ‘/etc/emulator.att’, if you have such a problem on the
SCO system.
Another system which has this problem is Esix. We don’t know
whether it has an alternate emulator that works.
On NetBSD 0.8, a similar problem manifests itself as these error
messages:

enquire.c: In function ‘fprop’:
enquire.c:2328: floating overflow

� On SCO systems, when compiling GNU CC with the system’s com-
piler, do not use ‘-O’. Some versions of the system’s compiler mis-
compile GNU CC with ‘-O’.

� Sometimes on a Sun 4 you may observe a crash in the program
genflags or genoutput while building GNU CC. This is said to be
due to a bug in sh. You can probably get around it by running
genflags or genoutput manually and then retrying the make.

� On Solaris 2, executables of GNU CC version 2.0.2 are commonly
available, but they have a bug that shows up when compiling current
versions of GNU CC: undefined symbol errors occur during assembly
if you use ‘-g’.
The solution is to compile the current version of GNU CC without
‘-g’. That makes a working compiler which you can use to recompile
with ‘-g’.

� Solaris 2 comes with a number of optional OS packages. Some of
these packages are needed to use GNU CC fully. If you did not
install all optional packages when installing Solaris, you will need
to verify that the packages that GNU CC needs are installed.

c y g n u s s u p p o r t 207

Using GNU CC

To check whether an optional package is installed, use the pkginfo
command. To add an optional package, use the pkgadd command.
For further details, see the Solaris documentation.
For Solaris 2.0 and 2.1, GNU CC needs six packages: ‘SUNWarc’,
‘SUNWbtool’, ‘SUNWesu’, ‘SUNWhea’, ‘SUNWlibm’, and ‘SUNWtoo’.
For Solaris 2.2, GNU CC needs an additional seventh package:
‘SUNWsprot’.

� On Solaris 2, trying to use the linker and other tools in ‘/usr/ucb’ to
install GNU CC has been observed to cause trouble. For example,
the linker may hang indefinitely. The fix is to remove ‘/usr/ucb’
from your PATH.

� If you use the 1.31 version of the MIPS assembler (such as was
shipped with Ultrix 3.1), you will need to use the -fno-delayed-
branch switch when optimizing floating point code. Otherwise, the
assembler will complain when the GCC compiler fills a branch delay
slot with a floating point instruction, such as add.d.

� If on a MIPS system you get an error message saying “does not have
gp sections for all it’s [sic] sectons [sic]”, don’t worry about it. This
happens whenever you use GAS with the MIPS linker, but there is
not really anything wrong, and it is okay to use the output file. You
can stop such warnings by installing the GNU linker.
It would be nice to extend GAS to produce the gp tables, but they
are optional, and there should not be a warning about their absence.

� In Ultrix 4.0 on the MIPS machine, ‘stdio.h’ does not work with
GNU CC at all unless it has been fixed with fixincludes. This
causes problems in building GNU CC. Once GNU CC is installed,
the problems go away.
To work around this problem, when making the stage 1 compiler,
specify this option to Make:

GCC_FOR_TARGET="./xgcc -B./ -I./include"

When making stage 2 and stage 3, specify this option:
CFLAGS="-g -I./include"

� Users have reported some problems with version 2.0 of the MIPS
compiler tools that were shipped with Ultrix 4.1. Version 2.10 which
came with Ultrix 4.2 seems to work fine.
Users have also reported some problems with version 2.20 of the
MIPS compiler tools that were shipped with RISC/os 4.x. The earlier
version 2.11 seems to work fine.

� Some versions of the MIPS linker will issue an assertion failure
when linking code that uses alloca against shared libraries on
RISC-OS 5.0, and DEC’s OSF/1 systems. This is a bug in the linker,
that is supposed to be fixed in future revisions. To protect against

208 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

this, GNU CC passes ‘-non_shared’ to the linker unless you pass an
explicit ‘-shared’ or ‘-call_shared’ switch.

� On System V release 3, you may get this error message while linking:
ld fatal: failed to write symbol name something
in strings table for file whatever

This probably indicates that the disk is full or your ULIMIT won’t
allow the file to be as large as it needs to be.
This problem can also result because the kernel parameter MAXUMEM
is too small. If so, you must regenerate the kernel and make the
value much larger. The default value is reported to be 1024; a value
of 32768 is said to work. Smaller values may also work.

� On System V, if you get an error like this,
/usr/local/lib/bison.simple: In function ‘yyparse’:
/usr/local/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ULIMIT, or MAXUMEM.
� Current GNU CC versions probably do not work on version 2 of the

NeXT operating system.
� On NeXTStep 3.0, the Objective C compiler does not work, due,

apparently, to a kernel bug that it happens to trigger. This problem
does not happen on 3.1.

� On the Tower models 4n0 and 6n0, by default a process is not allowed
to have more than one megabyte of memory. GNU CC cannot com-
pile itself (or many other programs) with ‘-O’ in that much memory.
To solve this problem, reconfigure the kernel adding the following
line to the configuration file:

MAXUMEM = 4096

� On HP 9000 series 300 or 400 running HP-UX release 8.0, there is
a bug in the assembler that must be fixed before GNU CC can be
built. This bug manifests itself during the first stage of compilation,
while building ‘libgcc2.a’:

_floatdisf
cc1: warning: ‘-g’ option

not supported on this version of GCC
cc1: warning: ‘-g1’ option

not supported on this version of GCC
./xgcc: Internal compiler error:

program as got fatal signal 11

‘archive/cph/hpux-8.0-assembler’, a patched version of the as-
sembler, is available by anonymous ftp from altdorf.ai.mit.edu.
If you have HP software support, the patch can also be obtained
directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439,
where the assembler aborts on floating point constants.

c y g n u s s u p p o r t 209

Using GNU CC

The bug is not really in the assembler, but in the shared
library version of the function “cvtnum(3c)”. The bug on
“cvtnum(3c)” is SR#4701-078451. Anyway, the attached
assembler uses the archive library version of “cvtnum(3c)”
and thus does not exhibit the bug.

This patch is also known as PHCO 4484.
� On HP-UX version 8.05, but not on 8.07 or more recent versions,

the fixproto shell script triggers a bug in the system shell. If
you encounter this problem, upgrade your operating system or use
BASH (the GNU shell) to run fixproto.

� Some versions of the Pyramid C compiler are reported to be unable
to compile GNU CC. You must use an older version of GNU CC for
bootstrapping. One indication of this problem is if you get a crash
when GNU CC compiles the function muldi3 in file ‘libgcc2.c’.
You may be able to succeed by getting GNU CC version 1, installing
it, and using it to compile GNU CC version 2. The bug in the
Pyramid C compiler does not seem to affect GNU CC version 1.

� There may be similar problems on System V Release 3.1 on 386
systems.

� On the Intel Paragon (an i860 machine), if you are using operating
system version 1.0, you will get warnings or errors about redefinition
of va_arg when you build GNU CC.
If this happens, then you need to link most programs with the library
‘iclib.a’. You must also modify ‘stdio.h’ as follows: before the lines

#if defined(__i860__) && !defined(_VA_LIST)
#include <va_list.h>

insert the line
#if __PGC__

and after the lines
extern int vprintf(const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
#endif

insert the line
#endif /* __PGC__ */

These problems don’t exist in operating system version 1.1.
� On the Altos 3068, programs compiled with GNU CC won’t work

unless you fix a kernel bug. This happens using system versions
V.2.2 1.0gT1 and V.2.2 1.0e and perhaps later versions as well. See
the file ‘README.ALTOS’.

� You will get several sorts of compilation and linking errors on the
we32k if you don’t follow the special instructions. See Section 5.1
“Configurations,” page 111.

210 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

� A bug in the HP-UX 8.05 (and earlier) shell will cause the fixproto
program to report an error of the form:

./fixproto: sh internal 1K buffer overflow

To fix this, change the first line of the fixproto script to look like:
#!/bin/ksh

9.3 Cross-Compiler Problems

You may run into problems with cross compilation on certain ma-
chines, for several reasons.
� Cross compilation can run into trouble for certain machines because

some target machines’ assemblers require floating point numbers to
be written as integer constants in certain contexts.
The compiler writes these integer constants by examining the float-
ing point value as an integer and printing that integer, because this
is simple to write and independent of the details of the floating point
representation. But this does not work if the compiler is running on
a different machine with an incompatible floating point format, or
even a different byte-ordering.
In addition, correct constant folding of floating point values requires
representing them in the target machine’s format. (The C standard
does not quite require this, but in practice it is the only way to win.)
It is now possible to overcome these problems by defining macros
such as REAL_VALUE_TYPE. But doing so is a substantial amount of
work for each target machine. See section “Cross Compilation and
Floating Point Format” in Using and Porting GCC.

� At present, the program ‘mips-tfile’ which adds debug support
to object files on MIPS systems does not work in a cross compile
environment.

9.4 Interoperation

This section lists various difficulties encountered in using GNU C or
GNU C++ together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.
� Objective C does not work on the RS/6000.
� GNU C++ does not do name mangling in the same way as other C++

compilers. This means that object files compiled with one compiler
cannot be used with another.
This effect is intentional, to protect you from more subtle problems.
Compilers differ as to many internal details of C++ implementation,

c y g n u s s u p p o r t 211

Using GNU CC

including: how class instances are laid out, how multiple inheri-
tance is implemented, and how virtual function calls are handled.
If the name encoding were made the same, your programs would
link against libraries provided from other compilers—but the pro-
grams would then crash when run. Incompatible libraries are then
detected at link time, rather than at run time.

� Older GDB versions sometimes fail to read the output of GNU CC
version 2. If you have trouble, get GDB version 4.4 or later.

� DBX rejects some files produced by GNU CC, though it
accepts similar constructs in output from PCC. Until someone can
supply a coherent description of what is valid DBX input and what
is not, there is nothing I can do about these problems. You are on
your own.

� The GNU assembler (GAS) does not support PIC. To generate PIC
code, you must use some other assembler, such as ‘/bin/as’.

� On some BSD systems, including some versions of Ultrix, use of
profiling causes static variable destructors (currently used only in
C++) not to be run.

� Use of ‘-I/usr/include’ may cause trouble.
Many systems come with header files that won’t work with GNU
CC unless corrected by fixincludes. The corrected header files
go in a new directory; GNU CC searches this directory before
‘/usr/include’. If you use ‘-I/usr/include’, this tells GNU CC
to search ‘/usr/include’ earlier on, before the corrected headers.
The result is that you get the uncorrected header files.
Instead, you should use these options (when compiling C programs):

-I/usr/local/lib/gcc-lib/target/version/include /
-I/usr/include

For C++ programs, GNU CC also uses a special directory that de-
fines C++ interfaces to standard C subroutines. This directory is
meant to be searched before other standard include directories, so
that it takes precedence. If you are compiling C++ programs and
specifying include directories explicitly, use this option first, then
the two options above:

-I/usr/local/lib/g++-include

� On some SGI systems, when you use ‘-lgl_s’ as an option, it gets
translated magically to ‘-lgl_s -lX11_s -lc_s’. Naturally, this
does not happen when you use GNU CC. You must specify all three
options explicitly.

� On a Sparc, GNU CC aligns all values of type double on an 8-byte
boundary, and it expects every double to be so aligned. The Sun
compiler usually gives double values 8-byte alignment, with one
exception: function arguments of type double may not be aligned.

212 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

As a result, if a function compiled with Sun CC takes the address of
an argument of type double and passes this pointer of type double
* to a function compiled with GNU CC, dereferencing the pointer
may cause a fatal signal.
One way to solve this problem is to compile your entire program
with GNU CC. Another solution is to modify the function that is
compiled with Sun CC to copy the argument into a local variable;
local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the
following function access_double instead of directly with ‘*’:

inline double
access_double (double *unaligned_ptr)
{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

return u.d;
}

Storing into the pointer can be done likewise with the same union.
� On Solaris, the malloc function in the ‘libmalloc.a’ library may

allocate memory that is only 4 byte aligned. Since GNU CC on
the Sparc assumes that doubles are 8 byte aligned, this may result
in a fatal signal if doubles are stored in memory allocated by the
‘libmalloc.a’ library.
The solution is to not use the ‘libmalloc.a’ library. Use instead
malloc and related functions from ‘libc.a’; they do not have this
problem.

� Sun forgot to include a static version of ‘libdl.a’ with some ver-
sions of SunOS (mainly 4.1). This results in undefined symbols
when linking static binaries (that is, if you use ‘-static’). If you
see undefined symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the file ‘mit/util/misc/dlsym.c’ from the
MIT version of X windows.

� The 128-bit long double format that the Sparc port supports cur-
rently works by using the architecturally defined quad-word floating
point instructions. Since there is no hardware that supports these
instructions they must be emulated by the operating system. Long
doubles do not work in Sun OS versions 4.0.3 and earlier, because the
kernel eumulator uses an obsolete and incompatible format. Long
doubles do not work in Sun OS versions 4.1.1 to 4.1.3 because of

c y g n u s s u p p o r t 213

Using GNU CC

emululator bugs that cause random unpredicatable failures. Long
doubles appear to work in Sun OS 5.x (Solaris 2.x).

� On HP-UX version 9.01 on the HP PA, the HP compiler cc does not
compile GNU CC correctly. We do not yet know why. However, GNU
CC compiled on earlier HP-UX versions works properly on HP-UX
9.01 and can compile itself properly on 9.01.

� On the HP PA machine, ADB sometimes fails to work on functions
compiled with GNU CC. Specifically, it fails to work on functions
that use alloca or variable-size arrays. This is because GNU CC
doesn’t generate HP-UX unwind descriptors for such functions. It
may even be impossible to generate them.

� Debugging (‘-g’) is not supported on the HP PA machine, unless
you use the preliminary GNU tools (see Chapter 5 “Installation,”
page 103).

� Taking the address of a label may generate errors from the HP-UX
PA assembler. GAS for the PA does not have this problem.

� Using floating point parameters for indirect calls to static functions
will not work when using the HP assembler. There simply is no way
for GCC to specify what registers hold arguments for static functions
when using the HP assembler. GAS for the PA does not have this
problem.

� For some very large functions you may receive errors from the HP
linker complaining about an out of bounds unconditional branch
offset. Fixing this problem correctly requires fixing problems in
GNU CC and GAS. We hope to fix this in time for GNU CC 2.6.
Until then you can work around by making your function smaller,
and if you are using GAS, splitting the function into multiple source
files may be necessary.

� GNU CC compiled code sometimes emits warnings from the HP-UX
assembler of the form:

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.
� The current version of the assembler (‘/bin/as’) for the RS/6000

has certain problems that prevent the ‘-g’ option in GCC from work-
ing. Note that ‘Makefile.in’ uses ‘-g’ by default when compiling
‘libgcc2.c’.
IBM has produced a fixed version of the assembler. The upgraded
assembler unfortunately was not included in any of the AIX 3.2
update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users of AIX 3.1 should
request PTF U403044 from IBM and users of AIX 3.2 should request
PTF U416277. See the file ‘README.RS6000’ for more details on these
updates.

214 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

You can test for the presense of a fixed assembler by using the
command

as -u < /dev/null

If the command exits normally, the assembler fix already is installed.
If the assembler complains that "-u" is an unknown flag, you need
to order the fix.

� On the IBM RS/6000, compiling code of the form
extern int foo;

... foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although
this behavior differs from most other systems, it is not a bug because
redefining an extern variable as static is undefined in ANSI C.

� AIX on the RS/6000 provides support (NLS) for environments out-
side of the United States. Compilers and assemblers use NLS to
support locale-specific representations of various objects including
floating-point numbers ("." vs "," for separating decimal fractions).
There have been problems reported where the library linked with
GCC does not produce the same floating-point formats that the as-
sembler accepts. If you have this problem, set the LANG environ-
ment variable to "C" or "En US".

� Even if you specify ‘-fdollars-in-identifiers’, you cannot suc-
cessfully use ‘$’ in identifiers on the RS/6000 due to a restriction in
the IBM assembler. GAS supports these identifiers.

� On the RS/6000, XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC
version 1.3.0.1 or later fixes this problem. You can obtain XLC-
1.3.0.2 by requesting PTF 421749 from IBM.

� There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that
occurs when the ‘fldcr’ instruction is used. GNU CC uses ‘fldcr’
on the 88100 to serialize volatile memory references. Use the option
‘-mno-serialize-volatile’ if your version of the assembler has
this bug.

� On VMS, GAS versions 1.38.1 and earlier may cause spurious warn-
ing messages from the linker. These warning messages complain of
mismatched psect attributes. You can ignore them. See Section 5.5
“VMS Install,” page 133.

� On NewsOS version 3, if you include both of the files ‘stddef.h’
and ‘sys/types.h’, you get an error because there are two typedefs
of size_t. You should change ‘sys/types.h’ by adding these lines
around the definition of size_t:

c y g n u s s u p p o r t 215

Using GNU CC

#ifndef _SIZE_T

#define _SIZE_T

actual typedef here
#endif
s

� On the Alliant, the system’s own convention for returning structures
and unions is unusual, and is not compatible with GNU CC no
matter what options are used.

� On the IBM RT PC, the MetaWare HighC compiler (hc) uses a dif-
ferent convention for structure and union returning. Use the option
‘-mhc-struct-return’ to tell GNU CC to use a convention compati-
ble with it.

� On Ultrix, the Fortran compiler expects registers 2 through 5 to be
saved by function calls. However, the C compiler uses conventions
compatible with BSD Unix: registers 2 through 5 may be clobbered
by function calls.
GNU CC uses the same convention as the Ultrix C compiler. You
can use these options to produce code compatible with the Fortran
compiler:

-fcall-saved-r2 -fcall-saved-r3
-fcall-saved-r4 -fcall-saved-r5

� On the WE32k, you may find that programs compiled with GNU CC
do not work with the standard shared C ilbrary. You may need to
link with the ordinary C compiler. If you do so, you must specify the
following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.6.0 -lgcc -lc_s

The first specifies where to find the library ‘libgcc.a’ specified with
the ‘-lgcc’ option.
GNU CC does linking by invoking ld, just as cc does, and there is
no reason why it should matter which compilation program you use
to invoke ld. If someone tracks this problem down, it can probably
be fixed easily.

� On the Alpha, you may get assembler errors about invalid syntax
as a result of floating point constants. This is due to a bug in the
C library functions ecvt, fcvt and gcvt. Given valid floating point
numbers, they sometimes print ‘NaN’.

� On Irix 4.0.5F (and perhaps in some other versions), an assembler
bug sometimes reorders instructions incorrectly when optimization
is turned on. If you think this may be happening to you, try using
the GNU assembler; GAS version 2.1 supports ECOFF on Irix.
Or use the ‘-noasmopt’ option when you compile GNU CC with it-
self, and then again when you compile your program. (This is a
temporary kludge to turn off assembler optimization on Irix.) If

216 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

this proves to be what you need, edit the assembler spec in the file
‘specs’ so that it unconditionally passes ‘-O0’ to the assembler, and
never passes ‘-O2’ or ‘-O3’.

9.5 Problems Compiling Certain Programs

Certain programs have problems compiling.
� Parse errors may occur compiling X11 on a Decstation running Ul-

trix 4.2 because of problems in DEC’s versions of the X11 header
files ‘X11/Xlib.h’ and ‘X11/Xutil.h’. People recommend adding
‘-I/usr/include/mit’ to use the MIT versions of the header files,
using the ‘-traditional’ switch to turn off ANSI C, or fixing the
header files by adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

� If you have trouble compiling Perl on a SunOS 4 system, it may
be because Perl specifies ‘-I/usr/ucbinclude’. This accesses the
unfixed header files. Perl specifies the options

-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return

most of which are unnecessary with GCC 2.4.5 and newer ver-
sions. You can make a properly working Perl by setting ccflags
to ‘-fwritable-strings’ (implied by the ‘-traditional’ in the orig-
inal options) and cppflags to empty in ‘config.sh’, then typing
‘./doSH; make depend; make’.

� On various 386 Unix systems derived from System V, including SCO,
ISC, and ESIX, you may get error messages about running out of
virtual memory while compiling certain programs.
You can prevent this problem by linking GNU CC with the GNU
malloc (which thus replaces the malloc that comes with the system).
GNU malloc is available as a separate package, and also in the file
‘src/gmalloc.c’ in the GNU Emacs 19 distribution.
If you have installed GNU malloc as a separate library package, use
this option when you relink GNU CC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy
the object file to ‘gmalloc.o’ and use this option when you relink
GNU CC:

MALLOC=gmalloc.o

c y g n u s s u p p o r t 217

Using GNU CC

9.6 Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and
most existing (non-ANSI) versions of C. The ‘-traditional’ option elim-
inates many of these incompatibilities, but not all, by telling GNU C to
behave like the other C compilers.

� GNU CC normally makes string constants read-only. If several
identical-looking string constants are used, GNU CC stores only
one copy of the string.
One consequence is that you cannot call mktemp with a string con-
stant argument. The function mktemp always alters the string its
argument points to.
Another consequence is that sscanf does not work on some systems
when passed a string constant as its format control string or in-
put. This is because sscanf incorrectly tries to write into the string
constant. Likewise fscanf and scanf.
The best solution to these problems is to change the program to use
char-array variables with initialization strings for these purposes
instead of string constants. But if this is not possible, you can use
the ‘-fwritable-strings’ flag, which directs GNU CC to handle
string constants the same way most C compilers do. ‘-traditional’
also has this effect, among others.

� -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following
the ANSI C rules) its data type is unsigned long int. Negating this
value yields 2147483648 again.

� GNU CC does not substitute macro arguments when they appear
inside of string constants. For example, the following macro in GNU
CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.
The ‘-traditional’ option directs GNU CC to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

� When you use setjmp and longjmp, the only automatic variables
guaranteed to remain valid are those declared volatile. This is a
consequence of automatic register allocation. Consider this function:

jmp_buf j;

foo ()
{

int a, b;

218 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here amay or may not be restored to its first value when the longjmp
occurs. If a is allocated in a register, then its first value is restored;
otherwise, it keeps the last value stored in it.
If you use the ‘-W’ option with the ‘-O’ option, you will get a warning
when GNU CC thinks such a problem might be possible.
The ‘-traditional’ option directs GNU C to put variables in the
stack by default, rather than in registers, in functions that call
setjmp. This results in the behavior found in traditional C compil-
ers.

� Programs that use preprocessing directives in the middle of macro
arguments do not work with GNU CC. For example, a program like
this will not work:

foobar (
#define luser

hack)

ANSI C does not permit such a construct. It would make sense to
support it when ‘-traditional’ is used, but it is too much work to
implement.

� Declarations of external variables and functions within a block apply
only to the block containing the declaration. In other words, they
have the same scope as any other declaration in the same place.
In some other C compilers, a extern declaration affects all the rest
of the file even if it happens within a block.
The ‘-traditional’ option directs GNU C to treat all extern decla-
rations as global, like traditional compilers.

� In traditional C, you can combine long, etc., with a typedef name,
as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers re-
quire an explicit int. Because this criterion is expressed by Bison
grammar rules rather than C code, the ‘-traditional’ flag cannot
alter it.

� PCC allows typedef names to be used as function parameters. The
difficulty described immediately above applies here too.

c y g n u s s u p p o r t 219

Using GNU CC

� PCC allows whitespace in the middle of compound assignment op-
erators such as ‘+=’. GNU CC, following the ANSI standard, does
not allow this. The difficulty described immediately above applies
here too.

� GNU CC complains about unterminated character constants inside
of preprocessing conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if
these comments contain apostrophes, GNU CC will probably report
an error. For example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an ac-
tual C comment delimited by ‘/*.. .*/’. However, ‘-traditional’
suppresses these error messages.

� Many user programs contain the declaration ‘long time ();’. In
the past, the system header files on many systems did not actually
declare time, so it did not matter what type your program declared
it to return. But in systems with ANSI C headers, time is declared
to return time_t, and if that is not the same as long, then ‘long
time ();’ is erroneous.
The solution is to change your program to use time_t as the return
type of time.

� When compiling functions that return float, PCC converts it to a
double. GNU CC actually returns a float. If you are concerned
with PCC compatibility, you should declare your functions to return
double; you might as well say what you mean.

� When compiling functions that return structures or unions, GNU
CC output code normally uses a method different from that used on
most versions of Unix. As a result, code compiled with GNU CC
cannot call a structure-returning function compiled with PCC, and
vice versa.
The method used by GNU CC is as follows: a structure or union
which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure
or union with any other size is stored into an address supplied by
the caller (usually in a special, fixed register, but on some machines
it is passed on the stack). The machine-description macros STRUCT_
VALUE and STRUCT_INCOMING_VALUE tell GNU CC where to pass this
address.
By contrast, PCC on most target machines returns structures and
unions of any size by copying the data into an area of static storage,
and then returning the address of that storage as if it were a pointer
value. The caller must copy the data from that memory area to the

220 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

place where the value is wanted. GNU CC does not use this method
because it is slower and nonreentrant.
On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GNU CC on most of these machines
uses a compatible convention when returning structures and unions
in memory, but still returns small structures and unions in registers.
You can tell GNU CC to use a compatible convention for all structure
and union returning with the option ‘-fpcc-struct-return’.

� GNU C complains about program fragments such as ‘0x74ae-0x4000’,
which appear to be two hexadecimal constants separated by the mi-
nus operator. Actually, this string is a single preprocessing token.
Each such token must correspond to one token in C. Since this
does not, GNU C prints an error message. Although it may appear
obvious that what is meant is an operator and two values, the ANSI
C standard specifically requires that this be treated as erroneous.
A preprocessing token is a preprocessing number if it begins with a
digit and is followed by letters, underscores, digits, periods and ‘e+’,
‘e-’, ‘E+’, or ‘E-’ character sequences.
To make the above program fragment valid, place whitespace in
front of the minus sign. This whitespace will end the preprocessing
number.

9.7 Fixed Header Files

GNU CC needs to install corrected versions of some system header
files. This is because most target systems have some header files that
won’t work with GNU CC unless they are changed. Some have bugs,
some are incompatible with ANSI C, and some depend on special features
of other compilers.

Installing GNU CC automatically creates and installs the fixed
header files, by running a program called fixincludes (or for certain
targets an alternative such as fixinc.svr4). Normally, you don’t need
to pay attention to this. But there are cases where it doesn’t do the right
thing automatically.
� If you update the system’s header files, such as by installing a new

system version, the fixed header files of GNU CC are not automati-
cally updated. The easiest way to update them is to reinstall GNU
CC. (If you want to be clever, look in the makefile and you can find
a shortcut.)

� On some systems, in particular SunOS 4, header file directories con-
tain machine-specific symbolic links in certain places. This makes
it possible to share most of the header files among hosts running the
same version of SunOS 4 on different machine models.

c y g n u s s u p p o r t 221

Using GNU CC

The programs that fix the header files do not understand this special
way of using symbolic links; therefore, the directory of fixed header
files is good only for the machine model used to build it.
In SunOS 4, only programs that look inside the kernel will notice the
difference between machine models. Therefore, for most purposes,
you need not be concerned about this.
It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic links
so as to use the proper set, but you’ll have to do this by hand.

� On Lynxos, GNU CC by default does not fix the header files. This is
because bugs in the shell cause the fixincludes script to fail.
This means you will encounter problems due to bugs in the system
header files. It may be no comfort that they aren’t GNU CC’s fault,
but it does mean that there’s nothing for us to do about them.

9.8 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any prac-
tical way around them.
� Certain local variables aren’t recognized by debuggers when you

compile with optimization.
This occurs because sometimes GNU CC optimizes the variable out
of existence. There is no way to tell the debugger how to compute
the value such a variable “would have had”, and it is not clear that
would be desirable anyway. So GNU CC simply does not mention
the eliminated variable when it writes debugging information.
You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.

� Users often think it is a bug when GNU CC reports an error for code
like this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble in
the prototype is limited to the argument list containing it. It does
not refer to the struct mumble defined with file scope immediately
below—they are two unrelated types with similar names in different
scopes.

222 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

But in the definition of foo, the file-scope type is used because that
is available to be inherited. Thus, the definition and the prototype
do not match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard speci-
fies. It is easy enough for you to make your code work by moving the
definition of struct mumble above the prototype. It’s not worth be-
ing incompatible with ANSI C just to avoid an error for the example
shown above.

� Accesses to bitfields even in volatile objects works by accessing
larger objects, such as a byte or a word. You cannot rely on what
size of object is accessed in order to read or write the bitfield; it may
even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed,
use volatile but do not use bitfields.

� GNU CC comes with shell scripts to fix certain known problems in
system header files. They install corrected copies of various header
files in a special directory where only GNU CC will normally look
for them. The scripts adapt to various systems by searching all the
system header files for the problem cases that we know about.

If new system header files are installed, nothing automatically ar-
ranges to update the corrected header files. You will have to reinstall
GNU CC to fix the new header files. More specifically, go to the build
directory and delete the files ‘stmp-fixinc’ and ‘stmp-headers’, and
the subdirectory include; then do ‘make install’ again.

� On 68000 systems, you can get paradoxical results if you test the
precise values of floating point numbers. For example, you can find
that a floating point value which is not a NaN is not equal to itself.
This results from the fact that the the floating point registers hold a
few more bits of precision than fit in a double in memory. Compiled
code moves values between memory and floating point registers at
its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the ‘-ffloat-store’
option (see Section 4.8 “Optimize Options,” page 53).

� On the MIPS, variable argument functions using ‘varargs.h’ cannot
have a floating point value for the first argument. The reason for this
is that in the absence of a prototype in scope, if the first argument is
a floating point, it is passed in a floating point register, rather than
an integer register.

If the code is rewritten to use the ANSI standard ‘stdarg.h’ method
of variable arguments, and the prototype is in scope at the time of
the call, everything will work fine.

c y g n u s s u p p o r t 223

Using GNU CC

9.9 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard
definition (the ANSI C++ draft standard) is also evolving. As a result,
your C++ compiler may occasionally surprise you, even when its behavior
is correct. This section discusses some areas that frequently give rise to
questions of this sort.

9.9.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the
static member; you must also define it. For example:

class Foo
{

...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named
Foo::bar, and a member function named Foo::method. But you still
need to define both method and bar elsewhere. According to the draft
ANSI standard, you must supply an initializer in one (and only one)
source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard be-
havior. As a result, when you switch to g++ from one of these compilers,
you may discover that a program that appeared to work correctly in fact
does not conform to the standard: g++ reports as undefined symbols any
static data members that lack definitions.

9.9.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary
object. The compiler may very well delete the object before you expect
it to, leaving a pointer to garbage. The most common place where this
problem crops up is in classes like the libg++ String class, that define a
conversion function to type char * or const char *. However, any class
that returns a pointer to some internal structure is potentially subject
to this problem.

For example, a program may use a function strfunc that returns
String objects, and another function charfunc that operates on pointers
to char:

String strfunc ();
void charfunc (const char *);

224 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

In this situation, it may seem natural to write ‘charfunc (strfunc ());’
based on the knowledge that class String has an explicit conversion
to char pointers. However, what really happens is akin to ‘charfunc
(strfunc ().convert ());’, where the convert method is a function to
do the same data conversion normally performed by a cast. Since the last
use of the temporary String object is the call to the conversion function,
the compiler may delete that object before actually calling charfunc.
The compiler has no way of knowing that deleting the String object will
invalidate the pointer. The pointer then points to garbage, so that by
the time charfunc is called, it gets an invalid argument.

Code like this may run successfully under some other compilers, es-
pecially those that delete temporaries relatively late. However, the GNU
C++ behavior is also standard-conformant, so if your program depends
on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI
C++ committee continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the
temporary a name, which forces it to remain until the end of the scope
of the name. For example:

String& tmp = strfunc ();
charfunc (tmp);

9.10 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes
change a source file in a way that won’t work unless you rearrange it.
� protoize can insert references to a type name or type tag before the

definition, or in a file where they are not defined.
If this happens, compiler error messages should show you where the
new references are, so fixing the file by hand is straightforward.

� There are some C constructs which protoize cannot figure out. For
example, it can’t determine argument types for declaring a pointer-
to-function variable; this you must do by hand. protoize inserts
a comment containing ‘???’ each time it finds such a variable; so
you can find all such variables by searching for this string. ANSI C
does not require declaring the argument types of pointer-to-function
types.

� Using unprotoize can easily introduce bugs. If the program relied
on prototypes to bring about conversion of arguments, these conver-
sions will not take place in the program without prototypes. One
case in which you can be sure unprotoize is safe is when you are
removing prototypes that were made with protoize; if the program

c y g n u s s u p p o r t 225

Using GNU CC

worked before without any prototypes, it will work again without
them.

You can find all the places where this problem might occur by compil-
ing the program with the ‘-Wconversion’ option. It prints a warning
whenever an argument is converted.

� Both conversion programs can be confused if there are macro calls
in and around the text to be converted. In other words, the standard
syntax for a declaration or definition must not result from expanding
a macro. This problem is inherent in the design of C and cannot be
fixed. If only a few functions have confusing macro calls, you can
easily convert them manually.

� protoize cannot get the argument types for a function whose defi-
nition was not actually compiled due to preprocessing conditionals.
When this happens, protoize changes nothing in regard to such a
function. protoize tries to detect such instances and warn about
them.

You can generally work around this problem by using protoize
step by step, each time specifying a different set of ‘-D’ options for
compilation, until all of the functions have been converted. There is
no automatic way to verify that you have got them all, however.

� Confusion may result if there is an occasion to convert a function
declaration or definition in a region of source code where there is
more than one formal parameter list present. Thus, attempts to
convert code containing multiple (conditionally compiled) versions
of a single function header (in the same vicinity) may not produce
the desired (or expected) results.

If you plan on converting source files which contain such code, it is
recommended that you first make sure that each conditionally com-
piled region of source code which contains an alternative function
header also contains at least one additional follower token (past the
final right parenthesis of the function header). This should circum-
vent the problem.

� unprotoize can become confused when trying to convert a func-
tion definition or declaration which contains a declaration for a
pointer-to-function formal argument which has the same name as
the function being defined or declared. We recommand you avoid
such choices of formal parameter names.

� You might also want to correct some of the indentation by hand and
break long lines. (The conversion programs don’t write lines longer
than eighty characters in any case.)

226 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

9.11 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which
we do not make because we think GNU CC is better without them.
� Checking the number and type of arguments to a function which

has an old-fashioned definition and no prototype.
Such a feature would work only occasionally—only for calls that ap-
pear in the same file as the called function, following the definition.
The only way to check all calls reliably is to add a prototype for the
function. But adding a prototype eliminates the motivation for this
feature. So the feature is not worthwhile.

� Warning about using an expression whose type is signed as a shift
count.
Shift count operands are probably signed more often than unsigned.
Warning about this would cause far more annoyance than good.

� Warning about assigning a signed value to an unsigned variable.
Such assignments must be very common; warning about them would
cause more annoyance than good.

� Warning about unreachable code.
It’s very common to have unreachable code in machine-generated
programs. For example, this happens normally in some files of
GNU C itself.

� Warning when a non-void function value is ignored.
Coming as I do from a Lisp background, I balk at the idea that
there is something dangerous about discarding a value. There are
functions that return values which some callers may find useful; it
makes no sense to clutter the program with a cast to void whenever
the value isn’t useful.

� Assuming (for optimization) that the address of an external symbol
is never zero.
This assumption is false on certain systems when ‘#pragma weak’ is
used.

� Making ‘-fshort-enums’ the default.
This would cause storage layout to be incompatible with most other
C compilers. And it doesn’t seem very important, given that you can
get the same result in other ways. The case where it matters most
is when the enumeration-valued object is inside a structure, and in
that case you can specify a field width explicitly.

� Making bitfields unsigned by default on particular machines where
“the ABI standard” says to do so.

c y g n u s s u p p o r t 227

Using GNU CC

The ANSI C standard leaves it up to the implementation whether
a bitfield declared plain int is signed or not. This in effect creates
two alternative dialects of C.
The GNU C compiler supports both dialects; you can specify the
signed dialect with ‘-fsigned-bitfields’ and the unsigned dialect
with ‘-funsigned-bitfields’. However, this leaves open the ques-
tion of which dialect to use by default.
Currently, the preferred dialect makes plain bitfields signed, be-
cause this is simplest. Since int is the same as signed int in every
other context, it is cleanest for them to be the same in bitfields as
well.
Some computer manufacturers have published Application Binary
Interface standards which specify that plain bitfields should be un-
signed. It is a mistake, however, to say anything about this issue in
an ABI. This is because the handling of plain bitfields distinguishes
two dialects of C. Both dialects are meaningful on every type of ma-
chine. Whether a particular object file was compiled using signed
bitfields or unsigned is of no concern to other object files, even if they
access the same bitfields in the same data structures.
A given program is written in one or the other of these two dialects.
The program stands a chance to work on most any machine if it
is compiled with the proper dialect. It is unlikely to work at all if
compiled with the wrong dialect.
Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines. These users would
be inconvenienced if the compiler treated plain bitfields differently
on certain machines.
Occasionally users write programs intended only for a particular
machine type. On these occasions, the users would benefit if the
GNU C compiler were to support by default the same dialect as
the other compilers on that machine. But such applications are
rare. And users writing a program to run on more than one type of
machine cannot possibly benefit from this kind of compatibility.
This is why GNU CC does and will treat plain bitfields in the same
fashion on all types of machines (by default).
There are some arguments for making bitfields unsigned by default
on all machines. If, for example, this becomes a universal de facto
standard, it would make sense for GNU CC to go along with it. This
is something to be considered in the future.
(Of course, users strongly concerned about portability should indi-
cate explicitly in each bitfield whether it is signed or not. In this
way, they write programs which have the same meaning in both C
dialects.)

228 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

� Undefining __STDC__ when ‘-ansi’ is not used.
Currently, GNU CC defines __STDC__ as long as you don’t use
‘-traditional’. This provides good results in practice.
Programmers normally use conditionals on __STDC__ to ask whether
it is safe to use certain features of ANSI C, such as function proto-
types or ANSI token concatenation. Since plain ‘gcc’ supports all
the features of ANSI C, the correct answer to these questions is
“yes”.
Some users try to use __STDC__ to check for the availability of cer-
tain library facilities. This is actually incorrect usage in an ANSI
C program, because the ANSI C standard says that a conforming
freestanding implementation should define __STDC__ even though it
does not have the library facilities. ‘gcc -ansi -pedantic’ is a con-
forming freestanding implementation, and it is therefore required
to define __STDC__, even though it does not come with an ANSI C
library.
Sometimes people say that defining __STDC__ in a compiler that does
not completely conform to the ANSI C standard somehow violates
the standard. This is illogical. The standard is a standard for
compilers that claim to support ANSI C, such as ‘gcc -ansi’—not for
other compilers such as plain ‘gcc’. Whatever the ANSI C standard
says is relevant to the design of plain ‘gcc’ without ‘-ansi’ only for
pragmatic reasons, not as a requirement.

� Undefining __STDC__ in C++.
Programs written to compile with C++-to-C translators get the value
of __STDC__ that goes with the C compiler that is subsequently used.
These programs must test __STDC__ to determine what kind of C
preprocessor that compiler uses: whether they should concatenate
tokens in the ANSI C fashion or in the traditional fashion.
These programs work properly with GNU C++ if __STDC__ is defined.
They would not work otherwise.
In addition, many header files are written to provide prototypes in
ANSI C but not in traditional C. Many of these header files can work
without change in C++ provided __STDC__ is defined. If __STDC__ is
not defined, they will all fail, and will all need to be changed to test
explicitly for C++ as well.

� Deleting “empty” loops.
GNU CC does not delete “empty” loops because the most likely rea-
son you would put one in a program is to have a delay. Deleting
them will not make real programs run any faster, so it would be
pointless.
It would be different if optimization of a nonempty loop could pro-
duce an empty one. But this generally can’t happen.

c y g n u s s u p p o r t 229

Using GNU CC

� Making side effects happen in the same order as in some other
compiler.
It is never safe to depend on the order of evaluation of side effects.
For example, a function call like this may very well behave differ-
ently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any particular
order. Either increment might happen first. func might get the
arguments ‘3, 4’, or it might get ‘4, 3’, or even ‘3, 3’.

� Not allowing structures with volatile fields in registers.
Strictly speaking, there is no prohibition in the ANSI C standard
against allowing structures with volatile fields in registers, but it
does not seem to make any sense and is probably not what you
wanted to do. So the compiler will give an error message in this
case.

9.12 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:

Errors report problems that make it impossible to compile your pro-
gram. GNU CC reports errors with the source file name and line
number where the problem is apparent.
Warnings report other unusual conditions in your code that may
indicate a problem, although compilation can (and does) proceed.
Warning messages also report the source file name and line num-
ber, but include the text ‘warning:’ to distinguish them from error
messages.

Warnings may indicate danger points where you should check to make
sure that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++. Many
warnings are issued only if you ask for them, with one of the ‘-W’ options
(for instance, ‘-Wall’ requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never gra-
tuituously rejects a program whose meaning is clear merely because (for
instance) it fails to conform to a standard. In some cases, however, the C
and C++ standards specify that certain extensions are forbidden, and a
diagnostic must be issued by a conforming compiler. The ‘-pedantic’ op-
tion tells GNU CC to issue warnings in such cases; ‘-pedantic-errors’

230 10 July 1995

Chapter 9: Known Causes of Trouble with GNU CC

says to make them errors instead. This does not mean that all non-ANSI
constructs get warnings or errors.

See Section 4.6 “Options to Request or Suppress Warnings,” page 40,
for more detail on these and related command-line options.

c y g n u s s u p p o r t 231

Using GNU CC

232 10 July 1995

Chapter 10: Reporting Bugs

10 Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.
When you encounter a problem, the first thing to do is to see if it is

already known. See Chapter 9 “Trouble,” page 205. If it isn’t known,
then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem,
or it may not. (If it does not, look in the service directory; see Chapter 11
“Service,” page 243.) In any case, the principal function of a bug report
is to help the entire community by making the next version of GNU CC
work better. Bug reports are your contribution to the maintenance of
GNU CC.

Since the maintainers are very overloaded, we cannot respond to
every bug report. However, if the bug has not been fixed, we are likely
to send you a patch and ask you to tell us whether it works.

In order for a bug report to serve its purpose, you must include the
information that makes for fixing the bug.

10.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some
guidelines:

� If the compiler gets a fatal signal, for any input whatever, that is a
compiler bug. Reliable compilers never crash.

� If the compiler produces invalid assembly code, for any input what-
ever (except an asm statement), that is a compiler bug, unless the
compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.

� If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug.
However, you must double-check to make sure, because you may
have run into an incompatibility between GNU C and traditional
C (see Section 9.6 “Incompatibilities,” page 218). These incompat-
ibilities might be considered bugs, but they are inescapable conse-
quences of valuable features.
Or you may have a program whose behavior is undefined, which
happened by chance to give the desired results with another C or
C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at
the end of a function instead of ‘return x;’, with the same results.

c y g n u s s u p p o r t 233

Using GNU CC

But the value of the function is undefined if return is omitted; it is
not a bug when GNU CC produces different results.
Problems often result from expressions with two increment oper-
ators, as in f (*p++, *p++). Your previous compiler might have
interpreted that expression the way you intended; GNU CC might
interpret it another way. Neither compiler is wrong. The bug is in
your code.
After you have localized the error to a single source line, it should
be easy to check for these things. If your program is correct and well
defined, you have found a compiler bug.

� If the compiler produces an error message for valid input, that is a
compiler bug.

� If the compiler does not produce an error message for invalid input,
that is a compiler bug. However, you should note that your idea of
“invalid input” might be my idea of “an extension” or “support for
traditional practice”.

� If you are an experienced user of C or C++ compilers, your sugges-
tions for improvement of GNU CC or GNU C++ are welcome in any
case.

10.2 Where to Report Bugs

Send bug reports for GNU C to ‘bug-gcc@prep.ai.mit.edu’.
Send bug reports for GNU C++ to ‘bug-g++@prep.ai.mit.edu’.

If your bug involves the C++ class library libg++, send mail to
‘bug-lib-g++@prep.ai.mit.edu’. If you’re not sure, you can send the
bug report to both lists.

Do not send bug reports to ‘help-gcc@prep.ai.mit.edu’ or to
the newsgroup ‘gnu.gcc.help’. Most users of GNU CC do not want to
receive bug reports. Those that do, have asked to be on ‘bug-gcc’ and/or
‘bug-g++’.

The mailing lists ‘bug-gcc’ and ‘bug-g++’ both have newsgroups which
serve as repeaters: ‘gnu.gcc.bug’ and ‘gnu.g++.bug’. Each mailing list
and its newsgroup carry exactly the same messages.

Often people think of posting bug reports to the newsgroup instead
of mailing them. This appears to work, but it has one problem which
can be crucial: a newsgroup posting does not contain a mail path back
to the sender. Thus, if maintainers need more information, they may
be unable to reach you. For this reason, you should always send bug
reports by mail to the proper mailing list.

As a last resort, send bug reports on paper to:

234 10 July 1995

Chapter 10: Reporting Bugs

GNU Compiler Bugs
Free Software Foundation
675 Mass Ave
Cambridge, MA 02139

10.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it out,
state it!

Often people omit facts because they think they know what causes
the problem and they conclude that some details don’t matter. Thus, you
might assume that the name of the variable you use in an example does
not matter. Well, probably it doesn’t, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the compiler into
doing the right thing despite the bug. Play it safe and give a specific,
complete example. That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable someone
to fix the bug if it is not known. It isn’t very important what happens if
the bug is already known. Therefore, always write your bug reports on
the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a
bell?” This cannot help us fix a bug, so it is basically useless. We respond
by asking for enough details to enable us to investigate. You might as
well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you for
more information, it is best if you include all the previous information
in your response, as well as the information that was missing.

Please report each bug in a separate message. This makes it easier
for us to track which bugs have been fixed and to forward your bugs
reports to the appropriate maintainer.

Do not compress and encode any part of your bug report using pro-
grams such as ‘uuencode’. If you do so it will slow down the processing
of your bug. If you must submit multiple large files, use ‘shar’, which al-
lows us to read your message without having to run any decompression
programs.

To enable someone to investigate the bug, you should include all these
things:
� The version of GNU CC. You can get this by running it with the ‘-v’

option.

c y g n u s s u p p o r t 235

Using GNU CC

Without this, we won’t know whether there is any point in looking
for the bug in the current version of GNU CC.

� A complete input file that will reproduce the bug. If the bug is
in the C preprocessor, send a source file and any header files that
it requires. If the bug is in the compiler proper (‘cc1’), run your
source file through the C preprocessor by doing ‘gcc -E sourcefile
> outfile’, then include the contents of outfile in the bug report.
(When you do this, use the same ‘-I’, ‘-D’ or ‘-U’ options that you
used in actual compilation.)
A single statement is not enough of an example. In order to compile
it, it must be embedded in a complete file of compiler input; and the
bug might depend on the details of how this is done.
Without a real example one can compile, all anyone can do about
your bug report is wish you luck. It would be futile to try to guess
how to provoke the bug. For example, bugs in register allocation and
reloading frequently depend on every little detail of the function they
happen in.
Even if the input file that fails comes from a GNU program, you
should still send the complete test case. Don’t ask the GNU CC
maintainers to do the extra work of obtaining the program in
question—they are all overworked as it is. Also, the problem may
depend on what is in the header files on your system; it is unreliable
for the GNU CC maintainers to try the problem with the header
files available to them. By sending CPP output, you can eliminate
this source of uncertainty and save us a certain percentage of wild
goose chases.

� The command arguments you gave GNU CC or GNU C++ to compile
that example and observe the bug. For example, did you use ‘-O’? To
guarantee you won’t omit something important, list all the options.
If we were to try to guess the arguments, we would probably guess
wrong and then we would not encounter the bug.

� The type of machine you are using, and the operating system name
and version number.

� The operands you gave to the configure command when you in-
stalled the compiler.

� A complete list of any modifications you have made to the compiler
source. (We don’t promise to investigate the bug unless it happens
in an unmodified compiler. But if you’ve made modifications and
don’t tell us, then you are sending us on a wild goose chase.)
Be precise about these changes. A description in English is not
enough—send a context diff for them.
Adding files of your own (such as a machine description for a ma-
chine we don’t support) is a modification of the compiler source.

236 10 July 1995

Chapter 10: Reporting Bugs

� Details of any other deviations from the standard procedure for
installing GNU CC.

� A description of what behavior you observe that you believe is in-
correct. For example, “The compiler gets a fatal signal,” or, “The
assembler instruction at line 208 in the output is incorrect.”
Of course, if the bug is that the compiler gets a fatal signal, then
one can’t miss it. But if the bug is incorrect output, the maintainer
might not notice unless it is glaringly wrong. None of us has time
to study all the assembler code from a 50-line C program just on the
chance that one instruction might be wrong. We need you to do this
part!
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of the compiler is out of synch, or you have encountered
a bug in the C library on your system. (This has happened!) Your
copy might crash and the copy here would not. If you said to expect
a crash, then when the compiler here fails to crash, we would know
that the bug was not happening. If you don’t say to expect a crash,
then we would not know whether the bug was happening. We would
not be able to draw any conclusion from our observations.
If the problem is a diagnostic when compiling GNU CC with some
other compiler, say whether it is a warning or an error.
Often the observed symptom is incorrect output when your program
is run. Sad to say, this is not enough information unless the program
is short and simple. None of us has time to study a large program to
figure out how it would work if compiled correctly, much less which
line of it was compiled wrong. So you will have to do that. Tell us
which source line it is, and what incorrect result happens when that
line is executed. A person who understands the program can find
this as easily as finding a bug in the program itself.

� If you send examples of assembler code output from GNU CC or
GNU C++, please use ‘-g’ when you make them. The debugging
information includes source line numbers which are essential for
correlating the output with the input.

� If you wish to mention something in the GNU CC source, refer to it
by context, not by line number.
The line numbers in the development sources don’t match those in
your sources. Your line numbers would convey no useful information
to the maintainers.

� Additional information from a debugger might enable someone to
find a problem on a machine which he does not have available.
However, you need to think when you collect this information if you
want it to have any chance of being useful.

c y g n u s s u p p o r t 237

Using GNU CC

For example, many people send just a backtrace, but that is never
useful by itself. A simple backtrace with arguments conveys little
about GNU CC because the compiler is largely data-driven; the
same functions are called over and over for different RTL insns,
doing different things depending on the details of the insn.
Most of the arguments listed in the backtrace are useless because
they are pointers to RTL list structure. The numeric values of
the pointers, which the debugger prints in the backtrace, have no
significance whatever; all that matters is the contents of the objects
they point to (and most of the contents are other such pointers).
In addition, most compiler passes consist of one or more loops that
scan the RTL insn sequence. The most vital piece of information
about such a loop—which insn it has reached—is usually in a local
variable, not in an argument.
What you need to provide in addition to a backtrace are the values
of the local variables for several stack frames up. When a local
variable or an argument is an RTX, first print its value and then
use the GDB command pr to print the RTL expression that it points
to. (If GDB doesn’t run on your machine, use your debugger to call
the function debug_rtx with the RTX as an argument.) In general,
whenever a variable is a pointer, its value is no use without the data
it points to.

Here are some things that are not necessary:
� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way
we will find the bug is by running a single example under the de-
bugger with breakpoints, not by pure deduction from a series of
examples. You might as well save your time for something else.
Of course, if you can find a simpler example to report instead of the
original one, that is a convenience. Errors in the output will be easier
to spot, running under the debugger will take less time, etc. Most
GNU CC bugs involve just one function, so the most straightforward
way to simplify an example is to delete all the function definitions
except the one where the bug occurs. Those earlier in the file may
be replaced by external declarations if the crucial function depends
on them. (Exception: inline functions may affect compilation of
functions defined later in the file.)
However, simplification is not vital; if you don’t want to do this,
report the bug anyway and send the entire test case you used.

238 10 July 1995

Chapter 10: Reporting Bugs

� In particular, some people insert conditionals ‘#ifdef BUG’ around a
statement which, if removed, makes the bug not happen. These are
just clutter; we won’t pay any attention to them anyway. Besides,
you should send us cpp output, and that can’t have conditionals.

� A patch for the bug.
A patch for the bug is useful if it is a good one. But don’t omit the
necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and
decide to fix the problem another way, or we might not understand
it at all.
Sometimes with a program as complicated as GNU CC it is very
hard to construct an example that will make the program follow a
certain path through the code. If you don’t send the example, we
won’t be able to construct one, so we won’t be able to verify that the
bug is fixed.
And if we can’t understand what bug you are trying to fix, or why
your patch should be an improvement, we won’t install it. A test
case will help us to understand.
See Section 10.4 “Sending Patches,” page 239, for guidelines on how
to make it easy for us to understand and install your patches.

� A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even I can’t guess right about such
things without first using the debugger to find the facts.

� A core dump file.
We have no way of examining a core dump for your type of machine
unless we have an identical system—and if we do have one, we
should be able to reproduce the crash ourselves.

10.4 Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C
compiler, that is very helpful. Send suggested fixes to the bug report
mailing list, bug-gcc@prep.ai.mit.edu.

Please follow these guidelines so we can study your patches efficiently.
If you don’t follow these guidelines, your information might still be use-
ful, but using it will take extra work. Maintaining GNU C is a lot of
work in the best of circumstances, and we can’t keep up unless you do
your best to help.
� Send an explanation with your changes of what problem they fix or

what improvement they bring about. For a bug fix, just include a
copy of the bug report, and explain why the change fixes the bug.

c y g n u s s u p p o r t 239

Using GNU CC

(Referring to a bug report is not as good as including it, because then
we will have to look it up, and we have probably already deleted it
if we’ve already fixed the bug.)

� Always include a proper bug report for the problem you think you
have fixed. We need to convince ourselves that the change is right
before installing it. Even if it is right, we might have trouble judging
it if we don’t have a way to reproduce the problem.

� Include all the comments that are appropriate to help people reading
the source in the future understand why this change was needed.

� Don’t mix together changes made for different reasons. Send them
individually.
If you make two changes for separate reasons, then we might not
want to install them both. We might want to install just one. If
you send them all jumbled together in a single set of diffs, we have
to do extra work to disentangle them—to figure out which parts of
the change serve which purpose. If we don’t have time for this, we
might have to ignore your changes entirely.
If you send each change as soon as you have written it, with its own
explanation, then the two changes never get tangled up, and we can
consider each one properly without any extra work to disentangle
them.
Ideally, each change you send should be impossible to subdivide into
parts that we might want to consider separately, because each of its
parts gets its motivation from the other parts.

� Send each change as soon as that change is finished. Sometimes
people think they are helping us by accumulating many changes to
send them all together. As explained above, this is absolutely the
worst thing you could do.
Since you should send each change separately, you might as well
send it right away. That gives us the option of installing it immedi-
ately if it is important.

� Use ‘diff -c’ to make your diffs. Diffs without context are hard for
us to install reliably. More than that, they make it hard for us to
study the diffs to decide whether we want to install them. Unidiff
format is better than contextless diffs, but not as easy to read as ‘-c’
format.
If you have GNU diff, use ‘diff -cp’, which shows the name of the
function that each change occurs in.

� Write the change log entries for your changes. We get lots of changes,
and we don’t have time to do all the change log writing ourselves.
Read the ‘ChangeLog’ file to see what sorts of information to put in,
and to learn the style that we use. The purpose of the change log

240 10 July 1995

Chapter 10: Reporting Bugs

is to show people where to find what was changed. So you need to
be specific about what functions you changed; in large functions, it’s
often helpful to indicate where within the function the change was.
On the other hand, once you have shown people where to find the
change, you need not explain its purpose. Thus, if you add a new
function, all you need to say about it is that it is new. If you feel that
the purpose needs explaining, it probably does—but the explanation
will be much more useful if you put it in comments in the code.
If you would like your name to appear in the header line for who
made the change, send us the header line.

� When you write the fix, keep in mind that we can’t install a change
that would break other systems.
People often suggest fixing a problem by changing machine-
independent files such as ‘toplev.c’ to do something special that
a particular system needs. Sometimes it is totally obvious that such
changes would break GNU CC for almost all users. We can’t possi-
bly make a change like that. At best it might tell us how to write
another patch that would solve the problem acceptably.
Sometimes people send fixes that might be an improvement in
general—but it is hard to be sure of this. It’s hard to install such
changes because we have to study them very carefully. Of course,
a good explanation of the reasoning by which you concluded the
change was correct can help convince us.
The safest changes are changes to the configuration files for a par-
ticular machine. These are safe because they can’t create new bugs
on other machines.
Please help us keep up with the workload by designing the patch in
a form that is good to install.

c y g n u s s u p p o r t 241

Using GNU CC

242 10 July 1995

Chapter 11: How To Get Help with GNU CC

11 How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two
ways to find it:
� Send a message to a suitable network mailing list. First try bug-

gcc@prep.ai.mit.edu, and if that brings no response, try help-
gcc@prep.ai.mit.edu.

� Look in the service directory for someone who might help you for a
fee. The service directory is found in the file named ‘SERVICE’ in the
GNU CC distribution.

c y g n u s s u p p o r t 243

Using GNU CC

244 10 July 1995

Chapter 12: Using GNU CC on VMS

12 Using GNU CC on VMS

Here is how to use GNU CC on VMS.

12.1 Include Files and VMS

Due to the differences between the filesystems of Unix and VMS,
GNU CC attempts to translate file names in ‘#include’ into names that
VMS will understand. The basic strategy is to prepend a prefix to the
specification of the include file, convert the whole filename to a VMS
filename, and then try to open the file. GNU CC tries various prefixes
one by one until one of them succeeds:
1. The first prefix is the ‘GNU_CC_INCLUDE:’ logical name: this is where

GNU C header files are traditionally stored. If you wish to store
header files in non-standard locations, then you can assign the logi-
cal ‘GNU_CC_INCLUDE’ to be a search list, where each element of the
list is suitable for use with a rooted logical.

2. The next prefix tried is ‘SYS$SYSROOT:[SYSLIB.]’. This is where
VAX-C header files are traditionally stored.

3. If the include file specification by itself is a valid VMS filename, the
preprocessor then uses this name with no prefix in an attempt to
open the include file.

4. If the file specification is not a valid VMS filename (i.e. does not
contain a device or a directory specifier, and contains a ‘/’ character),
the preprocessor tries to convert it from Unix syntax to VMS syntax.
Conversion works like this: the first directory name becomes a de-
vice, and the rest of the directories are converted into VMS-format
directory names. For example, the name ‘X11/foobar.h’ is trans-
lated to ‘X11:[000000]foobar.h’ or ‘X11:foobar.h’, whichever one
can be opened. This strategy allows you to assign a logical name to
point to the actual location of the header files.

5. If none of these strategies succeeds, the ‘#include’ fails.

Include directives of the form:
#include foobar

are a common source of incompatibility between VAX-C and GNU CC.
VAX-C treats this much like a standard #include <foobar.h> directive.
That is incompatible with the ANSI C behavior implemented by GNU
CC: to expand the name foobar as a macro. Macro expansion should
eventually yield one of the two standard formats for #include:

#include "file"
#include <file>

c y g n u s s u p p o r t 245

Using GNU CC

If you have this problem, the best solution is to modify the source to
convert the #include directives to one of the two standard forms. That
will work with either compiler. If you want a quick and dirty fix, define
the file names as macros with the proper expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn’t conflict with anything else
in the program.

Another source of incompatibility is that VAX-C assumes that:
#include "foobar"

is actually asking for the file ‘foobar.h’. GNU CC does not make this
assumption, and instead takes what you ask for literally; it tries to read
the file ‘foobar’. The best way to avoid this problem is to always specify
the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is suffi-
cient to compile most general purpose programs. Even though the GNU
CC distribution does not contain header files to define constants and
structures for some VMS system-specific functions, there is no reason
why you cannot use GNU CC with any of these functions. You first may
have to generate or create header files, either by using the public domain
utility UNSDL (which can be found on a DECUS tape), or by extracting
the relevant modules from one of the system macro libraries, and using
an editor to construct a C header file.

A #include file name cannot contain a DECNET node name. The
preprocessor reports an I/O error if you attempt to use a node name,
whether explicitly, or implicitly via a logical name.

12.2 Global Declarations and VMS

GNU CC does not provide the globalref, globaldef and
globalvalue keywords of VAX-C. You can get the same effect with
an obscure feature of GAS, the GNU assembler. (This requires GAS
version 1.39 or later.) The following macros allow you to use this feature
in a fairly natural way:

#ifdef __GNUC__
#define GLOBALREF(TYPE,NAME) \

TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \

= VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

246 10 July 1995

Chapter 12: Using GNU CC on VMS

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \

= {VALUE}
#else
#define GLOBALREF(TYPE,NAME) \

globalref TYPE NAME
#define GLOBALDEF(TYPE,NAME,VALUE) \

globaldef TYPE NAME = VALUE
#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \

globalvalue TYPE NAME = VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

globalvalue TYPE NAME
#endif

(The _$$PsectAttributes_GLOBALSYMBOLprefix at the start of the name
is removed by the assembler, after it has modified the attributes of the
symbol). These macros are provided in the VMS binaries distribution in
a header file ‘GNU_HACKS.H’. An example of the usage is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightfor-
wardly for arrays, since there is no way to insert the array dimension
into the declaration at the right place. However, you can declare an
array with these macros if you first define a typedef for the array type,
like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can
define the initializer to be a macro of its own, or you can expand the
GLOBALDEF macro by hand. You may find a case where you wish to use
the GLOBALDEF macro with a large array, but you are not interested in
explicitly initializing each element of the array. In such cases you can
use an initializer like: {0,}, which will initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with
GLOBALVALUEREF or GLOBALVALUEDEF is always an array. For example,
the declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done
because a globalvalue is actually a constant; its “value” is what the
linker would normally consider an address. That is not how an integer
value works in C, but it is how an array works. So treating the symbol
as an array name gives consistent results—with the exception that the
value seems to have the wrong type. Don’t try to access an element
of the array. It doesn’t have any elements. The array “address” may
not be the address of actual storage.

c y g n u s s u p p o r t 247

Using GNU CC

The fact that the symbol is an array may lead to warnings where the
variable is used. Insert type casts to avoid the warnings. Here is an
example; it takes advantage of the ANSI C feature allowing macros that
expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

Don’t use globaldef or globalref with a variable whose type is an
enumeration type; this is not implemented. Instead, make the vari-
able an integer, and use a globalvaluedef for each of the enumeration
values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif

12.3 Other VMS Issues

GNU CC automatically arranges for main to return 1 by default if you
fail to specify an explicit return value. This will be interpreted by VMS
as a status code indicating a normal successful completion. Version 1 of
GNU CC did not provide this default.

GNU CC on VMS works only with the GNU assembler, GAS. You
need version 1.37 or later of GAS in order to produce value debugging
information for the VMS debugger. Use the ordinary VMS linker with
the object files produced by GAS.

Under previous versions of GNU CC, the generated code would oc-
casionally give strange results when linked to the sharable ‘VAXCRTL’
library. Now this should work.

A caveat for use of const global variables: the constmodifier must be
specified in every external declaration of the variable in all of the source
files that use that variable. Otherwise the linker will issue warnings
about conflicting attributes for the variable. Your program will still
work despite the warnings, but the variable will be placed in writable
storage.

Although the VMS linker does distinguish between upper and lower
case letters in global symbols, most VMS compilers convert all such
symbols into upper case and most run-time library routines also have

248 10 July 1995

Chapter 12: Using GNU CC on VMS

upper case names. To be able to reliably call such routines, GNU CC
(by means of the assembler GAS) converts global symbols into upper
case like other VMS compilers. However, since the usual practice in
C is to distinguish case, GNU CC (via GAS) tries to preserve usual C
behavior by augmenting each name that is not all lower case. This
means truncating the name to at most 23 characters and then adding
more characters at the end which encode the case pattern of those 23.
Names which contain at least one dollar sign are an exception; they are
converted directly into upper case without augmentation.

Name augmentation yields bad results for programs that use precom-
piled libraries (such as Xlib) which were generated by another compiler.
You can use the compiler option ‘/NOCASE_HACK’ to inhibit augmenta-
tion; it makes external C functions and variables case-independent as is
usual on VMS. Alternatively, you could write all references to the func-
tions and variables in such libraries using lower case; this will work on
VMS, but is not portable to other systems. The compiler option ‘/NAMES’
also provides control over global name handling.

Function and variable names are handled somewhat differently with
GNU C++. The GNU C++ compiler performs name mangling on function
names, which means that it adds information to the function name to
describe the data types of the arguments that the function takes. One
result of this is that the name of a function can become very long. Since
the VMS linker only recognizes the first 31 characters in a name, special
action is taken to ensure that each function and variable has a unique
name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32
characters in length, then no special action is performed. If the name
is longer than 31 characters, the assembler (GAS) will generate a hash
string based upon the function name, truncate the function name to 23
characters, and append the hash string to the truncated name. If the
‘/VERBOSE’ compiler option is used, the assembler will print both the full
and truncated names of each symbol that is truncated.

The ‘/NOCASE_HACK’ compiler option should not be used when you
are compiling programs that use libg++. libg++ has several instances of
objects (i.e. Filebuf and filebuf) which become indistinguishable in
a case-insensitive environment. This leads to cases where you need to
inhibit augmentation selectively (if you were using libg++ and Xlib in
the same program, for example). There is no special feature for doing
this, but you can get the result by defining a macro for each mixed case
symbol for which you wish to inhibit augmentation. The macro should
expand into the lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

c y g n u s s u p p o r t 249

Using GNU CC

These macro definitions can be placed in a header file to minimize the
number of changes to your source code.

250 10 July 1995

Index

Index

!
‘!’ in constraint . 177

#
‘#’ in constraint . 178
#pragma implementation, implied

. 192
#pragma, reason for not using 160

$
$. 162

%
‘%’ in constraint . 178

&
‘&’ in constraint . 178

’
’. 220

-
-lgcc, use with -nostdlib 62
-nostdlib and unresolved references

. 62

=
‘=’ in constraint . 178

?
‘?’ in constraint . 177
?: extensions 148, 149
?: side effect . 149

‘ ’ in variables in macros 147
builtin apply . 146
builtin apply args 146
builtin return 146
main . 137

+
‘+’ in constraint . 178

>
‘>’ in constraint . 175
>? . 191

<
‘<’ in constraint . 175
<? . 191

0
‘0’ in constraint . 176

A
abort. 32
abs . 32
address constraints 176
address of a label . 143
address operand 177
aligned attribute 163, 167
alignment . 162
Alliant . 216
alloca . 32
alloca and SunOs 110
alloca vs variable-length arrays . . . 151
alloca, for SunOs 133
alloca, for Unos . 120
alternate keywords 187
AMD29K options. 73
ANSI support . 31
apostrophes . 220
arguments in frame (88k) 76
ARM options . 74
arrays of length zero 151
arrays of variable length 151
arrays, non-lvalue 153
asm constraints . 174
asm expressions . 170
assembler instructions 170
assembler names for identifiers 184
assembler syntax, 88k 77

c y g n u s s u p p o r t 251

Using GNU CC

assembly code, invalid 233
attribute of types . 166
attribute of variables 163
autoincrement/decrement addressing

. 174
automatic inline for C++ member fns

. 169

B
backtrace for bug reports 237
Bison parser generator 107
bit shift overflow (88k) 78
bug criteria . 233
bug report mailing lists 234
bugs . 233
bugs, known . 205
builtin functions . 32
byte writes (29k) . 73

C
C compilation options 23
C intermediate output, nonexistent . . . 21
C language extensions 141
C language, traditional 32
C INCLUDE PATH . 99
c++ . 30
C++ . 21
C++ compilation options 23
C++ interface and implementation

headers . 191
C++ language extensions 189
C++ member fns, automatically inline

. 169
C++ misunderstandings 224
C++ named return value 189
C++ options, command line 35
C++ pragmas, effect on inlining 193
C++ signatures . 196
C++ source file suffixes. 30
C++ static data, declaring and defining

. 224
C++ subtype polymorphism 196
C++ type abstraction 196
calling conventions for interrupts 161
case labels in initializers. 155
case ranges . 156
case sensitivity and VMS 248
cast to a union . 157

casts as lvalues . 148
code generation conventions 94
command options . 23
compilation in a separate directory . . 127
compiler bugs, reporting 235
compiler compared to C++ preprocessor

. 21
compiler options, C++ 35
compiler version, specifying 65
COMPILER PATH . 99
complex numbers . 150
compound expressions as lvalues 148
computed gotos . 143
conditional expressions as lvalues . . . 148
conditional expressions, extensions . . 149
configurations supported by GNU CC

. 111
conflicting types . 222
const applied to function 157
const function attribute 158
constants in constraints 175
constraint modifier characters 177
constraint, matching 176
constraints, asm . 174
constraints, machine specific 178
constructing calls . 146
constructor expressions 154
constructor function attribute 160
constructors vs goto 191
constructors, automatic calls 137
contributors . 11
Convex options . 72
core dump . 233
cos . 32
CPLUS INCLUDE PATH 99
cross compiling . 65
cross-compiler, installation 127

D
‘d’ in constraint . 175
DBX . 212
deallocating variable length arrays . . 151
debug rtx. 238
debugging information options 48
debugging, 88k OCS 75
declaration scope . 219
declarations inside expressions 141
declaring attributes of functions 157

252 10 July 1995

Index

declaring static data in C++ 224
default implementation, signature

member function 197
defining static data in C++. 224
dependencies for make as output 99
dependencies, make 60
DEPENDENCIES OUTPUT 99
destructor function attribute 160
destructors vs goto 191
detecting ‘-traditional’ 34
dialect options . 31
digits in constraint 176
directory options . 64
divide instruction, 88k 78
dollar signs in identifier names 162
double-word arithmetic 149
downward funargs 143
DW bit (29k) . 73

E
‘E’ in constraint . 175
enumeration clash warnings 44
environment variables 98
error messages . 230
escape sequences, traditional 33
exclamation point . 177
exit . 32
exit status and VMS 248
explicit register variables 184
expressions containing statements . . 141
expressions, compound, as lvalues . . . 148
expressions, conditional, as lvalues . . 148
expressions, constructor 154
extended asm . 170
extensible constraints 177
extensions, ?: 148, 149
extensions, C language 141
extensions, C++ language 189
external declaration scope 219

F
‘F’ in constraint . 176
fabs . 32
fatal signal . 233
ffs . 32
file name suffix . 28
file names . 61

float as function value type 220
format function attribute 159
forwarding calls . 146
fscanf, and constant strings 218
function attributes 157
function pointers, arithmetic 154
function prototype declarations 160
function, size of pointer to 154
functions in arbitrary sections 157
functions that have no side effects . . . 157
functions that never return 157
functions with printf or scanf style

arguments . 157

G
‘g’ in constraint . 176
‘G’ in constraint . 176
g++ . 30
G++ . 21
g++ 1.xx . 31
g++ older version . 31
g++, separate compiler 31
GCC . 21
GCC EXEC PREFIX . 98
generalized lvalues 148
genflags, crash on Sun 4 207
global offset table . 95
global register after longjmp 186
global register variables 185
GLOBALDEF . 246
GLOBALREF . 246
GLOBALVALUEDEF 246
GLOBALVALUEREF 246
GNU CC command options 23
goto in C++ . 191
goto with computed label 143
gp-relative references (MIPS) 87
gprof. 49
grouping options . 23

H
‘H’ in constraint . 176
hardware models and configurations,

specifying . 66
header files and VMS 245
HPPA Options . 88

c y g n u s s u p p o r t 253

Using GNU CC

I
‘i’ in constraint . 175
‘I’ in constraint . 175
i386 Options . 87
IBM RS/6000 and PowerPC Options . . 79
IBM RT options . 83
IBM RT PC . 216
identifier names, dollar signs in 162
identifiers, names in assembler code

. 184
identifying source, compiler (88k) 75
implicit argument: return value 189
implied #pragma implementation

. 192
include files and VMS 245
incompatibilities of GNU CC 218
increment operators 233
initializations in expressions 154
initializers with labeled elements 155
initializers, non-constant 154
inline automatic for C++ member fns

. 169
inline functions . 169
inline functions, omission of 169
inlining and C++ pragmas 193
installation trouble 205
installing GNU CC 103
installing GNU CC on the Sun. 133
installing GNU CC on VMS. 133
integrating function code 169
Intel 386 Options . 87
interface and implementation headers,

C++ . 191
intermediate C version, nonexistent . . 21
interrupts, functions compiled for . . . 161
invalid assembly code 233
invalid input . 234
invoking g++ . 31

K
kernel and user registers (29k) 73
keywords, alternate. 187
known causes of trouble 205

L
labeled elements in initializers 155
labels as values . 143

labs . 32
language dialect options 31
large bit shifts (88k) 78
length-zero arrays 151
Libraries . 62
LIBRARY PATH . 99
link options . 61
load address instruction 176
local labels . 142
local variables in macros. 147
local variables, specifying registers . . 186
long long data types 149
longjmp . 186
longjmp and automatic variables 33
longjmp incompatibilities 218
longjmp warnings . 41
lvalues, generalized. 148

M
‘m’ in constraint . 174
M680x0 options . 67
M88k options . 75
machine dependent options 66
machine specific constraints 178
macro with variable arguments 152
macros containing asm. 173
macros, inline alternative 169
macros, local labels 142
macros, local variables in 147
macros, statements in expressions . . . 141
macros, types of arguments 147
main and the exit status 248
make . 60
matching constraint 176
maximum operator 191
member fns, automatically inline . . 169
memcmp . 32
memcpy . 32
memory model (29k) 73
memory references in constraints 174
messages, warning . 40
messages, warning and error 230
middle-operands, omitted 149
minimum operator 191
MIPS options . 83
misunderstandings in C++. 224
mktemp, and constant strings 218
mode attribute . 164

254 10 July 1995

Index

modifiers in constraints 177
multiple alternative constraints 177
multiprecision arithmetic 149

N
‘n’ in constraint . 175
name augmentation 248
named return value in C++ 189
names used in assembler code 184
naming convention, implementation

headers . 192
naming types . 146
nested functions . 143
newline vs string constants 34
nocommon attribute 165
non-constant initializers 154
non-static inline function 169
noreturn function attribute 157

O
‘o’ in constraint . 174
OBJC INCLUDE PATH 99
Objective C . 21
obstack free. 120
OCS (88k) . 75
offsettable address 174
old-style function definitions 160
omitted middle-operands 149
open coding . 169
operand constraints, asm 174
optimize options . 53
options to control warnings 40
options, C++ . 35
options, code generation 94
options, debugging . 48
options, dialect . 31
options, directory search 64
options, GNU CC command 23
options, grouping . 23
options, linking . 61
options, optimization. 53
options, order . 23
options, preprocessor. 58
order of evaluation, side effects 230
order of options . 23
other directory, compilation in 127
output file option. 30
overloaded virtual fn, warning 47

P
‘p’ in constraint . 176
packed attribute . 165
parameter forward declaration 152
parser generator, Bison 107
PIC . 95
pointer arguments 158
portions of temporary objects, pointers to

. 224
pragma, reason for not using 160
pragmas in C++, effect on inlining . . . 193
pragmas, interface and implementation

. 192
preprocessing numbers 221
preprocessing tokens 221
preprocessor options 58
processor selection (29k) 73
prof . 49
promotion of formal parameters 160
push address instruction 176

Q
‘Q’, in constraint . 177
qsort, and global register variables

. 185
question mark . 177

R
‘r’ in constraint . 175
r0-relative references (88k) 76
ranges in case statements 156
read-only strings . 218
register positions in frame (88k) 76
register variable after longjmp 186
registers . 170
registers for local variables 186
registers in constraints 175
registers, global allocation 184
registers, global variables in 185
reordering, warning 44
reporting bugs . 233
rest argument (in macro) 152
return value of main 248
return value, named, in C++ 189
return, in C++ function header 189
RS/6000 and PowerPC Options 79

c y g n u s s u p p o r t 255

Using GNU CC

RT options . 83
RT PC . 216
run-time options . 94

S
‘s’ in constraint . 176
scanf, and constant strings 218
scope of a variable length array 151
scope of declaration 222
scope of external declarations 219
search path . 64
second include path 59
section function attribute 159
section variable attribute 165
separate directory, compilation in 127
sequential consistency on 88k 76
setjmp . 186
setjmp incompatibilities 218
shared strings . 218
shared VMS run time system 248
side effect in ?: . 149
side effects, macro argument 141
side effects, order of evaluation 230
signature . 196
signature in C++, advantages 197
signature member function default

implemention 197
signatures, C++ . 196
simple constraints 174
sin . 32
sizeof . 147
smaller data references (88k) 76
smaller data references (MIPS) 87
SPARC options . 69
specified registers 184
specifying compiler version and target

machine . 65
specifying hardware config 66
specifying machine version 65
specifying registers for local variables

. 186
sqrt . 32
sscanf, and constant strings 218
stack checks (29k) . 74
stage1 . 108
start files . 129
statements inside expressions 141

static data in C++, declaring and defining
. 224

‘stdarg.h’ and RT PC 83
storem bug (29k) . 74
strcmp . 32
strcpy . 32
string constants . 218
string constants vs newline 34
strlen . 32
structure passing (88k) 78
structures . 220
structures, constructor expression . . . 154
submodel options . 66
subscripting . 153
subscripting and function values 153
subtype polymorphism, C++ 196
suffixes for C++ source 30
Sun installation . 133
suppressing warnings 40
surprises in C++ . 224
SVr4 . 77
syntax checking . 40
synthesized methods, warning 47

T
target machine, specifying 65
target options . 65
tcov . 50
template debugging 44
template instantiation 193
temporaries, lifetime of 224
thunks . 143
TMPDIR . 98
traditional C language 32
type abstraction, C++ 196
type alignment . 162
type attributes . 166
typedef names as function parameters

. 219
typeof . 147

U
Ultrix calling convention 216
undefined behavior 233
undefined function value 233
underscores in variables in macros . . 147
underscores, avoiding (88k) 75

256 10 July 1995

Index

union, casting to a 157
unions . 220
unresolved references and -nostdlib

. 62

V
‘V’ in constraint . 175
value after longjmp 186
‘varargs.h’ and RT PC 83
variable alignment 162
variable attributes 163
variable number of arguments 152
variable-length array scope 151
variable-length arrays 151
variables in specified registers 184
variables, local, in macros 147
Vax calling convention 216
VAX options . 68
‘VAXCRTL’ . 248
VMS and case sensitivity 248
VMS and include files 245
VMS installation . 133

void pointers, arithmetic 154
void, size of pointer to 154
volatile applied to function 157

W
warning for enumeration conversions

. 44
warning for overloaded virtual fn 47
warning for reordering of member

initializers . 44
warning for synthesized methods 47
warning messages . 40
warnings vs errors 230
whitespace . 219

X
‘X’ in constraint . 176

Z
zero division on 88k 77
zero-length arrays 151

c y g n u s s u p p o r t 257

Using GNU CC

258 10 July 1995

Debugging with GDB
The gnu Source-Level Debugger

Edition 4.12, for GDB version
January 1994

Richard M. Stallman and Roland H. Pesch

(Send bugs and comments on GDB to bug-gdb@prep.ai.mit.edu.)
Debugging with GDB

TEXinfo 2.122-95q3 (Cygnus)
doc@cygnus.com

Copyright c 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 Free Soft-
ware Foundation, Inc.

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA
Printed copies are available for $20 each.
ISBN 1-882114-11-6

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

Summary of GDB . 1
Free software . 1
Contributors to GDB . 2

1 A Sample GDB Session . 5

2 Getting In and Out of GDB . 9
2.1 Invoking GDB . 9

2.1.1 Choosing files . 10
2.1.2 Choosing modes . 11

2.2 Quitting GDB . 12
2.3 Shell commands . 13

3 GDB Commands . 15
3.1 Command syntax . 15
3.2 Command completion . 16
3.3 Getting help . 17

4 Running Programs Under GDB 21
4.1 Compiling for debugging . 21
4.2 Starting your program . 23
4.3 Your program’s arguments . 24
4.4 Your program’s environment . 24
4.5 Your program’s working directory . 26
4.6 Your program’s input and output . 26
4.7 Debugging an already-running process 27
4.8 Killing the child process . 28
4.9 Additional process information . 28
4.10 Debugging programs with multiple threads 29
4.11 Debugging programs with multiple processes 31

5 Stopping and Continuing . 33
5.1 Breakpoints, watchpoints, and exceptions 33

5.1.1 Setting breakpoints . 34
5.1.2 Setting watchpoints . 38
5.1.3 Breakpoints and exceptions . 39
5.1.4 Deleting breakpoints . 40
5.1.5 Disabling breakpoints . 40
5.1.6 Break conditions . 42
5.1.7 Breakpoint command lists . 43

c y g n u s s u p p o r t i

Debugging with GDB

5.1.8 Breakpoint menus . 45
5.2 Continuing and stepping . 45
5.3 Signals . 49
5.4 Stopping and starting multi-thread programs 50

6 Examining the Stack . 53
6.1 Stack frames . 53
6.2 Backtraces . 54
6.3 Selecting a frame . 55
6.4 Information about a frame . 56
6.5 MIPS machines and the function stack 58

7 Examining Source Files . 59
7.1 Printing source lines . 59
7.2 Searching source files . 61
7.3 Specifying source directories . 61
7.4 Source and machine code . 62

8 Examining Data . 65
8.1 Expressions . 65
8.2 Program variables . 66
8.3 Artificial arrays . 67
8.4 Output formats . 68
8.5 Examining memory . 69
8.6 Automatic display . 71
8.7 Print settings . 73
8.8 Value history . 78
8.9 Convenience variables . 79
8.10 Registers . 81
8.11 Floating point hardware . 83

9 Using GDB with Different Languages 85
9.1 Switching between source languages . 85

9.1.1 List of filename extensions and languages 85
9.1.2 Setting the working language 86
9.1.3 Having GDB infer the source language 86

9.2 Displaying the language . 87
9.3 Type and range checking . 87

9.3.1 An overview of type checking 88
9.3.2 An overview of range checking 89

9.4 Supported languages . 90
9.4.1 C and C++ . 90

9.4.1.1 C and C++ operators 91
9.4.1.2 C and C++ constants 93

ii 11 July 1995

9.4.1.3 C++ expressions . 93
9.4.1.4 C and C++ defaults 94
9.4.1.5 C and C++ type and range checks 95
9.4.1.6 GDB and C . 95
9.4.1.7 GDB features for C++ 95

9.4.2 Modula-2 . 96
9.4.2.1 Operators . 97
9.4.2.2 Built-in functions and procedures 98
9.4.2.3 Constants . 100
9.4.2.4 Modula-2 defaults 100
9.4.2.5 Deviations from standard Modula-2

. 100
9.4.2.6 Modula-2 type and range checks 101
9.4.2.7 The scope operators :: and 101
9.4.2.8 GDB and Modula-2 102

10 Examining the Symbol Table 103

11 Altering Execution . 107
11.1 Assignment to variables . 107
11.2 Continuing at a different address . 108
11.3 Giving your program a signal . 109
11.4 Returning from a function . 109
11.5 Calling program functions . 110
11.6 Patching programs . 110

12 GDB Files . 111
12.1 Commands to specify files . 111
12.2 Errors reading symbol files . 115

13 Specifying a Debugging Target 119
13.1 Active targets . 119
13.2 Commands for managing targets . 119
13.3 Choosing target byte order . 122
13.4 Remote debugging . 123

13.4.1 The GDB remote serial protocol 123
13.4.1.1 What the stub can do for you 124
13.4.1.2 What you must do for the stub 125
13.4.1.3 Putting it all together 127
13.4.1.4 Communication protocol 128
13.4.1.5 Using the gdbserver program 129
13.4.1.6 Using the gdbserve.nlm program . . 131

13.4.2 GDB with a remote i960 (Nindy) 132

c y g n u s s u p p o r t iii

Debugging with GDB

13.4.2.1 Startup with Nindy 132
13.4.2.2 Options for Nindy 133
13.4.2.3 Nindy reset command 133

13.4.3 The UDI protocol for AMD29K 133
13.4.4 The EBMON protocol for AMD29K 134

13.4.4.1 Communications setup 134
13.4.4.2 EB29K cross-debugging 136
13.4.4.3 Remote log . 136

13.4.5 GDB with a Tandem ST2000 137
13.4.6 GDB and VxWorks . 137

13.4.6.1 Connecting to VxWorks 138
13.4.6.2 VxWorks download 138
13.4.6.3 Running tasks . 139

13.4.7 GDB and Hitachi microprocessors 139
13.4.7.1 Connecting to Hitachi boards 139
13.4.7.2 Using the E7000 in-circuit emulator

. 140
13.4.7.3 Special GDB commands for Hitachi

micros . 140
13.4.8 GDB and remote MIPS boards 141
13.4.9 Simulated CPU target . 142

14 Controlling GDB . 145
14.1 Prompt . 145
14.2 Command editing . 145
14.3 Command history . 146
14.4 Screen size . 147
14.5 Numbers . 148
14.6 Optional warnings and messages . 148

15 Canned Sequences of Commands 151
15.1 User-defined commands . 151
15.2 User-defined command hooks . 152
15.3 Command files . 153
15.4 Commands for controlled output . 154

16 Using GDB under gnu Emacs 157

17 Reporting Bugs in GDB . 161
17.1 Have you found a bug? . 161
17.2 How to report bugs . 161

iv 11 July 1995

Appendix A Command Line Editing 165
A.1 Introduction to Line Editing . 165
A.2 Readline Interaction . 165

A.2.1 Readline Bare Essentials . 165
A.2.2 Readline Movement Commands 166
A.2.3 Readline Killing Commands 167
A.2.4 Readline Arguments . 167

A.3 Readline Init File . 168
A.3.1 Readline Init Syntax . 168

A.3.1.1 Commands For Moving 170
A.3.1.2 Commands For Manipulating The

History . 170
A.3.1.3 Commands For Changing Text 171
A.3.1.4 Killing And Yanking 172
A.3.1.5 Specifying Numeric Arguments 172
A.3.1.6 Letting Readline Type For You 173
A.3.1.7 Some Miscellaneous Commands 173

A.3.2 Readline Vi Mode . 173

Appendix B Using History Interactively 175
B.1 History Interaction . 175

B.1.1 Event Designators . 175
B.1.2 Word Designators . 175
B.1.3 Modifiers . 176

Appendix C Formatting Documentation 177

Appendix D Installing GDB 179
D.1 Compiling GDB in another directory 180
D.2 Specifying names for hosts and targets 181
D.3 configure options . 182

Index . 185

c y g n u s s u p p o r t v

Debugging with GDB

vi 11 July 1995

Summary of GDB

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what
is going on “inside” another program while it executes—or what another
program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support
of these) to help you catch bugs in the act:
� Start your program, specifying anything that might affect its behav-

ior.
� Make your program stop on specified conditions.
� Examine what has happened, when your program has stopped.
� Change things in your program, so you can experiment with correct-

ing the effects of one bug and go on to learn about another.

You can use GDB to debug programs written in C or C++. For more
information, see Section 9.4.1 “C and C++,” page 90.

Support for Modula-2 and Chill is partial. For information on Modula-
2, see Section 9.4.2 “Modula-2,” page 96. There is no further documen-
tation on Chill yet.

Debugging Pascal programs which use sets, subranges, file variables,
or nested functions does not currently work. GDB does not support
entering expressions, printing values, or similar features using Pascal
syntax.

GDB can be used to debug programs written in Fortran, although it
does not yet support entering expressions, printing values, or similar
features using Fortran syntax. It may be necessary to refer to some
variables with a trailing underscore.

Free software

GDB is free software, protected by the gnu General Public License
(GPL). The GPL gives you the freedom to copy or adapt a licensed
program—but every person getting a copy also gets with it the free-
dom to modify that copy (which means that they must get access to the
source code), and the freedom to distribute further copies. Typical soft-
ware companies use copyrights to limit your freedoms; the Free Software
Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says
that you have these freedoms and that you cannot take these freedoms
away from anyone else.

c y g n u s s u p p o r t 1

Debugging with GDB

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other
gnu programs. Many others have contributed to its development. This
section attempts to credit major contributors. One of the virtues of free
software is that everyone is free to contribute to it; with regret, we cannot
actually acknowledge everyone here. The file ‘ChangeLog’ in the GDB
distribution approximates a blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.
Plea: Additions to this section are particularly welcome. If
you or your friends (or enemies, to be evenhanded) have been
unfairly omitted from this list, we would like to add your names!

So that they may not regard their long labor as thankless, we partic-
ularly thank those who shepherded GDB through major releases: Stan
Shebs (release 4.14), Fred Fish (releases 4.13, 4.12, 4.11, 4.10, and 4.9),
Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4),
John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases
3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0). As major
maintainer of GDB for some period, each contributed significantly to the
structure, stability, and capabilities of the entire debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the gnu C++ support in
GDB, with significant additional contributions from Per Bothner. James
Clark wrote the gnu C++ demangler. Early work on C++ was by Peter
TerMaat (who also did much general update work leading to release 3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-
file formats; BFD was a joint project of David V. Henkel-Wallace, Rich
Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did
the original support for encapsulated COFF.

Adam de Boor and Bradley Davis contributed the ISI Optimum V
support. Per Bothner, Noboyuki Hikichi, and Alessandro Forin con-
tributed MIPS support. Jean-Daniel Fekete contributed Sun 386i sup-
port. Chris Hanson improved the HP9000 support. Noboyuki Hikichi
and Tomoyuki Hasei contributed Sony/News OS 3 support. David John-
son contributed Encore Umax support. Jyrki Kuoppala contributed Al-
tos 3068 support. Jeff Law contributed HP PA and SOM support. Keith
Packard contributed NS32K support. Doug Rabson contributed Acorn
Risc Machine support. Bob Rusk contributed Harris Nighthawk CX-UX
support. Chris Smith contributed Convex support (and Fortran debug-
ging). Jonathan Stone contributed Pyramid support. Michael Tiemann

2 11 July 1995

Summary of GDB

contributed SPARC support. Tim Tucker contributed support for the
Gould NP1 and Gould Powernode. Pace Willison contributed Intel 386
support. Jay Vosburgh contributed Symmetry support.

Rich Schaefer and Peter Schauer helped with support of SunOS
shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree
about several machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped
develop remote debugging. Intel Corporation and Wind River Systems
contributed remote debugging modules for their products.

Brian Fox is the author of the readline libraries providing command-
line editing and command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code,
the Modula-2 support, and contributed the Languages chapter of this
manual.

Fred Fish wrote most of the support for Unix System Vr4. He also en-
hanced the command-completion support to cover C++ overloaded sym-
bols.

Hitachi America, Ltd. sponsored the support for Hitachi micropro-
cessors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
watchpoints.

Stu Grossman wrote gdbserver.
Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made

nearly innumerable bug fixes and cleanups throughout GDB.

c y g n u s s u p p o r t 3

Debugging with GDB

4 11 July 1995

Chapter 1: A Sample GDB Session

1 A Sample GDB Session

You can use this manual at your leisure to read all about GDB. How-
ever, a handful of commands are enough to get started using the debug-
ger. This chapter illustrates those commands.

In this sample session, we emphasize user input like this: input, to
make it easier to pick out from the surrounding output.

One of the preliminary versions of gnu m4 (a generic macro processor)
exhibits the following bug: sometimes, when we change its quote strings
from the default, the commands used to capture one macro definition
within another stop working. In the following short m4 session, we
define a macro foo which expands to 0000; we then use the m4 built-in
defn to define bar as the same thing. However, when we change the
open quote string to <QUOTE> and the close quote string to <UNQUOTE>,
the same procedure fails to define a new synonym baz:

$ cd gnu/m4
$./m4
define(foo,0000)

foo
0000
define(bar,defn(‘foo’))

bar
0000
changequote(<QUOTE>,<UNQUOTE>)

define(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
C-d
m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.
$ gdb m4
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.

GDB , Copyright 1995 Free Software Foundation, Inc...
(gdb)

GDB reads only enough symbol data to know where to find the rest when
needed; as a result, the first prompt comes up very quickly. We now tell
GDB to use a narrower display width than usual, so that examples fit in
this manual.

(gdb) set width 70

c y g n u s s u p p o r t 5

Debugging with GDB

We need to see how the m4 built-in changequote works. Having looked
at the source, we know the relevant subroutine is m4_changequote, so
we set a breakpoint there with the GDB break command.

(gdb) break m4 changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the run command, we start m4 running under GDB control; as long
as control does not reach the m4_changequote subroutine, the program
runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4
define(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execu-
tion of m4, displaying information about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879

879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line
of the current function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
: nil,

set_quotes looks like a promising subroutine. We can go into it by using
the command s (step) instead of next. step goes to the next line to be
executed in any subroutine, so it steps into set_quotes.

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and
its arguments) is called a stack frame display. It shows a summary
of the stack. We can use the backtrace command (which can also be
spelled bt), to see where we are in the stack as a whole: the backtrace
command displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)

at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)

at macro.c:71

6 11 July 1995

Chapter 1: A Sample GDB Session

#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The first two
times, we can use ‘s’; the next two times we use n to avoid falling into
the xstrdup subroutine.

(gdb) s
0x3b5c 532 if (rquote != def_rquote)
(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == ’\0’) ? \
def_lquote : xstrdup(lq);
(gdb) n
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup(rq);
(gdb) n
538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables
lquote and rquote to see if they are in fact the new left and right quotes
we specified. We use the command p (print) to see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"
(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

lquote and rquote are indeed the new left and right quotes. To look at
some context, we can display ten lines of source surrounding the current
line with the l (list) command.

(gdb) l
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == ’\0’) ? def_lquote\
: xstrdup (lq);
536 rquote = (rq == nil || *rq == ’\0’) ? def_rquote\
: xstrdup (rq);
537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 }
541
542 void

Let us step past the two lines that set len_lquote and len_rquote, and
then examine the values of those variables.

(gdb) n
539 len_rquote = strlen(lquote);
(gdb) n
540 }
(gdb) p len lquote
$3 = 9
(gdb) p len rquote
$4 = 7

c y g n u s s u p p o r t 7

Debugging with GDB

That certainly looks wrong, assuming len_lquote and len_rquote are
meant to be the lengths of lquote and rquote respectively. We can set
them to better values using the p command, since it can print the value
of any expression—and that expression can include subroutine calls and
assignments.

(gdb) p len lquote=strlen(lquote)
$5 = 7
(gdb) p len rquote=strlen(rquote)
$6 = 9

Is that enough to fix the problem of using the new quotes with the
m4 built-in defn? We can allow m4 to continue executing with the c
(continue) command, and then try the example that caused trouble
initially:

(gdb) c
Continuing.

define(baz,defn(<QUOTE>foo<UNQUOTE>))

baz
0000

Success! The new quotes now work just as well as the default ones.
The problem seems to have been just the two typos defining the wrong
lengths. We allow m4 exit by giving it an EOF as input:

C-d
Program exited normally.

The message ‘Program exited normally.’ is from GDB; it indicates m4
has finished executing. We can end our GDB session with the GDB quit
command.

(gdb) quit

8 11 July 1995

Chapter 2: Getting In and Out of GDB

2 Getting In and Out of GDB

This chapter discusses how to start GDB, and how to get out of it.
The essentials are:
� type ‘gdb’ to start GDB.
� type quit or C-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads
commands from the terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to
specify more of your debugging environment at the outset.

The command-line options described here are designed to cover a
variety of situations; in some environments, some of these options may
effectively be unavailable.

The most usual way to start GDB is with one argument, specifying
an executable program:

gdb program

You can also start with both an executable program and a core file spec-
ified:

gdb program core

You can, instead, specify a process ID as a second argument, if you
want to debug a running process:

gdb program 1234

would attach GDB to process 1234 (unless you also have a file named
‘1234’; GDB does check for a core file first).

Taking advantage of the second command-line argument requires a
fairly complete operating system; when you use GDB as a remote debug-
ger attached to a bare board, there may not be any notion of “process”,
and there is often no way to get a core dump.

You can run gdb without printing the front material, which describes
GDB’s non-warranty, by specifying -silent:

gdb -silent

You can further control how GDB starts up by using command-line op-
tions. GDB itself can remind you of the options available.
Type

gdb -help

to display all available options and briefly describe their use (‘gdb -h’ is
a shorter equivalent).

c y g n u s s u p p o r t 9

Debugging with GDB

All options and command line arguments you give are processed in
sequential order. The order makes a difference when the ‘-x’ option is
used.

2.1.1 Choosing files

When GDB starts, it reads any arguments other than options as spec-
ifying an executable file and core file (or process ID). This is the same as
if the arguments were specified by the ‘-se’ and ‘-c’ options respectively.
(GDB reads the first argument that does not have an associated option
flag as equivalent to the ‘-se’ option followed by that argument; and the
second argument that does not have an associated option flag, if any, as
equivalent to the ‘-c’ option followed by that argument.)

Many options have both long and short forms; both are shown in the
following list. GDB also recognizes the long forms if you truncate them,
so long as enough of the option is present to be unambiguous. (If you
prefer, you can flag option arguments with ‘--’ rather than ‘-’, though
we illustrate the more usual convention.)

-symbols file
-s file Read symbol table from file file.

-exec file
-e file Use file file as the executable file to execute when appropri-

ate, and for examining pure data in conjunction with a core
dump.

-se file Read symbol table from file file and use it as the executable
file.

-core file
-c file Use file file as a core dump to examine.

-c number
Connect to process ID number, as with the attach command
(unless there is a file in core-dump format named number, in
which case ‘-c’ specifies that file as a core dump to read).

-command file
-x file Execute GDB commands from file file. See Section 15.3

“Command files,” page 153.

-directory directory
-d directory

Add directory to the path to search for source files.

10 11 July 1995

Chapter 2: Getting In and Out of GDB

-m
-mapped Warning: this option depends on operating system facilities

that are not supported on all systems.

If memory-mapped files are available on your system through
the mmap system call, you can use this option to have GDB
write the symbols from your program into a reusable file in
the current directory. If the program you are debugging is
called ‘/tmp/fred’, the mapped symbol file is ‘./fred.syms’.
Future GDB debugging sessions notice the presence of this
file, and can quickly map in symbol information from it,
rather than reading the symbol table from the executable
program.
The ‘.syms’ file is specific to the host machine where GDB
is run. It holds an exact image of the internal GDB symbol
table. It cannot be shared across multiple host platforms.

-r
-readnow Read each symbol file’s entire symbol table immediately,

rather than the default, which is to read it incrementally
as it is needed. This makes startup slower, but makes future
operations faster.

The -mapped and -readnow options are typically combined in order
to build a ‘.syms’ file that contains complete symbol information. (See
Section 12.1 “Commands to specify files,” page 111, for information

a ‘.syms’ file for future use is:
gdb -batch -nx -mapped -readnow programname

2.1.2 Choosing modes

You can run GDB in various alternative modes—for example, in batch
mode or quiet mode.

-nx
-n Do not execute commands from any initialization files (nor-

mally called ‘.gdbinit’). Normally, the commands in these
files are executed after all the command options and argu-
ments have been processed. See Section 15.3 “Command
files,” page 153.

-quiet
-q “Quiet”. Do not print the introductory and copyright mes-

sages. These messages are also suppressed in batch mode.

c y g n u s s u p p o r t 11

Debugging with GDB

-batch Run in batch mode. Exit with status 0 after processing all the
command files specified with ‘-x’ (and all commands from ini-
tialization files, if not inhibited with ‘-n’). Exit with nonzero
status if an error occurs in executing the GDB commands in
the command files.
Batch mode may be useful for running GDB as a filter, for ex-
ample to download and run a program on another computer;
in order to make this more useful, the message

Program exited normally.

(which is ordinarily issued whenever a program running un-
der GDB control terminates) is not issued when running in
batch mode.

-cd directory
Run GDB using directory as its working directory, instead
of the current directory.

-fullname
-f gnu Emacs sets this option when it runs GDB as a subpro-

cess. It tells GDB to output the full file name and line number
in a standard, recognizable fashion each time a stack frame
is displayed (which includes each time your program stops).
This recognizable format looks like two ‘\032’ characters, fol-
lowed by the file name, line number and character position
separated by colons, and a newline. The Emacs-to-GDB in-
terface program uses the two ‘\032’ characters as a signal to
display the source code for the frame.

-b bps Set the line speed (baud rate or bits per second) of any serial
interface used by GDB for remote debugging.

-tty device
Run using device for your program’s standard input and
output.

2.2 Quitting GDB

quit To exit GDB, use the quit command (abbreviated q), or type
an end-of-file character (usually C-d).

An interrupt (often C-c) does not exit from GDB, but rather termi-
nates the action of any GDB command that is in progress and returns
to GDB command level. It is safe to type the interrupt character at any
time because GDB does not allow it to take effect until a time when it is
safe.

12 11 July 1995

Chapter 2: Getting In and Out of GDB

If you have been using GDB to control an attached process or device,
you can release it with the detach command (see Section 4.7 “Debugging
an already-running process,” page 27).

2.3 Shell commands

If you need to execute occasional shell commands during your debug-
ging session, there is no need to leave or suspend GDB; you can just use
the shell command.

shell command string
Invoke a the standard shell to execute command string. If
it exists, the environment variable SHELL determines which
shell to run. Otherwise GDB uses /bin/sh.

The utility make is often needed in development environments. You
do not have to use the shell command for this purpose in GDB:

make make-args
Execute the make program with the specified arguments.
This is equivalent to ‘shell make make-args’.

c y g n u s s u p p o r t 13

Debugging with GDB

14 11 July 1995

Chapter 3: GDB Commands

3 GDB Commands

You can abbreviate a GDB command to the first few letters of the
command name, if that abbreviation is unambiguous; and you can repeat
certain GDB commands by typing just RET. You can also use the TAB key
to get GDB to fill out the rest of a word in a command (or to show you
the alternatives available, if there is more than one possibility).

3.1 Command syntax

A GDB command is a single line of input. There is no limit on how
long it can be. It starts with a command name, which is followed by
arguments whose meaning depends on the command name. For exam-
ple, the command step accepts an argument which is the number of
times to step, as in ‘step 5’. You can also use the step command with no
arguments. Some command names do not allow any arguments.

GDB command names may always be truncated if that abbreviation
is unambiguous. Other possible command abbreviations are listed in
the documentation for individual commands. In some cases, even am-
biguous abbreviations are allowed; for example, s is specially defined as
equivalent to step even though there are other commands whose names
start with s. You can test abbreviations by using them as arguments to
the help command.

A blank line as input to GDB (typing just RET) means to repeat the
previous command. Certain commands (for example, run) will not repeat
this way; these are commands whose unintentional repetition might
cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with RET, construct
new arguments rather than repeating exactly as typed. This permits
easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in
a way similar to the common utility more (see Section 14.4 “Screen size,”
page 147). Since it is easy to press one RET too many in this situation,
GDB disables command repetition after any command that generates
this sort of display.

Any text from a # to the end of the line is a comment; it does nothing.
This is useful mainly in command files (see Section 15.3 “Command
files,” page 153).

c y g n u s s u p p o r t 15

Debugging with GDB

3.2 Command completion

GDB can fill in the rest of a word in a command for you, if there
is only one possibility; it can also show you what the valid possibili-
ties are for the next word in a command, at any time. This works for
GDB commands, GDB subcommands, and the names of symbols in your
program.

Press the TAB key whenever you want GDB to fill out the rest of a
word. If there is only one possibility, GDB fills in the word, and waits
for you to finish the command (or press RET to enter it). For example, if
you type

(gdb) info bre TAB

GDB fills in the rest of the word ‘breakpoints’, since that is the only
info subcommand beginning with ‘bre’:

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints
command, or backspace and enter something else, if ‘breakpoints’ does
not look like the command you expected. (If you were sure you wanted
info breakpoints in the first place, you might as well just type RET
immediately after ‘info bre’, to exploit command abbreviations rather
than command completion).

If there is more than one possibility for the next word when you
press TAB, GDB sounds a bell. You can either supply more characters
and try again, or just press TAB a second time; GDB displays all the
possible completions for that word. For example, you might want to
set a breakpoint on a subroutine whose name begins with ‘make_’, but
when you type b make_TAB GDB just sounds the bell. Typing TAB again
displays all the function names in your program that begin with those
characters, for example:

(gdb) b make_ TAB
GDB sounds bell; press TAB again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, GDB copies your partial in-
put (‘b make_’ in the example) so you can finish the command.

If you just want to see the list of alternatives in the first place, you
can press M-? rather than pressing TAB twice. M-? means META ?. You
can type this either by holding down a key designated as the META shift
on your keyboard (if there is one) while typing ?, or as ESC followed by ?.

16 11 July 1995

Chapter 3: GDB Commands

Sometimes the string you need, while logically a “word”, may contain
parentheses or other characters that GDB normally excludes from its
notion of a word. To permit word completion to work in this situation,
you may enclose words in ’ (single quote marks) in GDB commands.

The most likely situation where you might need this is in typing the
name of a C++ function. This is because C++ allows function overloading
(multiple definitions of the same function, distinguished by argument
type). For example, when you want to set a breakpoint you may need
to distinguish whether you mean the version of name that takes an int
parameter, name(int), or the version that takes a float parameter,
name(float). To use the word-completion facilities in this situation,
type a single quote ’ at the beginning of the function name. This alerts
GDB that it may need to consider more information than usual when
you press TAB or M-? to request word completion:

(gdb) b ’bubble(M-?
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires us-
ing quotes. When this happens, GDB inserts the quote for you (while
completing as much as it can) if you do not type the quote in the first
place:

(gdb) b bub TAB
GDB alters your input line to the following, and rings a bell:

(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have
not yet started typing the argument list when you ask for completion on
an overloaded symbol.

3.3 Getting help

You can always ask GDB itself for information on its commands, using
the command help.

help
h You can use help (abbreviated h) with no arguments to dis-

play a short list of named classes of commands:
(gdb) help
List of classes of commands:

running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries

c y g n u s s u p p o r t 17

Debugging with GDB

support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features

Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class
Using one of the general help classes as an argument, you
can get a list of the individual commands in that class. For
example, here is the help display for the class status:

(gdb) help status
Status inquiries.

List of commands:

show -- Generic command for showing things set
with "set"
info -- Generic command for printing status

Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command
With a command name as help argument, GDB displays a
short paragraph on how to use that command.

complete args
The complete args command lists all the possible comple-
tions for the beginning of a command. Use args to specify
the beginning of the command you want completed. For ex-
ample:

complete i

results in:
info
inspect
ignore

This is intended for use by gnu Emacs.

In addition to help, you can use the GDB commands info and show
to inquire about the state of your program, or the state of GDB itself.
Each command supports many topics of inquiry; this manual introduces
each of them in the appropriate context. The listings under info and

18 11 July 1995

Chapter 3: GDB Commands

under show in the Index point to all the sub-commands. See “Index,”
page 185.

info
i This command is for describing the state of your program.

For example, you can list the arguments given to your pro-
gram with info args, list the registers currently in use with
info registers, or list the breakpoints you have set with
info breakpoints. You can get a complete list of the info
sub-commands with help info.

set You can assign the result of an expresson to an environment
variable with set. For example, you can set the GDB prompt
to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of GDB
itself. You can change most of the things you can show, by
using the related command set; for example, you can control
what number system is used for displays with set radix, or
simply inquire which is currently in use with show radix.
To display all the settable parameters and their current val-
ues, you can use show with no arguments; you may also use
info set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are
exceptional in lacking corresponding set commands:

show version
Show what version of GDB is running. You should include
this information in GDB bug-reports. If multiple versions of
GDB are in use at your site, you may occasionally want to
determine which version of GDB you are running; as GDB
evolves, new commands are introduced, and old ones may
wither away. The version number is also announced when
you start GDB.

show copying
Display information about permission for copying GDB.

show warranty
Display the gnu “NO WARRANTY” statement.

c y g n u s s u p p o r t 19

Debugging with GDB

20 11 July 1995

Chapter 4: Running Programs Under GDB

4 Running Programs Under GDB

When you run a program under GDB, you must first generate de-
bugging information when you compile it. You may start GDB with its
arguments, if any, in an environment of your choice. You may redirect
your program’s input and output, debug an already running process, or
kill a child process.

4.1 Compiling for debugging

In order to debug a program effectively, you need to generate de-
bugging information when you compile it. This debugging information
is stored in the object file; it describes the data type of each variable
or function and the correspondence between source line numbers and
addresses in the executable code.

To request debugging information, specify the ‘-g’ option when you
run the compiler.

Many C compilers are unable to handle the ‘-g’ and ‘-O’ options to-
gether. Using those compilers, you cannot generate optimized executa-
bles containing debugging information.

GCC, the gnu C compiler, supports ‘-g’ with or without ‘-O’, making
it possible to debug optimized code. We recommend that you always use
‘-g’ whenever you compile a program. You may think your program is
correct, but there is no sense in pushing your luck.

When you debug a program compiled with ‘-g -O’, remember that
the optimizer is rearranging your code; the debugger shows you what
is really there. Do not be too surprised when the execution path does
not exactly match your source file! An extreme example: if you define
a variable, but never use it, GDB never sees that variable—because the
compiler optimizes it out of existence.

Some things do not work as well with ‘-g -O’ as with just ‘-g’, partic-
ularly on machines with instruction scheduling. If in doubt, recompile
with ‘-g’ alone, and if this fixes the problem, please report it to us as a
bug (including a test case!).

Older versions of the gnu C compiler permitted a variant option ‘-gg’
for debugging information. GDB no longer supports this format; if your
gnu C compiler has this option, do not use it.

c y g n u s s u p p o r t 21

Debugging with GDB

22 11 July 1995

Chapter 4: Running Programs Under GDB

4.2 Starting your program

run
r Use the run command to start your program under GDB.

You must first specify the program name (except on VxWorks)
with an argument to GDB (see Chapter 2 “Getting In and Out
of GDB,” page 9), or by using the file or exec-file command
(see Section 12.1 “Commands to specify files,” page 111).

If you are running your program in an execution environment that
supports processes, run creates an inferior process and makes that pro-
cess run your program. (In environments without processes, run jumps
to the start of your program.)

The execution of a program is affected by certain information it re-
ceives from its superior. GDB provides ways to specify this information,
which you must do before starting your program. (You can change it
after starting your program, but such changes only affect your program
the next time you start it.) This information may be divided into four
categories:

The arguments.
Specify the arguments to give your program as the argu-
ments of the run command. If a shell is available on your
target, the shell is used to pass the arguments, so that you
may use normal conventions (such as wildcard expansion or
variable substitution) in describing the arguments. In Unix
systems, you can control which shell is used with the SHELL
environment variable. See Section 4.3 “Your program’s argu-
ments,” page 24.

The environment.
Your program normally inherits its environment from GDB,
but you can use the GDB commands set environment and
unset environment to change parts of the environment that
affect your program. See Section 4.4 “Your program’s envi-
ronment,” page 24.

The working directory.
Your program inherits its working directory from GDB. You
can set the GDB working directory with the cd command
in GDB. See Section 4.5 “Your program’s working directory,”
page 26.

The standard input and output.
Your program normally uses the same device for standard
input and standard output as GDB is using. You can redirect
input and output in the run command line, or you can use

c y g n u s s u p p o r t 23

Debugging with GDB

the tty command to set a different device for your program.
See Section 4.6 “Your program’s input and output,” page 26.
Warning: While input and output redirection work, you can-
not use pipes to pass the output of the program you are de-
bugging to another program; if you attempt this, GDB is
likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute
immediately. See Chapter 5 “Stopping and continuing,” page 33, for dis-
cussion of how to arrange for your program to stop. Once your program
has stopped, you may call functions in your program, using the print or
call commands. See Chapter 8 “Examining Data,” page 65.

If the modification time of your symbol file has changed since the last
time GDB read its symbols, GDB discards its symbol table, and reads it
again. When it does this, GDB tries to retain your current breakpoints.

4.3 Your program’s arguments

The arguments to your program can be specified by the arguments of
the run command. They are passed to a shell, which expands wildcard
characters and performs redirection of I/O, and thence to your program.
Your SHELL environment variable (if it exists) specifies what shell GDB
uses. If you do not define SHELL, GDB uses /bin/sh.

runwith no arguments uses the same arguments used by the previous
run, or those set by the set args command.

set args Specify the arguments to be used the next time your program
is run. If set args has no arguments, run executes your pro-
gram with no arguments. Once you have run your program
with arguments, using set args before the next run is the
only way to run it again without arguments.

show args
Show the arguments to give your program when it is started.

4.4 Your program’s environment

The environment consists of a set of environment variables and their
values. Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your
search path for programs to run. Usually you set up environment vari-
ables with the shell and they are inherited by all the other programs you
run. When debugging, it can be useful to try running your program with
a modified environment without having to start GDB over again.

24 11 July 1995

Chapter 4: Running Programs Under GDB

path directory
Add directory to the front of the PATH environment variable
(the search path for executables), for both GDB and your pro-
gram. You may specify several directory names, separated
by ‘:’ or whitespace. If directory is already in the path, it
is moved to the front, so it is searched sooner.
You can use the string ‘$cwd’ to refer to whatever is the cur-
rent working directory at the time GDB searches the path.
If you use ‘.’ instead, it refers to the directory where you exe-
cuted the path command. GDB replaces ‘.’ in the directory
argument (with the current path) before adding directory
to the search path.

show paths
Display the list of search paths for executables (the PATH
environment variable).

show environment [varname]
Print the value of environment variable varname to be given
to your program when it starts. If you do not supply varname,
print the names and values of all environment variables to
be given to your program. You can abbreviate environment
as env.

set environment varname [=] value
Set environment variable varname to value. The value
changes for your program only, not for GDB itself. valuemay
be any string; the values of environment variables are just
strings, and any interpretation is supplied by your program
itself. The value parameter is optional; if it is eliminated,
the variable is set to a null value.
For example, this command:

set env USER = foo

tells a Unix program, when subsequently run, that its user
is named ‘foo’. (The spaces around ‘=’ are used for clarity
here; they are not actually required.)

unset environment varname
Remove variable varname from the environment to be passed
to your program. This is different from ‘set env varname =’;
unset environment removes the variable from the environ-
ment, rather than assigning it an empty value.

Warning: GDB runs your program using the shell indicated by your
SHELL environment variable if it exists (or /bin/sh if not). If your SHELL
variable names a shell that runs an initialization file—such as ‘.cshrc’
for C-shell, or ‘.bashrc’ for BASH—any variables you set in that file

c y g n u s s u p p o r t 25

Debugging with GDB

affect your program. You may wish to move setting of environment
variables to files that are only run when you sign on, such as ‘.login’ or
‘.profile’.

4.5 Your program’s working directory

Each time you start your program with run, it inherits its working
directory from the current working directory of GDB. The GDB working
directory is initially whatever it inherited from its parent process (typ-
ically the shell), but you can specify a new working directory in GDB
with the cd command.

The GDB working directory also serves as a default for the commands
that specify files for GDB to operate on. See Section 12.1 “Commands to
specify files,” page 111.

cd directory
Set the GDB working directory to directory.

pwd Print the GDB working directory.

4.6 Your program’s input and output

By default, the program you run under GDB does input and output to
the same terminal that GDB uses. GDB switches the terminal to its own
terminal modes to interact with you, but it records the terminal modes
your program was using and switches back to them when you continue
running your program.

info terminal
Displays information recorded by GDB about the terminal
modes your program is using.

You can redirect your program’s input and/or output using shell redi-
rection with the run command. For example,

run > outfile

starts your program, diverting its output to the file ‘outfile’.
Another way to specify where your program should do input and

output is with the tty command. This command accepts a file name as
argument, and causes this file to be the default for future run commands.
It also resets the controlling terminal for the child process, for future run
commands. For example,

tty /dev/ttyb

26 11 July 1995

Chapter 4: Running Programs Under GDB

directs that processes started with subsequent run commands default to
do input and output on the terminal ‘/dev/ttyb’ and have that as their
controlling terminal.

An explicit redirection in run overrides the tty command’s effect on
the input/output device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in therun command,
only the input for your program is affected. The input for GDB still comes
from your terminal.

4.7 Debugging an already-running process

attach process-id
This command attaches to a running process—one that was
started outside GDB. (info files shows your active targets.)
The command takes as argument a process ID. The usual
way to find out the process-id of a Unix process is with the
ps utility, or with the ‘jobs -l’ shell command.
attach does not repeat if you press RET a second time after
executing the command.

To use attach, your program must be running in an environment
which supports processes; for example, attach does not work for pro-
grams on bare-board targets that lack an operating system. You must
also have permission to send the process a signal.

When using attach, you should first use the file command to specify
the program running in the process and load its symbol table. See
Section 12.1 “Commands to Specify Files,” page 111.

The first thing GDB does after arranging to debug the specified pro-
cess is to stop it. You can examine and modify an attached process with
all the GDB commands that are ordinarily available when you start pro-
cesses with run. You can insert breakpoints; you can step and continue;
you can modify storage. If you would rather the process continue run-
ning, you may use the continue command after attaching GDB to the
process.

detach When you have finished debugging the attached process, you
can use the detach command to release it from GDB con-
trol. Detaching the process continues its execution. After
the detach command, that process and GDB become com-
pletely independent once more, and you are ready to attach
another process or start one with run. detach does not repeat
if you press RET again after executing the command.

c y g n u s s u p p o r t 27

Debugging with GDB

If you exit GDB or use the run command while you have an attached
process, you kill that process. By default, GDB asks for confirmation if
you try to do either of these things; you can control whether or not you
need to confirm by using the set confirm command (see Section 14.6
“Optional warnings and messages,” page 148).

4.8 Killing the child process

kill Kill the child process in which your program is running under
GDB.

This command is useful if you wish to debug a core dump instead of
a running process. GDB ignores any core dump file while your program
is running.

On some operating systems, a program cannot be executed outside
GDB while you have breakpoints set on it inside GDB. You can use the
kill command in this situation to permit running your program outside
the debugger.

The kill command is also useful if you wish to recompile and relink
your program, since on many systems it is impossible to modify an exe-
cutable file while it is running in a process. In this case, when you next
type run, GDB notices that the file has changed, and reads the symbol
table again (while trying to preserve your current breakpoint settings).

4.9 Additional process information

Some operating systems provide a facility called ‘/proc’ that can be
used to examine the image of a running process using file-system sub-
routines. If GDB is configured for an operating system with this facility,
the command info proc is available to report on several kinds of infor-
mation about the process running your program. info proc works only
on SVR4 systems that support procfs.

info proc
Summarize available information about the process.

info proc mappings
Report on the address ranges accessible in the program, with
information on whether your program may read, write, or
execute each range.

info proc times
Starting time, user CPU time, and system CPU time for your
program and its children.

28 11 July 1995

Chapter 4: Running Programs Under GDB

info proc id
Report on the process IDs related to your program: its own
process ID, the ID of its parent, the process group ID, and
the session ID.

info proc status
General information on the state of the process. If the process
is stopped, this report includes the reason for stopping, and
any signal received.

info proc all
Show all the above information about the process.

4.10 Debugging programs with multiple threads

In some operating systems, a single program may have more than one
thread of execution. The precise semantics of threads differ from one op-
erating system to another, but in general the threads of a single program
are akin to multiple processes—except that they share one address space
(that is, they can all examine and modify the same variables). On the
other hand, each thread has its own registers and execution stack, and
perhaps private memory.

GDB provides these facilities for debugging multi-thread programs:
� automatic notification of new threads
� ‘thread threadno’, a command to switch among threads
� ‘info threads’, a command to inquire about existing threads
� ‘thread apply [threadno] [all] args’, a command to apply a com-

mand to a list of threads
� thread-specific breakpoints

Warning: These facilities are not yet available on every GDB
configuration where the operating system supports threads. If
your GDB does not support threads, these commands have no
effect. For example, a system without thread support shows
no output from ‘info threads’, and always rejects the thread
command, like this:

(gdb) info threads
(gdb) thread 1
Thread ID 1 not known. Use the "info threads" command to
see the IDs of currently known threads.

The GDB thread debugging facility allows you to observe all threads
while your program runs—but whenever GDB takes control, one thread
in particular is always the focus of debugging. This thread is called the

c y g n u s s u p p o r t 29

Debugging with GDB

current thread. Debugging commands show program information from
the perspective of the current thread.

Whenever GDB detects a new thread in your program, it displays
the target system’s identification for the thread with a message in the
form ‘[New systag]’. systag is a thread identifier whose form varies
depending on the particular system. For example, on LynxOS, you might
see

[New process 35 thread 27]

when GDB notices a new thread. In contrast, on an SGI system, the
systag is simply something like ‘process 368’, with no further qualifier.

For debugging purposes, GDB associates its own thread number—
always a single integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program.
GDB displays for each thread (in this order):
1. the thread number assigned by GDB
2. the target system’s thread identifier (systag)
3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the GDB thread number indicates
the current thread.
For example,

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

thread threadno
Make thread number threadno the current thread. The
command argument threadno is the internal GDB thread
number, as shown in the first field of the ‘info threads’ dis-
play. GDB responds by displaying the system identifier of the
thread you selected, and its current stack frame summary:

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the ‘[New . ..]’ message, the form of the text af-
ter ‘Switching to’ depends on your system’s conventions for
identifying threads.

thread apply [threadno] [all] args
The thread apply command allows you to apply a com-
mand to one or more threads. Specify the numbers of the

30 11 July 1995

Chapter 4: Running Programs Under GDB

threads that you want affected with the command argument
threadno. threadno is the internal GDB thread number, as
shown in the first field of the ‘info threads’ display. To apply
a command to all threads, use thread apply all args.

Whenever GDB stops your program, due to a breakpoint or a signal,
it automatically selects the thread where that breakpoint or signal hap-
pened. GDB alerts you to the context switch with a message of the form
‘[Switching to systag]’ to identify the thread.

See Section 5.4 “Stopping and starting multi-thread programs,”
page 50, for more information about how GDB behaves when you stop
and start programs with multiple threads.

See Section 5.1.2 “Setting watchpoints,” page 38, for information
about watchpoints in programs with multiple threads.

4.11 Debugging programs with multiple processes

GDB has no special support for debugging programs which create
additional processes using the fork function. When a program forks,
GDB will continue to debug the parent process and the child process
will run unimpeded. If you have set a breakpoint in any code which the
child then executes, the child will get a SIGTRAP signal which (unless it
catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround
which isn’t too painful. Put a call to sleep in the code which the child
process executes after the fork. It may be useful to sleep only if a certain
environment variable is set, or a certain file exists, so that the delay
need not occur when you don’t want to run GDB on the child. While the
child is sleeping, use the ps program to get its process ID. Then tell GDB
(a new invocation of GDB if you are also debugging the parent process)
to attach to the child process (see Section 4.7 “Attach,” page 27). From
that point on you can debug the child process just like any other process
which you attached to.

c y g n u s s u p p o r t 31

Debugging with GDB

32 11 July 1995

Chapter 5: Stopping and Continuing

5 Stopping and Continuing

The principal purposes of using a debugger are so that you can stop
your program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.

Inside GDB, your program may stop for any of several reasons, such
as a signal, a breakpoint, or reaching a new line after a GDB command
such as step. You may then examine and change variables, set new
breakpoints or remove old ones, and then continue execution. Usually,
the messages shown by GDB provide ample explanation of the status of
your program—but you can also explicitly request this information at
any time.

info program
Display information about the status of your program:
whether it is running or not, what process it is, and why
it stopped.

5.1 Breakpoints, watchpoints, and exceptions

A breakpoint makes your program stop whenever a certain point in
the program is reached. For each breakpoint, you can add conditions to
control in finer detail whether your program stops. You can set break-
points with the break command and its variants (see Section 5.1.1 “Set-
ting breakpoints,” page 34), to specify the place where your program
should stop by line number, function name or exact address in the pro-
gram. In languages with exception handling (such as gnu C++), you
can also set breakpoints where an exception is raised (see Section 5.1.3
“Breakpoints and exceptions,” page 39).

In SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can now
set breakpoints in shared libraries before the executable is run.

A watchpoint is a special breakpoint that stops your program when
the value of an expression changes. You must use a different command
to set watchpoints (see Section 5.1.2 “Setting watchpoints,” page 38), but
aside from that, you can manage a watchpoint like any other breakpoint:
you enable, disable, and delete both breakpoints and watchpoints using
the same commands.

You can arrange to have values from your program displayed auto-
matically whenever GDB stops at a breakpoint. See Section 8.6 “Auto-
matic display,” page 71.

GDB assigns a number to each breakpoint or watchpoint when you
create it; these numbers are successive integers starting with one. In
many of the commands for controlling various features of breakpoints

c y g n u s s u p p o r t 33

Debugging with GDB

you use the breakpoint number to say which breakpoint you want to
change. Each breakpoint may be enabled or disabled; if disabled, it has
no effect on your program until you enable it again.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The
debugger convenience variable ‘$bpnum’ records the number of the break-
points you’ve set most recently; see Section 8.9 “Convenience variables,”
page 79, for a discussion of what you can do with convenience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to function function. When using
source languages that permit overloading of symbols, such
as C++, function may refer to more than one possible place
to break. See Section 5.1.8 “Breakpoint menus,” page 45, for
a discussion of that situation.

break +offset
break -offset

Set a breakpoint some number of lines forward or back from
the position at which execution stopped in the currently se-
lected frame.

break linenum
Set a breakpoint at line linenum in the current source file.
That file is the last file whose source text was printed. This
breakpoint stops your program just before it executes any of
the code on that line.

break filename:linenum
Set a breakpoint at line linenum in source file filename.

break filename:function
Set a breakpoint at entry to function function found in file
filename. Specifying a file name as well as a function name
is superfluous except when multiple files contain similarly
named functions.

break *address
Set a breakpoint at address address. You can use this to
set breakpoints in parts of your program which do not have
debugging information or source files.

break When called without any arguments, break sets a breakpoint
at the next instruction to be executed in the selected stack
frame (see Chapter 6 “Examining the Stack,” page 53). In

34 11 July 1995

Chapter 5: Stopping and Continuing

any selected frame but the innermost, this makes your pro-
gram stop as soon as control returns to that frame. This is
similar to the effect of a finish command in the frame in-
side the selected frame—except that finish does not leave
an active breakpoint. If you use break without an argument
in the innermost frame, GDB stops the next time it reaches
the current location; this may be useful inside loops.
GDB normally ignores breakpoints when it resumes execu-
tion, until at least one instruction has been executed. If
it did not do this, you would be unable to proceed past a
breakpoint without first disabling the breakpoint. This rule
applies whether or not the breakpoint already existed when
your program stopped.

break . .. if cond
Set a breakpoint with condition cond; evaluate the expres-
sion cond each time the breakpoint is reached, and stop only
if the value is nonzero—that is, if cond evaluates as true.
‘. ..’ stands for one of the possible arguments described
above (or no argument) specifying where to break. See Sec-
tion 5.1.6 “Break conditions,” page 42, for more information
on breakpoint conditions.

tbreak args
Set a breakpoint enabled only for one stop. args are the same
as for the break command, and the breakpoint is set in the
same way, but the breakpoint is automatically deleted after
the first time your program stops there. See Section 5.1.5
“Disabling breakpoints,” page 40.

hbreak args
Set a hardware-assisted breakpoint. args are the same as
for the break command and the breakpoint is set in the
same way, but the breakpoint requires hardware support,
and some target hardware may not have this support.
hbreak is mostly useful in EPROM/ROM code debugging,
because it allows you to set a breakpoint at an instruction
without changing the instruction. This can be used with the
new trap-generation provided by SPARClite DSU, in which
DSU generates traps when a program accesses some date or
instruction address that is assigned to the debug registers.
The hardware breakpoint registers can only take two data
breakpoints, and GDB will reject this command if more than
two are used. Delete or disable unused hardware break-
points before setting new ones. See Section 5.1.6 “Break
conditions,” page 42.

c y g n u s s u p p o r t 35

Debugging with GDB

thbreak args
Set a hardware-assisted breakpoint enabled only for one
stop. args are the same as for the hbreak command and
the breakpoint is set in the same way. However, like the
tbreak command, the breakpoint is automatically deleted
after the first time your program stops there. Also, like the
hbreak command, the breakpoint requires hardware sup-
port, and some target hardware may not have this support.
See Section 5.1.5 “Disabling breakpoints,” page 40. Also See
Section 5.1.6 “Break conditions,” page 42.

rbreak regex
Set breakpoints on all functions matching the regular ex-
pression regex. This command sets an unconditional break-
point on all matches, printing a list of all breakpoints it set.
Once these breakpoints are set, they are treated just like the
breakpoints set with the break command. You can delete
them, disable them, or make them conditional the same way
as any other breakpoint.
When debugging C++ programs, rbreak is useful for setting
breakpoints on overloaded functions that are not members
of any special classes.

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not
deleted, with the following columns for each breakpoint:

Breakpoint Numbers
Type Breakpoint or watchpoint.

Disposition
Whether the breakpoint is marked to be disabled
or deleted when hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y’. ‘n’
marks breakpoints that are not enabled.

Address Where the breakpoint is in your program, as a
memory address

What Where the breakpoint is in the source for your
program, as a file and line number.

If a breakpoint is conditional, info break shows the condi-
tion on the line following the affected breakpoint; breakpoint
commands, if any, are listed after that.

36 11 July 1995

Chapter 5: Stopping and Continuing

info break with a breakpoint number n as argument lists
only that breakpoint. The convenience variable $_ and the
default examining-address for the x command are set to the
address of the last breakpoint listed (see Section 8.5 “Exam-
ining memory,” page 69).
info break now displays a count of the number of times the
breakpoint has been hit. This is especially useful in con-
junction with the ignore command. You can ignore a large
number of breakpoint hits, look at the breakpoint info to see
how many times the breakpoint was hit, and then run again,
ignoring one less than that number. This will get you quickly
to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in
your program. There is nothing silly or meaningless about this. When
the breakpoints are conditional, this is even useful (see Section 5.1.6
“Break conditions,” page 42).

GDB itself sometimes sets breakpoints in your program for special
purposes, such as proper handling of longjmp (in C programs). These
internal breakpoints are assigned negative numbers, starting with -1;
‘info breakpoints’ does not display them.

You can see these breakpoints with the GDB maintenance command
‘maint info breakpoints’.

maint info breakpoints
Using the same format as ‘info breakpoints’, display both
the breakpoints you’ve set explicitly, and those GDB is using
for internal purposes. Internal breakpoints are shown with
negative breakpoint numbers. The type column identifies
what kind of breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly
stepping through longjmp calls.

longjmp resume
Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the GDB
until command.

finish Temporary internal breakpoint used by the GDB
finish command.

c y g n u s s u p p o r t 37

Debugging with GDB

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place where
this may happen.

Watchpoints currently execute two orders of magnitude more slowly
than other breakpoints, but this can be well worth it to catch errors
where you have no clue what part of your program is the culprit.

watch expr
Set a watchpoint for an expression. GDB will break when
expr is written into by the program and the value in expr
changes. watch can be used with the new trap-generation
provided by SPARClite DSU, in which DSU generates traps
when a program accesses some date or instruction address
that is assigned to the debug registers. For the data ad-
dresses, DSU facilitates the watch command.
The hardware breakpoint registers can only take two data
watchpoints, and both watchpoints must be the same kind.
For example, you can set two watchpoints with watch com-
mands, two with rwatch commands, or two with awatch
commands, but you cannot set one watchpoint with awatch
and the other with rwatch. GDB will reject the command
if you try to mix watchpoints, so you must delete or disable
unused watchpoint commands before setting new ones.

rwatch expr
Set a watchpoint that will break when watch args is read by
the program. If you use both watchpoints, both must be set
with the rwatch command.

awatch expr
Set a watchpoint that will break when args is read and writ-
ten into by the program. If you use both watchpoints, both
must be set with the awatch command.

info watchpoints
This command prints a list of watchpoints and breakpoints;
it is the same as info break.

Warning: in multi-thread programs, watchpoints have only lim-
ited usefulness. With the current watchpoint implementation,
GDB can only watch the value of an expression in a single
thread. If you are confident that the expression can only change
due to the current thread’s activity (and if you are also confi-
dent that no other thread can become current), then you can

38 11 July 1995

Chapter 5: Stopping and Continuing

use watchpoints as usual. However, GDB may not notice when
a non-current thread’s activity changes the expression.

5.1.3 Breakpoints and exceptions

Some languages, such as gnu C++, implement exception handling.
You can use GDB to examine what caused your program to raise an
exception, and to list the exceptions your program is prepared to handle
at a given point in time.

catch exceptions
You can set breakpoints at active exception handlers by us-
ing the catch command. exceptions is a list of names of
exceptions to catch.

You can use info catch to list active exception handlers. See Sec-
tion 6.4 “Information about a frame,” page 56.

There are currently some limitations to exception handling in GDB:
� If you call a function interactively, GDB normally returns control to

you when the function has finished executing. If the call raises an
exception, however, the call may bypass the mechanism that returns
control to you and cause your program to simply continue running
until it hits a breakpoint, catches a signal that GDB is listening for,
or exits.

� You cannot raise an exception interactively.
� You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling:
if you need to know exactly where an exception is raised, it is better to
stop before the exception handler is called, since that way you can see
the stack before any unwinding takes place. If you set a breakpoint in
an exception handler instead, it may not be easy to find out where the
exception was raised.

To stop just before an exception handler is called, you need some
knowledge of the implementation. In the case of gnu C++, exceptions
are raised by calling a library function named __raise_exceptionwhich
has the following ANSI C interface:

/* addr is where the exception identifier is stored.
ID is the exception identifier. */

void __raise_exception (void **addr, void *id);

To make the debugger catch all exceptions before any stack unwinding
takes place, set a breakpoint on __raise_exception (see Section 5.1
“Breakpoints; watchpoints; and exceptions,” page 33).

With a conditional breakpoint (see Section 5.1.6 “Break conditions,”
page 42) that depends on the value of id, you can stop your program

c y g n u s s u p p o r t 39

Debugging with GDB

when a specific exception is raised. You can use multiple conditional
breakpoints to stop your program when any of a number of exceptions
are raised.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint or watchpoint once it
has done its job and you no longer want your program to stop there. This
is called deleting the breakpoint. A breakpoint that has been deleted no
longer exists; it is forgotten.

With the clear command you can delete breakpoints according to
where they are in your program. With the delete command you can
delete individual breakpoints or watchpoints by specifying their break-
point numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB
automatically ignores breakpoints on the first instruction to be executed
when you continue execution without changing the execution address.

clear Delete any breakpoints at the next instruction to be exe-
cuted in the selected stack frame (see Section 6.3 “Selecting
a frame,” page 55). When the innermost frame is selected,
this is a good way to delete a breakpoint where your program
just stopped.

clear function
clear filename:function

Delete any breakpoints set at entry to the function function.

clear linenum
clear filename:linenum

Delete any breakpoints set at or within the code of the spec-
ified line.

delete [breakpoints] [bnums.. .]
Delete the breakpoints or watchpoints of the numbers spec-
ified as arguments. If no argument is specified, delete all
breakpoints (GDB asks confirmation, unless you have set
confirm off). You can abbreviate this command as d.

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefer
to disable it. This makes the breakpoint inoperative as if it had been
deleted, but remembers the information on the breakpoint so that you
can enable it again later.

40 11 July 1995

Chapter 5: Stopping and Continuing

You disable and enable breakpoints and watchpoints with the enable
and disable commands, optionally specifying one or more breakpoint
numbers as arguments. Use info break or info watch to print a list of
breakpoints or watchpoints if you do not know which numbers to use.

A breakpoint or watchpoint can have any of four different states of
enablement:
� Enabled. The breakpoint stops your program. A breakpoint set with

the break command starts out in this state.
� Disabled. The breakpoint has no effect on your program.
� Enabled once. The breakpoint stops your program, but then becomes

disabled. A breakpoint set with the tbreak command starts out in
this state.

� Enabled for deletion. The breakpoint stops your program, but im-
mediately after it does so it is deleted permanently.

You can use the following commands to enable or disable breakpoints
and watchpoints:

disable [breakpoints] [bnums...]
Disable the specified breakpoints—or all breakpoints, if none
are listed. A disabled breakpoint has no effect but is not
forgotten. All options such as ignore-counts, conditions and
commands are remembered in case the breakpoint is enabled
again later. You may abbreviate disable as dis.

enable [breakpoints] [bnums.. .]
Enable the specified breakpoints (or all defined breakpoints).
They become effective once again in stopping your program.

enable [breakpoints] once bnums.. .
Enable the specified breakpoints temporarily. GDB disables
any of these breakpoints immediately after stopping your
program.

enable [breakpoints] delete bnums.. .
Enable the specified breakpoints to work once, then die. GDB
deletes any of these breakpoints as soon as your program
stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1 “Setting
breakpoints,” page 34), breakpoints that you set are initially enabled;
subsequently, they become disabled or enabled only when you use one
of the commands above. (The command until can set and delete a
breakpoint of its own, but it does not change the state of your other
breakpoints; see Section 5.2 “Continuing and stepping,” page 45.)

c y g n u s s u p p o r t 41

Debugging with GDB

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program
reaches a specified place. You can also specify a condition for a break-
point. A condition is just a Boolean expression in your programming
language (see Section 8.1 “Expressions,” page 65). A breakpoint with a
condition evaluates the expression each time your program reaches it,
and your program stops only if the condition is true.

This is the converse of using assertions for program validation; in that
situation, you want to stop when the assertion is violated—that is, when
the condition is false. In C, if you want to test an assertion expressed
by the condition assert, you should set the condition ‘! assert’ on the
appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow—but
it might be simpler, say, to just set a watchpoint on a variable name, and
specify a condition that tests whether the new value is an interesting
one.

Break conditions can have side effects, and may even call functions
in your program. This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to format
special data structures. The effects are completely predictable unless
there is another enabled breakpoint at the same address. (In that case,
GDB might see the other breakpoint first and stop your program without
checking the condition of this one.) Note that breakpoint commands
are usually more convenient and flexible for the purpose of performing
side effects when a breakpoint is reached (see Section 5.1.7 “Breakpoint
command lists,” page 43).

Break conditions can be specified when a breakpoint is set, by using
‘if’ in the arguments to the break command. See Section 5.1.1 “Setting
breakpoints,” page 34. They can also be changed at any time with the
condition command. The watch command does not recognize the if
keyword; condition is the only way to impose a further condition on a
watchpoint.

condition bnum expression
Specify expression as the break condition for breakpoint or
watchpoint number bnum. After you set a condition, break-
point bnum stops your program only if the value of expres-
sion is true (nonzero, in C). When you use condition, GDB
checks expression immediately for syntactic correctness,
and to determine whether symbols in it have referents in
the context of your breakpoint. GDB does not actually evalu-

42 11 July 1995

Chapter 5: Stopping and Continuing

ate expression at the time the condition command is given,
however. See Section 8.1 “Expressions,” page 65.

condition bnum
Remove the condition from breakpoint number bnum. It be-
comes an ordinary unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. This is so
useful that there is a special way to do it, using the ignore count of the
breakpoint. Every breakpoint has an ignore count, which is an integer.
Most of the time, the ignore count is zero, and therefore has no effect.
But if your program reaches a breakpoint whose ignore count is positive,
then instead of stopping, it just decrements the ignore count by one and
continues. As a result, if the ignore count value is n, the breakpoint does
not stop the next n times your program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count.
The next count times the breakpoint is reached, your pro-
gram’s execution does not stop; other than to decrement the
ignore count, GDB takes no action.
To make the breakpoint stop the next time it is reached,
specify a count of zero.
When you use continue to resume execution of your program
from a breakpoint, you can specify an ignore count directly
as an argument to continue, rather than using ignore. See
Section 5.2 “Continuing and stepping,” page 45.
If a breakpoint has a positive ignore count and a condition,
the condition is not checked. Once the ignore count reaches
zero, GDB resumes checking the condition.
You could achieve the effect of the ignore count with a con-
dition such as ‘$foo-- <= 0’ using a debugger convenience
variable that is decremented each time. See Section 8.9
“Convenience variables,” page 79.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint) a series of commands to
execute when your program stops due to that breakpoint. For example,
you might want to print the values of certain expressions, or enable other
breakpoints.

c y g n u s s u p p o r t 43

Debugging with GDB

commands [bnum]
.. . command-list . ..
end Specify a list of commands for breakpoint number bnum. The

commands themselves appear on the following lines. Type a
line containing just end to terminate the commands.
To remove all commands from a breakpoint, type commands
and follow it immediately with end; that is, give no com-
mands.
With no bnum argument, commands refers to the last break-
point or watchpoint set (not to the breakpoint most recently
encountered).

Pressing RET as a means of repeating the last GDB command is dis-
abled within a command-list.

You can use breakpoint commands to start your program up again.
Simply use the continue command, or step, or any other command that
resumes execution.

Any other commands in the command list, after a command that
resumes execution, are ignored. This is because any time you resume
execution (even with a simple next or step), you may encounter an-
other breakpoint—which could have its own command list, leading to
ambiguities about which list to execute.

If the first command you specify in a command list is silent, the
usual message about stopping at a breakpoint is not printed. This may
be desirable for breakpoints that are to print a specific message and then
continue. If none of the remaining commands print anything, you see
no sign that the breakpoint was reached. silent is meaningful only at
the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print precisely
controlled output, and are often useful in silent breakpoints. See Sec-
tion 15.4 “Commands for controlled output,” page 154.

For example, here is how you could use breakpoint commands to print
the value of x at entry to foo whenever x is positive.

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one
bug so you can test for another. Put a breakpoint just after the erroneous
line of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the continue command so

44 11 July 1995

Chapter 5: Stopping and Continuing

that your program does not stop, and start with the silent command so
that no output is produced. Here is an example:

break 403
commands
silent
set x = y + 4
cont
end

5.1.8 Breakpoint menus

Some programming languages (notably C++) permit a single function
name to be defined several times, for application in different contexts.
This is called overloading. When a function name is overloaded, ‘break
function’ is not enough to tell GDB where you want a breakpoint. If
you realize this is a problem, you can use something like ‘break func-
tion(types)’ to specify which particular version of the function you
want. Otherwise, GDB offers you a menu of numbered choices for differ-
ent possible breakpoints, and waits for your selection with the prompt
‘>’. The first two options are always ‘[0] cancel’ and ‘[1] all’. Typing
1 sets a breakpoint at each definition of function, and typing 0 aborts
the break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol String::after. We choose three
particular definitions of that function name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
breakpoints.
(gdb)

5.2 Continuing and stepping

Continuing means resuming program execution until your program
completes normally. In contrast, stepping means executing just one

c y g n u s s u p p o r t 45

Debugging with GDB

more “step” of your program, where “step” may mean either one line of
source code, or one machine instruction (depending on what particular
command you use). Either when continuing or when stepping, your
program may stop even sooner, due to a breakpoint or a signal. (If due
to a signal, you may want to use handle, or use ‘signal 0’ to resume
execution. See Section 5.3 “Signals,” page 49.)

continue [ignore-count]
c [ignore-count]
fg [ignore-count]

Resume program execution, at the address where your pro-
gram last stopped; any breakpoints set at that address are
bypassed. The optional argument ignore-count allows you
to specify a further number of times to ignore a breakpoint at
this location; its effect is like that of ignore (see Section 5.1.6
“Break conditions,” page 42).
The argument ignore-count is meaningful only when your
program stopped due to a breakpoint. At other times, the
argument to continue is ignored.
The synonyms c and fg are provided purely for convenience,
and have exactly the same behavior as continue.

To resume execution at a different place, you can use return (see
Section 11.4 “Returning from a function,” page 109) to go back to the
calling function; or jump (see Section 11.2 “Continuing at a different
address,” page 108) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see
Section 5.1 “Breakpoints; watchpoints; and exceptions,” page 33) at the
beginning of the function or the section of your program where a problem
is believed to lie, run your program until it stops at that breakpoint, and
then step through the suspect area, examining the variables that are
interesting, until you see the problem happen.

step Continue running your program until control reaches a dif-
ferent source line, then stop it and return control to GDB.
This command is abbreviated s.

Warning: If you use thestep command while control
is within a function that was compiled without de-
bugging information, execution proceeds until con-
trol reaches a function that does have debugging in-
formation. Likewise, it will not step into a function
which is compiled without debugging information.
To step through functions without debugging infor-
mation, use the stepi command, described below.

46 11 July 1995

Chapter 5: Stopping and Continuing

The step command now only stops at the first instruction of
a source line. This prevents the multiple stops that used to
occur in switch statements, for loops, etc. step continues to
stop if a function that has debugging information is called
within the line.
Also, thestep command now only enters a subroutine if there
is line number information for the subroutine. Otherwise it
acts like the next command. This avoids problems when
using cc -gl on MIPS machines. Previously, step entered
subroutines if there was any debugging information about
the routine.

step count
Continue running as in step, but do so count times. If a
breakpoint is reached, or a signal not related to stepping
occurs before count steps, stepping stops right away.

next [count]
Continue to the next source line in the current (innermost)
stack frame. This is similar to step, but function calls that
appear within the line of code are executed without stopping.
Execution stops when control reaches a different line of code
at the original stack level that was executing when you gave
the next command. This command is abbreviated n.
An argument count is a repeat count, as for step.
The next command now only stops at the first instruction of
a source line. This prevents the multiple stops that used to
occur in swtch statements, for loops, etc.

finish Continue running until just after function in the selected
stack frame returns. Print the returned value (if any).
Contrast this with the return command (see Section 11.4
“Returning from a function,” page 109).

u

until Continue running until a source line past the current line, in
the current stack frame, is reached. This command is used
to avoid single stepping through a loop more than once. It is
like the next command, except that when until encounters a
jump, it automatically continues execution until the program
counter is greater than the address of the jump.
This means that when you reach the end of a loop after single
stepping though it, until makes your program continue ex-
ecution until it exits the loop. In contrast, a next command
at the end of a loop simply steps back to the beginning of the
loop, which forces you to step through the next iteration.

c y g n u s s u p p o r t 47

Debugging with GDB

until always stops your program if it attempts to exit the
current stack frame.
until may produce somewhat counterintuitive results if the
order of machine code does not match the order of the source
lines. For example, in the following excerpt from a debug-
ging session, the f (frame) command shows that execution is
stopped at line 206; yet when we use until, we get to line
195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the com-
piler had generated code for the loop closure test at the end,
rather than the start, of the loop—even though the test in a
C for-loop is written before the body of the loop. The until
command appeared to step back to the beginning of the loop
when it advanced to this expression; however, it has not re-
ally gone to an earlier statement—not in terms of the actual
machine code.
untilwith no argument works by means of single instruction
stepping, and hence is slower than until with an argument.

until location
u location

Continue running your program until either the specified
location is reached, or the current stack frame returns. lo-
cation is any of the forms of argument acceptable to break
(see Section 5.1.1 “Setting breakpoints,” page 34). This form
of the command uses breakpoints, and hence is quicker than
until without an argument.

stepi
si Execute one machine instruction, then stop and return to the

debugger.
It is often useful to do ‘display/i $pc’ when stepping by ma-
chine instructions. This makes GDB automatically display
the next instruction to be executed, each time your program
stops. See Section 8.6 “Automatic display,” page 71.
An argument is a repeat count, as in step.

nexti
ni Execute one machine instruction, but if it is a function call,

proceed until the function returns.
An argument is a repeat count, as in next.

48 11 July 1995

Chapter 5: Stopping and Continuing

5.3 Signals

A signal is an asynchronous event that can happen in a program. The
operating system defines the possible kinds of signals, and gives each
kind a name and a number. For example, in Unix SIGINT is the signal
a program gets when you type an interrupt (often C-c); SIGSEGV is the
signal a program gets from referencing a place in memory far away from
all the areas in use; SIGALRM occurs when the alarm clock timer goes off
(which happens only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning
of your program. Others, such as SIGSEGV, indicate errors; these signals
are fatal (kill your program immediately) if the program has not specified
in advance some other way to handle the signal. SIGINT does not indicate
an error in your program, but it is normally fatal so it can carry out the
purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your
program. You can tell GDB in advance what to do for each kind of
signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM
(so as not to interfere with their role in the functioning of your program)
but to stop your program immediately whenever an error signal happens.
You can change these settings with the handle command.

info signals
Print a table of all the kinds of signals and how GDB has
been told to handle each one. You can use this to see the
signal numbers of all the defined types of signals.
info handle is the new alias for info signals.

handle signal keywords...
Change the way GDB handles signal signal. signal can be
the number of a signal or its name (with or without the ‘SIG’
at the beginning). The keywords say what change to make.

The keywords allowed by the handle command can be abbreviated.
Their full names are:

nostop GDB should not stop your program when this signal happens.
It may still print a message telling you that the signal has
come in.

stop GDB should stop your program when this signal happens.
This implies the print keyword as well.

print GDB should print a message when this signal happens.
noprint GDB should not mention the occurrence of the signal at all.

This implies the nostop keyword as well.

c y g n u s s u p p o r t 49

Debugging with GDB

pass GDB should allow your program to see this signal; your pro-
gram can handle the signal, or else it may terminate if the
signal is fatal and not handled.

nopass GDB should not allow your program to see this signal.

When a signal stops your program, the signal is not visible until you
continue. Your program sees the signal then, if pass is in effect for the
signal in question at that time. In other words, after GDB reports a
signal, you can use the handle command with pass or nopass to control
whether your program sees that signal when you continue.

You can also use the signal command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see, or
to give it any signal at any time. For example, if your program stopped
due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal. To prevent this, you
can continue with ‘signal 0’. See Section 11.3 “Giving your program a
signal,” page 109.

5.4 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.10 “Debug-
ging programs with multiple threads,” page 29), you can choose whether
to set breakpoints on all threads, or on a particular thread.

break linespec thread threadno
break linespec thread threadno if . ..

linespec specifies source lines; there are several ways of
writing them, but the effect is always to specify some source
line.
Use the qualifier ‘thread threadno’ with a breakpoint com-
mand to specify that you only want GDB to stop the program
when a particular thread reaches this breakpoint. threadno
is one of the numeric thread identifiers assigned by GDB,
shown in the first column of the ‘info threads’ display.
If you do not specify ‘thread threadno’ when you set a break-
point, the breakpoint applies to all threads of your program.
You can use the thread qualifier on conditional breakpoints
as well; in this case, place ‘thread threadno’ before the
breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

50 11 July 1995

Chapter 5: Stopping and Continuing

Whenever your program stops under GDB for any reason, all threads
of execution stop, not just the current thread. This allows you to examine
the overall state of the program, including switching between threads,
without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start exe-
cuting. This is true even when single-stepping with commands like step
or next.

In particular, GDB cannot single-step all threads in lockstep. Since
thread scheduling is up to your debugging target’s operating system (not
controlled by GDB), other threads may execute more than one statement
while the current thread completes a single step. Moreover, in general
other threads stop in the middle of a statement, rather than at a clean
statement boundary, when the program stops.

You might even find your program stopped in another thread after
continuing or even single-stepping. This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the first
thread completes whatever you requested.

c y g n u s s u p p o r t 51

Debugging with GDB

52 11 July 1995

Chapter 6: Examining the Stack

6 Examining the Stack

When your program has stopped, the first thing you need to know is
where it stopped and how it got there.

Each time your program performs a function call, information about
the call is generated. That information includes the location of the call
in your program, the arguments of the call, and the local variables of the
function being called. The information is saved in a block of data called
a stack frame. The stack frames are allocated in a region of memory
called the call stack.

When your program stops, the GDB commands for examining the
stack allow you to see all of this information.

One of the stack frames is selected by GDB and many GDB commands
refer implicitly to the selected frame. In particular, whenever you ask
GDB for the value of a variable in your program, the value is found in the
selected frame. There are special GDB commands to select whichever
frame you are interested in. See Section 6.3 “Selecting a frame,” page 55.

When your program stops, GDB automatically selects the currently
executing frame and describes it briefly, similar to the frame command
(see Section 6.4 “Information about a frame,” page 56).

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames,
or frames for short; each frame is the data associated with one call to
one function. The frame contains the arguments given to the function,
the function’s local variables, and the address at which the function is
executing.

When your program is started, the stack has only one frame, that
of the function main. This is called the initial frame or the outermost
frame. Each time a function is called, a new frame is made. Each time a
function returns, the frame for that function invocation is eliminated. If
a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is
called the innermost frame. This is the most recently created of all the
stack frames that still exist.

Inside your program, stack frames are identified by their addresses.
A stack frame consists of many bytes, each of which has its own address;
each kind of computer has a convention for choosing one byte whose
address serves as the address of the frame. Usually this address is kept
in a register called the frame pointer register while execution is going on
in that frame.

c y g n u s s u p p o r t 53

Debugging with GDB

GDB assigns numbers to all existing stack frames, starting with zero
for the innermost frame, one for the frame that called it, and so on
upward. These numbers do not really exist in your program; they are
assigned by GDB to give you a way of designating stack frames in GDB
commands.

Some compilers provide a way to compile functions so that
they operate without stack frames. (For example, the gcc option
‘-fomit-frame-pointer’ generates functions without a frame.) This
is occasionally done with heavily used library functions to save the
frame setup time. GDB has limited facilities for dealing with these
function invocations. If the innermost function invocation has no stack
frame, GDB nevertheless regards it as though it had a separate frame,
which is numbered zero as usual, allowing correct tracing of the func-
tion call chain. However, GDB has no provision for frameless functions
elsewhere in the stack.

frame args
The frame command allows you to move from one stack frame
to another, and to print the stack frame you select. args may
be either the address of the frame of the stack frame number.
Without an argument, frame prints the current stack frame.

select-frame
The select-frame command allows you to move from one
stack frame to another without printing the frame. This is
the silent version of frame.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It
shows one line per frame, for many frames, starting with the currently
executing frame (frame zero), followed by its caller (frame one), and on
up the stack.

backtrace
bt Print a backtrace of the entire stack: one line per frame for

all frames in the stack.
You can stop the backtrace at any time by typing the system
interrupt character, normally C-c.

backtrace n
bt n Similar, but print only the innermost n frames.

backtrace -n
bt -n Similar, but print only the outermost n frames.

54 11 July 1995

Chapter 6: Examining the Stack

The names where and info stack (abbreviated info s) are additional
aliases for backtrace.

Each line in the backtrace shows the frame number and the function
name. The program counter value is also shown—unless you use set
print address off. The backtrace also shows the source file name and
line number, as well as the arguments to the function. The program
counter value is omitted if it is at the beginning of the code for that line
number.

Here is an example of a backtrace. It was made with the command
‘bt 3’, so it shows the innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value,
indicating that your program has stopped at the beginning of the code
for line 993 of builtin.c.

6.3 Selecting a frame

Most commands for examining the stack and other data in your pro-
gram work on whichever stack frame is selected at the moment. Here are
the commands for selecting a stack frame; all of them finish by printing
a brief description of the stack frame just selected.

frame n
f n Select frame number n. Recall that frame zero is the inner-

most (currently executing) frame, frame one is the frame that
called the innermost one, and so on. The highest-numbered
frame is the one for main.

frame addr
f addr Select the frame at address addr. This is useful mainly if

the chaining of stack frames has been damaged by a bug,
making it impossible for GDB to assign numbers properly to
all frames. In addition, this can be useful when your program
has multiple stacks and switches between them.
On the SPARC architecture, frame needs two addresses to se-
lect an arbitrary frame: a frame pointer and a stack pointer.
On the MIPS and Alpha architecture, it needs two addresses:
a stack pointer and a program counter.

c y g n u s s u p p o r t 55

Debugging with GDB

On the 29k architecture, it needs three addresses: a regis-
ter stack pointer, a program counter, and a memory stack
pointer.

up n Move n frames up the stack. For positive numbers n, this
advances toward the outermost frame, to higher frame num-
bers, to frames that have existed longer. n defaults to one.

down n Move n frames down the stack. For positive numbers n, this
advances toward the innermost frame, to lower frame num-
bers, to frames that were created more recently. n defaults
to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing
the frame. The first line shows the frame number, the function name,
the arguments, and the source file and line number of execution in that
frame. The second line shows the text of that source line.

For example:
(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10

10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints
ten lines centered on the point of execution in the frame. See Section 7.1
“Printing source lines,” page 59.

up-silently n
down-silently n

These two commands are variants of up and down, respec-
tively; they differ in that they do their work silently, without
causing display of the new frame. They are intended primar-
ily for use in GDB command scripts, where the output might
be unnecessary and distracting.

6.4 Information about a frame

There are several other commands to print information about the
selected stack frame.

frame
f When used without any argument, this command does not

change which frame is selected, but prints a brief description
of the currently selected stack frame. It can be abbreviated
f. With an argument, this command is used to select a stack
frame. See Section 6.3 “Selecting a frame,” page 55.

56 11 July 1995

Chapter 6: Examining the Stack

info frame
info f This command prints a verbose description of the selected

stack frame, including:

the address of the frame

the address of the next frame down (called by this frame)

the address of the next frame up (caller of this frame)

the language in which the source code corresponding to
this frame is written

the address of the frame’s arguments

the program counter saved in it (the address of execution
in the caller frame)

which registers were saved in the frame

The verbose description is useful when something has gone
wrong that has made the stack format fail to fit the usual
conventions.

info frame addr
info f addr

Print a verbose description of the frame at address addr,
without selecting that frame. The selected frame remains
unchanged by this command. This requires the same kind
of address (more than one for some architectures) that you
specify in the frame command. See Section 6.3 “Selecting a
frame,” page 55.

info args
Print the arguments of the selected frame, each on a separate
line.

info locals
Print the local variables of the selected frame, each on a sep-
arate line. These are all variables (declared either static or
automatic) accessible at the point of execution of the selected
frame.

info catch
Print a list of all the exception handlers that are active in the
current stack frame at the current point of execution. To see
other exception handlers, visit the associated frame (using
the up, down, or frame commands); then type info catch.
See Section 5.1.3 “Breakpoints and exceptions,” page 39.

c y g n u s s u p p o r t 57

Debugging with GDB

6.5 MIPS machines and the function stack

MIPS based computers use an unusual stack frame, which sometimes
requires GDB to search backward in the object code to find the beginning
of a function.

To improve response time (especially for embedded applications,
where GDB may be restricted to a slow serial line for this search) you
may want to limit the size of this search, using one of these commands:

set heuristic-fence-post limit
Restrict GDB to examining at most limit bytes in its search
for the beginning of a function. A value of 0 (the default)
means there is no limit. However, except for 0, the larger
the limit the more bytes heuristic-fence-postmust search
and therefore the longer it takes to run.

show heuristic-fence-post
Display the current limit.

These commands are available only when GDB is configured for debug-
ging programs on MIPS processors.

58 11 July 1995

Chapter 7: Examining Source Files

7 Examining Source Files

GDB can print parts of your program’s source, since the debugging
information recorded in the program tells GDB what source files were
used to build it. When your program stops, GDB spontaneously prints
the line where it stopped. Likewise, when you select a stack frame (see
Section 6.3 “Selecting a frame,” page 55), GDB prints the line where
execution in that frame has stopped. You can print other portions of
source files by explicit command.

If you use GDB through its gnu Emacs interface, you may prefer to
use Emacs facilities to view source; see Chapter 16 “Using GDB under
gnu Emacs,” page 157.

7.1 Printing source lines

To print lines from a source file, use the list command (abbreviated
l). By default, ten lines are printed. There are several ways to specify
what part of the file you want to print.

Here are the forms of the list command most commonly used:

list linenum
Print lines centered around line number linenum in the cur-
rent source file.

list function
Print lines centered around the beginning of function func-
tion.

list Print more lines. If the last lines printed were printed with
a list command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line
printed as part of displaying a stack frame (see Chapter 6
“Examining the Stack,” page 53), this prints lines centered
around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the
list command. You can change this using set listsize:

set listsize count
Make the list command display count source lines (unless
the list argument explicitly specifies some other number).

show listsize
Display the number of lines that list prints.

c y g n u s s u p p o r t 59

Debugging with GDB

Repeating a list command with RET discards the argument, so it is
equivalent to typing just list. This is more useful than listing the same
lines again. An exception is made for an argument of ‘-’; that argument
is preserved in repetition so that each repetition moves up in the source
file.

In general, the list command expects you to supply zero, one or
two linespecs. Linespecs specify source lines; there are several ways of
writing them but the effect is always to specify some source line. Here
is a complete description of the possible arguments for list:

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments are line-
specs.

list ,last
Print lines ending with last.

list first,
Print lines starting with first.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds of
linespec.

number Specifies line number of the current source file. When a list
command has two linespecs, this refers to the same source
file as the first linespec.

+offset Specifies the line offset lines after the last line printed.
When used as the second linespec in a list command that
has two, this specifies the line offset lines down from the
first linespec.

-offset Specifies the line offset lines before the last line printed.

filename:number
Specifies line number in the source file filename.

function Specifies the line that begins the body of the function func-
tion. For example: in C, this is the line with the open brace.

filename:function
Specifies the line of the open-brace that begins the body of the
function function in the file filename. You only need the file

60 11 July 1995

Chapter 7: Examining Source Files

name with a function name to avoid ambiguity when there
are identically named functions in different source files.

*address Specifies the line containing the program address address.
address may be any expression.

7.2 Searching source files

There are two commands for searching through the current source
file for a regular expression.

forward-search regexp
search regexp

The command ‘forward-search regexp’ checks each line,
starting with the one following the last line listed, for a match
for regexp. It lists the line that is found. You can use the
synonym ‘search regexp’ or abbreviate the command name
as fo.

reverse-search regexp
The command ‘reverse-search regexp’ checks each line,
starting with the one before the last line listed and going
backward, for a match for regexp. It lists the line that is
found. You can abbreviate this command as rev.

7.3 Specifying source directories

Executable programs sometimes do not record the directories of the
source files from which they were compiled, just the names. Even when
they do, the directories could be moved between the compilation and your
debugging session. GDB has a list of directories to search for source files;
this is called the source path. Each time GDB wants a source file, it tries
all the directories in the list, in the order they are present in the list,
until it finds a file with the desired name. Note that the executable
search path is not used for this purpose. Neither is the current working
directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object
program records a directory, GDB tries that directory too. If the source
path is empty, and there is no record of the compilation directory, GDB
looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any
information it has cached about where source files are found and where
each line is in the file.

When you start GDB, its source path is empty. To add other directo-
ries, use the directory command.

c y g n u s s u p p o r t 61

Debugging with GDB

directory dirname .. .
dir dirname . ..

Add directory dirname to the front of the source path. Several
directory names may be given to this command, separated by
‘:’ or whitespace. You may specify a directory that is already
in the source path; this moves it forward, so GDB searches it
sooner.
You can use the string ‘$cdir’ to refer to the compilation
directory (if one is recorded), and ‘$cwd’ to refer to the current
working directory. ‘$cwd’ is not the same as ‘.’—the former
tracks the current working directory as it changes during
your GDB session, while the latter is immediately expanded
to the current directory at the time you add an entry to the
source path.

directory
Reset the source path to empty again. This requires confir-
mation.

show directories
Print the source path: show which directories it contains.

If your source path is cluttered with directories that are no longer
of interest, GDB may sometimes cause confusion by finding the wrong
versions of source. You can correct the situation as follows:
1. Use directory with no argument to reset the source path to empty.
2. Use directory with suitable arguments to reinstall the directories

you want in the source path. You can add all the directories in one
command.

7.4 Source and machine code

You can use the command info line to map source lines to program
addresses (and vice versa), and the command disassemble to display
a range of addresses as machine instructions. When run under gnu

Emacs mode, the info line command now causes the arrow to point to
the line specified. Also, info line prints addresses in symbolic form as
well as hex.

info line linespec
Print the starting and ending addresses of the compiled code
for source line linespec. You can specify source lines in any
of the ways understood by the list command (see Section 7.1
“Printing source lines,” page 59).

62 11 July 1995

Chapter 7: Examining Source Files

For example, we can use info line to discover the location of the
object code for the first line of function m4_changequote:

(gdb) info line m4_changecom
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source
line covers a particular address:

(gdb) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to
the starting address of the line, so that ‘x/i’ is sufficient to begin exam-
ining the machine code (see Section 8.5 “Examining memory,” page 69).
Also, this address is saved as the value of the convenience variable $_
(see Section 8.9 “Convenience variables,” page 79).

disassemble
This specialized command dumps a range of memory as ma-
chine instructions. The default memory range is the function
surrounding the program counter of the selected frame. A
single argument to this command is a program counter value;
GDB dumps the function surrounding this value. Two argu-
ments specify a range of addresses (first inclusive, second
exclusive) to dump.

We can use disassemble to inspect the object code range shown in
the last info line example (the example shows SPARC machine instruc-
tions):

(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: b 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>
0x6400 <builtin_init+5368>: nop
End of assembler dump.

c y g n u s s u p p o r t 63

Debugging with GDB

64 11 July 1995

Chapter 8: Examining Data

8 Examining Data

The usual way to examine data in your program is with the print
command (abbreviated p), or its synonym inspect. It evaluates and
prints the value of an expression of the language your program is written
in (see Chapter 9 “Using GDB with Different Languages,” page 85).

print exp
print /f exp

exp is an expression (in the source language). By default
the value of exp is printed in a format appropriate to its
data type; you can choose a different format by specifying
‘/f ’, where f is a letter specifying the format; see Section 8.4
“Output formats,” page 68.

print
print /f If you omit exp, GDB displays the last value again (from

the value history; see Section 8.8 “Value history,” page 78).
This allows you to conveniently inspect the same value in an
alternative format.

A more low-level way of examining data is with the x command.
It examines data in memory at a specified address and prints it in a
specified format. See Section 8.5 “Examining memory,” page 69.

If you are interested in information about types, or about how the
fields of a struct or class are declared, use the ptype exp command rather
than print. See Chapter 10 “Examining the Symbol Table,” page 103.

8.1 Expressions

print and many other GDB commands accept an expression and
compute its value. Any kind of constant, variable or operator defined
by the programming language you are using is valid in an expression
in GDB. This includes conditional expressions, function calls, casts and
string constants. It unfortunately does not include symbols defined by
preprocessor #define commands.

GDB now supports array constants in expressions input by the user.
The syntax is element, element.... For example, you can now use the
command print {1 2 3} to build up an array in memory that is malloc’d
in the target program.

Because C is so widespread, most of the expressions shown in exam-
ples in this manual are in C. See Chapter 9 “Using GDB with Different
Languages,” page 85, for information on how to use expressions in other
languages.

c y g n u s s u p p o r t 65

Debugging with GDB

In this section, we discuss operators that you can use in GDB expres-
sions regardless of your programming language.

Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer in order to examine a structure at
that address in memory.

GDB supports these operators, in addition to those common to pro-
gramming languages:

@ ‘@’ is a binary operator for treating parts of memory as ar-
rays. See Section 8.3 “Artificial arrays,” page 67, for more
information.

:: ‘::’ allows you to specify a variable in terms of the file or func-
tion where it is defined. See Section 8.2 “Program variables,”
page 66.

{type} addr
Refers to an object of type type stored at address addr in
memory. addr may be any expression whose value is an inte-
ger or pointer (but parentheses are required around binary
operators, just as in a cast). This construct is allowed re-
gardless of what kind of data is normally supposed to reside
at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable
in your program.

Variables in expressions are understood in the selected stack frame
(see Section 6.3 “Selecting a frame,” page 55); they must be either:

global (or static)

or
visible according to the scope rules of the programming language
from the point of execution in that frame

This means that in the function
foo (a)

int a;

{

bar (a);

{

int b = test ();
bar (b);

}

}

66 11 July 1995

Chapter 8: Examining Data

you can examine and use the variable a whenever your program is ex-
ecuting within the function foo, but you can only use or examine the
variable b while your program is executing inside the block where b is
declared.

There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file. But it is possible to have more than one such variable or
function with the same name (in different source files). If that happens,
referring to that name has unpredictable effects. If you wish, you can
specify a static variable in a particular function or file, using the colon-
colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static variable.
In the case of file names, you can use quotes to make sure GDB parses
the file name as a single word—for example, to print a global value of x
defined in ‘f2.c’:

(gdb) p ’f2.c’::x

This use of ‘::’ is very rarely in conflict with the very similar use
of the same notation in C++. GDB also supports use of the C++ scope
resolution operator in GDB expressions.

Warning: Occasionally, a local variable may appear to have the
wrong value at certain points in a function—just after entry to
a new scope, and just before exit.

You may see this problem when you are stepping by machine instruc-
tions. This is because, on most machines, it takes more than one in-
struction to set up a stack frame (including local variable definitions); if
you are stepping by machine instructions, variables may appear to have
the wrong values until the stack frame is completely built. On exit, it
usually also takes more than one machine instruction to destroy a stack
frame; after you begin stepping through that group of instructions, local
variable definitions may be gone.

8.3 Artificial arrays

It is often useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically deter-
mined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an
artificial array, using the binary operator ‘@’. The left operand of ‘@’
should be the first element of the desired array and be an individual
object. The right operand should be the desired length of the array. The

c y g n u s s u p p o r t 67

Debugging with GDB

result is an array value whose elements are all of the type of the left
argument. The first element is actually the left argument; the second
element comes from bytes of memory immediately following those that
hold the first element, and so on. Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with
p *array@len

The left operand of ‘@’ must reside in memory. Array values made with
‘@’ in this way behave just like other arrays in terms of subscripting, and
are coerced to pointers when used in expressions. Artificial arrays most
often appear in expressions via the value history (see Section 8.8 “Value
history,” page 78), after printing one out.

Another way to create an artificial array is to use a cast. This re-
interprets a value as if it were an array. The value need not be in
memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in
‘(type)[])value’) gdb calculates the size to fill the value (as
‘sizeof(value)/sizeof(type)’:

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent—for example, if you are interested in the values of
pointers in an array. One useful work-around in this situation is to use a
convenience variable (see Section 8.9 “Convenience variables,” page 79)
as a counter in an expression that prints the first interesting value, and
then repeat that expression via RET. For instance, suppose you have an
array dtab of pointers to structures, and you are interested in the values
of a field fv in each structure. Here is an example of what you might
type:

set $i = 0
p dtab[$i++]->fv
RET
RET
...

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes
this is not what you want. For example, you might want to print a
number in hex, or a pointer in decimal. Or you might want to view data

68 11 July 1995

Chapter 8: Examining Data

in memory at a certain address as a character string or as an instruction.
To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the print
command with a slash and a format letter. The format letters supported
are:

x Regard the bits of the value as an integer, and print the
integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter ‘t’ stands for “two”.1

a Print as an address, both absolute in hexadecimal
and as an offset from the nearest preceding symbol. You can
use this format used to discover where (in what function) an
unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating point number and
print using typical floating point syntax.

For example, to print the program counter in hex (see Section 8.10
“Registers,” page 81), type

p/x $pc

Note that no space is required before the slash; this is because command
names in GDB cannot contain a slash.

To reprint the last value in the value history with a different format,
you can use the print command with just a format and no expression.
For example, ‘p/x’ reprints the last value in hex.

8.5 Examining memory

You can use the command x (for “examine”) to examine memory in
any of several formats, independently of your program’s data types.

1 ‘b’ cannot be used because these format letters are also used with the
x command, where ‘b’ stands for “byte”; see Section 8.5 “Examining
memory,” page 69.

c y g n u s s u p p o r t 69

Debugging with GDB

x/nfu addr
x addr
x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory
to display and how to format it; addr is an expression giving the address
where you want to start displaying memory. If you use defaults for
nfu, you need not type the slash ‘/’. Several commands set convenient
defaults for addr.

n, the repeat count
The repeat count is a decimal integer; the default is 1. It
specifies how much memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, ‘s’
(null-terminated string), or ‘i’ (machine instruction). The
default is ‘x’ (hexadecimal) initially. The default changes
each time you use either x or print.

u, the unit size
The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes
the default unit the next time you use x. (For the ‘s’ and ‘i’
formats, the unit size is ignored and is normally not written.)

addr, starting display address
addr is the address where you want GDB to begin display-
ing memory. The expression need not have a pointer value
(though it may); it is always interpreted as an integer ad-
dress of a byte of memory. See Section 8.1 “Expressions,”
page 65, for more information on expressions. The default
for addr is usually just after the last address examined—but
several other commands also set the default address: info
breakpoints (to the address of the last breakpoint listed),
info line (to the starting address of a line), and print (if
you use it to display a value from memory).

For example, ‘x/3uh 0x54320’ is a request to display three halfwords
(h) of memory, formatted as unsigned decimal integers (‘u’), starting at
address 0x54320. ‘x/4xw $sp’ prints the four words (‘w’) of memory above

70 11 July 1995

Chapter 8: Examining Data

the stack pointer (here, ‘$sp’; see Section 8.10 “Registers,” page 81) in
hexadecimal (‘x’).

Since the letters indicating unit sizes are all distinct from the letters
specifying output formats, you do not have to remember whether unit
size or format comes first; either order works. The output specifications
‘4xw’ and ‘4wx’ mean exactly the same thing. (However, the count n must
come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s’ and ‘i’, you
might still want to use a count n; for example, ‘3i’ specifies that you
want to see three machine instructions, including any operands. The
command disassemble gives an alternative way of inspecting machine
instructions; see Section 7.4 “Source and machine code,” page 62.

All the defaults for the arguments to x are designed to make it easy
to continue scanning memory with minimal specifications each time you
use x. For example, after you have inspected three machine instructions
with ‘x/3i addr’, you can inspect the next seven with just ‘x/7’. If you
use RET to repeat the x command, the repeat count n is used again; the
other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved
in the value history because there is often too much of them and they
would get in the way. Instead, GDB makes these values available for
subsequent use in expressions as values of the convenience variables $_
and $__. After an x command, the last address examined is available for
use in expressions in the convenience variable $_. The contents of that
address, as examined, are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of output.

8.6 Automatic display

If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the automatic display
list so that GDB prints its value each time your program stops. Each
expression added to the list is given a number to identify it; to remove
an expression from the list, you specify that number. The automatic
display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values.
As with displays you request manually using x or print, you can specify
the output format you prefer; in fact, display decides whether to use

c y g n u s s u p p o r t 71

Debugging with GDB

print or x depending on how elaborate your format specification is—it
uses x if you specify a unit size, or one of the two formats (‘i’ and ‘s’) that
are only supported by x; otherwise it uses print.

display exp
Add the expression exp to the list of expressions to display
each time your program stops. See Section 8.1 “Expressions,”
page 65.
display does not repeat if you press RET again after using it.

display/fmt exp
For fmt specifying only a display format and not a size or
count, add the expression exp to the auto-display list but
arrange to display it each time in the specified format fmt.
See Section 8.4 “Output formats,” page 68.

display/fmt addr
For fmt ‘i’ or ‘s’, or including a unit-size or a number of units,
add the expression addr as a memory address to be examined
each time your program stops. Examining means in effect
doing ‘x/fmt addr’. See Section 8.5 “Examining memory,”
page 69.

For example, ‘display/i $pc’ can be helpful, to see the machine in-
struction about to be executed each time execution stops (‘$pc’ is a
common name for the program counter; see Section 8.10 “Registers,”
page 81).

undisplay dnums...
delete display dnums.. .

Remove item numbers dnums from the list of expressions to
display.
undisplay does not repeat if you press RET after using it.
(Otherwise you would just get the error ‘No display number
.. .’.)

disable display dnums...
Disable the display of item numbers dnums. A disabled dis-
play item is not printed automatically, but is not forgotten.
It may be enabled again later.

enable display dnums.. .
Enable display of item numbers dnums. It becomes effective
once again in auto display of its expression, until you specify
otherwise.

display Display the current values of the expressions on the list, just
as is done when your program stops.

72 11 July 1995

Chapter 8: Examining Data

info display
Print the list of expressions previously set up to display auto-
matically, each one with its item number, but without show-
ing the values. This includes disabled expressions, which are
marked as such. It also includes expressions which would
not be displayed right now because they refer to automatic
variables not currently available.

If a display expression refers to local variables, then it does not make
sense outside the lexical context for which it was set up. Such an ex-
pression is disabled when execution enters a context where one of its
variables is not defined. For example, if you give the command display
last_char while inside a function with an argument last_char, GDB
displays this argument while your program continues to stop inside that
function. When it stops elsewhere—where there is no variable last_
char—the display is disabled automatically. The next time your pro-
gram stops where last_char is meaningful, you can enable the display
expression once again.

8.7 Print settings

GDB provides the following ways to control how arrays, structures,
and symbols are printed.
These settings are useful for debugging programs in any language:

set print address
set print address on

GDB prints memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and
so forth, even when it also displays the contents of those
addresses. The default is on. For example, this is what a
stack frame display looks like with set print address on:

(gdb) f

#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530

530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For
example, this is the same stack frame displayed with set
print address off:

(gdb) set print addr off
(gdb) f

#0 set_quotes (lq="<<", rq=">>") at input.c:530

530 if (lquote != def_lquote)

c y g n u s s u p p o r t 73

Debugging with GDB

You can use ‘set print address off’ to eliminate all machine
dependent displays from the GDB interface. For example,
with print address off, you should get the same text for
backtraces on all machines—whether or not they involve
pointer arguments.

show print address
Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest
earlier symbol plus an offset. If that symbol does not uniquely identify
the address (for example, it is a name whose scope is a single source
file), you may need to clarify. One way to do this is with info line, for
example ‘info line *0x4537’. Alternately, you can set GDB to print the
source file and line number when it prints a symbolic address:

set print symbol-filename on
Tell GDB to print the source file name and line number of a
symbol in the symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol.
This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and
line number of a symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and
line numbers is when disassembling code; GDB shows you the line num-
ber and source file that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being
printed is reasonably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Tell GDB to only display the symbolic form of an address if
the offset between the closest earlier symbol and the address
is less than max-offset. The default is 0, which tells GDB to
always print the symbolic form of an address if any symbol
precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a
symbolic address.

If you have a pointer and you are not sure where it points, try ‘set
print symbol-filename on’. Then you can determine the name and
source file location of the variable where it points, using ‘p/a pointer’.

74 11 July 1995

Chapter 8: Examining Data

This interprets the address in symbolic form. For example, here GDB
shows that a variable ptt points at another variable t, defined in ‘hi2.c’:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, ‘p/a’ does
not show the symbol name and filename of the referent, even
with the appropriate set print options turned on.

Other settings control how different kinds of objects are printed:

set print array
set print array on

Pretty print arrays. This format is more convenient to read,
but uses more space. The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for
displaying arrays.

set print elements number-of-elements
Set a limit on how many elements of an array GDB will
print. If GDB is printing a large array, it stops printing after
it has printed the number of elements set by the set print
elements command. This limit also applies to the display of
strings. Setting number-of-elements to zero means that the
printing is unlimited.

show print elements
Display the number of elements of a large array that GDB
will print. If the number is 0, then the printing is unlimited.

set print null-stop
Cause GDB to stop printing the characters of an array when
the first NULL is encountered. This is useful when large
arrays actually contain only short strings.

set print pretty on
Cause GDB to print structures in an indented format with
one member per line, like this:

c y g n u s s u p p o r t 75

Debugging with GDB

$1 = {

next = 0x0,

flags = {

sweet = 1,
sour = 1

},

meat = 0x54 "Pork"

}

set print pretty off
Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \

meat = 0x54 "Pork"}

This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set,
GDB displays any eight-bit characters (in strings or charac-
ter values) using the notation \nnn. This setting is best if you
are working in English (ascii) and you use the high-order bit
of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more
international character sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit charac-
ters.

set print union on
Tell GDB to print unions which are contained in structures.
This is the default setting.

set print union off
Tell GDB not to print unions which are contained in struc-
tures.

show print union
Ask GDB whether or not it will print unions which are con-
tained in structures.
For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_forms;

76 11 July 1995

Chapter 8: Examining Data

struct thing {
Species it;
union {

Tree_forms tree;
Bug_forms bug;

} form;
};

struct thing foo = {Tree, {Acorn}};

with set print union on in effect ‘p foo’ would print
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print
$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle
set print demangle on

Print C++ names in their source form rather than in the
encoded (“mangled”) form passed to the assembler and linker
for type-safe linkage. The default is ‘on’.

show print demangle
Show whether C++ names are printed in mangled or deman-
gled form.

set print asm-demangle
set print asm-demangle on

Print C++ names in their source form rather than their man-
gled form, even in assembler code printouts such as instruc-
tion disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in
mangled or demangled form.

set demangle-style style
Choose among several encoding schemes used by different
compilers to represent C++ names. The choices for style are
currently:

auto Allow GDB to choose a decoding style by inspect-
ing your program.

gnu Decode based on the gnu C++ compiler (g++) en-
coding algorithm. This is the default.

lucid Decode based on the Lucid C++ compiler (lcc)
encoding algorithm.

c y g n u s s u p p o r t 77

Debugging with GDB

arm Decode using the algorithm in the C++ Anno-
tated Reference Manual. Warning: this setting
alone is not sufficient to allow debugging cfront-
generated executables. GDB would require fur-
ther enhancement to permit that.

foo Show the list of formats.

show demangle-style
Display the encoding style currently in use for decoding C++
symbols.

set print object
set print object on

When displaying a pointer to an object, identify the actual
(derived) type of the object rather than the declared type,
using the virtual function table.

set print object off
Display only the declared type of objects, without reference
to the virtual function table. This is the default setting.

show print object
Show whether actual, or declared, object types are displayed.

set print vtbl
set print vtbl on

Pretty print C++ virtual function tables. The default is off.

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl
Show whether C++ virtual function tables are pretty printed,
or not.

8.8 Value history

Values printed by the print command are saved in the GDB value
history. This allows you to refer to them in other expressions. Values are
kept until the symbol table is re-read or discarded (for example with the
file or symbol-file commands). When the symbol table changes, the
value history is discarded, since the values may contain pointers back to
the types defined in the symbol table.

The values printed are given history numbers by which you can refer
to them. These are successive integers starting with one. print shows
you the history number assigned to a value by printing ‘$num = ’ before
the value; here num is the history number.

78 11 July 1995

Chapter 8: Examining Data

To refer to any previous value, use ‘$’ followed by the value’s history
number. The way print labels its output is designed to remind you of
this. Just $ refers to the most recent value in the history, and $$ refers
to the value before that. $$n refers to the nth value from the end; $$2 is
the value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent
to $.

For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component next points to
the next one, you can print the contents of the next one with this:

p *$.next

You can print successive links in the chain by repeating this command—
which you can do by just typing RET.

Note that the history records values, not expressions. If the value of
x is 4 and you type these commands:

print x
set x=5

then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

show values
Print the last ten values in the value history, with their item
numbers. This is like ‘p $$9’ repeated ten times, except that
show values does not change the history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed.
If no more values are available, show values + produces no
display.

Pressing RET to repeat show values n has exactly the same effect as
‘show values +’.

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to
hold on to a value and refer to it later. These variables exist entirely
within GDB; they are not part of your program, and setting a convenience
variable has no direct effect on further execution of your program. That
is why you can use them freely.

c y g n u s s u p p o r t 79

Debugging with GDB

Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’
can be used for a convenience variable, unless it is one of the predefined
machine-specific register names (see Section 8.10 “Registers,” page 81).
(Value history references, in contrast, are numbers preceded by ‘$’. See
Section 8.8 “Value history,” page 78.)

You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program. For exam-
ple:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by
object_ptr.

Using a convenience variable for the first time creates it, but its
value is void until you assign a new value. You can alter the value with
another assignment at any time.

Convenience variables have no fixed types. You can assign a conve-
nience variable any type of value, including structures and arrays, even
if that variable already has a value of a different type. The convenience
variable, when used as an expression, has the type of its current value.

show convenience
Print a list of convenience variables used so far, and their
values. Abbreviated show con.

One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For example, to print a field
from successive elements of an array of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing RET.
Some convenience variables are created automatically by GDB and

given values likely to be useful.

$_ The variable $_ is automatically set by the x command to the
last address examined (see Section 8.5 “Examining memory,”
page 69). Other commands which provide a default address
for x to examine also set $_ to that address; these commands
include info line and info breakpoint. The type of $_ is
void * except when set by the x command, in which case it
is a pointer to the type of $__.

$__ The variable $__ is automatically set by the x command to
the value found in the last address examined. Its type is
chosen to match the format in which the data was printed.

80 11 July 1995

Chapter 8: Examining Data

8.10 Registers

You can refer to machine register contents, in expressions, as vari-
ables with names starting with ‘$’. The names of registers are different
for each machine; use info registers to see the names used on your
machine.

info registers
Print the names and values of all registers except floating-
point registers (in the selected stack frame).

info all-registers
Print the names and values of all registers, including
floating-point registers.

info registers regname . ..
Print the relativized value of each specified register regname.
As discussed in detail below, register values are normally
relative to the selected stack frame. regname may be any
register name valid on the machine you are using, with or
without the initial ‘$’.

GDB has four “standard” register names that are available (in ex-
pressions) on most machines—whenever they do not conflict with an
architecture’s canonical mnemonics for registers. The register names
$pc and $sp are used for the program counter register and the stack
pointer. $fp is used for a register that contains a pointer to the current
stack frame, and $ps is used for a register that contains the processor
status. For example, you could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with
x/i $pc

or add four to the stack pointer2 with
set $sp += 4

Whenever possible, these four standard register names are avail-
able on your machine even though the machine has different canonical
mnemonics, so long as there is no conflict. The info registers com-
mand shows the canonical names. For example, on the SPARC, info

2 This is a way of removing one word from the stack, on machines where
stacks grow downward in memory (most machines, nowadays). This
assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames
off the stack, regardless of machine architecture, use return; see
Section 11.4 “Returning from a function,” page 109.

c y g n u s s u p p o r t 81

Debugging with GDB

registers displays the processor status register as $psr but you can
also refer to it as $ps.

GDB always considers the contents of an ordinary register as an in-
teger when the register is examined in this way. Some machines have
special registers which can hold nothing but floating point; these regis-
ters are considered to have floating point values. There is no way to refer
to the contents of an ordinary register as floating point value (although
you can print it as a floating point value with ‘print/f $regname’).

Some registers have distinct “raw” and “virtual” data formats. This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees. For example, the registers of the 68881 floating point coprocessor
are always saved in “extended” (raw) format, but all C programs expect
to work with “double” (virtual) format. In such cases, GDB normally
works with the virtual format only (the format that makes sense for
your program), but the info registers command prints the data in
both formats.

Normally, register values are relative to the selected stack frame
(see Section 6.3 “Selecting a frame,” page 55). This means that you get
the value that the register would contain if all stack frames farther in
were exited and their saved registers restored. In order to see the true
contents of hardware registers, you must select the innermost frame
(with ‘frame 0’).

However, GDB must deduce where registers are saved, from the ma-
chine code generated by your compiler. If some registers are not saved,
or if GDB is unable to locate the saved registers, the selected stack frame
makes no difference.

set rstack_high_address address
On AMD 29000 family processors, registers are saved in a
separate “register stack”. There is no way for GDB to deter-
mine the extent of this stack. Normally, GDB just assumes
that the stack is “large enough”. This may result in GDB
referencing memory locations that do not exist. If neces-
sary, you can get around this problem by specifying the end-
ing address of the register stack with the set rstack_high_
address command. The argument should be an address,
which you probably want to precede with ‘0x’ to specify in
hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000
family processors.

82 11 July 1995

Chapter 8: Examining Data

8.11 Floating point hardware

Depending on the configuration, GDB may be able to give you more
information about the status of the floating point hardware.

info float
Display hardware-dependent information about the floating
point unit. The exact contents and layout vary depending on
the floating point chip. Currently, ‘info float’ is supported
on the ARM and x86 machines.

c y g n u s s u p p o r t 83

Debugging with GDB

84 11 July 1995

Chapter 9: Using GDB with Different Languages

9 Using GDB with Different Languages

Although programming languages generally have common aspects,
they are rarely expressed in the same manner. For instance, in ANSI
C, dereferencing a pointer p is accomplished by *p, but in Modula-2, it
is accomplished by pˆ. Values can also be represented (and displayed)
differently. Hex numbers in C appear as ‘0x1ae’, while in Modula-2 they
appear as ‘1AEH’.

Language-specific information is built into GDB for some languages,
allowing you to express operations like the above in your program’s na-
tive language, and allowing GDB to output values in a manner consistent
with the syntax of your program’s native language. The language you
use to build expressions is called the working language.

9.1 Switching between source languages

There are two ways to control the working language—either have
GDB set it automatically, or select it manually yourself. You can use the
set language command for either purpose. On startup, GDB defaults
to setting the language automatically. The working language is used
to determine how expressions you type are interpreted, how values are
printed, etc.

In addition to the working language, every source file that GDB knows
about has its own working language. For some object file formats, the
compiler might indicate which language a particular source file is in.
However, most of the time GDB infers the language from the name of
the file. The language of a source file controls whether C++ names are
demangled—this way backtrace can show each frame appropriately for
its own language. There is no way to set the language of a source file
from within GDB.

This is most commonly a problem when you use a program, such as
cfront or f2c, that generates C but is written in another language. In
that case, make the program use #line directives in its C output; that
way GDB will know the correct language of the source code of the original
program, and will display that source code, not the generated C code.

9.1.1 List of filename extensions and languages

If a source file name ends in one of the following extensions, then
GDB infers that its language is the one indicated.

‘.mod’ Modula-2 source file

‘.c’ C source file

c y g n u s s u p p o r t 85

Debugging with GDB

‘.C’
‘.cc’
‘.cxx’
‘.cpp’
‘.cp’
‘.c++’ C++ source file

‘.ch’
‘.c186’
‘.c286’ CHILL source file.

‘.s’
‘.S’ Assembler source file. This actually behaves almost like C,

but GDB does not skip over function prologues when step-
ping.

9.1.2 Setting the working language

If you allow GDB to set the language automatically, expressions are
interpreted the same way in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the
command ‘set language lang ’, where lang is the name of a language,
such as c or modula-2. For a list of the supported languages, type ‘set
language’.

Setting the language manually prevents GDB from updating the
working language automatically. This can lead to confusion if you try
to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both languages—
but means different things. For instance, if the current source file were
written in C, and GDB was parsing Modula-2, a command such as:

print a = b + c

might not have the effect you intended. In C, this means to add b and
c and place the result in a. The result printed would be the value of a.
In Modula-2, this means to compare a to the result of b+c, yielding a
BOOLEAN value.

9.1.3 Having GDB infer the source language

To have GDB set the working language automatically, use ‘set
language local’ or ‘set language auto’. GDB then infers the work-
ing language. That is, when your program stops in a frame (usually
by encountering a breakpoint), GDB sets the working language to the
language recorded for the function in that frame. If the language for a
frame is unknown (that is, if the function or block corresponding to the

86 11 July 1995

Chapter 9: Using GDB with Different Languages

frame was defined in a source file that does not have a recognized exten-
sion), the current working language is not changed, and GDB issues a
warning.

This may not seem necessary for most programs, which are writ-
ten entirely in one source language. However, program modules and
libraries written in one source language can be used by a main program
written in a different source language. Using ‘set language auto’ in
this case frees you from having to set the working language manually.

9.2 Displaying the language

The following commands help you find out which language is the
working language, and also what language source files were written in.

show language
Display the current working language. This is the language
you can use with commands such as print to build and com-
pute expressions that may involve variables in your program.

info frame
Display the source language for this frame. This language
becomes the working language if you use an identifier from
this frame. See Section 6.4 “Information about a frame,”
page 56, to identify the other information listed here.

info source
Display the source language of this source file. See Chap-
ter 10 “Examining the Symbol Table,” page 103, to identify
the other information listed here.

9.3 Type and range checking

Warning: In this release, the GDB commands for type and range
checking are included, but they do not yet have any effect. This
section documents the intended facilities.

Some languages are designed to guard you against making seemingly
common errors through a series of compile- and run-time checks. These
include checking the type of arguments to functions and operators, and
making sure mathematical overflows are caught at run time. Checks
such as these help to ensure a program’s correctness once it has been
compiled by eliminating type mismatches, and providing active checks
for range errors when your program is running.

GDB can check for conditions like the above if you wish. Although
GDB does not check the statements in your program, it can check ex-

c y g n u s s u p p o r t 87

Debugging with GDB

pressions entered directly into GDB for evaluation via the print com-
mand, for example. As with the working language, GDB can also decide
whether or not to check automatically based on your program’s source
language. See Section 9.4 “Supported languages,” page 90, for the de-
fault settings of supported languages.

9.3.1 An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that
the arguments to operators and functions have to be of the correct type,
otherwise an error occurs. These checks prevent type mismatch errors
from ever causing any run-time problems. For example,

1 + 2) 3
but

error 1 + 2.3

The second example fails because the CARDINAL 1 is not type-
compatible with the REAL 2.3.

For the expressions you use in GDB commands, you can tell the GDB
type checker to skip checking; to treat any mismatches as errors and
abandon the expression; or to only issue warnings when type mismatches
occur, but evaluate the expression anyway. When you choose the last
of these, GDB evaluates expressions like the second example above, but
also issues a warning.

Even if you turn type checking off, there may be other reasons related
to type that prevent GDB from evaluating an expression. For instance,
GDB does not know how to add an int and a struct foo. These particu-
lar type errors have nothing to do with the language in use, and usually
arise from expressions, such as the one described above, which make
little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For
instance, both Modula-2 and C require the arguments to arithmetical
operators to be numbers. In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathe-
matical operators. See Section 9.4 “Supported languages,” page 90, for
further details on specific languages.

GDB provides some additional commands for controlling the type
checker:

set check type auto
Set type checking on or off based on the current working
language. See Section 9.4 “Supported languages,” page 90,
for the default settings for each language.

88 11 July 1995

Chapter 9: Using GDB with Different Languages

set check type on
set check type off

Set type checking on or off, overriding the default setting for
the current working language. Issue a warning if the setting
does not match the language default. If any type mismatches
occur in evaluating an expression while typechecking is on,
GDB prints a message and aborts evaluation of the expres-
sion.

set check type warn
Cause the type checker to issue warnings, but to always at-
tempt to evaluate the expression. Evaluating the expression
may still be impossible for other reasons. For example, GDB
cannot add numbers and structures.

show type
Show the current setting of the type checker, and whether or
not GDB is setting it automatically.

9.3.2 An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks. Such range
checking is meant to ensure program correctness by making sure com-
putations do not overflow, or indices on an array element access do not
exceed the bounds of the array.

For expressions you use in GDB commands, you can tell GDB to treat
range errors in one of three ways: ignore them, always treat them as
errors and abandon the expression, or issue warnings but evaluate the
expression anyway.

A range error can result from numerical overflow, from exceeding an
array index bound, or when you type a constant that is not a member of
any type. Some languages, however, do not treat overflows as an error.
In many implementations of C, mathematical overflow causes the result
to “wrap around” to lower values—for example, if m is the largest integer
value, and s is the smallest, then

m + 1) s

This, too, is specific to individual languages, and in some cases spe-
cific to individual compilers or machines. See Section 9.4 “Supported
languages,” page 90, for further details on specific languages.

GDB provides some additional commands for controlling the range
checker:

c y g n u s s u p p o r t 89

Debugging with GDB

set check range auto
Set range checking on or off based on the current working
language. See Section 9.4 “Supported languages,” page 90,
for the default settings for each language.

set check range on
set check range off

Set range checking on or off, overriding the default setting
for the current working language. A warning is issued if
the setting does not match the language default. If a range
error occurs, then a message is printed and evaluation of the
expression is aborted.

set check range warn
Output messages when the GDB range checker detects a
range error, but attempt to evaluate the expression anyway.
Evaluating the expression may still be impossible for other
reasons, such as accessing memory that the process does not
own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether
or not it is being set automatically by GDB.

9.4 Supported languages

GDB 4 supports C, C++, and Modula-2. Some GDB features may be
used in expressions regardless of the language you use: the GDB @ and ::
operators, and the ‘{type}addr’ construct (see Section 8.1 “Expressions,”
page 65) can be used with the constructs of any supported language.

The following sections detail to what degree each source language is
supported by GDB. These sections are not meant to be language tutorials
or references, but serve only as a reference guide to what the GDB
expression parser accepts, and what input and output formats should
look like for different languages. There are many good books written on
each of these languages; please look to these for a language reference or
tutorial.

9.4.1 C and C++

Since C and C++ are so closely related, many features of GDB apply to
both languages. Whenever this is the case, we discuss those languages
together.

90 11 July 1995

Chapter 9: Using GDB with Different Languages

The C++ debugging facilities are jointly implemented by the gnu C++
compiler and GDB. Therefore, to debug your C++ code effectively, you
must compile your C++ programs with the gnu C++ compiler, g++.

For best results when debugging C++ programs, use the stabs debug-
ging format. You can select that format explicitly with the g++ command-
line options ‘-gstabs’ or ‘-gstabs+’. See section “Options for Debugging
Your Program or gnu CC” in Using gnu CC, for more information.

9.4.1.1 C and C++ operators

Operators must be defined on values of specific types. For instance,
+ is defined on numbers, but not on structures. Operators are often
defined on groups of types.

For the purposes of C and C++, the following definitions hold:
� Integral types include int with any of its storage-class specifiers;

char; and enum.
� Floating-point types include float and double.
� Pointer types include all types defined as (type *).
� Scalar types include all of the above.

The following operators are supported. They are listed here in order of
increasing precedence:

, The comma or sequencing operator. Expressions in a comma-
separated list are evaluated from left to right, with the result
of the entire expression being the last expression evaluated.

= Assignment. The value of an assignment expression is the
value assigned. Defined on scalar types.

op= Used in an expression of the form a op= b, and translated to
a = a op b. op= and = have the same precendence. op is any
one of the operators |, ˆ, &, <<, >>, +, -, *, /, %.

?: The ternary operator. a ? b : c can be thought of as: if a then
b else c. a should be of an integral type.

|| Logical or. Defined on integral types.

&& Logical and. Defined on integral types.

| Bitwise or. Defined on integral types.

ˆ Bitwise exclusive-or. Defined on integral types.

& Bitwise and. Defined on integral types.

==, != Equality and inequality. Defined on scalar types. The value
of these expressions is 0 for false and non-zero for true.

c y g n u s s u p p o r t 91

Debugging with GDB

<, >, <=, >=
Less than, greater than, less than or equal, greater than or
equal. Defined on scalar types. The value of these expres-
sions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. Defined on integral types.

@ The GDB “artificial array” operator (see Section 8.1 “Expres-
sions,” page 65).

+, - Addition and subtraction. Defined on integral types, floating-
point types and pointer types.

*, /, % Multiplication, division, and modulus. Multiplication and di-
vision are defined on integral and floating-point types. Mod-
ulus is defined on integral types.

++, -- Increment and decrement. When appearing before a vari-
able, the operation is performed before the variable is used in
an expression; when appearing after it, the variable’s value
is used before the operation takes place.

* Pointer dereferencing. Defined on pointer types. Same
precedence as ++.

& Address operator. Defined on variables. Same precedence as
++.
For debugging C++, GDB implements a use of ‘&’ beyond
what is allowed in the C++ language itself: you can use
‘&(&ref)’ (or, if you prefer, simply ‘&&ref ’) to examine the ad-
dress where a C++ reference variable (declared with ‘&ref ’)
is stored.

- Negative. Defined on integral and floating-point types. Same
precedence as ++.

! Logical negation. Defined on integral types. Same prece-
dence as ++.

˜ Bitwise complement operator. Defined on integral types.
Same precedence as ++.

., -> Structure member, and pointer-to-structure member. For
convenience, GDB regards the two as equivalent, choosing
whether to dereference a pointer based on the stored type
information. Defined on struct and union data.

[] Array indexing. a[i] is defined as *(a+i). Same precedence
as ->.

() Function parameter list. Same precedence as ->.

92 11 July 1995

Chapter 9: Using GDB with Different Languages

:: C++ scope resolution operator. Defined on struct, union,
and class types.

:: Doubled colons also represent the GDB scope operator (see
Section 8.1 “Expressions,” page 65). Same precedence as ::,
above.

9.4.1.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following
ways:
� Integer constants are a sequence of digits. Octal constants are spec-

ified by a leading ‘0’ (i.e. zero), and hexadecimal constants by a
leading ‘0x’ or ‘0X’. Constants may also end with a letter ‘l’, specify-
ing that the constant should be treated as a long value.

� Floating point constants are a sequence of digits, followed by a dec-
imal point, followed by a sequence of digits, and optionally followed
by an exponent. An exponent is of the form: ‘e[[+]|-]nnn’, where
nnn is another sequence of digits. The ‘+’ is optional for positive
exponents.

� Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

� Character constants are a single character surrounded by single
quotes (’), or a number—the ordinal value of the corresponding
character (usually its ASCII value). Within quotes, the single char-
acter may be represented by a letter or by escape sequences, which
are of the form ‘\nnn’, where nnn is the octal representation of the
character’s ordinal value; or of the form ‘\x’, where ‘x’ is a predefined
special character—for example, ‘\n’ for newline.

� String constants are a sequence of character constants surrounded
by double quotes (").

� Pointer constants are an integral value. You can also write pointers
to constants using the C operator ‘&’.

� Array constants are comma-separated lists surrounded by braces
‘{’ and ‘}’; for example, ‘{1,2,3}’ is a three-element array of inte-
gers, ‘{{1,2}, {3,4}, {5,6}}’ is a three-by-two array, and ‘{&"hi",
&"there", &"fred"}’ is a three-element array of pointers.

9.4.1.3 C++ expressions

GDB expression handling has a number of extensions to interpret a
significant subset of C++ expressions.

c y g n u s s u p p o r t 93

Debugging with GDB

Warning: GDB can only debug C++ code if you compile with the
gnu C++ compiler. Moreover, C++ debugging depends on the
use of additional debugging information in the symbol table,
and thus requires special support. GDB has this support only
with the stabs debug format. In particular, if your compiler
generates a.out, MIPS ecoff, RS/6000 xcoff, or elf with stabs
extensions to the symbol table, these facilities are all available.
(With gnu CC, you can use the ‘-gstabs’ option to request stabs
debugging extensions explicitly.) Where the object code format
is standard coff or dwarf in elf, on the other hand, most of
the C++ support in GDB does not work.

1. Member function calls are allowed; you can use expressions like
count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame),
your expressions have the same namespace available as the member
function; that is, GDB allows implicit references to the class instance
pointer this following the same rules as C++.

3. You can call overloaded functions; GDB resolves the function call to
the right definition, with one restriction—you must use arguments
of the type required by the function that you want to call. GDB does
not perform conversions requiring constructors or user-defined type
operators.

4. GDB understands variables declared as C++ references; you can
use them in expressions just as you do in C++ source—they are
automatically dereferenced.
In the parameter list shown when GDB displays a frame, the values
of reference variables are not displayed (unlike other variables); this
avoids clutter, since references are often used for large structures.
The address of a reference variable is always shown, unless you
have specified ‘set print address off’.

5. GDB supports the C++ name resolution operator ::—your expres-
sions can use it just as expressions in your program do. Since one
scope may be defined in another, you can use :: repeatedly if nec-
essary, for example in an expression like ‘scope1::scope2::name’.
GDB also allows resolving name scope by reference to source files,
in both C and C++ debugging (see Section 8.2 “Program variables,”
page 66).

9.4.1.4 C and C++ defaults

If you allow GDB to set type and range checking automatically, they
both default to off whenever the working language changes to C or C++.

94 11 July 1995

Chapter 9: Using GDB with Different Languages

This happens regardless of whether you or GDB selects the working
language.

If you allow GDB to set the language automatically, it recognizes
source files whose names end with ‘.c’, ‘.C’, or ‘.cc’, and when GDB
enters code compiled from one of these files, it sets the working language
to C or C++. See Section 9.1.3 “Having GDB infer the source language,”
page 86, for further details.

9.4.1.5 C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking
is not used. However, if you turn type checking on, GDB considers two
variables type equivalent if:
� The two variables are structured and have the same structure,

union, or enumerated tag.
� The two variables have the same type name, or types that have been

declared equivalent through typedef.

Range checking, if turned on, is done on mathematical operations.
Array indices are not checked, since they are often used to index a pointer
that is not itself an array.

9.4.1.6 GDB and C

The set print union and show print union commands apply to the
union type. When set to ‘on’, any union that is inside a struct or class
is also printed. Otherwise, it appears as ‘{...}’.

The @ operator aids in the debugging of dynamic arrays, formed with
pointers and a memory allocation function. See Section 8.1 “Expres-
sions,” page 65.

9.4.1.7 GDB features for C++

Some GDB commands are particularly useful with C++, and some are
designed specifically for use with C++. Here is a summary:

breakpoint menus
When you want a breakpoint in a function whose name is
overloaded, GDB breakpoint menus help you specify which
function definition you want. See Section 5.1.8 “Breakpoint
menus,” page 45.

rbreak regex
Setting breakpoints using regular expressions is helpful for
setting breakpoints on overloaded functions that are not

c y g n u s s u p p o r t 95

Debugging with GDB

members of any special classes. See Section 5.1.1 “Setting
breakpoints,” page 34.

catch exceptions
info catch

Debug C++ exception handling using these commands. See
Section 5.1.3 “Breakpoints and exceptions,” page 39.

ptype typename
Print inheritance relationships as well as other information
for type typename. See Chapter 10 “Examining the Symbol
Table,” page 103.

set print demangle
show print demangle
set print asm-demangle
show print asm-demangle

Control whether C++ symbols display in their source form,
both when displaying code as C++ source and when display-
ing disassemblies. See Section 8.7 “Print settings,” page 73.

set print object
show print object

Choose whether to print derived (actual) or declared types of
objects. See Section 8.7 “Print settings,” page 73.

set print vtbl
show print vtbl

Control the format for printing virtual function tables. See
Section 8.7 “Print settings,” page 73.

Overloaded symbol names
You can specify a particular definition of an overloaded sym-
bol, using the same notation that is used to declare such
symbols in C++: type symbol(types) rather than just sym-
bol. You can also use the GDB command-line word comple-
tion facilities to list the available choices, or to finish the type
list for you. See Section 3.2 “Command completion,” page 16,
for details on how to do this.

9.4.2 Modula-2

The extensions made to GDB to support Modula-2 only support output
from the gnu Modula-2 compiler (which is currently being developed).
Other Modula-2 compilers are not currently supported, and attempting
to debug executables produced by them is most likely to give an error as
GDB reads in the executable’s symbol table.

96 11 July 1995

Chapter 9: Using GDB with Different Languages

9.4.2.1 Operators

Operators must be defined on values of specific types. For instance,
+ is defined on numbers, but not on structures. Operators are often
defined on groups of types. For the purposes of Modula-2, the following
definitions hold:
� Integral types consist of INTEGER, CARDINAL, and their subranges.
� Character types consist of CHAR and its subranges.
� Floating-point types consist of REAL.
� Pointer types consist of anything declared as POINTER TO type.
� Scalar types consist of all of the above.
� Set types consist of SET and BITSET types.
� Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing
precedence:

, Function argument or array index separator.

:= Assignment. The value of var := value is value.

<, > Less than, greater than on integral, floating-point, or enu-
merated types.

<=, >= Less than, greater than, less than or equal to, greater than
or equal to on integral, floating-point and enumerated types,
or set inclusion on set types. Same precedence as <.

=, <>, # Equality and two ways of expressing inequality, valid on
scalar types. Same precedence as <. In GDB scripts, only
<> is available for inequality, since # conflicts with the script
comment character.

IN Set membership. Defined on set types and the types of their
members. Same precedence as <.

OR Boolean disjunction. Defined on boolean types.

AND, & Boolean conjuction. Defined on boolean types.

@ The GDB “artificial array” operator (see Section 8.1 “Expres-
sions,” page 65).

+, - Addition and subtraction on integral and floating-point
types, or union and difference on set types.

* Multiplication on integral and floating-point types, or set
intersection on set types.

c y g n u s s u p p o r t 97

Debugging with GDB

/ Division on floating-point types, or symmetric set difference
on set types. Same precedence as *.

DIV, MOD Integer division and remainder. Defined on integral types.
Same precedence as *.

- Negative. Defined on INTEGER and REAL data.

ˆ Pointer dereferencing. Defined on pointer types.

NOT Boolean negation. Defined on boolean types. Same prece-
dence as ˆ.

. RECORD field selector. Defined on RECORD data. Same prece-
dence as ˆ.

[] Array indexing. Defined on ARRAY data. Same precedence as
ˆ.

() Procedure argument list. Defined on PROCEDURE objects.
Same precedence as ˆ.

::, . GDB and Modula-2 scope operators.

Warning: Sets and their operations are not yet supported, so
GDB treats the use of the operator IN, or the use of operators +,
-, *, /, =, , <>, #, <=, and >= on sets as an error.

9.4.2.2 Built-in functions and procedures

Modula-2 also makes available several built-in procedures and func-
tions. In describing these, the following metavariables are used:

a represents an ARRAY variable.

c represents a CHAR constant or variable.

i represents a variable or constant of integral type.

m represents an identifier that belongs to a set. Generally used
in the same function with the metavariable s. The type of s
should be SET OF mtype (where mtype is the type of m).

n represents a variable or constant of integral or floating-point
type.

r represents a variable or constant of floating-point type.

t represents a type.

v represents a variable.

x represents a variable or constant of one of many types. See
the explanation of the function for details.

98 11 July 1995

Chapter 9: Using GDB with Different Languages

All Modula-2 built-in procedures also return a result, described below.

ABS(n) Returns the absolute value of n.

CAP(c) If c is a lower case letter, it returns its upper case equivalent,
otherwise it returns its argument

CHR(i) Returns the character whose ordinal value is i.

DEC(v) Decrements the value in the variable v. Returns the new
value.

DEC(v,i) Decrements the value in the variable v by i. Returns the
new value.

EXCL(m,s)
Removes the element m from the set s. Returns the new set.

FLOAT(i) Returns the floating point equivalent of the integer i.

HIGH(a) Returns the index of the last member of a.

INC(v) Increments the value in the variable v. Returns the new
value.

INC(v,i) Increments the value in the variable v by i. Returns the new
value.

INCL(m,s)
Adds the element m to the set s if it is not already there.
Returns the new set.

MAX(t) Returns the maximum value of the type t.

MIN(t) Returns the minimum value of the type t.

ODD(i) Returns boolean TRUE if i is an odd number.

ORD(x) Returns the ordinal value of its argument. For example,
the ordinal value of a character is its ASCII value (on ma-
chines supporting the ASCII character set). x must be of an
ordered type, which include integral, character and enumer-
ated types.

SIZE(x) Returns the size of its argument. x can be a variable or a
type.

TRUNC(r) Returns the integral part of r.

VAL(t,i) Returns the member of the type t whose ordinal value is i.

Warning: Sets and their operations are not yet supported, so
GDB treats the use of procedures INCL and EXCL as an error.

c y g n u s s u p p o r t 99

Debugging with GDB

9.4.2.3 Constants

GDB allows you to express the constants of Modula-2 in the following
ways:
� Integer constants are simply a sequence of digits. When used in

an expression, a constant is interpreted to be type-compatible with
the rest of the expression. Hexadecimal integers are specified by a
trailing ‘H’, and octal integers by a trailing ‘B’.

� Floating point constants appear as a sequence of digits, followed by a
decimal point and another sequence of digits. An optional exponent
can then be specified, in the form ‘E[+|-]nnn’, where ‘[+|-]nnn’ is
the desired exponent. All of the digits of the floating point constant
must be valid decimal (base 10) digits.

� Character constants consist of a single character enclosed by a pair
of like quotes, either single (’) or double ("). They may also be ex-
pressed by their ordinal value (their ASCII value, usually) followed
by a ‘C’.

� String constants consist of a sequence of characters enclosed by a
pair of like quotes, either single (’) or double ("). Escape sequences
in the style of C are also allowed. See Section 9.4.1.2 “C and C++
constants,” page 93, for a brief explanation of escape sequences.

� Enumerated constants consist of an enumerated identifier.
� Boolean constants consist of the identifiers TRUE and FALSE.
� Pointer constants consist of integral values only.
� Set constants are not yet supported.

9.4.2.4 Modula-2 defaults

If type and range checking are set automatically by GDB, they both
default to on whenever the working language changes to Modula-2. This
happens regardless of whether you, or GDB, selected the working lan-
guage.

If you allow GDB to set the language automatically, then entering
code compiled from a file whose name ends with ‘.mod’ sets the working
language to Modula-2. See Section 9.1.3 “Having GDB set the language
automatically,” page 86, for further details.

9.4.2.5 Deviations from standard Modula-2

A few changes have been made to make Modula-2 programs easier to
debug. This is done primarily via loosening its type strictness:

100 11 July 1995

Chapter 9: Using GDB with Different Languages

� Unlike in standard Modula-2, pointer constants can be formed by
integers. This allows you to modify pointer variables during de-
bugging. (In standard Modula-2, the actual address contained in a
pointer variable is hidden from you; it can only be modified through
direct assignment to another pointer variable or expression that
returned a pointer.)

� C escape sequences can be used in strings and characters to repre-
sent non-printable characters. GDB prints out strings with these
escape sequences embedded. Single non-printable characters are
printed using the ‘CHR(nnn)’ format.

� The assignment operator (:=) returns the value of its right-hand
argument.

� All built-in procedures both modify and return their argument.

9.4.2.6 Modula-2 type and range checks

Warning: in this release, GDB does not yet perform type or
range checking.

GDB considers two Modula-2 variables type equivalent if:
� They are of types that have been declared equivalent via a TYPE t1

= t2 statement
� They have been declared on the same line. (Note: This is true of the
gnu Modula-2 compiler, but it may not be true of other compilers.)

As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.

Range checking is done on all mathematical operations, assignment,
array index bounds, and all built-in functions and procedures.

9.4.2.7 The scope operators :: and .

There are a few subtle differences between the Modula-2 scope oper-
ator (.) and the GDB scope operator (::). The two have similar syntax:

module . id
scope :: id

where scope is the name of a module or a procedure, module the name of
a module, and id is any declared identifier within your program, except
another module.

Using the :: operator makes GDB search the scope specified by scope
for the identifier id. If it is not found in the specified scope, then GDB
searches all scopes enclosing the one specified by scope.

c y g n u s s u p p o r t 101

Debugging with GDB

Using the . operator makes GDB search the current scope for the
identifier specified by id that was imported from the definition module
specified by module. With this operator, it is an error if the identifier
id was not imported from definition module module, or if id is not an
identifier in module.

9.4.2.8 GDB and Modula-2

Some GDB commands have little use when debugging Modula-2 pro-
grams. Five subcommands of set print and show print apply specif-
ically to C and C++: ‘vtbl’, ‘demangle’, ‘asm-demangle’, ‘object’, and
‘union’. The first four apply to C++, and the last to the C union type,
which has no direct analogue in Modula-2.

The @ operator (see Section 8.1 “Expressions,” page 65), while avail-
able while using any language, is not useful with Modula-2. Its intent
is to aid the debugging of dynamic arrays, which cannot be created in
Modula-2 as they can in C or C++. However, because an address can be
specified by an integral constant, the construct ‘{type}adrexp’ is still
useful. (see Section 8.1 “Expressions,” page 65)

In GDB scripts, the Modula-2 inequality operator # is interpreted as
the beginning of a comment. Use <> instead.

102 11 July 1995

Chapter 10: Examining the Symbol Table

10 Examining the Symbol Table

The commands described in this section allow you to inquire about
the symbols (names of variables, functions and types) defined in your
program. This information is inherent in the text of your program and
does not change as your program executes. GDB finds it in your pro-
gram’s symbol table, in the file indicated when you started GDB (see
Section 2.1.1 “Choosing files,” page 10), or by one of the file-management
commands (see Section 12.1 “Commands to specify files,” page 111).

Occasionally, you may need to refer to symbols that contain unusual
characters, which GDB ordinarily treats as word delimiters. The most
frequent case is in referring to static variables in other source files (see
Section 8.2 “Program variables,” page 66). File names are recorded in
object files as debugging symbols, but GDB would ordinarily parse a
typical file name, like ‘foo.c’, as the three words ‘foo’ ‘.’ ‘c’. To allow
GDB to recognize ‘foo.c’ as a single symbol, enclose it in single quotes;
for example,

p ’foo.c’::x

looks up the value of x in the scope of the file ‘foo.c’.

info address symbol
Describe where the data for symbol is stored. For a register
variable, this says which register it is kept in. For a non-
register local variable, this prints the stack-frame offset at
which the variable is always stored.
Note the contrast with ‘print &symbol’, which does not work
at all for a register variable, and for a stack local variable
prints the exact address of the current instantiation of the
variable.

whatis exp
Print the data type of expression exp. exp is not actually
evaluated, and any side-effecting operations (such as assign-
ments or function calls) inside it do not take place. See Sec-
tion 8.1 “Expressions,” page 65.

whatis Print the data type of $, the last value in the value history.

ptype typename
Print a description of data type typename. typename
may be the name of a type, or for C code it may have
the form ‘class class-name’, ‘struct struct-tag ’, ‘union
union-tag ’ or ‘enum enum-tag ’.

c y g n u s s u p p o r t 103

Debugging with GDB

ptype exp
ptype Print a description of the type of expression exp. ptype dif-

fers from whatis by printing a detailed description, instead
of just the name of the type.
For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:
(gdb) whatis v

type = struct complex
(gdb) ptype v

type = struct complex {

double real;

double imag;

}

As with whatis, using ptype without an argument refers to
the type of $, the last value in the value history.

info types regexp
info types

Print a brief description of all types whose name matches
regexp (or all types in your program, if you supply no ar-
gument). Each complete typename is matched as though it
were a complete line; thus, ‘i type value’ gives information
on all types in your program whose name includes the string
value, but ‘i type ˆvalue$’ gives information only on types
whose complete name is value.
This command differs from ptype in two ways: first, like
whatis, it does not print a detailed description; second, it
lists all source files where a type is defined.

info source
Show the name of the current source file—that is, the
source file for the function containing the current point of
execution—and the language it was written in.

info sources
Print the names of all source files in your program for which
there is debugging information, organized into two lists: files
whose symbols have already been read, and files whose sym-
bols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose
names contain a match for regular expression regexp. Thus,

104 11 July 1995

Chapter 10: Examining the Symbol Table

‘info fun step’ finds all functions whose names include step;
‘info fun ˆstep’ finds those whose names start with step.

info variables
Print the names and data types of all variables that are de-
clared outside of functions (i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for
local variables) whose names contain a match for regular
expression regexp.
Some systems allow individual object files that make up your
program to be replaced without stopping and restarting your
program. For example, in VxWorks you can simply recompile
a defective object file and keep on running. If you are running
on one of these systems, you can allow GDB to reload the
symbols for automatically relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding
source file when an object file with a particular
name is seen again.

set symbol-reloading off
Do not replace symbol definitions when re-
encountering object files of the same name. This
is the default state; if you are not running on
a system that permits automatically relinking
modules, you should leave symbol-reloading off,
since otherwise GDB may discard symbols when
linking large programs, that may contain several
modules (from different directories or libraries)
with the same name.

show symbol-reloading
Show the current on or off setting.

maint print symbols filename
maint print psymbols filename
maint print msymbols filename

Write a dump of debugging symbol data into the file file-
name. These commands are used to debug the GDB symbol-
reading code. Only symbols with debugging data are in-
cluded. If you use ‘maint print symbols’, GDB includes all
the symbols for which it has already collected full details:
that is, filename reflects symbols for only those files whose
symbols GDB has read. You can use the command info

c y g n u s s u p p o r t 105

Debugging with GDB

sources to find out which files these are. If you use ‘maint
print psymbols’ instead, the dump shows information about
symbols that GDB only knows partially—that is, symbols
defined in files that GDB has skimmed, but not yet read
completely. Finally, ‘maint print msymbols’ dumps just the
minimal symbol information required for each object file from
which GDB has read some symbols. See Section 12.1 “Com-
mands to specify files,” page 111, for a discussion of how GDB
reads symbols (in the description of symbol-file).

106 11 July 1995

Chapter 11: Altering Execution

11 Altering Execution

Once you think you have found an error in your program, you might
want to find out for certain whether correcting the apparent error would
lead to correct results in the rest of the run. You can find the answer
by experiment, using the GDB features for altering execution of the
program.

For example, you can store new values into variables or memory
locations, give your program a signal, restart it at a different address,
or even return prematurely from a function.

11.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression.
See Section 8.1 “Expressions,” page 65. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the
assignment expression (which is 4). See Chapter 9 “Using GDB with
Different Languages,” page 85, for more information on operators in
supported languages.

If you are not interested in seeing the value of the assignment, use
the set command instead of the print command. set is really the same
as print except that the expression’s value is not printed and is not
put in the value history (see Section 8.8 “Value history,” page 78). The
expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears
identical to a set subcommand, use the set variable command instead
of just set. This command is identical to set except for its lack of
subcommands. For example, if your program has a variable width, you
get an error if you try to set a new value with just ‘set width=13’, because
GDB has the command set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is ‘=47’. In order to actually set the
program’s variable width, use

(gdb) set var width=47

GDB allows more implicit conversions in assignments than C; you
can freely store an integer value into a pointer variable or vice versa,

c y g n u s s u p p o r t 107

Debugging with GDB

and you can convert any structure to any other structure that is the
same length or shorter.

To store values into arbitrary places in memory, use the ‘{. ..}’ con-
struct to generate a value of specified type at a specified address (see
Section 8.1 “Expressions,” page 65). For example, {int}0x83040 refers
to memory location 0x83040 as an integer (which implies a certain size
and representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2 Continuing at a different address

Ordinarily, when you continue your program, you do so at the place
where it stopped, with the continue command. You can instead continue
at an address of your own choosing, with the following commands:

jump linespec
Resume execution at line linespec. Execution stops again
immediately if there is a breakpoint there. See Section 7.1
“Printing source lines,” page 59, for a description of the dif-
ferent forms of linespec.
The jump command does not change the current stack frame,
or the stack pointer, or the contents of any memory location or
any register other than the program counter. If line linespec
is in a different function from the one currently executing, the
results may be bizarre if the two functions expect different
patterns of arguments or of local variables. For this reason,
the jump command requests confirmation if the specified line
is not in the function currently executing. However, even
bizarre results are predictable if you are well acquainted
with the machine-language code of your program.

jump *address
Resume execution at the instruction at address address.

You can get much the same effect as the jump command by storing a
new value into the register $pc. The difference is that this does not start
your program running; it only changes the address of where it will run
when you continue. For example,

set $pc = 0x485

makes the next continue command or stepping command execute at
address 0x485, rather than at the address where your program stopped.
See Section 5.2 “Continuing and stepping,” page 45.

108 11 July 1995

Chapter 11: Altering Execution

The most common occasion to use the jump command is to back up–
perhaps with more breakpoints set–over a portion of a program that has
already executed, in order to examine its execution in more detail.

11.3 Giving your program a signal

signal signal
Resume execution where your program stopped, but imme-
diately give it the signal signal. signal can be the name
or the number of a signal. For example, on many systems
signal 2 and signal SIGINT are both ways of sending an
interrupt signal.
Alternatively, if signal is zero, continue execution without
giving a signal. This is useful when your program stopped on
account of a signal and would ordinary see the signal when
resumed with the continue command; ‘signal 0’ causes it to
resume without a signal.
signal does not repeat when you press RET a second time
after executing the command.

Invoking the signal command is not the same as invoking the kill
utility from the shell. Sending a signal with kill causes GDB to decide
what to do with the signal depending on the signal handling tables (see
Section 5.3 “Signals,” page 49). The signal command passes the signal
directly to your program.

11.4 Returning from a function

return
return expression

You can cancel execution of a function call with the return
command. If you give an expression argument, its value is
used as the function’s return value.

When you use return, GDB discards the selected stack frame (and all
frames within it). You can think of this as making the discarded frame
return prematurely. If you wish to specify a value to be returned, give
that value as the argument to return.

This pops the selected stack frame (see Section 6.3 “Selecting a frame,”
page 55), and any other frames inside of it, leaving its caller as the
innermost remaining frame. That frame becomes selected. The specified
value is stored in the registers used for returning values of functions.

c y g n u s s u p p o r t 109

Debugging with GDB

The return command does not resume execution; it leaves the pro-
gram stopped in the state that would exist if the function had just re-
turned. In contrast, the finish command (see Section 5.2 “Continuing
and stepping,” page 45) resumes execution until the selected stack frame
returns naturally.

11.5 Calling program functions

call expr
Evaluate the expression expr without displaying void re-
turned values.

You can use this variant of the print command if you want to execute
a function from your program, but without cluttering the output with
void returned values. If the result is not void, it is printed and saved in
the value history.

A new user-controlled variable, call_scratch_address, specifies the
location of a scratch area to be used when GDB calls a function in the
target. This is necessary because the usual method of putting the scratch
area on the stack does not work in systems that have separate instruction
and data spaces.

11.6 Patching programs

By default, GDB opens the file containing your program’s executable
code (or the corefile) read-only. This prevents accidental alterations to
machine code; but it also prevents you from intentionally patching your
program’s binary.

If you’d like to be able to patch the binary, you can specify that ex-
plicitly with the set write command. For example, you might want to
turn on internal debugging flags, or even to make emergency repairs.

set write on
set write off

If you specify ‘set write on’, GDB opens executable and core
files for both reading and writing; if you specify ‘set write
off’ (the default), GDB opens them read-only.
If you have already loaded a file, you must load it again (using
the exec-file or core-file command) after changing set
write, for your new setting to take effect.

show write
Display whether executable files and core files are opened for
writing as well as reading.

110 11 July 1995

Chapter 12: GDB Files

12 GDB Files

GDB needs to know the file name of the program to be debugged, both
in order to read its symbol table and in order to start your program. To
debug a core dump of a previous run, you must also tell GDB the name
of the core dump file.

12.1 Commands to specify files

You may want to specify executable and core dump file names. The
usual way to do this is at start-up time, using the arguments to GDB’s
start-up commands (see Chapter 2 “Getting In and Out of GDB,” page 9).

Occasionally it is necessary to change to a different file during a GDB
session. Or you may run GDB and forget to specify a file you want to use.
In these situations the GDB commands to specify new files are useful.

file filename
Use filename as the program to be debugged. It is read for
its symbols and for the contents of pure memory. It is also
the program executed when you use the run command. If
you do not specify a directory and the file is not found in the
GDB working directory, GDB uses the environment variable
PATH as a list of directories to search, just as the shell does
when looking for a program to run. You can change the value
of this variable, for both GDB and your program, using the
path command.
On systems with memory-mapped files, an auxiliary file
‘filename.syms’ may hold symbol table information for
filename. If so, GDB maps in the symbol table from
‘filename.syms’, starting up more quickly. See the descrip-
tions of the file options ‘-mapped’ and ‘-readnow’ (available
on the command line, and with the commands file, symbol-
file, or add-symbol-file, described below), for more infor-
mation.

file file with no argument makes GDB discard any information
it has on both executable file and the symbol table.

exec-file [filename]
Specify that the program to be run (but not the symbol ta-
ble) is found in filename. GDB searches the environment
variable PATH if necessary to locate your program. Omitting
filename means to discard information on the executable
file.

c y g n u s s u p p o r t 111

Debugging with GDB

symbol-file [filename]
Read symbol table information from file filename. PATH is
searched when necessary. Use the file command to get both
symbol table and program to run from the same file.
symbol-file with no argument clears out GDB information
on your program’s symbol table.
The symbol-file command causes GDB to forget the con-
tents of its convenience variables, the value history, and all
breakpoints and auto-display expressions. This is because
they may contain pointers to the internal data recording
symbols and data types, which are part of the old symbol
table data being discarded inside GDB.
symbol-file does not repeat if you press RET again after
executing it once.
When GDB is configured for a particular environment, it un-
derstands debugging information in whatever format is the
standard generated for that environment; you may use ei-
ther a gnu compiler, or other compilers that adhere to the
local conventions. Best results are usually obtained from
gnu compilers; for example, using gcc you can generate de-
bugging information for optimized code.
On some kinds of object files, the symbol-file command
does not normally read the symbol table in full right away.
Instead, it scans the symbol table quickly to find which source
files and which symbols are present. The details are read
later, one source file at a time, as they are needed.
The purpose of this two-stage reading strategy is to make
GDB start up faster. For the most part, it is invisible except
for occasional pauses while the symbol table details for a
particular source file are being read. (The set verbose com-
mand can turn these pauses into messages if desired. See
Section 14.6 “Optional warnings and messages,” page 148.)
We have not implemented the two-stage strategy for COFF
yet. When the symbol table is stored in COFF format,
symbol-file reads the symbol table data in full right away.

symbol-file filename [-readnow] [-mapped]
file filename [-readnow] [-mapped]

You can override the GDB two-stage strategy for reading
symbol tables by using the ‘-readnow’ option with any of the
commands that load symbol table information, if you want
to be sure GDB has the entire symbol table available.
If memory-mapped files are available on your system through
the mmap system call, you can use another option, ‘-mapped’,

112 11 July 1995

Chapter 12: GDB Files

to cause GDB to write the symbols for your program into a
reusable file. Future GDB debugging sessions map in sym-
bol information from this auxiliary symbol file (if the pro-
gram has not changed), rather than spending time reading
the symbol table from the executable program. Using the
‘-mapped’ option has the same effect as starting GDB with
the ‘-mapped’ command-line option.
You can use both options together, to make sure the auxiliary
symbol file has all the symbol information for your program.
The auxiliary symbol file for a program called myprog is
called ‘myprog.syms’. Once this file exists (so long as it is
newer than the corresponding executable), GDB always at-
tempts to use it when you debug myprog; no special options
or commands are needed.
The ‘.syms’ file is specific to the host machine where you run
GDB. It holds an exact image of the internal GDB symbol
table. It cannot be shared across multiple host platforms.

core-file [filename]
Specify the whereabouts of a core dump file to be used as the
“contents of memory”. Traditionally, core files contain only
some parts of the address space of the process that gener-
ated them; GDB can access the executable file itself for other
parts.
core-file with no argument specifies that no core file is to
be used.
Note that the core file is ignored when your program is actu-
ally running under GDB. So, if you have been running your
program and you wish to debug a core file instead, you must
kill the subprocess in which the program is running. To do
this, use the kill command (see Section 4.8 “Killing the child
process,” page 28).

load filename
Depending on what remote debugging facilities are config-
ured into GDB, the load command may be available. Where
it exists, it is meant to make filename (an executable) avail-
able for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the file-
name symbol table in GDB, like the add-symbol-file com-
mand.
If your GDB does not have a load command, attempting to
execute it gets the error message “You can’t do that when
your target is .. .”

c y g n u s s u p p o r t 113

Debugging with GDB

The file is loaded at whatever address is specified in the
executable. For some object file formats, you can specify the
load address when you link the program; for other formats,
like a.out, the object file format specifies a fixed address.
On VxWorks, load links filename dynamically on the cur-
rent target system as well as adding its symbols in GDB.
With the Nindy interface to an Intel 960 board, load down-
loads filename to the 960 as well as adding its symbols in
GDB.
When you select remote debugging to a Hitachi SH, H8/300,
or H8/500 board (see Section 13.4.7 “GDB and Hitachi Micro-
processors,” page 139), the load command downloads your
program to the Hitachi board and also opens it as the cur-
rent executable target for GDB on your host (like the file
command).
load does not repeat if you press RET again after using it.

add-symbol-file filename address
add-symbol-file filename address [-readnow] [-mapped]

The add-symbol-file command reads additional symbol ta-
ble information from the file filename. You would use this
command when filename has been dynamically loaded (by
some other means) into the program that is running. ad-
dress should be the memory address at which the file has
been loaded; GDB cannot figure this out for itself. You can
specify address as an expression.
The symbol table of the file filename is added to the sym-
bol table originally read with the symbol-file command.
You can use the add-symbol-file command any number of
times; the new symbol data thus read keeps adding to the old.
To discard all old symbol data instead, use the symbol-file
command.
add-symbol-file does not repeat if you press RET after using
it.
You can use the ‘-mapped’ and ‘-readnow’ options just as with
the symbol-file command, to change how GDB manages
the symbol table information for filename.

add-shared-symbol-file
The add-shared-symbol-file command can be used only
under Harris’ CXUX operating system for the Motorola 88k.
GDB automatically looks for shared libraries, however if
GDB does not find yours, you can run add-shared-symbol-
file. It takes no arguments.

114 11 July 1995

Chapter 12: GDB Files

section The section command changes the base address of section
SECTION of the exec file to ADDR. This can be used if the
exec file does not contain section addresses, (such as in the
a.out format), or when the addresses specified in the file itself
are wrong. Each section must be changed separately. The
“info files” command lists all the sections and their addresses.

info files
info target

info files and info target are synonymous; both print the
current target (see Chapter 13 “Specifying a Debugging Tar-
get,” page 119), including the names of the executable and
core dump files currently in use by GDB, and the files from
which symbols were loaded. The command help target lists
all possible targets rather than current ones.

All file-specifying commands allow both absolute and relative file
names as arguments. GDB always converts the file name to an absolute
file name and remembers it that way.

GDB supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared li-
braries. GDB automatically loads symbol definitions from shared li-
braries when you use the run command, or when you examine a core
file. (Before you issue the run command, GDB does not understand
references to a function in a shared library, however—unless you are
debugging a core file).

info share
info sharedlibrary

Print the names of the shared libraries which are currently
loaded.

sharedlibrary regex
share regex

Load shared object library symbols for files matching a Unix
regular expression. As with files loaded automatically, it
only loads shared libraries required by your program for a
core file or after typing run. If regex is omitted all shared
libraries required by your program are loaded.

12.2 Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems,
such as symbol types it does not recognize, or known bugs in compiler
output. By default, GDB does not notify you of such problems, since they
are relatively common and primarily of interest to people debugging com-
pilers. If you are interested in seeing information about ill-constructed

c y g n u s s u p p o r t 115

Debugging with GDB

symbol tables, you can either ask GDB to print only one message about
each such type of problem, no matter how many times the problem oc-
curs; or you can ask GDB to print more messages, to see how many times
the problems occur, with the set complaints command (see Section 14.6
“Optional warnings and messages,” page 148).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin
and end (such as at the start of a function or a block of
statements). This error indicates that an inner scope block
is not fully contained in its outer scope blocks.
GDB circumvents the problem by treating the inner block as
if it had the same scope as the outer block. In the error mes-
sage, symbol may be shown as “(don’t know)” if the outer
block is not a function.

block at address out of order
The symbol information for symbol scope blocks should occur
in order of increasing addresses. This error indicates that it
does not do so.
GDB does not circumvent this problem, and has trouble lo-
cating symbols in the source file whose symbols it is reading.
(You can often determine what source file is affected by spec-
ifying set verbose on. See Section 14.6 “Optional warnings
and messages,” page 148.)

bad block start address patched
The symbol information for a symbol scope block has a start
address smaller than the address of the preceding source
line. This is known to occur in the SunOS 4.1.1 (and earlier)
C compiler.
GDB circumvents the problem by treating the symbol scope
block as starting on the previous source line.

bad string table offset in symbol n
Symbol number n contains a pointer into the string table
which is larger than the size of the string table.
GDB circumvents the problem by considering the symbol to
have the name foo, which may cause other problems if many
symbols end up with this name.

unknown symbol type 0xnn
The symbol information contains new data types that GDB
does not yet know how to read. 0xnn is the symbol type of
the misunderstood information, in hexadecimal.

116 11 July 1995

Chapter 12: GDB Files

GDB circumvents the error by ignoring this symbol informa-
tion. This usually allows you to debug your program, though
certain symbols are not accessible. If you encounter such a
problem and feel like debugging it, you can debug gdb with
itself, breakpoint on complain, then go up to the function
read_dbx_symtab and examine *bufp to see the symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...
The symbol information for a C++member function is missing
some information that recent versions of the compiler should
have output for it.

info mismatch between compiler and debugger
GDB could not parse a type specification output by the com-
piler.

c y g n u s s u p p o r t 117

Debugging with GDB

118 11 July 1995

Chapter 13: Specifying a Debugging Target

13 Specifying a Debugging Target
A target is the execution environment occupied by your program.

Often, GDB runs in the same host environment as your program; in
that case, the debugging target is specified as a side effect when you
use the file or core commands. When you need more flexibility—for
example, running GDB on a physically separate host, or controlling a
standalone system over a serial port or a realtime system over a TCP/IP
connection—you can use the target command to specify one of the target
types configured for GDB (see Section 13.3 “Commands for managing
targets,” page 122).

13.1 Active targets

There are three classes of targets: processes, core files, and executable
files. GDB can work concurrently on up to three active targets, one in
each class. This allows you to (for example) start a process and inspect
its activity without abandoning your work on a core file.

For example, if you execute ‘gdb a.out’, then the executable file a.out
is the only active target. If you designate a core file as well—presumably
from a prior run that crashed and coredumped—then GDB has two active
targets and uses them in tandem, looking first in the corefile target,
then in the executable file, to satisfy requests for memory addresses.
(Typically, these two classes of target are complementary, since core files
contain only a program’s read-write memory—variables and so on—plus
machine status, while executable files contain only the program text and
initialized data.)

When you type run, your executable file becomes an active process
target as well. When a process target is active, all GDB commands
requesting memory addresses refer to that target; addresses in an active
core file or executable file target are obscured while the process target is
active.

Use the core-file and exec-file commands to select a new core
file or executable target (see Section 12.1 “Commands to specify files,”
page 111). To specify as a target a process that is already running, use
the attach command (see Section 4.7 “Debugging an already-running
process,” page 27).

13.2 Commands for managing targets

target type parameters
Connects the GDB host environment to a target machine
or process. A target is typically a protocol for talking to

c y g n u s s u p p o r t 119

Debugging with GDB

debugging facilities. You use the argument type to specify
the type or protocol of the target machine.
Further parameters are interpreted by the target protocol,
but typically include things like device names or host names
to connect with, process numbers, and baud rates.
The target command does not repeat if you press RET again
after executing the command.

help target
Displays the names of all targets available. To display tar-
gets currently selected, use either info target or info files
(see Section 12.1 “Commands to specify files,” page 111).

help target name
Describe a particular target, including any parameters nec-
essary to select it.

set gnutarget args
GDB uses its own library BFD to read your files and knows
whether it is reading an executable, a core, or a .o file. How-
ever you can specify the file format if you want with the set
gnutarget command. Unlike most target commands, with
gnutarget the target is a program, not a machine.
Warning: To specify a file format with set gnutarget, you
must know the actual BFD name.
See Section 12.1 “Commands to specify files,” page 111.

show gnutarget
Use the show gnutarget command to display what file for-
mat gnutarget is set to read. If you have not set gnutarget,
GDB will determine the file format for each file automati-
cally and show gnutarget displays: The current BDF target
is "auto".

Here are some common targets (available or not depending on the
GDB configuration). Wherever it is not specified, dev is the serial device
as for target remote:

target exec program
An executable file. ‘target exec program’ is the same as
‘exec-file program’.

target core filename
A core dump file. ‘target core filename’ is the same as
‘core-file filename’.

target remote dev
Remote serial target in GDB-specific protocol. The argument
dev specifies what serial device to use for the connection

120 11 July 1995

Chapter 13: Specifying a Debugging Target

(e.g. ‘/dev/ttya’). See Section 13.4 “Remote debugging,”
page 123. target remote now supports the load command.
This is only useful if you have some other way of getting the
stub to the target system, and you can put it somewhere in
memory where it won’t get clobbered by the download.

target sim
CPU simulator. See Section 13.4.9 “Simulated CPU Target,”
page 142.

target udi keyword
Remote AMD29K target, using the AMD UDI protocol. The
keyword argument specifies which 29K board or simulator
to use. See Section 13.4.3 “The UDI protocol for AMD29K,”
page 133.

target amd-eb dev speed PROG
Remote PC-resident AMD EB29K board, attached over serial
lines. dev is the serial device, as for target remote; speed
allows you to specify the linespeed; and PROG is the name
of the program to be debugged, as it appears to DOS on the
PC. See Section 13.4.4 “The EBMON protocol for AMD29K,”
page 134.

target hms dev
A Hitachi SH, H8/300, or H8/500 board, attached via se-
rial line to your host. Use special commands device and
speed to control the serial line and the communications speed
used. See Section 13.4.7 “GDB and Hitachi Microprocessors,”
page 139.

target nindy devicename
An Intel 960 board controlled by a Nindy Monitor. device-
name is the name of the serial device to use for the connection,
e.g. ‘/dev/ttya’. See Section 13.4.2 “GDB with a remote i960
(Nindy),” page 132.

target st2000 dev speed
A Tandem ST2000 phone switch, running Tandem’s STD-
BUG protocol. dev is the name of the device attached to the
ST2000 serial line; speed is the communication line speed.
The arguments are not used if GDB is configured to connect
to the ST2000 using TCP or Telnet. See Section 13.4.5 “GDB
with a Tandem ST2000,” page 137.

target vxworks machinename
A VxWorks system, attached via TCP/IP. The argument ma-
chinename is the target system’s machine name or IP ad-
dress. See Section 13.4.6 “GDB and VxWorks,” page 137.

c y g n u s s u p p o r t 121

Debugging with GDB

target cpu32bug dev
CPU32BUG monitor, running on a CPU32 (M68K) board.

target op50n dev
OP50N monitor, running on an OKI HPPA board.

target w89k dev
W89K monitor, running on a Winbond HPPA board.

target est dev
EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev
ROM 68K monitor, running on an IDP board.

target array dev
Array Tech LSI33K RAID controller board.

target sparclite dev
Fujitsu sparclite boards, used only for the purpose of loading.
You must use an additional command to debug the program.
For example: using target remote dev with GDB standard
remote protocol.

Different targets are available on different configurations of GDB;
your configuration may have more or fewer targets.

13.3 Choosing target byte order

You can now choose which byte order to use with a target system.

set endian auto
Tells GDB to use the byte order associated with the exe-
cutable.

show endian
Print the current setting for byte order.

If you have no executable, or if the current setting does not match
your configuration, you may need to use set endian big or set endian
little.

set endian big
Tells GDB that you are using a big endian chip. For example,
GDB knows that a 68K is always a big endian chip, so you
don’t need to specify it. However, with a bi-endian chip such
as a MIPS, you may need to tell GDB what to expect.

set endian little
Tells GDB that you are using a little endian chip. For exam-
ple, GDB knows that an X86 is always a little endian chip, so

122 11 July 1995

Chapter 13: Specifying a Debugging Target

you don’t need to specify it. However, with a bi-endian chip
such as a MIPS, you may need to tell GDB what to expect.

Warning: Currently, only embedded MIPS configurations support
dynamic selection of target byte order.

13.4 Remote debugging

If you are trying to debug a program running on a machine that cannot
run GDB in the usual way, it is often useful to use remote debugging.
For example, you might use remote debugging on an operating system
kernel, or on a small system which does not have a general purpose
operating system powerful enough to run a full-featured debugger.

Some configurations of GDB have special serial or TCP/IP interfaces
to make this work with particular debugging targets. In addition, GDB
comes with a generic serial protocol (specific to GDB, but not specific to
any particular target system) which you can use if you write the remote
stubs—the code that runs on the remote system to communicate with
GDB.

Other remote targets may be available in your configuration of GDB;
use help target to list them.

13.4.1 The GDB remote serial protocol

To debug a program running on another machine (the debugging
target machine), you must first arrange for all the usual prerequisites
for the program to run by itself. For example, for a C program, you need
1. A startup routine to set up the C runtime environment; these usually

have a name like ‘crt0’. The startup routine may be supplied by
your hardware supplier, or you may have to write your own.

2. You probably need a C subroutine library to support your program’s
subroutine calls, notably managing input and output.

3. A way of getting your program to the other machine—for example,
a download program. These are often supplied by the hardware
manufacturer, but you may have to write your own from hardware
documentation.

The next step is to arrange for your program to use a serial port to
communicate with the machine where GDB is running (the host ma-
chine). In general terms, the scheme looks like this:

On the host,
GDB already understands how to use this protocol; when
everything else is set up, you can simply use the ‘target

c y g n u s s u p p o r t 123

Debugging with GDB

remote’ command (see Chapter 13 “Specifying a Debugging
Target,” page 119).

On the target,
you must link with your program a few special-purpose sub-
routines that implement the GDB remote serial protocol. The
file containing these subroutines is called a debugging stub.
On certain remote targets, you can use an auxiliary program
gdbserver instead of linking a stub into your program. See
Section 13.4.1.5 “Using the gdbserver program,” page 129,
for details.

The debugging stub is specific to the architecture of the remote ma-
chine; for example, use ‘sparc-stub.c’ to debug programs on sparc

boards.
These working remote stubs are distributed with GDB:

sparc-stub.c
For sparc architectures.

m68k-stub.c
For Motorola 680x0 architectures.

i386-stub.c
For Intel 386 and compatible architectures.

The ‘README’ file in the GDB distribution may list other recently added
stubs.

13.4.1.1 What the stub can do for you

The debugging stub for your architecture supplies these three sub-
routines:

set_debug_traps
This routine arranges for handle_exception to run when
your program stops. You must call this subroutine explicitly
near the beginning of your program.

handle_exception
This is the central workhorse, but your program never calls
it explicitly—the setup code arranges for handle_exception
to run when a trap is triggered.
handle_exception takes control when your program stops
during execution (for example, on a breakpoint), and medi-
ates communications with GDB on the host machine. This is
where the communications protocol is implemented; handle_
exception acts as the GDB representative on the target ma-
chine; it begins by sending summary information on the state

124 11 July 1995

Chapter 13: Specifying a Debugging Target

of your program, then continues to execute, retrieving and
transmitting any information GDB needs, until you execute
a GDB command that makes your program resume; at that
point, handle_exception returns control to your own code
on the target machine.

breakpoint
Use this auxiliary subroutine to make your program contain
a breakpoint. Depending on the particular situation, this
may be the only way for GDB to get control. For instance,
if your target machine has some sort of interrupt button,
you won’t need to call this; pressing the interrupt button
transfers control to handle_exception—in effect, to GDB.
On some machines, simply receiving characters on the se-
rial port may also trigger a trap; again, in that situation,
you don’t need to call breakpoint from your own program—
simply running ‘target remote’ from the host GDB session
gets control.
Call breakpoint if none of these is true, or if you simply want
to make certain your program stops at a predetermined point
for the start of your debugging session.

13.4.1.2 What you must do for the stub

The debugging stubs that come with GDB are set up for a particular
chip architecture, but they have no information about the rest of your
debugging target machine.

First of all you need to tell the stub how to communicate with the
serial port.

int getDebugChar()
Write this subroutine to read a single character from the
serial port. It may be identical to getchar for your target
system; a different name is used to allow you to distinguish
the two if you wish.

void putDebugChar(int)
Write this subroutine to write a single character to the serial
port. It may be identical to putchar for your target system;
a different name is used to allow you to distinguish the two
if you wish.

If you want GDB to be able to stop your program while it is running,
you need to use an interrupt-driven serial driver, and arrange for it to
stop when it receives a ˆC (‘\003’, the control-C character). That is the
character which GDB uses to tell the remote system to stop.

c y g n u s s u p p o r t 125

Debugging with GDB

Getting the debugging target to return the proper status to GDB
probably requires changes to the standard stub; one quick and dirty way
is to just execute a breakpoint instruction (the “dirty” part is that GDB
reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are:

void exceptionHandler (int exception_number, void
*exception_address)

Write this function to install exception_address in the ex-
ception handling tables. You need to do this because the
stub does not have any way of knowing what the exception
handling tables on your target system are like (for exam-
ple, the processor’s table might be in rom, containing en-
tries which point to a table in ram). exception_number is
the exception number which should be changed; its mean-
ing is architecture-dependent (for example, different num-
bers might represent divide by zero, misaligned access, etc).
When this exception occurs, control should be transferred di-
rectly to exception_address, and the processor state (stack,
registers, and so on) should be just as it is when a processor
exception occurs. So if you want to use a jump instruction to
reach exception_address, it should be a simple jump, not a
jump to subroutine.
For the 386, exception_address should be installed as an
interrupt gate so that interrupts are masked while the han-
dler runs. The gate should be at privilege level 0 (the most
privileged level). The sparc and 68k stubs are able to mask
interrupts themself without help from exceptionHandler.

void flush_i_cache()
Write this subroutine to flush the instruction cache, if any,
on your target machine. If there is no instruction cache, this
subroutine may be a no-op.
On target machines that have instruction caches, GDB re-
quires this function to make certain that the state of your
program is stable.

You must also make sure this library routine is available:

void *memset(void *, int, int)
This is the standard library function memset that sets an
area of memory to a known value. If you have one of the free
versions of libc.a, memset can be found there; otherwise,
you must either obtain it from your hardware manufacturer,
or write your own.

126 11 July 1995

Chapter 13: Specifying a Debugging Target

If you do not use the GNU C compiler, you may need other standard
library subroutines as well; this varies from one stub to another, but in
general the stubs are likely to use any of the common library subroutines
which gcc generates as inline code.

13.4.1.3 Putting it all together

In summary, when your program is ready to debug, you must follow
these steps.
1. Make sure you have the supporting low-level routines (see Sec-

tion 13.4.1.2 “What you must do for the stub,” page 125):
getDebugChar, putDebugChar,
flush_i_cache, memset, exceptionHandler.

2. Insert these lines near the top of your program:
set_debug_traps();
breakpoint();

3. For the 680x0 stub only, you need to provide a variable called
exceptionHook. Normally you just use

void (*exceptionHook)() = 0;

but if before calling set_debug_traps, you set it to point to a func-
tion in your program, that function is called when GDB continues
after stopping on a trap (for example, bus error). The function indi-
cated by exceptionHook is called with one parameter: an int which
is the exception number.

4. Compile and link together: your program, the GDB debugging stub
for your target architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine
and the GDB host, and identify the serial port used for this on the
host.

6. Download your program to your target machine (or get it there by
whatever means the manufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and spec-
ify as an executable file the program that is running in the remote
machine. This tells GDB how to find your program’s symbols and
the contents of its pure text.
Then establish communication using the target remote com-
mand. Its argument specifies how to communicate with the target
machine—either via a devicename attached to a direct serial line, or
a TCP port (usually to a terminal server which in turn has a serial
line to the target). For example, to use a serial line connected to the
device named ‘/dev/ttyb’:

c y g n u s s u p p o r t 127

Debugging with GDB

target remote /dev/ttyb

To use a TCP connection, use an argument of the form host:port.
For example, to connect to port 2828 on a terminal server named
manyfarms:

target remote manyfarms:2828

Now you can use all the usual commands to examine and change data
and to step and continue the remote program.

To resume the remote program and stop debugging it, use the detach
command.

Whenever GDB is waiting for the remote program, if you type the
interrupt character (often C-C), GDB attempts to stop the program. This
may or may not succeed, depending in part on the hardware and the
serial drivers the remote system uses. If you type the interrupt character
once again, GDB displays this prompt:

Interrupted while waiting for the program.
Give up (and stop debugging it)? (y or n)

If you type y, GDB abandons the remote debugging session. (If you
decide you want to try again later, you can use ‘target remote’ again to
connect once more.) If you type n, GDB goes back to waiting.

13.4.1.4 Communication protocol

The stub files provided with GDB implement the target side of the
communication protocol, and the GDB side is implemented in the GDB
source file ‘remote.c’. Normally, you can simply allow these subroutines
to communicate, and ignore the details. (If you’re implementing your
own stub file, you can still ignore the details: start with one of the
existing stub files. ‘sparc-stub.c’ is the best organized, and therefore
the easiest to read.)

However, there may be occasions when you need to know something
about the protocol—for example, if there is only one serial port to your
target machine, you might want your program to do something special
if it recognizes a packet meant for GDB.

All GDB commands and responses (other than acknowledgements,
which are single characters) are sent as a packet which includes a check-
sum. A packet is introduced with the character ‘$’, and ends with the
character ‘#’ followed by a two-digit checksum:

$packet info#checksum

checksum is computed as the modulo 256 sum of the packet info char-
acters.

128 11 July 1995

Chapter 13: Specifying a Debugging Target

When either the host or the target machine receives a packet, the
first response expected is an acknowledgement: a single character, ei-
ther ‘+’ (to indicate the package was received correctly) or ‘-’ (to request
retransmission).

The host (GDB) sends commands, and the target (the debugging stub
incorporated in your program) sends data in response. The target also
sends data when your program stops.

Command packets are distinguished by their first character, which
identifies the kind of command.

These are the commands currently supported:

g Requests the values of CPU registers.

G Sets the values of CPU registers.

maddr,count
Read count bytes at location addr.

Maddr,count:.. .
Write count bytes at location addr.

c
caddr Resume execution at the current address (or at addr if sup-

plied).
s
saddr Step the target program for one instruction, from either the

current program counter or from addr if supplied.

k Kill the target program.

? Report the most recent signal. To allow you to take advan-
tage of the GDB signal handling commands, one of the func-
tions of the debugging stub is to report CPU traps as the
corresponding POSIX signal values.

If you have trouble with the serial connection, you can use the com-
mand set remotedebug. This makes GDB report on all packets sent
back and forth across the serial line to the remote machine. The packet-
debugging information is printed on the GDB standard output stream.
set remotedebug off turns it off, and show remotedebug shows you its
current state.

13.4.1.5 Using the gdbserver program

gdbserver is a control program for Unix-like systems, which allows
you to connect your program with a remote GDB via target remote—but
without linking in the usual debugging stub.

c y g n u s s u p p o r t 129

Debugging with GDB

gdbserver is not a complete replacement for the debugging stubs,
because it requires essentially the same operating-system facilities that
GDB itself does. In fact, a system that can run gdbserver to connect to a
remote GDB could also run GDB locally! gdbserver is sometimes useful
nevertheless, because it is a much smaller program than GDB itself. It
is also easier to port than all of GDB, so you may be able to get started
more quickly on a new system by using gdbserver. Finally, if you develop
code for real-time systems, you may find that the tradeoffs involved in
real-time operation make it more convenient to do as much development
work as possible on another system, for example by cross-compiling. You
can use gdbserver to make a similar choice for debugging.

GDB and gdbserver communicate via either a serial line or a TCP
connection, using the standard GDB remote serial protocol.

On the target machine,
you need to have a copy of the program you want to debug.
gdbserver does not need your program’s symbol table, so you
can strip the program if necessary to save space. GDB on the
host system does all the symbol handling.

To use the server, you must tell it how to communicate with
GDB; the name of your program; and the arguments for your
program. The syntax is:

target> gdbserver comm program [args ...]

comm is either a device name (to use a serial line) or a TCP
hostname and portnumber. For example, to debug Emacs
with the argument ‘foo.txt’ and communicate with GDB
over the serial port ‘/dev/com1’:

target> gdbserver /dev/com1 emacs foo.txt

gdbserver waits passively for the host GDB to communicate
with it.

To use a TCP connection instead of a serial line:

target> gdbserver host:2345 emacs foo.txt

The only difference from the previous example is the first
argument, specifying that you are communicating with the
host GDB via TCP. The ‘host:2345’ argument means that
gdbserver is to expect a TCP connection from machine ‘host’
to local TCP port 2345. (Currently, the ‘host’ part is ignored.)
You can choose any number you want for the port number as
long as it does not conflict with any TCP ports already in
use on the target system (for example, 23 is reserved for

130 11 July 1995

Chapter 13: Specifying a Debugging Target

telnet).1 You must use the same port number with the host
GDB target remote command.

On the GDB host machine,
you need an unstripped copy of your program, since GDB
needs symbols and debugging information. Start up GDB as
usual, using the name of the local copy of your program as the
first argument. (You may also need the ‘--baud’ option if the
serial line is running at anything other than 9600 bps.) After
that, use target remote to establish communications with
gdbserver. Its argument is either a device name (usually a
serial device, like ‘/dev/ttyb’), or a TCP port descriptor in
the form host:PORT. For example:

(gdb) target remote /dev/ttyb

communicates with the server via serial line ‘/dev/ttyb’, and
(gdb) target remote the-target:2345

communicates via a TCP connection to port 2345 on host
‘the-target’. For TCP connections, you must start up
gdbserver prior to using the target remote command. Oth-
erwise you may get an error whose text depends on the host
system, but which usually looks something like ‘Connection
refused’.

13.4.1.6 Using the gdbserve.nlm program

gdbserve.nlm is a control program for NetWare systems, which al-
lows you to connect your program with a remote GDB via target remote.

GDB and gdbserve.nlm communicate via a serial line, using the
standard GDB remote serial protocol.

On the target machine,
you need to have a copy of the program you want to debug.
gdbserve.nlm does not need your program’s symbol table, so
you can strip the program if necessary to save space. GDB
on the host system does all the symbol handling.
To use the server, you must tell it how to communicate with
GDB; the name of your program; and the arguments for your
program. The syntax is:

load gdbserve [BOARD=board] [PORT=port]
[BAUD=baud] program [args ...]

1 If you choose a port number that conflicts with another service,
gdbserver prints an error message and exits.

c y g n u s s u p p o r t 131

Debugging with GDB

board and port specify the serial line; baud specifies the
baud rate used by the connection. port and node default to
0, baud defaults to 9600 bps.
For example, to debug Emacs with the argument
‘foo.txt’and communicate with GDB over serial port num-
ber 2 or board 1 using a 19200 bps connection:

load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt

On the GDB host machine,
you need an unstripped copy of your program, since GDB
needs symbols and debugging information. Start up GDB as
usual, using the name of the local copy of your program as
the first argument. (You may also need the ‘--baud’ option
if the serial line is running at anything other than 9600 bps.
After that, use target remote to establish communications
with gdbserve.nlm. Its argument is a device name (usually
a serial device, like ‘/dev/ttyb’). For example:

(gdb) target remote /dev/ttyb

communications with the server via serial line ‘/dev/ttyb’.

13.4.2 GDB with a remote i960 (Nindy)

Nindy is a ROM Monitor program for Intel 960 target systems. When
GDB is configured to control a remote Intel 960 using Nindy, you can tell
GDB how to connect to the 960 in several ways:
� Through command line options specifying serial port, version of the

Nindy protocol, and communications speed;
� By responding to a prompt on startup;
� By using the target command at any point during your GDB ses-

sion. See Section 13.3 “Commands for managing targets,” page 122.

13.4.2.1 Startup with Nindy

If you simply start gdb without using any command-line options, you
are prompted for what serial port to use, before you reach the ordinary
GDB prompt:

Attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever suffix (after ‘/dev/tty’) identifies
the serial port you want to use. You can, if you choose, simply start up
with no Nindy connection by responding to the prompt with an empty
line. If you do this and later wish to attach to Nindy, use target (see
Section 13.3 “Commands for managing targets,” page 122).

132 11 July 1995

Chapter 13: Specifying a Debugging Target

13.4.2.2 Options for Nindy

These are the startup options for beginning your GDB session with a
Nindy-960 board attached:

-r port Specify the serial port name of a serial interface to be used
to connect to the target system. This option is only available
when GDB is configured for the Intel 960 target architecture.
You may specify port as any of: a full pathname (e.g. ‘-r
/dev/ttya’), a device name in ‘/dev’ (e.g. ‘-r ttya’), or simply
the unique suffix for a specific tty (e.g. ‘-r a’).

-O (An uppercase letter “O”, not a zero.) Specify that GDB
should use the “old” Nindy monitor protocol to connect to
the target system. This option is only available when GDB
is configured for the Intel 960 target architecture.

Warning: if you specify ‘-O’, but are actually try-
ing to connect to a target system that expects the
newer protocol, the connection fails, appearing to
be a speed mismatch. GDB repeatedly attempts to
reconnect at several different line speeds. You can
abort this process with an interrupt.

-brk Specify that GDB should first send a BREAK signal to the
target system, in an attempt to reset it, before connecting to
a Nindy target.

Warning: Many target systems do not have the
hardware that this requires; it only works with a
few boards.

The standard ‘-b’ option controls the line speed used on the serial
port.

13.4.2.3 Nindy reset command

reset For a Nindy target, this command sends a “break” to the
remote target system; this is only useful if the target has
been equipped with a circuit to perform a hard reset (or some
other interesting action) when a break is detected.

13.4.3 The UDI protocol for AMD29K

GDB supports AMD’s UDI (“Universal Debugger Interface”) protocol
for debugging the a29k processor family. To use this configuration with
AMD targets running the MiniMON monitor, you need the program

c y g n u s s u p p o r t 133

Debugging with GDB

MONTIP, available from AMD at no charge. You can also use GDB with
the UDI conformant a29k simulator program ISSTIP, also available from
AMD.

target udi keyword
Select the UDI interface to a remote a29k board or simula-
tor, where keyword is an entry in the AMD configuration file
‘udi_soc’. This file contains keyword entries which specify
parameters used to connect to a29k targets. If the ‘udi_soc’
file is not in your working directory, you must set the envi-
ronment variable ‘UDICONF’ to its pathname.

13.4.4 The EBMON protocol for AMD29K

AMD distributes a 29K development board meant to fit in a PC,
together with a DOS-hosted monitor program called EBMON. As a short-
hand term, this development system is called the “EB29K”. To use GDB
from a Unix system to run programs on the EB29K board, you must first
connect a serial cable between the PC (which hosts the EB29K board)
and a serial port on the Unix system. In the following, we assume you’ve
hooked the cable between the PC’s ‘COM1’ port and ‘/dev/ttya’ on the
Unix system.

13.4.4.1 Communications setup

The next step is to set up the PC’s port, by doing something like this
in DOS on the PC:

C:\> MODE com1:9600,n,8,1,none

This example—run on an MS DOS 4.0 system—sets the PC port to 9600
bps, no parity, eight data bits, one stop bit, and no “retry” action; you
must match the communications parameters when establishing the Unix
end of the connection as well.

To give control of the PC to the Unix side of the serial line, type the
following at the DOS console:

C:\> CTTY com1

(Later, if you wish to return control to the DOS console, you can use
the command CTTY con—but you must send it over the device that had
control, in our example over the ‘COM1’ serial line).

From the Unix host, use a communications program such as tip or
cu to communicate with the PC; for example,

cu -s 9600 -l /dev/ttya

134 11 July 1995

Chapter 13: Specifying a Debugging Target

The cu options shown specify, respectively, the linespeed and the se-
rial port to use. If you use tip instead, your command line may look
something like the following:

tip -9600 /dev/ttya

Your system may require a different name where we show ‘/dev/ttya’
as the argument to tip. The communications parameters, including
which port to use, are associated with the tip argument in the “remote”
descriptions file—normally the system table ‘/etc/remote’.

Using the tip or cu connection, change the DOS working directory to
the directory containing a copy of your 29K program, then start the PC
program EBMON (an EB29K control program supplied with your board by
AMD). You should see an initial display from EBMON similar to the one
that follows, ending with the EBMON prompt ‘#’—

C:\> G:

G:\> CD \usr\joe\work29k

G:\USR\JOE\WORK29K> EBMON
Am29000 PC Coprocessor Board Monitor, version 3.0-18
Copyright 1990 Advanced Micro Devices, Inc.
Written by Gibbons and Associates, Inc.

Enter ’?’ or ’H’ for help

PC Coprocessor Type = EB29K
I/O Base = 0x208
Memory Base = 0xd0000

Data Memory Size = 2048KB
Available I-RAM Range = 0x8000 to 0x1fffff
Available D-RAM Range = 0x80002000 to 0x801fffff

PageSize = 0x400
Register Stack Size = 0x800
Memory Stack Size = 0x1800

CPU PRL = 0x3
Am29027 Available = No
Byte Write Available = Yes

˜.

Then exit the cu or tip program (done in the example by typing ˜. at
the EBMON prompt). EBMON keeps running, ready for GDB to take over.

c y g n u s s u p p o r t 135

Debugging with GDB

For this example, we’ve assumed what is probably the most conve-
nient way to make sure the same 29K program is on both the PC and
the Unix system: a PC/NFS connection that establishes “drive G:” on
the PC as a file system on the Unix host. If you do not have PC/NFS or
something similar connecting the two systems, you must arrange some
other way—perhaps floppy-disk transfer—of getting the 29K program
from the Unix system to the PC; GDB does not download it over the
serial line.

13.4.4.2 EB29K cross-debugging

Finally, cd to the directory containing an image of your 29K program
on the Unix system, and start GDB—specifying as argument the name
of your 29K program:

cd /usr/joe/work29k
gdb myfoo

Now you can use the target command:
target amd-eb /dev/ttya 9600 MYFOO

In this example, we’ve assumed your program is in a file called ‘myfoo’.
Note that the filename given as the last argument to target amd-eb
should be the name of the program as it appears to DOS. In our example
this is simply MYFOO, but in general it can include a DOS path, and
depending on your transfer mechanism may not resemble the name on
the Unix side.

At this point, you can set any breakpoints you wish; when you are
ready to see your program run on the 29K board, use the GDB command
run.

To stop debugging the remote program, use the GDB detach com-
mand.

To return control of the PC to its console, use tip or cu once again,
after your GDB session has concluded, to attach to EBMON. You can then
type the command q to shut down EBMON, returning control to the DOS
command-line interpreter. Type CTTY con to return command input to
the main DOS console, and type ˜. to leave tip or cu.

13.4.4.3 Remote log

The target amd-eb command creates a file ‘eb.log’ in the current
working directory, to help debug problems with the connection. ‘eb.log’
records all the output from EBMON, including echoes of the commands
sent to it. Running ‘tail -f’ on this file in another window often helps
to understand trouble with EBMON, or unexpected events on the PC side
of the connection.

136 11 July 1995

Chapter 13: Specifying a Debugging Target

13.4.5 GDB with a Tandem ST2000

To connect your ST2000 to the host system, see the manufacturer’s
manual. Once the ST2000 is physically attached, you can run

target st2000 dev speed

to establish it as your debugging environment. dev is normally the
name of a serial device, such as ‘/dev/ttya’, connected to the ST2000
via a serial line. You can instead specify dev as a TCP connection (for
example, to a serial line attached via a terminal concentrator) using the
syntax hostname:portnumber.

The load and attach commands are not defined for this target; you
must load your program into the ST2000 as you normally would for stan-
dalone operation. GDB reads debugging information (such as symbols)
from a separate, debugging version of the program available on your
host computer.

These auxiliary GDB commands are available to help you with the
ST2000 environment:

st2000 command
Send a command to the STDBUG monitor. See the manufac-
turer’s manual for available commands.

connect Connect the controlling terminal to the STDBUG command
monitor. When you are done interacting with STDBUG, typ-
ing either of two character sequences gets you back to the
GDB command prompt: RET˜. (Return, followed by tilde and
period) or RET˜C-D (Return, followed by tilde and control-D).

13.4.6 GDB and VxWorks

GDB enables developers to spawn and debug tasks running on net-
worked VxWorks targets from a Unix host. Already-running tasks
spawned from the VxWorks shell can also be debugged. GDB uses code
that runs on both the Unix host and on the VxWorks target. The program
gdb is installed and executed on the Unix host. (It may be installed with
the name vxgdb, to distinguish it from a GDB for debugging programs
on the host itself.)

The following information on connecting to VxWorks was current
when this manual was produced; newer releases of VxWorks may use
revised procedures.

To use GDB with VxWorks, you must rebuild your VxWorks kernel to
include the remote debugging interface routines in the VxWorks library
‘rdb.a’. To do this, define INCLUDE_RDB in the VxWorks configuration file
‘configAll.h’ and rebuild your VxWorks kernel. The resulting kernel

c y g n u s s u p p o r t 137

Debugging with GDB

contains ‘rdb.a’, and spawns the source debugging task tRdbTask when
VxWorks is booted. For more information on configuring and remaking
VxWorks, see the manufacturer’s manual.

Once you have included ‘rdb.a’ in your VxWorks system image and set
your Unix execution search path to find GDB, you are ready to run GDB.
From your Unix host, run gdb (or vxgdb, depending on your installation).

GDB comes up showing the prompt:
(vxgdb)

13.4.6.1 Connecting to VxWorks

The GDB command target lets you connect to a VxWorks target on
the network. To connect to a target whose host name is “tt”, type:

(vxgdb) target vxworks tt

GDB displays messages like these:
Attaching remote machine across net...
Connected to tt.

GDB then attempts to read the symbol tables of any object modules
loaded into the VxWorks target since it was last booted. GDB locates
these files by searching the directories listed in the command search
path (see Section 4.4 “Your program’s environment,” page 24); if it fails
to find an object file, it displays a message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path
with the GDB command path, and execute the target command again.

13.4.6.2 VxWorks download

If you have connected to the VxWorks target and you want to debug an
object that has not yet been loaded, you can use the GDB load command
to download a file from Unix to VxWorks incrementally. The object file
given as an argument to the load command is actually opened twice:
first by the VxWorks target in order to download the code, then by GDB
in order to read the symbol table. This can lead to problems if the current
working directories on the two systems differ. If both systems have NFS
mounted the same filesystems, you can avoid these problems by using
absolute paths. Otherwise, it is simplest to set the working directory
on both systems to the directory in which the object file resides, and
then to reference the file by its name, without any path. For instance, a
program ‘prog.o’ may reside in ‘vxpath/vw/demo/rdb’ in VxWorks and
in ‘hostpath/vw/demo/rdb’ on the host. To load this program, type this
on VxWorks:

138 11 July 1995

Chapter 13: Specifying a Debugging Target

-> cd "vxpath/vw/demo/rdb"

Then, in GDB, type:
(vxgdb) cd hostpath/vw/demo/rdb
(vxgdb) load prog.o

GDB displays a response similar to this:
Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use the load command to reload an object module after
editing and recompiling the corresponding source file. Note that this
makes GDB delete all currently-defined breakpoints, auto-displays, and
convenience variables, and to clear the value history. (This is neces-
sary in order to preserve the integrity of debugger data structures that
reference the target system’s symbol table.)

13.4.6.3 Running tasks

You can also attach to an existing task using the attach command as
follows:

(vxgdb) attach task

where task is the VxWorks hexadecimal task ID. The task can be run-
ning or suspended when you attach to it. Running tasks are suspended
at the time of attachment.

13.4.7 GDB and Hitachi microprocessors

GDB needs to know these things to talk to your Hitachi SH, H8/300,
or H8/500:
1. that you want to use ‘target hms’, the remote debugging interface for

Hitachi microprocessors, or ‘target e7000’, the in-circuit emulator
for the Hitachi SH and the Hitachi 300H. (‘target hms’ is the default
when GDB is configured specifically for the Hitachi SH, H8/300, or
H8/500.)

2. what serial device connects your host to your Hitachi board (the first
serial device available on your host is the default).

3. what speed to use over the serial device.

13.4.7.1 Connecting to Hitachi boards

Use the special gdb command ‘device port’ if you need to explicitly
set the serial device. The default port is the first available port on
your host. This is only necessary on Unix hosts, where it is typically
something like ‘/dev/ttya’.

c y g n u s s u p p o r t 139

Debugging with GDB

gdb has another special command to set the communications speed:
‘speed bps’. This command also is only used from Unix hosts; on DOS
hosts, set the line speed as usual from outside GDB with the DOS mode
command (for instance, ‘mode com2:9600,n,8,1,p’ for a 9600 bps con-
nection).

The ‘device’ and ‘speed’ commands are available only when you use
a Unix host to debug your Hitachi microprocessor programs. If you use
a DOS host, GDB depends on an auxiliary terminate-and-stay-resident
program called asynctsr to communicate with the development board
through a PC serial port. You must also use the DOS mode command to
set up the serial port on the DOS side.

13.4.7.2 Using the E7000 in-circuit emulator

You can use the E7000 in-circuit emulator to develop code for either
the Hitachi SH or the H8/300H. Use one of these forms of the ‘target
e7000’ command to connect GDB to your E7000:

target e7000 port speed
Use this form if your E7000 is connected to a serial port.
The port argument identifies what serial port to use (for
example, ‘com2’). The third argument is the line speed in bits
per second (for example, ‘9600’).

target e7000 hostname
If your E7000 is installed as a host on a TCP/IP network, you
can just specify its hostname; GDB uses telnet to connect.

13.4.7.3 Special GDB commands for Hitachi micros

Some GDB commands are available only on the H8/300 or the H8/500
configurations:

set machine h8300
set machine h8300h

Condition GDB for one of the two variants of the H8/300
architecture with ‘set machine’. You can use ‘show machine’
to check which variant is currently in effect.

set memory mod
show memory

Specify which H8/500 memory model (mod) you are using
with ‘set memory’; check which memory model is in effect
with ‘show memory’. The accepted values for mod are small,
big, medium, and compact.

140 11 July 1995

Chapter 13: Specifying a Debugging Target

13.4.8 GDB and remote MIPS boards

GDB can use the MIPS remote debugging protocol to talk to a MIPS
board attached to a serial line. This is available when you configure
GDB with ‘--target=mips-idt-ecoff’.

Use these GDB commands to specify the connection to your target
board:

target mips port
To run a program on the board, start up gdb with the name of
your program as the argument. To connect to the board, use
the command ‘target mips port’, where port is the name of
the serial port connected to the board. If the program has
not already been downloaded to the board, you may use the
load command to download it. You can then use all the usual
GDB commands.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:

host$ gdb prog
GDB is free software and .. .
(gdb) target mips /dev/ttyb
(gdb) load prog
(gdb) run

target mips hostname:portnumber
On some GDB host configurations, you can specify a TCP
connection (for instance, to a serial line managed by a termi-
nal concentrator) instead of a serial port, using the syntax
‘hostname:portnumber’.

GDB also supports these special commands for MIPS targets:

set mipsfpu double
set mipsfpu single
set mipsfpu none
show mipsfpu

If your target board does not support the MIPS floating point
coprocessor, you should use the command ‘set mipsfpu none’
(if you need this, you may wish to put the command in your
.gdbinit file). This tells GDB how to find the return value of
functions which return floating point values. It also allows
GDB to avoid saving the floating point registers when calling
functions on the board. If you are using a floating point copro-
cessor with only single precision floating point support, as on
the r4650 processor, use the command ‘set mipsfpu single’.

c y g n u s s u p p o r t 141

Debugging with GDB

The default double precision floating point coprocessor may
be selected using ‘set mipsfpu double’.
In previous versions the only choices were double precision
or no floating point, so ‘set mipsfpu on’ will select double
precision and ‘set mipsfpu off’ will select no floating point.
As usual, you can inquire about the mipsfpu variable with
‘show mipsfpu’.

set remotedebug n
show remotedebug

You can see some debugging information about communica-
tions with the board by setting the remotedebug variable.
If you set it to 1 using ‘set remotedebug 1’, every packet is
displayed. If you set it to 2, every character is displayed. You
can check the current value at any time with the command
‘show remotedebug’.

set timeout seconds
set retransmit-timeout seconds
show timeout
show retransmit-timeout

You can control the timeout used while waiting for a packet,
in the MIPS remote protocol, with the set timeout seconds
command. The default is 5 seconds. Similarly, you can con-
trol the timeout used while waiting for an acknowledgement
of a packet with the set retransmit-timeout seconds com-
mand. The default is 3 seconds. You can inspect both values
with show timeout and show retransmit-timeout. (These
commands are only available when GDB is configured for
‘--target=mips-idt-ecoff’.)
The timeout set by set timeout does not apply when GDB is
waiting for your program to stop. In that case, GDB waits
forever because it has no way of knowing how long the pro-
gram is going to run before stopping.

13.4.9 Simulated CPU target

For some configurations, GDB includes a CPU simulator that you can
use instead of a hardware CPU to debug your programs. Currently, a
simulator is available when GDB is configured to debug Zilog Z8000 or
Hitachi microprocessor targets.

For the Z8000 family, ‘target sim’ simulates either the Z8002 (the
unsegmented variant of the Z8000 architecture) or the Z8001 (the seg-
mented variant). The simulator recognizes which architecture is appro-
priate by inspecting the object code.

142 11 July 1995

Chapter 13: Specifying a Debugging Target

target sim
Debug programs on a simulated CPU (which CPU depends
on the GDB configuration)

After specifying this target, you can debug programs for the simulated
CPU in the same style as programs for your host computer; use the file
command to load a new program image, the run command to run your
program, and so on.

As well as making available all the usual machine registers (see info
reg), this debugging target provides three additional items of informa-
tion as specially named registers:

cycles Counts clock-ticks in the simulator.

insts Counts instructions run in the simulator.

time Execution time in 60ths of a second.

You can refer to these values in GDB expressions with the usual
conventions; for example, ‘b fputc if $cycles>5000’ sets a conditional
breakpoint that suspends only after at least 5000 simulated clock ticks.

c y g n u s s u p p o r t 143

Debugging with GDB

144 11 July 1995

Chapter 14: Controlling GDB

14 Controlling GDB

You can alter the way GDB interacts with you by using the set com-
mand. For commands controlling how GDB displays data, see Section 8.7
“Print settings,” page 73; other settings are described here.

14.1 Prompt

GDB indicates its readiness to read a command by printing a string
called the prompt. This string is normally ‘(gdb)’. You can change
the prompt string with the set prompt command. For instance, when
debugging GDB with GDB, it is useful to change the prompt in one of
the GDB sessions so that you can always tell which one you are talking
to.

Note: set prompt no longer adds a space for you after the prompt you
set. This allows you to set a prompt which ends in a space or a prompt
that does not.

set prompt newprompt
Directs GDB to use newprompt as its prompt string hence-
forth.

show prompt
Prints a line of the form: ‘Gdb’s prompt is: your-prompt’

14.2 Command editing

GDB reads its input commands via the readline interface. This gnu
library provides consistent behavior for programs which provide a com-
mand line interface to the user. Advantages are gnu Emacs-style or
vi-style inline editing of commands, csh-like history substitution, and a
storage and recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with
the command set.

set editing
set editing on

Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.

c y g n u s s u p p o r t 145

Debugging with GDB

14.3 Command history

GDB can keep track of the commands you type during your debugging
sessions, so that you can be certain of precisely what happened. Use
these commands to manage the GDB command history facility.

set history filename fname
Set the name of the GDB command history file to fname. This
is the file where GDB reads an initial command history list,
and where it writes the command history from this session
when it exits. You can access this list through history ex-
pansion or through the history command editing characters
listed below. This file defaults to the value of the environ-
ment variable GDBHISTFILE, or to ‘./.gdb_history’ if this
variable is not set.

set history save
set history save on

Record command history in a file, whose name may be spec-
ified with the set history filename command. By default,
this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history
list. This defaults to the value of the environment variable
HISTSIZE, or to 256 if this variable is not set.

History expansion assigns special meaning to the character !.
Since ! is also the logical not operator in C, history expansion is off by

default. If you decide to enable history expansion with the set history
expansion on command, you may sometimes need to follow ! (when it
is used as logical not, in an expression) with a space or a tab to prevent
it from being expanded. The readline history facilities do not attempt
substitution on the strings != and !(, even when history expansion is
enabled.

The commands to control history expansion are:

set history expansion on
set history expansion

Enable history expansion. History expansion is off by de-
fault.

set history expansion off
Disable history expansion.

146 11 July 1995

Chapter 14: Controlling GDB

The readline code comes with more complete documentation
of editing and history expansion features. Users unfamiliar
with gnu Emacs or vi may wish to read it.

show history
show history filename
show history save
show history size
show history expansion

These commands display the state of the GDB history pa-
rameters. show history by itself displays all four states.

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

14.4 Screen size

Certain commands to GDB may produce large amounts of informa-
tion output to the screen. To help you read all of it, GDB pauses and
asks you for input at the end of each page of output. Type RET when
you want to continue the output, or q to discard the remaining output.
Also, the screen width setting determines when to wrap lines of output.
Depending on what is being printed, GDB tries to break the line at a
readable place, rather than simply letting it overflow onto the following
line.

Normally GDB knows the size of the screen from the termcap data
base together with the value of the TERM environment variable and the
stty rows and stty cols settings. If this is not correct, you can override
it with the set height and set width commands:

set height lpp
show height
set width cpl
show width

These set commands specify a screen height of lpp lines
and a screen width of cpl characters. The associated show
commands display the current settings.
If you specify a height of zero lines, GDB does not pause
during output no matter how long the output is. This is
useful if output is to a file or to an editor buffer.

c y g n u s s u p p o r t 147

Debugging with GDB

Likewise, you can specify ‘set width 0’ to prevent GDB from
wrapping its output.

14.5 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in
GDB by the usual conventions: octal numbers begin with ‘0’, decimal
numbers end with ‘.’, and hexadecimal numbers begin with ‘0x’. Num-
bers that begin with none of these are, by default, entered in base 10;
likewise, the default display for numbers—when no particular format is
specified—is base 10. You can change the default base for both input
and output with the set radix command.

set input-radix base
Set the default base for numeric input. Supported choices for
base are decimal 8, 10, or 16. base must itself be specified
either unambiguously or using the current default radix; for
example, any of

set radix 012
set radix 10.
set radix 0xa

sets the base to decimal. On the other hand, ‘set radix 10’
leaves the radix unchanged no matter what it was.

set output-radix base
Set the default base for numeric display. Supported choices
for base are decimal 8, 10, or 16. basemust itself be specified
either unambiguously or using the current default radix.

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.

14.6 Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running
on a slow machine, you may want to use the set verbose command. This
makes GDB tell you when it does a lengthy internal operation, so you
will not think it has crashed.

Currently, the messages controlled by set verbose are those which
announce that the symbol table for a source file is being read; see symbol-
file in Section 12.1 “Commands to specify files,” page 111.

148 11 July 1995

Chapter 14: Controlling GDB

set verbose on
Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

show verbose
Displays whether set verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an ob-
ject file, it is silent; but if you are debugging a compiler, you may find
this information useful (see Section 12.2 “Errors reading symbol files,”
page 115).

set complaints limit
Permits GDB to output limit complaints about each type of
unusual symbols before becoming silent about the problem.
Set limit to zero to suppress all complaints; set it to a large
number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to
produce.

By default, GDB is cautious, and asks what sometimes seems to be
a lot of stupid questions to confirm certain commands. For example, if
you try to run a program which is already running:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own
commands, you can disable this “feature”:

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm
Displays state of confirmation requests.

c y g n u s s u p p o r t 149

Debugging with GDB

150 11 July 1995

Chapter 15: Canned Sequences of Commands

15 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 “Breakpoint com-
mand lists,” page 43), GDB provides two ways to store sequences of com-
mands for execution as a unit: user-defined commands and command
files.

15.1 User-defined commands

A user-defined command is a sequence of GDB commands to which
you assign a new name as a command. This is done with the define
command. User commands may accept up to 10 arguments separated
by whitespace. Arguments are accessed within the user command via
$arg0...$arg9. A trivial example:

define adder
print $arg0 + $arg1 + $arg2

To execute the command use:
adder 1 2 3

This defines the command adder, which prints the sum of its three
arguments. Note the arguments are text substitutions, so they may
reference variables, use complex expressions, or even perform inferior
functions calls.

define commandname
Define a command named commandname. If there is already
a command by that name, you are asked to confirm that you
want to redefine it.
The definition of the command is made up of other GDB com-
mand lines, which are given following the define command.
The end of these commands is marked by a line containing
end.

if Takes a single argument, which is an expression to evaluate.
It is followed by a series of commands that are executed only
if the expression is true (nonzero). There can then optionally
be a line else, followed by a series of commands that are only
executed if the expression was false. The end of the list is
marked by a line containing end.

while The syntax is similar to if: the command takes a single
argument, which is an expression to evaluate, and must be
followed by the commands to execute, one per line, termi-
nated by an end. The commands are executed repeatedly as
long as the expression evaluates to true.

c y g n u s s u p p o r t 151

Debugging with GDB

document commandname
Document the user-defined command commandname, so that
it can be accessed by help. The command commandnamemust
already be defined. This command reads lines of documenta-
tion just as define reads the lines of the command definition,
ending with end. After the document command is finished,
help on command commandname displays the documentation
you have written.
You may use the document command again to change the
documentation of a command. Redefining the command with
define does not change the documentation.

help user-defined
List all user-defined commands, with the first line of the
documentation (if any) for each.

show user
show user commandname

Display the GDB commands used to define commandname (but
not its documentation). If no commandname is given, display
the definitions for all user-defined commands.

When user-defined commands are executed, the commands of the
definition are not printed. An error in any command stops execution of
the user-defined command.

If used interactively, commands that would ask for confirmation pro-
ceed without asking when used inside a user-defined command. Many
GDB commands that normally print messages to say what they are doing
omit the messages when used in a user-defined command.

15.2 User-defined command hooks

You may define hooks, which are a special kind of user-defined com-
mand. Whenever you run the command ‘foo’, if the user-defined com-
mand ‘hook-foo’ exists, it is executed (with no arguments) before that
command.

In addition, a pseudo-command, ‘stop’ exists. Defining (‘hook-stop’)
makes the associated commands execute every time execution stops
in your program: before breakpoint commands are run, displays are
printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but
treat them normally during normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end

152 11 July 1995

Chapter 15: Canned Sequences of Commands

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in GDB, but not
for command aliases; you should define a hook for the basic command
name, e.g. backtrace rather than bt. If an error occurs during the
execution of your hook, execution of GDB commands stops and GDB
issues a prompt (before the command that you actually typed had a
chance to run).

If you try to define a hook which does not match any known command,
you get a warning from the define command.

15.3 Command files

A command file for GDB is a file of lines that are GDB commands.
Comments (lines starting with #) may also be included. An empty line
in a command file does nothing; it does not mean to repeat the last
command, as it would from the terminal.

When you start GDB, it automatically executes commands from its
init files. These are files named ‘.gdbinit’. GDB reads the init file (if
any) in your home directory, then processes command line options and
operands, and then reads the init file (if any) in the current working
directory. This is so the init file in your home directory can set options
(such as set complaints) which affect the processing of the command
line options and operands. The init files are not executed if you use the
‘-nx’ option; see Section 2.1.2 “Choosing modes,” page 11.

On some configurations of GDB, the init file is known by a different
name (these are typically environments where a specialized form of GDB
may need to coexist with other forms, hence a different name for the
specialized version’s init file). These are the environments with special
init file names:
� VxWorks (Wind River Systems real-time OS): ‘.vxgdbinit’
� OS68K (Enea Data Systems real-time OS): ‘.os68gdbinit’
� ES-1800 (Ericsson Telecom AB M68000 emulator): ‘.esgdbinit’

You can also request the execution of a command file with the source
command:

source filename
Execute the command file filename.

c y g n u s s u p p o r t 153

Debugging with GDB

The lines in a command file are executed sequentially. They are not
printed as they are executed. An error in any command terminates
execution of the command file.

Commands that would ask for confirmation if used interactively pro-
ceed without asking when used in a command file. Many GDB com-
mands that normally print messages to say what they are doing omit
the messages when called from command files.

15.4 Commands for controlled output

During the execution of a command file or a user-defined command,
normal GDB output is suppressed; the only output that appears is what
is explicitly printed by the commands in the definition. This section
describes three commands useful for generating exactly the output you
want.

echo text
Print text. Nonprinting characters can be included in text
using C escape sequences, such as ‘\n’ to print a newline. No
newline is printed unless you specify one. In addition to
the standard C escape sequences, a backslash followed by a
space stands for a space. This is useful for displaying a string
with spaces at the beginning or the end, since leading and
trailing spaces are otherwise trimmed from all arguments.
To print ‘ and foo = ’, use the command ‘echo \ and foo = \ ’.
A backslash at the end of text can be used, as in C, to con-
tinue the command onto subsequent lines. For example,

echo This is some text\n\
which is continued\n\
onto several lines.\n

produces the same output as
echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression
Print the value of expression and nothing but that value: no
newlines, no ‘$nn = ’. The value is not entered in the value
history either. See Section 8.1 “Expressions,” page 65, for
more information on expressions.

output/fmt expression
Print the value of expression in format fmt. You can use the
same formats as for print. See Section 8.4 “Output formats,”
page 68, for more information.

154 11 July 1995

Chapter 15: Canned Sequences of Commands

printf string, expressions...
Print the values of the expressions under the control of
string. The expressions are separated by commas and
may be either numbers or pointers. Their values are printed
as specified by string, exactly as if your program were to
execute the C subroutine

printf (string, expressions. ..);

For example, you can print two values in hex like this:
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the
format string are the simple ones that consist of backslash
followed by a letter.

c y g n u s s u p p o r t 155

Debugging with GDB

156 11 July 1995

Chapter 16: Using GDB under gnu Emacs

16 Using GDB under gnuEmacs

A special interface allows you to use gnu Emacs to view (and edit)
the source files for the program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the
executable file you want to debug as an argument. This command starts
GDB as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.

Using GDB under Emacs is just like using GDB normally except for
two things:
� All “terminal” input and output goes through the Emacs buffer.

This applies both to GDB commands and their output, and to the
input and output done by the program you are debugging.

This is useful because it means that you can copy the text of previous
commands and input them again; you can even use parts of the output
in this way.

All the facilities of Emacs’ Shell mode are available for interacting
with your program. In particular, you can send signals the usual way—
for example, C-c C-c for an interrupt, C-c C-z for a stop.
� GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds
the source file for that frame and puts an arrow (‘=>’) at the left margin
of the current line. Emacs uses a separate buffer for source display, and
splits the screen to show both your GDB session and the source.

Explicit GDB list or search commands still produce output as usual,
but you probably have no reason to use them from Emacs.

Warning: If the directory where your program resides is not
your current directory, it can be easy to confuse Emacs about the
location of the source files, in which case the auxiliary display
buffer does not appear to show your source. GDB can find
programs by searching your environment’s PATH variable, so the
GDB input and output session proceeds normally; but Emacs
does not get enough information back from GDB to locate the
source files in this situation. To avoid this problem, either start
GDB mode from the directory where your program resides, or
specify an absolute file name when prompted for the M-x gdb
argument.
A similar confusion can result if you use the GDB file command
to switch to debugging a program in some other location, from
an existing GDB buffer in Emacs.

c y g n u s s u p p o r t 157

Debugging with GDB

By default, M-x gdb calls the program called ‘gdb’. If you need to call
GDB by a different name (for example, if you keep several configurations
around, with different names) you can set the Emacs variable gdb-
command-name; for example,

(setq gdb-command-name "mygdb")

(preceded by ESC ESC, or typed in the *scratch* buffer, or in your
‘.emacs’ file) makes Emacs call the program named “mygdb” instead.

In the GDB I/O buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:

C-h m Describe the features of Emacs’ GDB Mode.

M-s Execute to another source line, like the GDB step command;
also update the display window to show the current file and
location.

M-n Execute to next source line in this function, skipping all func-
tion calls, like the GDB next command. Then update the
display window to show the current file and location.

M-i Execute one instruction, like the GDB stepi command; up-
date display window accordingly.

M-x gdb-nexti
Execute to next instruction, using the GDB nexti command;
update display window accordingly.

C-c C-f Execute until exit from the selected stack frame, like the
GDB finish command.

M-c Continue execution of your program, like the GDB continue
command.
Warning: In Emacs v19, this command is C-c C-p.

M-u Go up the number of frames indicated by the numeric argu-
ment (see section “Numeric Arguments” in The gnu Emacs
Manual), like the GDB up command.
Warning: In Emacs v19, this command is C-c C-u.

M-d Go down the number of frames indicated by the numeric
argument, like the GDB down command.
Warning: In Emacs v19, this command is C-c C-d.

C-x & Read the number where the cursor is positioned, and insert
it at the end of the GDB I/O buffer. For example, if you wish
to disassemble code around an address that was displayed
earlier, type disassemble; then move the cursor to the ad-
dress display, and pick up the argument for disassemble by
typing C-x &.

158 11 July 1995

Chapter 16: Using GDB under gnu Emacs

You can customize this further by defining elements of the
list gdb-print-command; once it is defined, you can format
or otherwise process numbers picked up by C-x & before they
are inserted. A numeric argument to C-x & indicates that
you wish special formatting, and also acts as an index to pick
an element of the list. If the list element is a string, the
number to be inserted is formatted using the Emacs function
format; otherwise the number is passed as an argument to
the corresponding list element.

In any source file, the Emacs command C-x SPC (gdb-break) tells
GDB to set a breakpoint on the source line point is on.

If you accidentally delete the source-display buffer, an easy way to get
it back is to type the command f in the GDB buffer, to request a frame
display; when you run under Emacs, this recreates the source buffer if
necessary to show you the context of the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way. You can edit the files
with these buffers if you wish; but keep in mind that GDB communicates
with Emacs in terms of line numbers. If you add or delete lines from
the text, the line numbers that GDB knows cease to correspond properly
with the code.

c y g n u s s u p p o r t 159

Debugging with GDB

160 11 July 1995

Chapter 17: Reporting Bugs in GDB

17 Reporting Bugs in GDB
Your bug reports play an essential role in making GDB reliable.
Reporting a bug may help you by bringing a solution to your problem,

or it may not. But in any case the principal function of a bug report is
to help the entire community by making the next version of GDB work
better. Bug reports are your contribution to the maintenance of GDB.

In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.

17.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some
guidelines:

� If the debugger gets a fatal signal, for any input whatever, that is a
GDB bug. Reliable debuggers never crash.

� If GDB produces an error message for valid input, that is a bug.
� If GDB does not produce an error message for invalid input, that

is a bug. However, you should note that your idea of “invalid in-
put” might be our idea of “an extension” or “support for traditional
practice”.

� If you are an experienced user of debugging tools, your suggestions
for improvement of GDB are welcome in any case.

17.2 How to report bugs

A number of companies and individuals offer support for gnu prod-
ucts. If you obtained GDB from a support organization, we recommend
you contact that organization first.

You can find contact information for many support companies and
individuals in the file ‘etc/SERVICE’ in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for GDB
to one of these addresses:

bug-gdb@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gdb

Do not send bug reports to ‘info-gdb’, or to ‘help-gdb’, or to any
newsgroups. Most users of GDB do not want to receive bug reports.
Those that do have arranged to receive ‘bug-gdb’.

The mailing list ‘bug-gdb’ has a newsgroup ‘gnu.gdb.bug’ which
serves as a repeater. The mailing list and the newsgroup carry ex-
actly the same messages. Often people think of posting bug reports to

c y g n u s s u p p o r t 161

Debugging with GDB

the newsgroup instead of mailing them. This appears to work, but it
has one problem which can be crucial: a newsgroup posting often lacks
a mail path back to the sender. Thus, if we need to ask for more infor-
mation, we may be unable to reach you. For this reason, it is better to
send bug reports to the mailing list.

As a last resort, send bug reports on paper to:
gnu Debugger Bugs
Free Software Foundation
545 Tech Square
Cambridge, MA 02139

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it out,
state it!

Often people omit facts because they think they know what causes
the problem and assume that some details do not matter. Thus, you
might assume that the name of the variable you use in an example does
not matter. Well, probably it does not, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the debugger into
doing the right thing despite the bug. Play it safe and give a specific,
complete example. That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable us to fix
the bug if it is new to us. Therefore, always write your bug reports on
the assumption that the bug has not been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a
bell?” Those bug reports are useless, and we urge everyone to refuse to
respond to them except to chide the sender to report bugs properly.

To enable us to fix the bug, you should include all these things:
� The version of GDB. GDB announces it if you start with no argu-

ments; you can also print it at any time using show version.
Without this, we will not know whether there is any point in looking
for the bug in the current version of GDB.

� The type of machine you are using, and the operating system name
and version number.

� What compiler (and its version) was used to compile GDB—e.g.
“gcc–2.0”.

� What compiler (and its version) was used to compile the program
you are debugging—e.g. “gcc–2.0”.

� The command arguments you gave the compiler to compile your
example and observe the bug. For example, did you use ‘-O’? To

162 11 July 1995

Chapter 17: Reporting Bugs in GDB

guarantee you will not omit something important, list them all. A
copy of the Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess
wrong and then we might not encounter the bug.

� A complete input script, and all necessary source files, that will
reproduce the bug.

� A description of what behavior you observe that you believe is incor-
rect. For example, “It gets a fatal signal.”
Of course, if the bug is that GDB gets a fatal signal, then we will
certainly notice it. But if the bug is incorrect output, we might not
notice unless it is glaringly wrong. You might as well not give us a
chance to make a mistake.
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of GDB is out of synch, or you have encountered a bug
in the C library on your system. (This has happened!) Your copy
might crash and ours would not. If you told us to expect a crash,
then when ours fails to crash, we would know that the bug was not
happening for us. If you had not told us to expect a crash, then we
would not be able to draw any conclusion from our observations.

� If you wish to suggest changes to the GDB source, send us context
diffs. If you even discuss something in the GDB source, refer to it
by context, not by line number.
The line numbers in our development sources will not match those in
your sources. Your line numbers would convey no useful information
to us.

Here are some things that are not necessary:
� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way
we will find the bug is by running a single example under the de-
bugger with breakpoints, not by pure deduction from a series of
examples. We recommend that you save your time for something
else.
Of course, if you can find a simpler example to report instead of the
original one, that is a convenience for us. Errors in the output will
be easier to spot, running under the debugger will take less time,
and so on.
However, simplification is not vital; if you do not want to do this,
report the bug anyway and send us the entire test case you used.

c y g n u s s u p p o r t 163

Debugging with GDB

� A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit the
necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and
decide to fix the problem another way, or we might not understand
it at all.
Sometimes with a program as complicated as GDB it is very hard to
construct an example that will make the program follow a certain
path through the code. If you do not send us the example, we will
not be able to construct one, so we will not be able to verify that the
bug is fixed.
And if we cannot understand what bug you are trying to fix, or why
your patch should be an improvement, we will not install it. A test
case will help us to understand.

� A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about
such things without first using the debugger to find the facts.

164 11 July 1995

Appendix A: Command Line Editing

Appendix A Command Line Editing

This text describes GNU’s command line editing interface.

A.1 Introduction to Line Editing

The following paragraphs describe the notation we use to represent
keystrokes.

The text C-K is read as ‘Control-K’ and describes the character pro-
duced when the Control key is depressed and the K key is struck.

The text M-K is read as ‘Meta-K’ and describes the character produced
when the meta key (if you have one) is depressed, and the K key is struck.
If you do not have a meta key, the identical keystroke can be generated by
typing ESC first, and then typing K. Either process is known as metafying
the K key.

The text M-C-K is read as ‘Meta-Control-k’ and describes the character
produced by metafying C-K.

In addition, several keys have their own names. Specifically, DEL,
ESC, LFD, SPC, RET, and TAB all stand for themselves when seen in this
text, or in an init file (see Section A.3 “Readline Init File,” page 168, for
more info).

A.2 Readline Interaction

Often during an interactive session you type in a long line of text,
only to notice that the first word on the line is misspelled. The Readline
library gives you a set of commands for manipulating the text as you
type it in, allowing you to just fix your typo, and not forcing you to retype
the majority of the line. Using these editing commands, you move the
cursor to the place that needs correction, and delete or insert the text of
the corrections. Then, when you are satisfied with the line, you simply
press RETURN. You do not have to be at the end of the line to press RETURN;
the entire line is accepted regardless of the location of the cursor within
the line.

A.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed
character appears where the cursor was, and then the cursor moves one
space to the right. If you mistype a character, you can use DEL to back
up, and delete the mistyped character.

c y g n u s s u p p o r t 165

Debugging with GDB

Sometimes you may miss typing a character that you wanted to type,
and not notice your error until you have typed several other characters.
In that case, you can type C-B to move the cursor to the left, and then
correct your mistake. Aftwerwards, you can move the cursor to the right
with C-F.

When you add text in the middle of a line, you will notice that char-
acters to the right of the cursor get ‘pushed over’ to make room for the
text that you have inserted. Likewise, when you delete text behind the
cursor, characters to the right of the cursor get ‘pulled back’ to fill in the
blank space created by the removal of the text. A list of the basic bare
essentials for editing the text of an input line follows.

C-B Move back one character.

C-F Move forward one character.

DEL Delete the character to the left of the cursor.

C-D Delete the character underneath the cursor.

Printing characters
Insert itself into the line at the cursor.

C-_ Undo the last thing that you did. You can undo all the way
back to an empty line.

A.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you
need in order to do editing of the input line. For your convenience, many
other commands have been added in addition to C-B, C-F, C-D, and DEL.
Here are some commands for moving more rapidly about the line.

C-A Move to the start of the line.

C-E Move to the end of the line.

M-F Move forward a word.

M-B Move backward a word.

C-L Clear the screen, reprinting the current line at the top.

Notice how C-F moves forward a character, while M-F moves forward
a word. It is a loose convention that control keystrokes operate on
characters while meta keystrokes operate on words.

166 11 July 1995

Appendix A: Command Line Editing

A.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away
for later use, usually by yanking it back into the line. If the description
for a command says that it ‘kills’ text, then you can be sure that you can
get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-K Kill the text from the current cursor position to the end of
the line.

M-D Kill from the cursor to the end of the current word, or if
between words, to the end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if
between words, to the start of the previous word.

C-W Kill from the cursor to the previous whitespace. This is dif-
ferent than M-DEL because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking is

C-Y Yank the most recently killed text back into the buffer at the
cursor.

M-Y Rotate the kill-ring, and yank the new top. You can only do
this if the prior command is C-Y or M-Y.

When you use a kill command, the text is saved in a kill-ring. Any
number of consecutive kills save all of the killed text together, so that
when you yank it back, you get it in one clean sweep. The kill ring is
not line specific; the text that you killed on a previously typed line is
available to be yanked back later, when you are typing another line.

A.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes
the argument acts as a repeat count, other times it is the sign of the
argument that is significant. If you pass a negative argument to a
command which normally acts in a forward direction, that command
will act in a backward direction. For example, to kill text back to the
start of the line, you might type M-- C-K.

The general way to pass numeric arguments to a command is to type
meta digits before the command. If the first ‘digit’ you type is a minus
sign (-), then the sign of the argument will be negative. Once you have
typed one meta digit to get the argument started, you can type the
remainder of the digits, and then the command. For example, to give
the C-D command an argument of 10, you could type M-1 0 C-D.

c y g n u s s u p p o r t 167

Debugging with GDB

A.3 Readline Init File

Although the Readline library comes with a set of Emacs-like key-
bindings, it is possible that you would like to use a different set of key-
bindings. You can customize programs that use Readline by putting
commands in an init file in your home directory. The name of this file is
‘˜/.inputrc’.

When a program which uses the Readline library starts up, the
‘˜/.inputrc’ file is read, and the keybindings are set.

In addition, the C-X C-R command re-reads this init file, thus incor-
porating any changes that you might have made to it.

A.3.1 Readline Init Syntax

There are only four constructs allowed in the ‘˜/.inputrc’ file:

Variable Settings
You can change the state of a few variables in Readline. You
do this by using the set command within the init file. Here
is how you would specify that you wish to use Vi line editing
commands:

set editing-mode vi

Right now, there are only a few variables which can be set;
so few in fact, that we just iterate them here:

editing-mode
The editing-mode variable controls which edit-
ing mode you are using. By default, GNU Read-
line starts up in Emacs editing mode, where the
keystrokes are most similar to Emacs. This vari-
able can either be set to emacs or vi.

horizontal-scroll-mode
This variable can either be set to On or Off. Set-
ting it to On means that the text of the lines that
you edit will scroll horizontally on a single screen
line when they are larger than the width of the
screen, instead of wrapping onto a new screen
line. By default, this variable is set to Off.

mark-modified-lines
This variable when set to On, says to display an
asterisk (‘*’) at the starts of history lines which
have been modified. This variable is off by de-
fault.

168 11 July 1995

Appendix A: Command Line Editing

prefer-visible-bell
If this variable is set to On it means to use a visible
bell if one is available, rather than simply ringing
the terminal bell. By default, the value is Off.

Key Bindings
The syntax for controlling keybindings in the ‘˜/.inputrc’
file is simple. First you have to know the name of the com-
mand that you want to change. The following pages contain
tables of the command name, the default keybinding, and a
short description of what the command does.

Once you know the name of the command, simply place the
name of the key you wish to bind the command to, a colon, and
then the name of the command on a line in the ‘˜/.inputrc’
file. The name of the key can be expressed in different ways,
depending on which is most comfortable for you.

keyname: function-name or macro
keyname is the name of a key spelled out in En-
glish. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the above example, C-U is bound to the function
universal-argument, and C-O is bound to run
the macro expressed on the right hand side (that
is, to insert the text ‘>&output’ into the line).

"keyseq": function-name or macro
keyseq differs from keyname above in that strings
denoting an entire key sequence can be specified.
Simply place the key sequence in double quotes.
GNU Emacs style key escapes can be used, as in
the following example:

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11˜": "Function Key 1"

In the above example, C-U is bound to the function
universal-argument (just as it was in the first
example), C-X C-R is bound to the function re-
read-init-file, and ESC [1 1 ˜ is bound to
insert the text ‘Function Key 1’.

c y g n u s s u p p o r t 169

Debugging with GDB

A.3.1.1 Commands For Moving

beginning-of-line (C-A)
Move to the start of the current line.

end-of-line (C-E)
Move to the end of the line.

forward-char (C-F)
Move forward a character.

backward-char (C-B)
Move back a character.

forward-word (M-F)
Move forward to the end of the next word.

backward-word (M-B)
Move back to the start of this, or the previous, word.

clear-screen (C-L)
Clear the screen leaving the current line at the top of the
screen.

A.3.1.2 Commands For Manipulating The History

accept-line (Newline, Return)
Accept the line regardless of where the cursor is. If this line
is non-empty, add it to the history list. If this line was a
history line, then restore the history line to its original state.

previous-history (C-P)
Move ‘up’ through the history list.

next-history (C-N)
Move ‘down’ through the history list.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line you are
entering!

reverse-search-history (C-R)
Search backward starting at the current line and moving
‘up’ through the history as necessary. This is an incremental
search.

170 11 July 1995

Appendix A: Command Line Editing

forward-search-history (C-S)
Search forward starting at the current line and moving
‘down’ through the the history as necessary.

A.3.1.3 Commands For Changing Text

delete-char (C-D)
Delete the character under the cursor. If the cursor is at the
beginning of the line, and there are no characters in the line,
and the last character typed was not C-D, then return EOF.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric arg says
to kill the characters instead of deleting them.

quoted-insert (C-Q, C-V)
Add the next character that you type to the line verbatim.
This is how to insert things like C-Q for example.

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-T)
Drag the character before point forward over the character
at point. Point moves forward as well. If point is at the end
of the line, then transpose the two characters before point.
Negative args don’t work.

transpose-words (M-T)
Drag the word behind the cursor past the word in front of the
cursor moving the cursor over that word as well.

upcase-word (M-U)
Uppercase all letters in the current (or following) word. With
a negative argument, do the previous word, but do not move
point.

downcase-word (M-L)
Lowercase all letters in the current (or following) word. With
a negative argument, do the previous word, but do not move
point.

capitalize-word (M-C)
Uppercase the first letter in the current (or following) word.
With a negative argument, do the previous word, but do not
move point.

c y g n u s s u p p o r t 171

Debugging with GDB

A.3.1.4 Killing And Yanking

kill-line (C-K)
Kill the text from the current cursor position to the end of
the line.

backward-kill-line ()
Kill backward to the beginning of the line. This is normally
unbound.

kill-word (M-D)
Kill from the cursor to the end of the current word, or if
between words, to the end of the next word.

backward-kill-word (M-DEL)
Kill the word behind the cursor.

unix-line-discard (C-U)
Do what C-U used to do in Unix line input. We save the killed
text on the kill-ring, though.

unix-word-rubout (C-W)
Do what C-W used to do in Unix line input. The killed text is
saved on the kill-ring. This is different than backward-kill-
word because the word boundaries differ.

yank (C-Y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-Y)
Rotate the kill-ring, and yank the new top. You can only do
this if the prior command is yank or yank-pop.

A.3.1.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)
Add this digit to the argument already accumulating, or start
a new argument. M-- starts a negative argument.

universal-argument ()
Do what C-U does in emacs. By default, this is not bound.

172 11 July 1995

Appendix A: Command Line Editing

A.3.1.6 Letting Readline Type For You

complete (TAB)
Attempt to do completion on the text before point. This is
implementation defined. Generally, if you are typing a file-
name argument, you can do filename completion; if you are
typing a command, you can do command completion, if you
are typing in a symbol to GDB, you can do symbol name com-
pletion, if you are typing in a variable to Bash, you can do
variable name completion...

possible-completions (M-?)
List the possible completions of the text before point.

A.3.1.7 Some Miscellaneous Commands

re-read-init-file (C-X C-R)
Read in the contents of your ‘˜/.inputrc’ file, and incorpo-
rate any bindings found there.

abort (C-G)
Stop running the current editing command.

prefix-meta (ESC)
Make the next character that you type be metafied. This is
for people without a meta key. Typing ESC F is equivalent to
typing M-F.

undo (C-_)
Incremental undo, separately remembered for each line.

revert-line (M-R)
Undo all changes made to this line. This is like typing the
‘undo’ command enough times to get back to the beginning.

A.3.2 Readline Vi Mode

While the Readline library does not have a full set of Vi editing func-
tions, it does contain enough to allow simple editing of the line.

In order to switch interactively between Emacs and Vi editing modes,
use the command M-C-J (toggle-editing-mode).

When you enter a line in Vi mode, you are already placed in ‘insertion’
mode, as if you had typed an ‘i’. Pressing ESC switches you into ‘edit’
mode, where you can edit the text of the line with the standard Vi
movement keys, move to previous history lines with ‘k’, and following
lines with ‘j’, and so forth.

c y g n u s s u p p o r t 173

Debugging with GDB

174 11 July 1995

Appendix B: Using History Interactively

Appendix B Using History Interactively

This chapter describes how to use the GNU History Library interac-
tively, from a user’s standpoint.

B.1 History Interaction

The History library provides a history expansion feature that is sim-
ilar to the history expansion in Csh. The following text describes the
sytax that you use to manipulate the history information.

History expansion takes place in two parts. The first is to determine
which line from the previous history should be used during substitution.
The second is to select portions of that line for inclusion into the current
one. The line selected from the previous history is called the event, and
the portions of that line that are acted upon are called words. The line is
broken into words in the same fashion that the Bash shell does, so that
several English (or Unix) words surrounded by quotes are considered as
one word.

B.1.1 Event Designators

An event designator is a reference to a command line entry in the
history list.

! Start a history subsititution, except when followed by a
space, tab, or the end of the line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?]
Refer to the most recent command containing string.

B.1.2 Word Designators

A : separates the event specification from the word designator. It
can be omitted if the word designator begins with a ˆ, $, * or %. Words
are numbered from the beginning of the line, with the first word being
denoted by a 0 (zero).

0 (zero) The zero’th word. For many applications, this is the com-
mand word.

c y g n u s s u p p o r t 175

Debugging with GDB

n The n’th word.

ˆ The first argument. that is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y.

* All of the words, excepting the zero’th. This is a synonym for
1-$. It is not an error to use * if there is just one word in the
event. The empty string is returned in that case.

B.1.3 Modifiers

After the optional word designator, you can add a sequence of one or
more of the following modifiers, each preceded by a :.

The entire command line typed so far. This means the cur-
rent command, not the previous command, so it really isn’t
a word designator, and doesn’t belong in this section.

h Remove a trailing pathname component, leaving only the
head.

r Remove a trailing suffix of the form ‘.’suffix, leaving the
basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

176 11 July 1995

Appendix C: Formatting Documentation

Appendix C Formatting Documentation

The GDB 4 release includes an already-formatted reference card,
ready for printing with PostScript or Ghostscript, in the ‘gdb’ subdi-
rectory of the main source directory1. If you can use PostScript or
Ghostscript with your printer, you can print the reference card immedi-
ately with ‘refcard.ps’.

The release also includes the source for the reference card. You can
format it, using TEX, by typing:

make refcard.dvi

The GDB reference card is designed to print in landscape mode on
US “letter” size paper; that is, on a sheet 11 inches wide by 8.5 inches
high. You will need to specify this form of printing as an option to your
dvi output program.

All the documentation for GDB comes as part of the machine-readable
distribution. The documentation is written in Texinfo format, which is
a documentation system that uses a single source file to produce both
on-line information and a printed manual. You can use one of the Info
formatting commands to create the on-line version of the documentation
and TEX (or texi2roff) to typeset the printed version.

GDB includes an already formatted copy of the on-line Info ver-
sion of this manual in the ‘gdb’ subdirectory. The main Info file is
‘gdb-version-number/gdb/gdb.info’, and it refers to subordinate files
matching ‘gdb.info*’ in the same directory. If necessary, you can print
out these files, or read them with any editor; but they are easier to
read using the info subsystem in gnu Emacs or the standalone info
program, available as part of the gnu Texinfo distribution.

If you want to format these Info files yourself, you need one of the Info
formatting programs, such as texinfo-format-buffer or makeinfo.

If you have makeinfo installed, and are in the top level GDB source
directory (‘gdb-’, in the case of version), you can make the Info file by
typing:

cd gdb
make gdb.info

If you want to typeset and print copies of this manual, you need TEX,
a program to print its dvi output files, and ‘texinfo.tex’, the Texinfo
definitions file.

TEX is a typesetting program; it does not print files directly, but
produces output files called dvi files. To print a typeset document, you
need a program to print dvi files. If your system has TEX installed,

1 In ‘gdb-/gdb/refcard.ps’ of the version release.

c y g n u s s u p p o r t 177

Debugging with GDB

chances are it has such a program. The precise command to use depends
on your system; lpr -d is common; another (for PostScript devices) is
dvips. The dvi print command may require a file name without any
extension or a ‘.dvi’ extension.

TEX also requires a macro definitions file called ‘texinfo.tex’.
This file tells TEX how to typeset a document written in Texinfo
format. On its own, TEX cannot either read or typeset a Texinfo
file. ‘texinfo.tex’ is distributed with GDB and is located in the
‘gdb-version-number/texinfo’ directory.

If you have TEX and a dvi printer program installed, you can typeset
and print this manual. First switch to the the ‘gdb’ subdirectory of the
main source directory (for example, to ‘gdb-/gdb’) and then type:

make gdb.dvi

178 11 July 1995

Appendix D: Installing GDB

Appendix D Installing GDB

GDB comes with a configure script that automates the process of
preparing GDB for installation; you can then use make to build the gdb
program.1

The GDB distribution includes all the source code you need for GDB
in a single directory, whose name is usually composed by appending the
version number to ‘gdb’.

For example, the GDB version distribution is in the ‘gdb-’ directory.
That directory contains:

gdb-/configure (and supporting files)
script for configuring GDB and all its supporting libraries

gdb-/gdb the source specific to GDB itself

gdb-/bfd source for the Binary File Descriptor library

gdb-/include
gnu include files

gdb-/libiberty
source for the ‘-liberty’ free software library

gdb-/opcodes
source for the library of opcode tables and disassemblers

gdb-/readline
source for the gnu command-line interface

gdb-/glob
source for the gnu filename pattern-matching subroutine

gdb-/mmalloc
source for the gnu memory-mapped malloc package

The simplest way to configure and build GDB is to run configure
from the ‘gdb-version-number’ source directory, which in this example
is the ‘gdb-’ directory.

First switch to the ‘gdb-version-number’ source directory if you are
not already in it; then run configure. Pass the identifier for the platform
on which GDB will run as an argument.

For example:

1 If you have a more recent version of GDB than , look at the ‘README’
file in the sources; we may have improved the installation procedures
since publishing this manual.

c y g n u s s u p p o r t 179

Debugging with GDB

cd gdb-
./configure host
make

where host is an identifier such as ‘sun4’ or ‘decstation’, that identi-
fies the platform where GDB will run. (You can often leave off host;
configure tries to guess the correct value by examining your system.)

Running ‘configure host’ and then running make builds the ‘bfd’,
‘readline’, ‘mmalloc’, and ‘libiberty’ libraries, then gdb itself. The
configured source files, and the binaries, are left in the corresponding
source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not
recognize this automatically when you run a different shell, you may
need to run sh on it explicitly:

sh configure host

If you run configure from a directory that contains source directories
for multiple libraries or programs, such as the ‘gdb-’ source directory for
version , configure creates configuration files for every directory level
underneath (unless you tell it not to, with the ‘--norecursion’ option).

You can run the configure script from any of the subordinate di-
rectories in the GDB distribution if you only want to configure that
subdirectory, but be sure to specify a path to it.

For example, with version , type the following to configure only the
bfd subdirectory:

cd gdb-/bfd

../configure host

You can install gdb anywhere; it has no hardwired paths. However,
you should make sure that the shell on your path (named by the ‘SHELL’
environment variable) is publicly readable. Remember that GDB uses
the shell to start your program—some systems refuse to let GDB debug
child processes whose programs are not readable.

D.1 Compiling GDB in another directory

If you want to run GDB versions for several host or target machines,
you need a different gdb compiled for each combination of host and
target. configure is designed to make this easy by allowing you to
generate each configuration in a separate subdirectory, rather than in
the source directory. If your make program handles the ‘VPATH’ feature
(gnu make does), running make in each of these directories builds the gdb
program specified there.

To build gdb in a separate directory, run configure with the
‘--srcdir’ option to specify where to find the source. (You also need

180 11 July 1995

Appendix D: Installing GDB

to specify a path to find configure itself from your working directory. If
the path to configure would be the same as the argument to ‘--srcdir’,
you can leave out the ‘--srcdir’ option; it is assumed.)

For example, with version , you can build GDB in a separate directory
for a Sun 4 like this:

cd gdb-

mkdir ../gdb-sun4

cd ../gdb-sun4

../gdb-/configure sun4
make

When configure builds a configuration using a remote source di-
rectory, it creates a tree for the binaries with the same structure (and
using the same names) as the tree under the source directory. In the
example, you’d find the Sun 4 library ‘libiberty.a’ in the directory
‘gdb-sun4/libiberty’, and GDB itself in ‘gdb-sun4/gdb’.

One popular reason to build several GDB configurations in separate
directories is to configure GDB for cross-compiling (where GDB runs on
one machine—the host—while debugging programs that run on another
machine—the target). You specify a cross-debugging target by giving the
‘--target=target’ option to configure.

When you run make to build a program or library, you must run it in
a configured directory—whatever directory you were in when you called
configure (or one of its subdirectories).

The Makefile that configure generates in each source direc-
tory also runs recursively. If you type make in a source directory
such as ‘gdb-’ (or in a separate configured directory configured with
‘--srcdir=dirname/gdb-’), you will build all the required libraries, and
then build GDB.

When you have multiple hosts or targets configured in separate di-
rectories, you can run make on them in parallel (for example, if they are
NFS-mounted on each of the hosts); they will not interfere with each
other.

D.2 Specifying names for hosts and targets

The specifications used for hosts and targets in the configure script
are based on a three-part naming scheme, but some short predefined
aliases are also supported. The full naming scheme encodes three pieces
of information in the following pattern:

architecture-vendor-os

c y g n u s s u p p o r t 181

Debugging with GDB

For example, you can use the alias sun4 as a host argument, or as
the value for target in a --target=target option. The equivalent full
name is ‘sparc-sun-sunos4’.

The configure script accompanying GDB does not provide any query
facility to list all supported host and target names or aliases. configure
calls the Bourne shell script config.sub to map abbreviations to full
names; you can read the script, if you wish, or you can use it to test your
guesses on abbreviations—for example:

% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub decstation
mips-dec-ultrix4.2
% sh config.sub hp300bsd
m68k-hp-bsd
% sh config.sub i386v
i386-unknown-sysv
% sh config.sub i786v
Invalid configuration ‘i786v’: machine ‘i786v’ not recognized

config.sub is also distributed in the GDB source directory (‘gdb-’, for
version).

D.3 configure options

Here is a summary of the configure options and arguments that
are most often useful for building GDB. configure also has several
other options not listed here. See Info file ‘configure.info’, node ‘What
Configure Does’, for a full explanation of configure.

configure [--help]
[--prefix=dir]
[--srcdir=dirname]
[--norecursion] [--rm]
[--target=target] host

You may introduce options with a single ‘-’ rather than ‘--’ if you prefer;
but you may abbreviate option names if you use ‘--’.

--help Display a quick summary of how to invoke configure.

-prefix=dir
Configure the source to install programs and files under di-
rectory ‘dir’.

182 11 July 1995

Appendix D: Installing GDB

--srcdir=dirname
Warning: using this option requires gnu make, or an-
other make that implements the VPATH feature.
Use this option to make configurations in directories sepa-
rate from the GDB source directories. Among other things,
you can use this to build (or maintain) several configurations
simultaneously, in separate directories. configure writes
configuration specific files in the current directory, but ar-
ranges for them to use the source in the directory dirname.
configure creates directories under the working directory in
parallel to the source directories below dirname.

--norecursion
Configure only the directory level where configure is exe-
cuted; do not propagate configuration to subdirectories.

--rm Remove files otherwise built during configuration.

--target=target
Configure GDB for cross-debugging programs running on the
specified target. Without this option, GDB is configured to
debug programs that run on the same machine (host) as
GDB itself.
There is no convenient way to generate a list of all available
targets.

host . .. Configure GDB to run on the specified host.
There is no convenient way to generate a list of all available
hosts.

configure accepts other options, for compatibility with configuring other
gnu tools recursively; but these are the only options that affect GDB or
its supporting libraries.

c y g n u s s u p p o r t 183

Debugging with GDB

184 11 July 1995

Index

Index

#
. 15
in Modula-2 . 102

$
$. 78
$$. 78
$. 80
$ and info breakpoints 36
$ and info line . 63
$, $, and value history 71
$. 80
$bpnum . 34
$cdir. 62
$cwd . 62

.

. 101

.esgdbinit . 153
‘.gdbinit’ . 153
.os68gdbinit . 153
.vxgdbinit . 153

/
/proc. 28

:
:: . 67, 101

@
@ . 67

{
{type} . 66

A
a.out and C++ . 93
abbreviation . 15
active targets . 119
add-shared-symbol-file. 114
add-symbol-file 114

AMD 29K register stack 82
AMD EB29K. 121
AMD29K via UDI. 133
arguments (to your program) 24
artificial array . 67
assembly instructions 63
assignment . 107
attach . 27
automatic display . 71
automatic thread selection 31
awatch . 38

B
b . 34
backtrace . 54
break. 34
break : : : thread threadno 50
break in overloaded functions 95
breakpoint commands 43
breakpoint conditions 42
breakpoint numbers 33
breakpoint on memory address 33
breakpoint on variable modification . . . 33
breakpoint subroutine, remote 125
breakpoints . 33
breakpoints and threads 50
bt . 54
bug criteria . 161
bug reports . 161
bugs in GDB . 161

C
c . 46
C and C++ . 90
C and C++ checks . 95
C and C++ constants 93
C and C++ defaults 94
C and C++ operators 91
C++ . 90
C++ and object formats 93
C++ exception handling 96
C++ scope resolution 67
C++ support, not in coff 93

c y g n u s s u p p o r t 185

Debugging with GDB

C++ symbol decoding style 77
C++ symbol display 96
call . 110
call overloaded functions 94
call stack. 53
calling functions . 110
calling make . 13
casts, to view memory. 66
catch. 39
catch exceptions . 57
cd . 26
cdir . 62
checks, range . 89
checks, type . 88
checksum, for GDB remote 128
choosing target byte order 122
clear. 40
clearing breakpoints, watchpoints 40
coff versus C++ . 93
colon, doubled as scope operator 101
colon-colon . 67
command files 152, 153
command line editing 145
commands . 43
commands for C++ . 95
commands to STDBUG (ST2000) 137
comment . 15
compilation directory 62
complete . 18
completion . 16
completion of quoted strings 16
condition . 42
conditional breakpoints 42
configuring GDB . 179
confirmation . 149
connect (to STDBUG) 137
continue . 46
continuing . 45
continuing threads . 51
control C, and remote debugging 125
controlling terminal 26
convenience variables 79
core . 113
core dump file . 111
core-file . 113
CPU simulator . 142
crash of debugger . 161
current directory . 62

current thread . 29
cwd . 62

D
d . 40
debugger crash . 161
debugging optimized code 21
debugging stub, example 128
debugging target . 119
define . 151
delete . 40
delete breakpoints . 40
delete display . 72
deleting breakpoints, watchpoints 40
demangling . 77
detach . 27
device . 139
dir . 61
directories for source files 61
directory . 61
directory, compilation 62
directory, current . 62
dis . 41
disable . 41
disable breakpoints 40, 41
disable display . 72
disassemble. 63
display . 72
display of expressions 71
do . 56
document . 151
documentation . 177
down . 56
down-silently . 56
download to H8/300 or H8/500 114
download to Hitachi SH 114
download to Nindy-960 114
download to VxWorks 138
dynamic linking . 114

E
eb.log . 136
EB29K board . 134
EBMON . 135
echo . 154
ecoff and C++ . 93
editing . 145
editing-mode . 168

186 11 July 1995

Index

elf/dwarf and C++ . 93
elf/stabs and C++ . 93
else . 151
Emacs . 157
enable . 41
enable breakpoints 40, 41
enable display . 72
end . 43
entering numbers . 148
environment (of your program) 24
error on valid input 161
event designators . 175
examining data . 65
examining memory 69
exception handlers 39, 57
exceptionHandler 126
exec-file . 111
executable file . 111
exiting GDB . 12
expansion . 175
expressions . 65
expressions in C or C++ 90
expressions in C++ . 93
expressions in Modula-2 96

F
f . 55
fatal signal . 161
fatal signals . 49
fg . 46
file . 111
finish . 47
flinching . 149
floating point . 83
floating point registers 81
floating point, MIPS remote 141
flush i cache . 126
focus of debugging . 29
foo . 116
fork, debugging programs which call . . 31
format options . 73
formatted output . 68
Fortran . 1
forward-search. 61
frame . 53
frame . 54, 55
frame number. 53
frame pointer . 53

frameless execution 54

G
g++ . 90
GDB bugs, reporting 161
GDB reference card 177
GDBHISTFILE . 146
gdbserve.nlm . 131
gdbserver . 129
getDebugChar . 125
gnu C++ . 90
gnu Emacs . 157

H
h . 17
H8/300 or H8/500 download 114
H8/300 or H8/500 simulator 142
handle . 49
handle exception 124
handling signals . 49
hbreak . 35
help . 17
help target . 120
help user-defined 152
heuristic-fence-post (MIPS). 58
history expansion . 146
history file . 146
history number . 78
history save. 146
history size . 146
history substitution 146
Hitachi SH download 114
Hitachi SH simulator 142
horizontal-scroll-mode. 168

I
i . 19
i/o . 26
i386 . 124
i386-stub.c . 124
i960 . 132
if . 151
ignore . 43
ignore count (of breakpoint) 43
INCLUDE RDB . 137
info . 19
info address . 103

c y g n u s s u p p o r t 187

Debugging with GDB

info all-registers 81
info args . 57
info breakpoints 36
info catch. 57
info display . 72
info f . 56
info files . 115
info float. 83
info frame . 56, 87
info functions . 104
info line . 62
info locals . 57
info proc . 28
info proc id. 28
info proc mappings 28
info proc status 29
info proc times. 28
info program . 33
info registers . 81
info s . 55
info set . 19
info share . 115
info sharedlibrary 115
info signals . 49
info source . 87, 104
info sources . 104
info stack. 55
info target . 115
info terminal. 26
info threads . 30
info types . 104
info variables . 105
info watchpoints 38
inheritance . 96
init file . 153
init file name . 153
initial frame . 53
innermost frame . 53
inspect . 65
installation . 179
instructions, assembly 63
Intel . 124
interaction, readline 165
internal GDB breakpoints 37
interrupt . 12
interrupting remote programs 128
interrupting remote targets. 125
invalid input . 161

J
jump . 108

K
kill . 28

L
l . 59
languages . 85
latest breakpoint . 34
leaving GDB . 12
linespec . 60
list . 59
listing machine instructions 63
load filename . 113
log file for EB29K . 136

M
m680x0 . 124
m68k-stub.c . 124
machine instructions. 63
maint info breakpoints 37
maint print psymbols 105
maint print symbols 105
make . 13
mapped . 112
mark-modified-lines. 168
member functions . 94
memory models, H8/500 140
memory tracing . 33
memory, viewing as typed object 66
memory-mapped symbol file 112
memset . 126
MIPS boards . 141
MIPS remote floating point 141
MIPS remotedebug protocol 142
MIPS stack . 58
Modula-2 . 96
Modula-2 built-ins . 98
Modula-2 checks . 101
Modula-2 constants 99
Modula-2 defaults 100
Modula-2 operators 97
Modula-2, deviations from 100
Motorola 680x0 . 124
multiple processes . 31
multiple targets . 119

188 11 July 1995

Index

multiple threads . 29

N
n . 47
names of symbols . 103
namespace in C++ . 94
negative breakpoint numbers 37
New systag . 30
next . 47
nexti. 48
ni . 48
Nindy . 132
number representation 148
numbers for breakpoints 33

O
object formats and C++ 93
online documentation 17
optimized code, debugging 21
outermost frame . 53
output . 154
output formats . 68
overloading . 45
overloading in C++ . 95

P
packets, reporting on stdout 129
partial symbol dump 105
patching binaries . 110
path . 24
pauses in output . 147
pipes . 24
pointer, finding referent 74
prefer-visible-bell 169
print. 65
print settings . 73
printf . 154
printing data. 65
process image . 28
processes, multiple . 31
prompt . 145
protocol, GDB remote serial 128
ptype . 103
putDebugChar . 125
pwd . 26

Q
q . 12
quit . 12
quotes in commands 16
quoting names . 103

R
raise exceptions . 39
range checking . 89
rbreak . 36
reading symbols immediately 112
readline. 145
readnow . 112
redirection . 26
reference card . 177
reference declarations 94
register stack, AMD29K 82
registers . 81
regular expression . 36
reloading symbols 105
remote connection without stubs 129
remote debugging . 123
remote programs, interrupting 128
remote serial debugging summary . . . 127
remote serial debugging, overview . . . 123
remote serial protocol 128
remote serial stub 124
remote serial stub list 124
remote serial stub, initialization 124
remote serial stub, main routine 124
remote stub, example 128
remote stub, support routines 125
remotedebug, MIPS protocol 142
repeating commands 15
reporting bugs in GDB 161
reset . 133
response time, MIPS debugging. 58
resuming execution 45
RET . 15
retransmit-timeout, MIPS protocol

. 142
return . 109
returning from a function 109
reverse-search. 61
run . 23
running . 23
running 29K programs 134
running VxWorks tasks 139

c y g n u s s u p p o r t 189

Debugging with GDB

rwatch . 38

S
s . 46
saving symbol table 112
scope . 101
search . 61
searching . 61
section . 114
select-frame . 54
selected frame . 53
serial connections, debugging 129
serial device, Hitachi micros 139
serial line speed, Hitachi micros 139
serial line, target remote 127
serial protocol, GDB remote 128
set . 19
set args . 24
set check . 88, 89
set check range. 89
set check type . 88
set complaints . 149
set confirm . 149
set demangle-style 77
set editing . 145
set endian auto 122
set endian big . 122
set endian little 122
set environment . 25
set gnutarget . 120
set height . 147
set history expansion 146
set history filename 146
set history save 146
set history size 146
set input-radix 148
set language . 86
set listsize . 59
set machine . 140
set memory mod . 140
set mipsfpu . 141
set output-radix 148
set print address 73
set print array. 75
set print asm-demangle 77
set print demangle 77
set print elements 75
set print max-symbolic-offset . . 74

set print null-stop 75
set print object 78
set print pretty 75
set print sevenbit-strings 76
set print symbol-filename 74
set print union. 76
set print vtbl . 78
set prompt . 145
set remotedebug 129, 142
set retransmit-timeout 142
set rstack high address 82
set symbol-reloading 105
set timeout . 142
set variable . 107
set verbose . 148
set width . 147
set write . 110
set debug traps 124
setting variables . 107
setting watchpoints 38
share . 115
shared libraries . 115
sharedlibrary . 115
shell. 13
shell escape . 13
show . 19
show args . 24
show check range 89
show check type. 88
show commands . 147
show complaints 149
show confirm . 149
show convenience 80
show copying . 19
show demangle-style. 78
show directories 62
show editing . 145
show endian . 122
show environment 25
show gnutarget . 120
show height . 147
show history . 147
show input-radix 148
show language . 87
show listsize . 59
show machine . 140
show mipsfpu . 141
show output-radix 148

190 11 July 1995

Index

show paths. 25
show print address. 74
show print array 75
show print asm-demangle 77
show print demangle 77
show print elements 75
show print max-symbolic-offset

. 74
show print object 78
show print pretty 76
show print sevenbit-strings. 76
show print symbol-filename 74
show print union 76
show print vtbl. 78
show prompt . 145
show remotedebug 129, 142
show retransmit-timeout 142
show rstack high address 82
show symbol-reloading 105
show timeout . 142
show user . 152
show values . 79
show verbose . 149
show version . 19
show warranty. 19
show width . 147
show write . 110
si . 48
signal . 109
signals . 49
silent . 44
sim . 143
simulator . 142
simulator, H8/300 or H8/500 142
simulator, Hitachi SH 142
simulator, Z8000 . 142
size of screen . 147
source . 153
source path . 61
sparc-stub.c . 124
speed . 139
ST2000 auxiliary commands 137
st2000 cmd . 137
stack frame . 53
stack on MIPS . 58
stacking targets . 119
starting . 23
STDBUG commands (ST2000) 137

step . 46
stepi. 48
stepping . 45
stopped threads . 51
stub example, remote debugging 128
stupid questions . 149
switching threads . 29
switching threads automatically 31
symbol decoding style, C++ 77
symbol dump . 105
symbol names . 103
symbol overloading 45
symbol table . 111
symbol-file . 111
symbols, reading immediately 112

T
target . 119
target amd-eb . 121
target array . 122
target byte order . 122
target core . 120
target cpu32bug 121
target e7000 . 140
target est . 122
target exec . 120
target hms . 121
target mips port 141
target nindy . 121
target op50n . 122
target remote . 120
target rom68k . 122
target sim . 121, 143
target sparclite 122
target st2000 . 121
target udi . 121
target vxworks . 121
target w89k . 122
tbreak . 35
TCP port, target remote. 128
terminal . 26
thbreak . 35
this . 94
thread apply . 30
thread breakpoints. 50
thread identifier (GDB) 30
thread identifier (system) 30
thread number . 30

c y g n u s s u p p o r t 191

Debugging with GDB

thread threadno . 30
threads and watchpoints 38
threads of execution 29
threads, automatic switching 31
threads, continuing 51
threads, stopped . 51
timeout, MIPS protocol 142
toggle-editing-mode 173
tty . 26
type casting memory 66
type checking . 88
type conversions in C++ 94

U
u . 47
udi . 134
UDI. 133
undisplay . 72
unknown address, locating 69
unset environment 25
until. 47
up . 56
up-silently. 56
user-defined command 151

V
value history . 78
variable name conflict. 67

variable values, wrong 67
variables, setting . 107
version number . 19
vi style command editing 173
VxWorks . 137

W
watch. 38
watchpoints . 33
watchpoints and threads 38
whatis . 103
where. 55
while . 151
wild pointer, interpreting 74
word completion . 16
working directory . 62
working directory (of your program) . . 26
working language . 85
writing into corefiles 110
writing into executables 110
wrong values . 67

X
x . 69
xcoff and C++ . 93

Z
Z8000 simulator . 142

192 11 July 1995

Index

The body of this manual is set in
pncr at 10.95pt,

with headings in pncb at 10.95pt
and examples in pcrr.

pncri at 10.95pt,
pncb at 10.95pt, and

pcrro
are used for emphasis.

c y g n u s s u p p o r t 193

Debugging with GDB

194 11 July 1995

The GNU C++ Iostream Library
Reference Manual for libio Version 0.64

Per Bothner bothner@cygnus.com

Roland Pesch pesch@cygnus.com

Copyright c 1993 Free Software Foundation, Inc.
libio includes software developed by the University of California,
Berkeley.
libio uses floating-point software written by David M. Gay, which in-
cludes the following notice:

The author of this software is David M. Gay.
Copyright (c) 1991 by AT&T.
Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this
entire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all copies
of the supporting documentation for such software.
THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT
ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR,
NEITHER THE AUTHOR NOR AT&T MAKES ANY REPRE-
SENTATION OR WARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FIT-
NESS FOR ANY PARTICULAR PURPOSE.

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Introduction . 1
1.1 Licensing terms for libio . 1
1.2 Acknowledgements . 1

2 Operators and Default Streams 3

3 Stream Classes . 5
3.1 Shared properties: class ios . 5

3.1.1 Checking the state of a stream 5
3.1.2 Choices in formatting . 7
3.1.3 Changing stream properties using manipulators

. 10
3.1.4 Extended data fields . 11
3.1.5 Synchronizing related streams 12
3.1.6 Reaching the underlying streambuf 12

3.2 Managing output streams: class ostream 13
3.2.1 Writing on an ostream . 13
3.2.2 Repositioning an ostream . 14
3.2.3 Miscellaneous ostream utilities 14

3.3 Managing input streams: class istream 15
3.3.1 Reading one character . 15
3.3.2 Reading strings . 16
3.3.3 Repositioning an istream . 17
3.3.4 Miscellaneous istream utilities 18

3.4 Input and output together: class iostream 19

4 Classes for Files and Strings 21
4.1 Reading and writing files . 21
4.2 Reading and writing in memory . 23

5 Using the streambuf Layer . 25
5.1 Areas of a streambuf . 25
5.2 Simple output re-direction by redefining overflow 26
5.3 C-style formatting for streambuf objects 28
5.4 Wrappers for C stdio . 28
5.5 Reading/writing from/to a pipe . 29
5.6 Backing up . 29
5.7 Forwarding I/O activity . 31

c y g n u s s u p p o r t i

The GNU C++ Iostream Library

6 C Input and Output . 33

Index . 35

ii 10 July 1995

Chapter 1: Introduction

1 Introduction

The iostream classes implement most of the features of AT&T version
2.0 iostream library classes, and most of the features of the ANSI X3J16
library draft (which is based on the AT&T design).

This manual is meant as a reference; for tutorial material on
iostreams, see the corresponding section of any recent popular intro-
duction to C++.

1.1 Licensing terms for libio

Since the iostream classes are so fundamental to standard C++, the
Free Software Foundation has agreed to a special exception to its stan-
dard license, when you link programs with libio.a:

As a special exception, if you link this library with files compiled
with a GNU compiler to produce an executable, this does not
cause the resulting executable to be covered by the GNU Gen-
eral Public License. This exception does not however invalidate
any other reasons why the executable file might be covered by
the GNU General Public License.

The code is under the gnu General Public License (version 2) for all
other purposes than linking with this library; that means that you can
modify and redistribute the code as usual, but remember that if you do,
your modifications, and anything you link with the modified code, must
be available to others on the same terms.

These functions are also available as part of the libg++ library; if you
link with that library instead of libio, the gnu Library General Public
License applies.

1.2 Acknowledgements

Per Bothner wrote most of the iostream library, but some portions
have their origins elsewhere in the free software community. Heinz Seidl
wrote the IO manipulators. The floating-point conversion software is by
David M. Gay of AT&T. Some code was derived from parts of BSD 4.4,
which was written at the University of California, Berkeley.

The iostream classes are found in the libio library. An early version
was originally distributed in libg++, and they are still included there as
well, for convenience if you need other libg++ classes. Doug Lea was the
original author of libg++, and some of the file-management code still in
libio is his.

c y g n u s s u p p o r t 1

The GNU C++ Iostream Library

Various people found bugs or offered suggestions. Hongjiu Lu worked
hard to use the library as the default stdio implementation for Linux,
and has provided much stress-testing of the library.

2 10 July 1995

Chapter 2: Operators and Default Streams

2 Operators and Default Streams

The gnu iostream library, ‘libio’, implements the standard input
and output facilities for C++. These facilities are roughly analogous (in
their purpose and ubiquity, at least) with those defined by the C ‘stdio’
functions.

Although these definitions come from a library, rather than being
part of the “core language”, they are sufficiently central to be specified
in the latest working papers for C++.

You can use two operators defined in this library for basic input and
output operations. They are familiar from any C++ introductory text-
book: << for output, and >> for input. (Think of data flowing in the
direction of the “arrows”.)

These operators are often used in conjunction with three streams that
are open by default:

Variableostream cout
The standard output stream, analogous to the C stdout.

Variableistream cin
The standard input stream, analogous to the C stdin.

Variableostream cerr
An alternative output stream for errors, analogous to the C
stderr.

For example, this bare-bones C++ version of the traditional “hello” pro-
gram uses << and cout:

#include <iostream.h>

int main(int argc, char **argv)
{

cout << "Well, hi there.\n";
return 0;

}

Casual use of these operators may be seductive, but—other than in
writing throwaway code for your own use—it is not necessarily simpler
than managing input and output in any other language. For example,
robust code should check the state of the input and output streams be-
tween operations (for example, using the method good). See Section 3.1.1
“Checking the state of a stream,” page 5. You may also need to adjust
maximum input or output field widths, using manipulators like setw or
setprecision.

c y g n u s s u p p o r t 3

The GNU C++ Iostream Library

Operator on ostream<<
Write output to an open output stream of class ostream. De-
fined by this library on any object of a C++ primitive type,
and on other classes of the library. You can overload the
definition for any of your own applications’ classes.
Returns a reference to the implied argument *this (the open
stream it writes on), permitting statements like

cout << "The value of i is " << i << "\n";

Operator on istream>>
Read input from an open input stream of class istream. De-
fined by this library on primitive numeric, pointer, and string
types; you can extend the definition for any of your own ap-
plications’ classes.
Returns a reference to the implied argument *this (the open
stream it reads), permitting multiple inputs in one state-
ment.

4 10 July 1995

Chapter 3: Stream Classes

3 Stream Classes

The previous chapter referred in passing to the classes ostream and
istream, for output and input respectively. These classes share certain
properties, captured in their base class ios.

3.1 Shared properties: class ios

The base class ios provides methods to test and manage the state of
input or output streams.

ios delegates the job of actually reading and writing bytes to the
abstract class streambuf, which is designed to provide buffered streams
(compatible with C, in the gnu implementation). See Chapter 5 “Using
the streambuf layer,” page 25, for information on the facilities available
at the streambuf level.

Constructorios::ios ([streambuf* sb [, ostream* tie])
The ios constructor by default initializes a new ios, and if
you supply a streambuf sb to associate with it, sets the state
good in the new ios object. It also sets the default properties
of the new object.
You can also supply an optional second argument tie to the
constructor: if present, it is an initial value for ios::tie, to
associate the new ios object with another stream.

Destructorios::~ios ()
The ios destructor is virtual, permitting application-specific
behavior when a stream is closed—typically, the destructor
frees any storage associated with the stream and releases
any other associated objects.

3.1.1 Checking the state of a stream

Use this collection of methods to test for (or signal) errors and other
exceptional conditions of streams:

Methodios::operator void* () const
You can do a quick check on the state of the most recent
operation on a stream by examining a pointer to the stream
itself. The pointer is arbitrary except for its truth value; it
is true if no failures have occurred (ios::fail is not true).
For example, you might ask for input on cin only if all prior
output operations succeeded:

c y g n u s s u p p o r t 5

The GNU C++ Iostream Library

if (cout)
{

// Everything OK so far
cin >> new_value;
: : :

}

Methodios::operator ! () const
In case it is more convenient to check whether something has
failed, the operator ! returns true if ios::fail is true (an
operation has failed). For example, you might issue an error
message if input failed:

if (!cin)
{

// Oops
cerr << "Eh?\n";

}

Methodiostate ios::rdstate ()const
Return the state flags for this stream. The value is from the
enumeration iostate. You can test for any combination of

goodbit There are no indications of exceptional states on
this stream.

eofbit End of file.

failbit An operation has failed on this stream; this usu-
ally indicates bad format of input.

badbit The stream is unusable.

Methodvoid ios::setstate (iostate state)
Set the state flag for this stream to state in addition to any
state flags already set. Synonym (for upward compatibility):
ios::set.
See ios::clear to set the stream state without regard to
existing state flags. See ios::good, ios::eof, ios::fail,
and ios::bad, to test the state.

Methodint ios::good ()const
Test the state flags associated with this stream; true if no
error indicators are set.

Methodint ios::bad ()const
Test whether a stream is marked as unusable. (Whether
ios::badbit is set.)

6 10 July 1995

Chapter 3: Stream Classes

Methodint ios::eof ()const
True if end of file was reached on this stream. (If
ios::eofbit is set.)

Methodint ios::fail ()const
Test for any kind of failure on this stream: either some op-
eration failed, or the stream is marked as bad. (If either
ios::failbit or ios::badbit is set.)

Methodvoid ios::clear (iostate state)
Set the state indication for this stream to the argument
state. You may call ios::clearwith no argument, in which
case the state is set to good (no errors pending).
See ios::good, ios::eof, ios::fail, and ios::bad, to test
the state; see ios::set or ios::setstate for an alternative
way of setting the state.

3.1.2 Choices in formatting

These methods control (or report on) settings for some details of con-
trolling streams, primarily to do with formatting output:

Methodchar ios::fill ()const
Report on the padding character in use.

Methodchar ios::fill (char padding)
Set the padding character. You can also use the manipulator
setfill. See Section 3.1.3 “Changing stream properties in
expressions,” page 10.
Default: blank.

Methodint ios::precision ()const
Report the number of significant digits currently in use for
output of floating point numbers.
Default: 6.

Methodint ios::precision (int signif)
Set the number of significant digits (for input and output
numeric conversions) to signif.
You can also use the manipulator setprecision for this pur-
pose. See Section 3.1.3 “Changing stream properties using
manipulators,” page 10.

Methodint ios::width ()const
Report the current output field width setting (the number of
characters to write on the next ‘<<’ output operation).

c y g n u s s u p p o r t 7

The GNU C++ Iostream Library

Default: 0, which means to use as many characters as nec-
essary.

Methodint ios::width (int num)
Set the input field width setting to num. Return the previous
value for this stream.
This value resets to zero (the default) every time you use
‘<<’; it is essentially an additional implicit argument to that
operator. You can also use the manipulator setw for this pur-
pose. See Section 3.1.3 “Changing stream properties using
manipulators,” page 10.

Methodfmtflags ios::flags ()const
Return the current value of the complete collection of flags
controlling the format state. These are the flags and their
meanings when set:

ios::dec
ios::oct
ios::hex What numeric base to use in converting integers

from internal to display representation, or vice
versa: decimal, octal, or hexadecimal, respec-
tively. (You can change the base using the manip-
ulator setbase, or any of the manipulators dec,
oct, or hex; see Section 3.1.3 “Changing stream
properties in expressions,” page 10.)
On input, if none of these flags is set, read nu-
meric constants according to the prefix: decimal
if no prefix (or a ‘.’ suffix), octal if a ‘0’ prefix is
present, hexadecimal if a ‘0x’ prefix is present.
Default: dec.

ios::fixed
Avoid scientific notation, and always show a fixed
number of digits after the decimal point, ac-
cording to the output precision in effect. Use
ios::precision to set precision.

ios::left
ios::right
ios::internal

Where output is to appear in a fixed-width field;
left-justified, right-justified, or with padding in
the middle (e.g. between a numeric sign and the
associated value), respectively.

8 10 July 1995

Chapter 3: Stream Classes

ios::scientific
Use scientific (exponential) notation to display
numbers.

ios::showbase
Display the conventional prefix as a visual indica-
tor of the conversion base: no prefix for decimal,
‘0’ for octal, ‘0x’ for hexadecimal.

ios::showpoint
Display a decimal point and trailing zeros after it
to fill out numeric fields, even when redundant.

ios::showpos
Display a positive sign on display of positive num-
bers.

ios::skipws
Skip white space. (On by default).

ios::stdio
Flush the C stdio streams stdout and stderr
after each output operation (for programs that
mix C and C++ output conventions).

ios::unitbuf
Flush after each output operation.

ios::uppercase
Use upper-case characters for the non-numeral
elements in numeric displays; for instance, ‘0X7A’
rather than ‘0x7a’, or ‘3.14E+09’ rather than
‘3.14e+09’.

Methodfmtflags ios::flags (fmtflags value)
Set value as the complete collection of flags controlling
the format state. The flag values are described under
‘ios::flags ()’.
Use ios::setf or ios::unsetf to change one property at a
time.

Methodfmtflags ios::setf (fmtflags flag)
Set one particular flag (of those described for ‘ios::flags
()’; return the complete collection of flags previously in effect.
(Use ios::unsetf to cancel.)

Methodfmtflags ios::setf (fmtflags flag, fmtflags
mask)

Clear the flag values indicated by mask, then set any of
them that are also in flag. (Flag values are described for

c y g n u s s u p p o r t 9

The GNU C++ Iostream Library

‘ios::flags ()’.) Return the complete collection of flags pre-
viously in effect. (See ios::unsetf for another way of clear-
ing flags.)

Methodfmtflags ios::unsetf (fmtflags flag)
Make certain flag (a combination of flag values described
for ‘ios::flags ()’) is not set for this stream; converse of
ios::setf. Returns the old values of those flags.

3.1.3 Changing stream properties using manipulators

For convenience, manipulators provide a way to change certain prop-
erties of streams, or otherwise affect them, in the middle of expressions
involving ‘<<’ or ‘>>’. For example, you might write

cout << "|" << setfill(’*’) << setw(5) << 234 << "|";

to produce ‘|**234|’ as output.

Manipulatorws
Skip whitespace.

Manipulatorflush
Flush an output stream. For example, ‘cout << : : : <<flush;’
has the same effect as ‘cout << : : :; cout.flush();’.

Manipulatorendl
Write an end of line character ‘\n’, then flushes the output
stream.

Manipulatorends
Write ‘\0’ (the string terminator character).

Manipulatorsetprecision (int signif)
You can change the value of ios::precision in ‘<<’ expres-
sions with the manipulator ‘setprecision(signif)’; for ex-
ample,

cout << setprecision(2) << 4.567;

prints ‘4.6’. Requires ‘#include <iomanip.h>’.

Manipulatorsetw (int n)
You can change the value of ios::width in ‘<<’ expressions
with the manipulator ‘setw(n)’; for example,

cout << setw(5) << 234;

prints ‘ 234’ with two leading blanks. Requires ‘#include
<iomanip.h>’.

10 10 July 1995

Chapter 3: Stream Classes

Manipulatorsetbase (int base)
Where base is one of 10 (decimal), 8 (octal), or 16 (hexadec-
imal), change the base value for numeric representations.
Requires ‘#include <iomanip.h>’.

Manipulatordec
Select decimal base; equivalent to ‘setbase(10)’.

Manipulatorhex
Select hexadecimal base; equivalent to ‘setbase(16)’.

Manipulatoroct
Select octal base; equivalent to ‘setbase(8)’.

Manipulatorsetfill (char padding)
Set the padding character, in the same way as ios::fill.
Requires ‘#include <iomanip.h>’.

3.1.4 Extended data fields

A related collection of methods allows you to extend this collection of
flags and parameters for your own applications, without risk of conflict
between them:

Methodstatic fmtflags ios::bitalloc ()
Reserve a bit (the single bit on in the result) to use as a
flag. Using bitalloc guards against conflict between two
packages that use ios objects for different purposes.
This method is available for upward compatibility, but is not
in the ansi working paper. The number of bits available is
limited; a return value of 0 means no bit is available.

Methodstatic int ios::xalloc ()
Reserve space for a long integer or pointer parameter. The
result is a unique nonnegative integer. You can use it as an
index to ios::iword or ios::pword. Use xalloc to arrange
for arbitrary special-purpose data in your ios objects, with-
out risk of conflict between packages designed for different
purposes.

Methodlong& ios::iword (int index)
Return a reference to arbitrary data, of long integer type,
stored in an ios instance. index, conventionally returned
from ios::xalloc, identifies what particular data you need.

Methodlong ios::iword (int index)const
Return the actual value of a long integer stored in an ios.

c y g n u s s u p p o r t 11

The GNU C++ Iostream Library

Methodvoid*& ios::pword (int index)
Return a reference to an arbitrary pointer, stored in an
ios instance. index, originally returned from ios::xalloc,
identifies what particular pointer you need.

Methodvoid* ios::pword (int index)const
Return the actual value of a pointer stored in an ios.

3.1.5 Synchronizing related streams

You can use these methods to synchronize related streams with one
another:

Methodostream* ios::tie ()const
Report on what output stream, if any, is to be flushed before
accessing this one. A pointer value of 0 means no stream is
tied.

Methodostream* ios::tie (ostream* assoc)
Declare that output stream assoc must be flushed before
accessing this stream.

Methodint ios::sync with stdio ([int switch])
Unless iostreams and C stdio are designed to work to-
gether, you may have to choose between efficient C++
streams output and output compatible with C stdio. Use
‘ios::sync_with_stdio()’ to select C compatibility.
The argument switch is a gnu extension; use 0 as the ar-
gument to choose output that is not necessarily compatible
with C stdio. The default value for switch is 1.
If you install the stdio implementation that comes with gnu

libio, there are compatible input/output facilities for both
C and C++. In that situation, this method is unnecessary—
but you may still want to write programs that call it, for
portability.

3.1.6 Reaching the underlying streambuf

Finally, you can use this method to access the underlying object:

Methodstreambuf* ios::rdbuf ()const
Return a pointer to the streambuf object that underlies this
ios.

12 10 July 1995

Chapter 3: Stream Classes

3.2 Managing output streams: class ostream

Objects of class ostream inherit the generic methods from ios, and
in addition have the following methods available. Declarations for this
class come from ‘iostream.h’.

Constructorostream::ostream ()
The simplest form of the constructor for an ostream simply
allocates a new ios object.

Constructorostream::ostream (streambuf* sb
[, ostream tie])

This alternative constructor requires a first argument sb of
type streambuf*, to use an existing open stream for output.
It also accepts an optional second argument tie, to specify a
related ostream* as the initial value for ios::tie.
If you give the ostream a streambuf explicitly, using this
constructor, the sb is not destroyed (or deleted or closed)
when the ostream is destroyed.

3.2.1 Writing on an ostream

These methods write on an ostream (you may also use the operator
<<; see Chapter 2 “Operators and Default Streams,” page 3).

Methodostream& ostream::put (char c)
Write the single character c.

Methodostream& ostream::write (string, int length)
Write length characters of a string to this ostream, begin-
ning at the pointer string.
string may have any of these types: char*, unsigned char*,
signed char*.

Methodostream& ostream::form (const char *format,
...)

A gnu extension, similar to fprintf(file, format, ...).
format is a printf-style format control string, which is used
to format the (variable number of) arguments, printing the
result on this ostream. See ostream::vform for a version
that uses an argument list rather than a variable number of
arguments.

Methodostream& ostream::vform (const char
*format, va_list args)

A gnu extension, similar to vfprintf(file, format, args).

c y g n u s s u p p o r t 13

The GNU C++ Iostream Library

format is a printf-style format control string, which is used
to format the argument list args, printing the result on this
ostream. See ostream::form for a version that uses a vari-
able number of arguments rather than an argument list.

3.2.2 Repositioning an ostream

You can control the output position (on output streams that actually
support positions, typically files) with these methods:

Methodstreampos ostream::tellp ()
Return the current write position in the stream.

Methodostream& ostream::seekp (streampos loc)
Reset the output position to loc (which is usually the result of
a previous call to ostream::tellp). loc specifies an absolute
position in the output stream.

Methodostream& ostream::seekp (streamoff loc, rel)
Reset the output position to loc, relative to the beginning,
end, or current output position in the stream, as indicated
by rel (a value from the enumeration ios::seekdir):

beg Interpret loc as an absolute offset from the be-
ginning of the file.

cur Interpret loc as an offset relative to the current
output position.

end Interpret loc as an offset from the current end of
the output stream.

3.2.3 Miscellaneous ostream utilities

You may need to use these ostream methods for housekeeping:

Methodostream& flush ()
Deliver any pending buffered output for this ostream.

Methodint ostream::opfx ()
opfx is a prefix method for operations on ostream objects; it
is designed to be called before any further processing. See
ostream::osfx for the converse.
opfx tests that the stream is in state good, and if so flushes
any stream tied to this one.
The result is 1 when opfx succeeds; else (if the stream state
is not good), the result is 0.

14 10 July 1995

Chapter 3: Stream Classes

Methodvoid ostream::osfx ()
osfx is a suffix method for operations on ostream objects; it
is designed to be called at the conclusion of any process-
ing. All the ostream methods end by calling osfx. See
ostream::opfx for the converse.
If the unitbuf flag is set for this stream, osfx flushes any
buffered output for it.
If the stdio flag is set for this stream, osfx flushes any out-
put buffered for the C output streams ‘stdout’ and ‘stderr’.

3.3 Managing input streams: class istream

Class istream objects are specialized for input; as for ostream, they
are derived from ios, so you can use any of the general-purpose meth-
ods from that base class. Declarations for this class also come from
‘iostream.h’.

Constructoristream::istream ()
When used without arguments, the istream constructor
simply allocates a new ios object and initializes the input
counter (the value reported by istream::gcount) to 0.

Constructoristream::istream (streambuf *sb
[, ostream tie])

You can also call the constructor with one or two arguments.
The first argument sb is a streambuf*; if you supply this
pointer, the constructor uses that streambuf for input. You
can use the second optional argument tie to specify a related
output stream as the initial value for ios::tie.
If you give the istream a streambuf explicitly, using this
constructor, the sb is not destroyed (or deleted or closed)
when the ostream is destroyed.

3.3.1 Reading one character

Use these methods to read a single character from the input stream:

Methodint istream::get ()
Read a single character (or EOF) from the input stream, re-
turning it (coerced to an unsigned char) as the result.

Methodistream& istream::get (char& c)
Read a single character from the input stream, into &c.

c y g n u s s u p p o r t 15

The GNU C++ Iostream Library

Methodint istream::peek ()
Return the next available input character, but without
changing the current input position.

3.3.2 Reading strings

Use these methods to read strings (for example, a line at a time) from
the input stream:

Methodistream& istream::get (char* c, int len [, char
delim])

Read a string from the input stream, into the array at c.
The remaining arguments limit how much to read: up to
‘len-1’ characters, or up to (but not including) the first occur-
rence in the input of a particular delimiter character delim—
newline (\n) by default. (Naturally, if the stream reaches end
of file first, that too will terminate reading.)
If delim was present in the input, it remains available as if
unread; to discard it instead, see iostream::getline.
get writes ‘\0’ at the end of the string, regardless of which
condition terminates the read.

Methodistream& istream::get (streambuf& sb [, char
delim])

Read characters from the input stream and copy them on
the streambuf object sb. Copying ends either just before the
next instance of the delimiter character delim (newline \n by
default), or when either stream ends. If delim was present
in the input, it remains available as if unread.

Methodistream& istream::getline (charptr, int len
[, char delim])

Read a line from the input stream, into the array at charptr.
charptr may be any of three kinds of pointer: char*,
unsigned char*, or signed char*.
The remaining arguments limit how much to read: up to
(but not including) the first occurrence in the input of a line
delimiter character delim—newline (\n) by default, or up to
‘len-1’ characters (or to end of file, if that happens sooner).
If getline succeeds in reading a “full line”, it also dis-
cards the trailing delimiter character from the input stream.
(To preserve it as available input, see the similar form of
iostream::get.)

16 10 July 1995

Chapter 3: Stream Classes

If delim was not found before len characters or end of file,
getline sets the ios::fail flag, as well as the ios::eof flag
if appropriate.
getline writes a null character at the end of the string,
regardless of which condition terminates the read.

Methodistream& istream::read (pointer, int len)
Read len bytes into the location at pointer, unless the input
ends first.
pointer may be of type char*, void*, unsigned char*, or
signed char*.
If the istream ends before reading len bytes, read sets the
ios::fail flag.

Methodistream& istream::gets (char **s [, char
delim])

A gnu extension, to read an arbitrarily long string from the
current input position to the next instance of the delim char-
acter (newline \n by default).
To permit reading a string of arbitrary length, gets allocates
whatever memory is required. Notice that the first argument
s is an address to record a character pointer, rather than the
pointer itself.

Methodistream& istream::scan (const char *format
...)

A gnu extension, similar to fscanf(file, format, ...).
The format is a scanf-style format control string, which is
used to read the variables in the remainder of the argument
list from the istream.

Methodistream& istream::vscan (const char *format,
va_list args)

Like istream::scan, but takes a single va_list argument.

3.3.3 Repositioning an istream

Use these methods to control the current input position:

Methodstreampos istream::tellg ()
Return the current read position, so that you can save it and
return to it later with istream::seekg.

Methodistream& istream::seekg (streampos p)
Reset the input pointer (if the input device permits it) to p,
usually the result of an earlier call to istream::tellg.

c y g n u s s u p p o r t 17

The GNU C++ Iostream Library

Methodistream& istream::seekg (streamoff offset,
ios::seek_dir ref)

Reset the input pointer (if the input device permits it) to off-
set characters from the beginning of the input, the current
position, or the end of input. Specify how to interpret offset
with one of these values for the second argument:

ios::beg Interpret loc as an absolute offset from the be-
ginning of the file.

ios::cur Interpret loc as an offset relative to the current
output position.

ios::end Interpret loc as an offset from the current end of
the output stream.

3.3.4 Miscellaneous istream utilities

Use these methods for housekeeping on istream objects:

Methodint istream::gcount ()
Report how many characters were read from this istream in
the last unformatted input operation.

Methodint istream::ipfx (int keepwhite)
Ensure that the istream object is ready for reading; check for
errors and end of file and flush any tied stream. ipfx skips
whitespace if you specify 0 as the keepwhite argument, and
ios::skipws is set for this stream.
To avoid skipping whitespace (regardless of the skipws set-
ting on the stream), use 1 as the argument.
Call istream::ipfx to simplify writing your own methods
for reading istream objects.

Methodvoid istream::isfx ()
A placeholder for compliance with the draft ansi standard;
this method does nothing whatever.
If you wish to write portable standard-conforming code on
istream objects, call isfx after any operation that reads from
an istream; if istream::ipfx has any special effects that
must be cancelled when done, istream::isfx will cancel
them.

Methodistream& istream::ignore ([int n] [, int
delim])

Discard some number of characters pending input. The first
optional argument n specifies how many characters to skip.

18 10 July 1995

Chapter 3: Stream Classes

The second optional argument delim specifies a “boundary”
character: ignore returns immediately if this character ap-
pears in the input.
By default, delim is EOF; that is, if you do not specify a
second argument, only the count n restricts how much to
ignore (while input is still available).
If you do not specify how many characters to ignore, ignore
returns after discarding only one character.

Methodistream& istream::putback (char ch)
Attempts to back up one character, replacing the character
backed-up over by ch. Returns EOF if this is not allowed.
Putting back the most recently read character is always al-
lowed. (This method corresponds to the C function ungetc.)

Methodistream& istream::unget ()
Attempt to back up one character.

3.4 Input and output together: class iostream

If you need to use the same stream for input and output, you can use
an object of the class iostream, which is derived from both istream and
ostream.

The constructors for iostream behave just like the constructors for
istream.

Constructoriostream::iostream ()
When used without arguments, the iostream constructor
simply allocates a new ios object, and initializes the input
counter (the value reported by istream::gcount) to 0.

Constructoriostream::iostream (streambuf* sb
[, ostream* tie])

You can also call a constructor with one or two arguments.
The first argument sb is a streambuf*; if you supply this
pointer, the constructor uses that streambuf for input and
output.
You can use the optional second argument tie (an ostream*)
to specify a related output stream as the initial value for
ios::tie.

As for ostream and istream, iostream simply uses theios destructor.
However, an iostream is not deleted by its destructor.

You can use all the istream, ostream, and ios methods with an
iostream object.

c y g n u s s u p p o r t 19

The GNU C++ Iostream Library

20 10 July 1995

Chapter 4: Classes for Files and Strings

4 Classes for Files and Strings

There are two very common special cases of input and output: using
files, and using strings in memory.

libio defines four specialized classes for these cases:

ifstream Methods for reading files.

ofstream Methods for writing files.

istrstream
Methods for reading strings from memory.

ostrstream
Methods for writing strings in memory.

4.1 Reading and writing files

These methods are declared in ‘fstream.h’.
You can read data from class ifstream with any operation from class

istream. There are also a few specialized facilities:

Constructorifstream::ifstream ()
Make an ifstream associated with a new file for input. (If
you use this version of the constructor, you need to call
ifstream::open before actually reading anything)

Constructorifstream::ifstream (int fd)
Make an ifstream for reading from a file that was already
open, using file descriptor fd. (This constructor is compatible
with other versions of iostreams for posix systems, but is not
part of the ansi working paper.)

Constructorifstream::ifstream (const char* fname
[, int mode [, int prot]])

Open a file *fname for this ifstream object.
By default, the file is opened for input (with ios::in as mode).
If you use this constructor, the file will be closed when the
ifstream is destroyed.
You can use the optional argument mode to specify how to
open the file, by combining these enumerated values (with ‘|’
bitwise or). (These values are actually defined in class ios, so
that all file-related streams may inherit them.) Only some of
these modes are defined in the latest draft ansi specification;
if portability is important, you may wish to avoid the others.

c y g n u s s u p p o r t 21

The GNU C++ Iostream Library

ios::in Open for input. (Included in ansi draft.)

ios::out Open for output. (Included in ansi draft.)

ios::ate Set the initial input (or output) position to the
end of the file.

ios::app Seek to end of file before each write. (Included in
ansi draft.)

ios::trunc
Guarantee a fresh file; discard any contents that
were previously associated with it.

ios::nocreate
Guarantee an existing file; fail if the specified file
did not already exist.

ios::noreplace
Guarantee a new file; fail if the specified file al-
ready existed.

ios::bin Open as a binary file (on systems where binary
and text files have different properties, typically
how ‘\n’ is mapped; included in ansi draft).

The last optional argument prot is specific to Unix-like sys-
tems; it specifies the file protection (by default ‘644’).

Methodvoid ifstream::open (const char* fname [, int
mode [, int prot]])

Open a file explicitly after the associated ifstream object
already exists (for instance, after using the default construc-
tor). The arguments, options and defaults all have the same
meanings as in the fully specified ifstream constructor.

You can write data to class ofstream with any operation from class
ostream. There are also a few specialized facilities:

Constructorofstream::ofstream ()
Make an ofstream associated with a new file for output.

Constructorofstream::ofstream (int fd)
Make an ofstream for writing to a file that was already open,
using file descriptor fd.

Constructorofstream::ofstream (const char* fname
[, int mode [, int prot]])

Open a file *fname for this ofstream object.

22 10 July 1995

Chapter 4: Classes for Files and Strings

By default, the file is opened for output (with ios::out as
mode). You can use the optional argument mode to specify how
to open the file, just as described for ifstream::ifstream.
The last optional argument prot specifies the file protection
(by default ‘644’).

Destructorofstream::~ofstream ()
The files associated with ofstream objects are closed when
the corresponding object is destroyed.

Methodvoid ofstream::open (const char* fname [, int
mode [, int prot]])

Open a file explicitly after the associated ofstream object
already exists (for instance, after using the default construc-
tor). The arguments, options and defaults all have the same
meanings as in the fully specified ofstream constructor.

The class fstream combines the facilities of ifstream and ofstream,
just as iostream combines istream and ostream.

The class fstreambase underlies both ifstream and ofstream. They
both inherit this additional method:

Methodvoid fstreambase::close ()
Close the file associated with this object, and set ios::fail
in this object to mark the event.

4.2 Reading and writing in memory

The classes istrstream, ostrstream, and strstream provide some
additional features for reading and writing strings in memory—both
static strings, and dynamically allocated strings. The underlying
class strstreambase provides some features common to all three;
strstreambuf underlies that in turn.

Constructoristrstream::istrstream (const char* str
[, int size])

Associate the new input string class istrstream with an
existing static string starting at str, of size size. If you do
not specify size, the string is treated as a NUL terminated
string.

Constructorostrstream::ostrstream ()
Create a new stream for output to a dynamically managed
string, which will grow as needed.

c y g n u s s u p p o r t 23

The GNU C++ Iostream Library

Constructorostrstream::ostrstream (char* str, int
size [,int mode])

A new stream for output to a statically defined string of
length size, starting at str. You may optionally specify
one of the modes described for ifstream::ifstream; if you
do not specify one, the new stream is simply open for output,
with mode ios::out.

Methodint ostrstream::pcount ()
Report the current length of the string associated with this
ostrstream.

Methodchar* ostrstream::str ()
A pointer to the string managed by this ostrstream. Implies
‘ostrstream::freeze()’.
Note that if you want the string to be nul-terminated,
you must do that yourself (perhaps by writing ends to the
stream).

Methodvoid ostrstream::freeze ([int n])
If n is nonzero (the default), declare that the string associated
with this ostrstream is not to change dynamically; while
frozen, it will not be reallocated if it needs more space, and
it will not be deallocated when the ostrstream is destroyed.
Use ‘freeze(1)’ if you refer to the string as a pointer after
creating it via ostrstream facilities.
‘freeze(0)’ cancels this declaration, allowing a dynamically
allocated string to be freed when its ostrstream is destroyed.
If this ostrstream is already static—that is, if it was created
to manage an existing statically allocated string—freeze is
unnecessary, and has no effect.

Methodint ostrstream::frozen ()
Test whether freeze(1) is in effect for this string.

Methodstrstreambuf* strstreambase::rdbuf ()
A pointer to the underlying strstreambuf.

24 10 July 1995

Chapter 5: Using the streambuf Layer

5 Using the streambufLayer

The istream and ostream classes are meant to handle conversion
between objects in your program and their textual representation.

By contrast, the underlying streambuf class is for transferring raw
bytes between your program, and input sources or output sinks. Dif-
ferent streambuf subclasses connect to different kinds of sources and
sinks.

The gnu implementation of streambuf is still evolving; we describe
only some of the highlights.

5.1 Areas of a streambuf

Streambuf buffer management is fairly sophisticated (this is a nice
way to say “complicated”). The standard protocol has the following “ar-
eas”:
� The put area contains characters waiting for output.
� The get area contains characters available for reading.

The gnu streambuf design extends this, but the details are still evolv-
ing.

The following methods are used to manipulate these areas. These
are all protected methods, which are intended to be used by virtual
function in classes derived from streambuf. They are also all ANSI/ISO-
standard, and the ugly names are traditional. (Note that if a pointer
points to the ’end’ of an area, it means that it points to the character
after the area.)

Methodchar* streambuf::pbase ()const
Returns a pointer to the start of the put area.

Methodchar* streambuf::epptr ()const
Returns a pointer to the end of the put area.

Methodchar* streambuf::pptr ()const
If pptr() < epptr (), the pptr() returns a pointer to the cur-
rent put position. (In that case, the next write will overwrite
*pptr(), and increment pptr().) Otherwise, there is no put
position available (and the next character written will cause
streambuf::overflow to be called).

Methodvoid streambuf::pbump (int N)
Add N to the current put pointer. No error checking is done.

c y g n u s s u p p o r t 25

The GNU C++ Iostream Library

Methodvoid streambuf::setp (char* P, char* E)
Sets the start of the put area to P, the end of the put area to
E, and the current put pointer to P (also).

Methodchar* streambuf::eback ()const
Returns a pointer to the start of the get area.

Methodchar* streambuf::egptr ()const
Returns a pointer to the end of the get area.

Methodchar* streambuf::gptr ()const
If gptr() < egptr (), then gptr() returns a pointer to the
current get position. (In that case the next read will read
*gptr(), and possibly increment gptr().) Otherwise, there
is no read position available (and the next read will cause
streambuf::underflow to be called).

Methodvoid streambuf:gbump (int N)
Add N to the current get pointer. No error checking is done.

Methodvoid streambuf::setg (char* B, char* P, char*
E)

Sets the start of the get area to B, the end of the get area to
E, and the current put pointer to P.

5.2 Simple output re-direction by redefining
overflow

Suppose you have a function write_to_window that writes characters
to a window object. If you want to use the ostream function to write to it,
here is one (portable) way to do it. This depends on the default buffering
(if any).

26 10 July 1995

Chapter 5: Using the streambuf Layer

� �

#include <iostream.h>
/* Returns number of characters successfully written to win. */
extern int write_to_window (window* win, char* text, int length);

class windowbuf : public streambuf {
window* win;

public:
windowbuf (window* w) { win = w; }
int sync ();
int overflow (int ch);
// Defining xsputn is an optional optimization.
// (streamsize was recently added to ANSI C++, not portable yet.)
streamsize xsputn (char* text, streamsize n);

};

int windowbuf::sync ()
{ streamsize n = pptr () - pbase ();

return (n && write_to_window (win, pbase (), n) != n) ? EOF : 0;
}

int windowbuf::overflow (int ch)
{ streamsize n = pptr () - pbase ();

if (n && sync ())
return EOF;

if (ch != EOF)
{

char cbuf[1];
cbuf[0] = ch;
if (write_to_window (win, cbuf, 1) != 1)
return EOF;

}
pbump (-n); // Reset pptr().
return 0;

}

streamsize windowbuf::xsputn (char* text, streamsize n)
{ return sync () == EOF ? 0 : write_to_window (win, text, n); }

int
main (int argc, char**argv)
{

window *win = ...;
windowbuf wbuf(win);
ostream wstr(&wbuf);
wstr << "Hello world!\n";

}

 	

c y g n u s s u p p o r t 27

The GNU C++ Iostream Library

5.3 C-style formatting for streambuf objects

The gnu streambuf class supports printf-like formatting and scan-
ning.

Methodint streambuf::vform (const char *format,
...)

Similar to fprintf(file, format, ...). The format is a
printf-style format control string, which is used to format
the (variable number of) arguments, printing the result on
the this streambuf. The result is the number of characters
printed.

Methodint streambuf::vform (const char *format,
va_list args)

Similar to vfprintf(file, format, args). The format is
a printf-style format control string, which is used to for-
mat the argument list args, printing the result on the this
streambuf. The result is the number of characters printed.

Methodint streambuf::scan (const char *format, ...)

Similar to fscanf(file, format, ...). The format is a
scanf-style format control string, which is used to read the
(variable number of) arguments from the this streambuf.
The result is the number of items assigned, or EOF in case of
input failure before any conversion.

Methodint streambuf::vscan (const char *format,
va_list args)

Like streambuf::scan, but takes a single va_list argu-
ment.

5.4 Wrappers for C stdio

A stdiobuf is a streambuf object that points to a FILE object (as
defined by stdio.h). All streambuf operations on the stdiobuf are
forwarded to the FILE. Thus the stdiobuf object provides a wrapper
around a FILE, allowing use of streambuf operations on a FILE. This
can be useful when mixing C code with C++ code.

The pre-defined streams cin, cout, and cerr are normally imple-
mented as stdiobuf objects that point to respectively stdin, stdout,
and stderr. This is convenient, but it does cost some extra overhead.

If you set things up to use the implementation of stdio provided with
this library, then cin, cout, and cerr will be set up to to use stdiobuf

28 10 July 1995

Chapter 5: Using the streambuf Layer

objects, since you get their benefits for free. See Chapter 6 “C Input and
Output,” page 33.

5.5 Reading/writing from/to a pipe

The procbuf class is a gnu extension. It is derived from streambuf. A
procbuf can be closed (in which case it does nothing), or open (in which
case it allows communicating through a pipe with some other program).

Constructorprocbuf::procbuf ()
Creates a procbuf in a closed state.

Methodprocbuf* procbuf::open (const char *command,
int mode)

Uses the shell (‘/bin/sh’) to run a program specified by com-
mand.
If mode is ‘ios::in’, standard output from the program is
sent to a pipe; you can read from the pipe by reading from
the procbuf. (This is similar to ‘popen(command, "r")’.)
If mode is ‘ios::out’, output written written to the procbuf is
written to a pipe; the program is set up to read its standard
input from (the other end of) the pipe. (This is similar to
‘popen(command, "w")’.)
The procbuf must start out in the closed state. Returns
‘*this’ on success, and ‘NULL’ on failure.

Constructorprocbuf::procbuf (const char *command,
int mode)

Calls ‘procbuf::open (command, mode)’.

Methodprocbuf* procbuf::close ()
Waits for the program to finish executing, and then cleans
up the resources used. Returns ‘*this’ on success, and ‘NULL’
on failure.

Destructorprocbuf::~procbuf ()
Calls ‘procbuf::close’.

5.6 Backing up

The gnu iostream library allows you to ask a streambuf to remember
the current position. This allows you to go back to this position later,
after reading further. You can back up arbitrary amounts, even on
unbuffered files or multiple buffers’ worth, as long as you tell the library

c y g n u s s u p p o r t 29

The GNU C++ Iostream Library

in advance. This unbounded backup is very useful for scanning and
parsing applications. This example shows a typical scenario:
� �

// Read either "dog", "hound", or "hounddog".
// If "dog" is found, return 1.
// If "hound" is found, return 2.
// If "hounddog" is found, return 3.
// If none of these are found, return -1.
int my_scan(streambuf* sb)
{

streammarker fence(sb);
char buffer[20];
// Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8

&& strncmp(buffer, "hounddog", 8) == 0)
return 3;

// No, no "hounddog": Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3

&& strncmp(buffer, "dog", 3) == 0)
return 1;

// No, no "dog" either: Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5

&& strncmp(buffer, "hound", 5) == 0)
return 2;

// No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to ’fence’
return -1;

}

 	

Constructorstreammarker::streammarker
(streambuf* sbuf)

Create a streammarker associated with sbuf that remem-
bers the current position of the get pointer.

Methodint streammarker::delta (streammarker&
mark2)

Return the difference between the get positions correspond-
ing to *this and mark2 (which must point into the same
streambuffer as this).

Methodint streammarker::delta ()
Return the position relative to the streambuffer’s current get
position.

30 10 July 1995

Chapter 5: Using the streambuf Layer

Methodint streambuf::seekmark (streammarker&
mark)

Move the get pointer to where it (logically) was when mark
was constructed.

5.7 Forwarding I/O activity

An indirectbuf is one that forwards all of its I/O requests to another
streambuf.

An indirectbuf can be used to implement Common Lisp synonym-
streams and two-way-streams:

class synonymbuf : public indirectbuf {
Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {

return coerce_to_streambuf(lookup_value(sym)); }
};

c y g n u s s u p p o r t 31

The GNU C++ Iostream Library

32 10 July 1995

Chapter 6: C Input and Output

6 C Input and Output

libio is distributed with a complete implementation of the ANSI C
stdio facility. It is implemented using streambuf objects. See Sec-
tion 5.4 “Wrappers for C stdio,” page 28.

The stdio package is intended as a replacement for the whatever
stdio is in your C library. Since stdio works best when you build libc
to contain it, and that may be inconvenient, it is not installed by default.

Extensions beyond ansi:
� A stdio FILE is identical to a streambuf. Hence there is no need

to worry about synchronizing C and C++ input/output—they are by
definition always synchronized.

� If you create a new streambuf sub-class (in C++), you can use it as
a FILE from C. Thus the system is extensible using the standard
streambuf protocol.

� You can arbitrarily mix reading and writing, without having to seek
in between.

� Unbounded ungetc() buffer.

c y g n u s s u p p o r t 33

The GNU C++ Iostream Library

34 10 July 1995

Index

Index

(
() . 5, 6

>
>>

on istream. .4

<
<<

on ostream . 4

B
badbit . 6
beg . 14

C
cerr . 3
cin . 3
class fstream . 23
class fstreambase 23
class ifstream . 21
class istrstream . 23
class ostream . 22
class ostrstream . 23
class strstream . 23
class strstreambase 23
class strstreambuf. 23
cout . 3
cur . 14

D
dec . 11
destructor for iostream 19

E
end . 14
endl . 10
ends . 10
eofbit . 6

F
failbit . 6
flush . 10, 14
fstream . 23
fstreambase. 23
fstreambase::close 23

G
get area . 25
goodbit . 6

H
hex . 11

I
ifstream . 21
ifstream::ifstream 21
ifstream::open. 22
ios::˜ios . 5
ios::app . 22
ios::ate . 22
ios::bad . 6
ios::beg . 18
ios::bin . 22
ios::bitalloc . 11
ios::clear . 7
ios::cur . 18
ios::dec . 8
ios::end . 18
ios::eof . 7
ios::fail . 7
ios::fill . 7
ios::fixed . 8
ios::flags . 8, 9
ios::good . 6
ios::hex . 8
ios::in . 22
ios::internal . 8
ios::ios . 5
ios::iword . 11
ios::left . 8
ios::nocreate . 22

c y g n u s s u p p o r t 35

The GNU C++ Iostream Library

ios::noreplace. 22
ios::oct . 8
ios::out . 22
ios::precision . 7
ios::pword . 12
ios::rdbuf . 12
ios::rdstate . 6
ios::right . 8
ios::scientific . 9
ios::seekdir . 14
ios::set . 6
ios::setf . 9
ios::setstate . 6
ios::showbase . 9
ios::showpoint . 9
ios::showpos . 9
ios::skipws . 9
ios::stdio . 9
ios::sync with stdio 12
ios::tie . 12
ios::trunc . 22
ios::unitbuf . 9
ios::unsetf. 10
ios::uppercase . 9
ios::width . 7, 8
ios::xalloc. 11
iostream destructor 19
iostream::iostream 19
istream::gcount 18
istream::get 15, 16
istream::getline 16
istream::gets . 17
istream::ignore 18
istream::ipfx . 18
istream::isfx . 18
istream::istream 15
istream::peek . 16
istream::putback 19
istream::read . 17
istream::scan . 17
istream::seekg 17, 18
istream::tellg. 17
istream::unget. 19
istream::vscan. 17
istrstream . 21, 23
istrstream::istrstream 23

O
oct . 11
ofstream . 21
ofstream::˜ofstream 23
ofstream::ofstream 22
ofstream::open. 23
ostream . 22
ostream::form . 13
ostream::opfx . 14
ostream::osfx . 15
ostream::ostream 13
ostream::put . 13
ostream::seekp. 14
ostream::tellp. 14
ostream::vform. 13
ostream::write. 13
ostrstream . 21, 23
ostrstream::freeze 24
ostrstream::frozen 24
ostrstream::ostrstream 23, 24
ostrstream::pcount 24
ostrstream::str 24

P
procbuf::˜procbuf. 29
procbuf::close. 29
procbuf::open . 29
procbuf::procbuf 29
put area. 25

S
setbase . 11
setfill . 11
setprecision . 7, 10
setting ios::precision 7
setting ios::width 8
setw . 8, 10
streambuf::eback 26
streambuf::egptr 26
streambuf::epptr 25
streambuf::gptr 26
streambuf::pbase 25
streambuf::pbump 25
streambuf::pptr 25
streambuf::scan 28
streambuf::seekmark 30
streambuf::setg 26

36 10 July 1995

Index

streambuf::setp 26
streambuf::vform 28
streambuf::vscan 28
streambuf:gbump 26
streammarker::delta 30
streammarker::streammarker. 30
strstream . 23

strstreambase . 23
strstreambase::rdbuf. 24
strstreambuf . 23

W
ws . 10

c y g n u s s u p p o r t 37

The GNU C++ Iostream Library

38 10 July 1995

The Cygnus C Support Library
Full Configuration

libc 1.4
May 1993

Steve Chamberlain
Roland Pesch
Cygnus Support

sac@cygnus.com, pesch@cygnus.com The Cygnus C Support Library
Copyright c 1992, 1993 Cygnus Support
‘libc’ includes software developed by the University of California, Berke-
ley and its contributors.
‘libc’ includes software developed by Martin Jackson, Graham Haley
and Steve Chamberlain of Tadpole Technology and released to Cygnus.
‘libc’ uses floating point converstion software developed at AT&T, which
includes this copyright information:
� �

The author of this software is David M. Gay.
Copyright (c) 1991 by AT&T.
Permission to use, copy, modify, and distribute this software for any pur-
pose without fee is hereby granted, provided that this entire notice is
included in all copies of any software which is or includes a copy or modi-
fication of this software and in all copies of the supporting documentation
for such software.
THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EX-
PRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE
AUTHOR NOR AT&T MAKES ANY REPRESENTATION OR WAR-
RANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF
THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PUR-
POSE.

 	

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, subject to the terms
of the GNU General Public License, which includes the provision that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Standard Utility Functions (‘stdlib.h’) 1
1.1 abort—abnormal termination of a program 2
1.2 abs—integer absolute value (magnitude) 3
1.3 assert—Macro for Debugging Diagnostics 4
1.4 atexit—request execution of functions at program exit . . 5
1.5 atof, atoff—string to double or float . 6
1.6 atoi, atol—string to integer . 7
1.7 atol—convert string to long . 8
1.8 bsearch—binary search . 9
1.9 calloc—allocate space for arrays . 10
1.10 div—divide two integers . 11
1.11 ecvt,ecvtf,fcvt,fcvtf—double or float to string 12
1.12 gvcvt, gcvtf—format double or float as string 13
1.13 ecvtbuf, fcvtbuf—double or float to string 14
1.14 exit—end program execution . 15
1.15 getenv—look up environment variable 16
1.16 labs—long integer absolute value . 17
1.17 ldiv—divide two long integers . 18
1.18 malloc, realloc, free—manage memory 19
1.19 mbtowc—minimal multibyte to wide char converter 21
1.20 qsort—sort an array . 22
1.21 rand, srand—pseudo-random numbers 23
1.22 strtod, strtodf—string to double or float 24
1.23 strtol—string to long . 25
1.24 strtoul—string to unsigned long . 27
1.25 system—execute command string . 29
1.26 wctomb—minimal wide char to multibyte converter 30

2 Character Type Macros and Functions
(‘ctype.h’) . 31

2.1 isalnum—alphanumeric character predicate 32
2.2 isalpha—alphabetic character predicate 33
2.3 isascii—ASCII character predicate . 34
2.4 iscntrl—control character predicate 35
2.5 isdigit—decimal digit predicate . 36
2.6 islower—lower-case character predicate 37
2.7 isprint, isgraph—printable character predicates 38
2.8 ispunct—punctuation character predicate 39
2.9 isspace—whitespace character predicate 40
2.10 isupper—uppercase character predicate 41
2.11 isxdigit—hexadecimal digit predicate 42

c y g n u s s u p p o r t i

Cygnus C Support Library, Full

2.12 toascii—force integers to ASCII range 43
2.13 tolower—translate characters to lower case 44
2.14 toupper—translate characters to upper case 45

3 Input and Output (‘stdio.h’) 47
3.1 clearerr—clear file or stream error indicator 48
3.2 fclose—close a file . 49
3.3 feof—test for end of file . 50
3.4 ferror—test whether read/write error has occurred 51
3.5 fflush—flush buffered file output . 52
3.6 fgetc—get a character from a file or stream 53
3.7 fgetpos—record position in a stream or file 54
3.8 fgets—get character string from a file or stream 55
3.9 fiprintf—format output to file (integer only) 56
3.10 fopen—open a file . 57
3.11 fdopen—turn open file into a stream 59
3.12 fputc—write a character on a stream or file 60
3.13 fputs—write a character string in a file or stream 61
3.14 fread—read array elements from a file 62
3.15 freopen—open a file using an existing file descriptor . . 63
3.16 fseek—set file position . 64
3.17 fsetpos—restore position of a stream or file 65
3.18 ftell—return position in a stream or file 66
3.19 fwrite—write array elements . 67
3.20 getc—read a character (macro) . 68
3.21 getchar—read a character (macro) . 69
3.22 gets—get character string (obsolete, use fgets instead)

. 70
3.23 iprintf—write formatted output (integer only) 71
3.24 mktemp, mkstemp—generate unused file name 72
3.25 perror—print an error message on standard error 73
3.26 putc—write a character (macro) . 74
3.27 putchar—write a character (macro) 75
3.28 puts—write a character string . 76
3.29 remove—delete a file’s name . 77
3.30 rename—rename a file . 78
3.31 rewind—reinitialize a file or stream 79
3.32 setbuf—specify full buffering for a file or stream 80
3.33 setvbuf—specify file or stream buffering 81
3.34 siprintf—write formatted output (integer only) 83
3.35 printf, fprintf, sprintf—format output 84
3.36 scanf, fscanf, sscanf—scan and format input 88
3.37 tmpfile—create a temporary file . 93
3.38 tmpnam, tempnam—name for a temporary file 94

ii 10 July 1995

3.39 vprintf, vfprintf, vsprintf—format argument list . . 96

4 Strings and Memory (‘string.h’) 97
4.1 bcmp—compare two memory areas . 98
4.2 bcopy—copy memory regions . 99
4.3 bzero—initialize memory to zero . 100
4.4 index—search for character in string 101
4.5 memchr—find character in memory . 102
4.6 memcmp—compare two memory areas 103
4.7 memcpy—copy memory regions . 104
4.8 memmove—move possibly overlapping memory 105
4.9 memset—set an area of memory . 106
4.10 rindex—reverse search for character in string 107
4.11 strcat—concatenate strings . 108
4.12 strchr—search for character in string 109
4.13 strcmp—character string compare . 110
4.14 strcoll—locale specific character string compare 111
4.15 strcpy—copy string . 112
4.16 strcspn—count chars not in string 113
4.17 strerror—convert error number to string 114
4.18 strlen—character string length . 117
4.19 strncat—concatenate strings . 118
4.20 strncmp—character string compare 119
4.21 strncpy—counted copy string . 120
4.22 strpbrk—find chars in string . 121
4.23 strrchr—reverse search for character in string 122
4.24 strspn—find initial match . 123
4.25 strstr—find string segment . 124
4.26 strtok—get next token from a string 125
4.27 strxfrm—transform string . 126

5 Signal Handling (‘signal.h’) 127
5.1 raise—send a signal . 128
5.2 signal—specify handler subroutine for a signal 129

6 Time Functions (‘time.h’) . 131
6.1 asctime—format time as string . 132
6.2 clock—cumulative processor time . 133
6.3 ctime—convert time to local and format as string 134
6.4 difftime—subtract two times . 135
6.5 gmtime—convert time to UTC traditional form 136
6.6 localtime—convert time to local representation 137
6.7 mktime—convert time to arithmetic representation 138
6.8 strftime—flexible calendar time formatter 139

c y g n u s s u p p o r t iii

Cygnus C Support Library, Full

6.9 time—get current calendar time (as single number) . . . 141

7 Locale (‘locale.h’) . 143
7.1 setlocale, localeconv—select or query locale 146

8 Reentrancy . 149

9 System Calls . 153
9.1 Definitions for OS interface . 153
9.2 Reentrant covers for OS subroutines 158

10 Variable Argument Lists . 161
10.1 ANSI-standard macros, ‘stdarg.h’ 161

10.1.1 Initialize variable argument list 162
10.1.2 Extract a value from argument list 163
10.1.3 Abandon a variable argument list 164

10.2 Traditional macros, ‘varargs.h’ . 164
10.2.1 Declare variable arguments 165
10.2.2 Initialize variable argument list 166
10.2.3 Extract a value from argument list 167
10.2.4 Abandon a variable argument list 168

Index . 169

iv 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1 Standard Utility Functions (‘stdlib.h’)

This chapter groups utility functions useful in a variety of programs.
The corresponding declarations are in the header file ‘stdlib.h’.

c y g n u s s u p p o r t 1

Cygnus C Support Library, Full

1.1 abort—abnormal termination of a program

Synopsis
#include <stdlib.h>
void abort(void);

Description
Use abort to signal that your program has detected a condition it cannot
deal with. Normally, abort ends your program’s execution.
Before terminating your program, abort raises the exception SIGABRT
(using ‘raise(SIGABRT)’). If you have used signal to register an ex-
ception handler for this condition, that handler has the opportunity to
retain control, thereby avoiding program termination.
In this implementation, abort does not perform any stream- or file-
related cleanup (the host environment may do so; if not, you can arrange
for your program to do its own cleanup with a SIGABRT exception han-
dler).

Returns
abort does not return to its caller.

Portability
ANSI C requires abort.
Supporting OS subroutines required: getpid, kill.

2 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.2 abs—integer absolute value (magnitude)

Synopsis
#include <stdlib.h>
int abs(int i);

Description
abs returns jxj, the absolute value of i (also called the magnitude of
i). That is, if i is negative, the result is the opposite of i, but if i is
nonnegative the result is i.
The similar function labs uses and returns long rather than int values.

Returns
The result is a nonnegative integer.

Portability
abs is ANSI.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 3

Cygnus C Support Library, Full

1.3 assert—Macro for Debugging Diagnostics

Synopsis
#include <assert.h>
#include <stdlib.h>
void assert(int expression);

Description
Use this macro to embed debuggging diagnostic statements in your pro-
grams. The argument expression should be an expression which eval-
uates to true (nonzero) when your program is working as you intended.
When expression evaluates to false (zero), assert calls abort, after
first printing a message showing what failed and where:

Assertion failed: expression, file filename, line lineno

The macro is defined to permit you to turn off all uses of assert at
compile time by defining NDEBUG as a preprocessor variable. If you do
this, the assert macro expands to

(void(0))

Returns
assert does not return a value.

Portability
The assert macro is required by ANSI, as is the behavior when NDEBUG
is defined.
Supporting OS subroutines required (only if enabled): close, fstat,
getpid, isatty, kill, lseek, read, sbrk, write.

4 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.4 atexit—request execution of functions at
program exit

Synopsis
#include <stdlib.h>
int atexit(void (*function)(void);

Description
You can use atexit to enroll functions in a list of functions that will
be called when your program terminates normally. The argument is a
pointer to a user-defined function (which must not require arguments
and must not return a result).
The functions are kept in a LIFO stack; that is, the last function enrolled
by atexit will be the first to execute when your program exits.
There is no built-in limit to the number of functions you can enroll in
this list; however, after every group of 32 functions is enrolled, atexit
will call malloc to get space for the next part of the list. The initial list
of 32 functions is statically allocated, so you can always count on at least
that many slots available.

Returns
atexit returns 0 if it succeeds in enrolling your function, -1 if it fails
(possible only if no space was available for malloc to extend the list of
functions).

Portability
atexit is required by the ANSI standard, which also specifies that im-
plementations must support enrolling at least 32 functions.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 5

Cygnus C Support Library, Full

1.5 atof, atoff—string to double or float

Synopsis
#include <stdlib.h>
double atof(const char *s);
float atoff(const char *s);

Description
atof converts the initial portion of a string to a double. atoff converts
the initial portion of a string to a float.
The functions parse the character string s, locating a substring which
can be converted to a floating point value. The substring must match
the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring converted is the longest initial fragment of s that has the
expected format, beginning with the first non-whitespace character. The
substring is empty if str is empty, consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or a
digit.
atof(s) is implemented as strtod(s, NULL). atoff(s) is implemented
as strtodf(s, NULL).

Returns
atof returns the converted substring value, if any, as a double; or 0.0,
if no conversion could be performed. If the correct value is out of the
range of representable values, plus or minus HUGE_VAL is returned, and
ERANGE is stored in errno. If the correct value would cause underflow,
0.0 is returned and ERANGE is stored in errno.
atoff obeys the same rules as atof, except that it returns a float.

Portability
atof is ANSI C. atof, atoi, and atol are subsumed by strod and
strol, but are used extensively in existing code. These functions are
less reliable, but may be faster if the argument is verified to be in a valid
range.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

6 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.6 atoi, atol—string to integer

Synopsis
#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);

Description
atoi converts the initial portion of a string to an int. atol converts the
initial portion of a string to a long.
atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is im-
plemented as strtol(s, NULL, 10).

Returns
The functions return the converted value, if any. If no conversion was
made, 0 is returned.

Portability
atoi is ANSI.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 7

Cygnus C Support Library, Full

1.7 atol—convert string to long

Synopsis
long atol(const char *s);

Description
atol converts the initial portion of a string to an long.
atol(s) is implemented as strtol(s,NULL,10).

Portability
atol is ANSI.
No supporting OS subroutines are required.

8 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.8 bsearch—binary search

Synopsis
#include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description
bsearch searches an array beginning at base for any element that
matches key, using binary search. nmemb is the element count of the
array; size is the size of each element.
The array must be sorted in ascending order with respect to the compari-
son function compar (which you supply as the last argument of bsearch).
You must define the comparison function (*compar) to have two argu-
ments; its result must be negative if the first argument is less than the
second, zero if the two arguments match, and positive if the first argu-
ment is greater than the second (where “less than” and “greater than”
refer to whatever arbitrary ordering is appropriate).

Returns
Returns a pointer to an element of array that matches key. If more than
one matching element is available, the result may point to any of them.

Portability
bsearch is ANSI.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 9

Cygnus C Support Library, Full

1.9 calloc—allocate space for arrays

Synopsis
#include <stdlib.h>
void *calloc(size_t n, size_t s);
void *calloc_r(void *reent, size_t <n>, <size_t> s);

Description
Use calloc to request a block of memory sufficient to hold an array of n
elements, each of which has size s.
The memory allocated by calloc comes out of the same memory pool
used by malloc, but the memory block is initialized to all zero bytes. (To
avoid the overhead of initializing the space, use malloc instead.)
The alternate functios _calloc_r is reentrant. The extra argument
reent is a pointer to a reentrancy structure.

Returns
If successful, a pointer to the newly allocated space.
If unsuccessful, NULL.

Portability
calloc is ANSI.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

10 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.10 div—divide two integers

Synopsis
#include <stdlib.h>
div_t div(int n, int d);

Description
Divide n=d, returning quotient and remainder as two integers in a struc-
ture div_t.

Returns
The result is represented with the structure

typedef struct
{
int quot;
int rem;

} div_t;

where the quot field represents the quotient, and rem the remainder.
For nonzero d, if ‘r = div(n,d);’ then n equals ‘r.rem + d*r.quot’.
When d is zero, the quot member of the result has the same sign as n
and the largest representable magnitude.
To divide long rather than int values, use the similar function ldiv.

Portability
div is ANSI, but the behavior for zero d is not specified by the standard.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 11

Cygnus C Support Library, Full

1.11 ecvt,ecvtf,fcvt,fcvtf—double or float to
string

Synopsis
#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);
char *ecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals,
int *decpt, int *sgn);

char *fcvtf(float val, int decimals,
int *decpt, int *sgn);

Description
ecvt and fcvt produce (null-terminated) strings of digits representating
the double number val. ecvtf and fcvtf produce the corresponding
character representations of float numbers.
(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of
ecvt and fcvt.)
The only difference between ecvt and fcvt is the interpretation of the
second argument (chars or decimals). For ecvt, the second argument
chars specifies the total number of characters to write (which is also
the number of significant digits in the formatted string, since these two
functions write only digits). For fcvt, the second argument decimals
specifies the number of characters to write after the decimal point; all
digits for the integer part of val are always included.
Since ecvt and fcvt write only digits in the output string, they record
the location of the decimal point in *decpt, and the sign of the number in
*sgn. After formatting a number, *decpt contains the number of digits
to the left of the decimal point. *sgn contains 0 if the number is positive,
and 1 if it is negative.

Returns
All four functions return a pointer to the new string containing a char-
acter representation of val.

Portability
None of these functions are ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

12 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.12 gvcvt, gcvtf—format double or float as string

Synopsis
#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

Description
gcvt writes a fully formatted number as a null-terminated string in the
buffer *buf. gdvtf produces corresponding character representations of
float numbers.
gcvt uses the same rules as the printf format ‘%.precisiong’—only
negative values are signed (with ‘-’), and either exponential or ordinary
decimal-fraction format is chosen depending on the number of significant
digits (specified by precision).

Returns
The result is a pointer to the formatted representation of val (the same
as the argument buf).

Portability
Neither function is ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 13

Cygnus C Support Library, Full

1.13 ecvtbuf, fcvtbuf—double or float to string

Synopsis
#include <stdio.h>

char *ecvtbuf(double val, int chars, int *decpt,
int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

Description
ecvtbuf and fcvtbuf produce (null-terminated) strings of digits repre-
sentating the double number val.
The only difference between ecvtbuf and fcvtbuf is the interpretation
of the second argument (chars or decimals). For ecvtbuf, the second
argument chars specifies the total number of characters to write (which
is also the number of significant digits in the formatted string, since
these two functions write only digits). For fcvtbuf, the second argument
decimals specifies the number of characters to write after the decimal
point; all digits for the integer part of val are always included.
Since ecvtbuf and fcvtbuf write only digits in the output string, they
record the location of the decimal point in *decpt, and the sign of the
number in *sgn. After formatting a number, *decpt contains the number
of digits to the left of the decimal point. *sgn contains 0 if the number is
positive, and 1 if it is negative. For both functions, you supply a pointer
buf to an area of memory to hold the converted string.

Returns
Both functions return a pointer to buf, the string containing a character
representation of val.

Portability
Neither function is ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

14 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.14 exit—end program execution

Synopsis
#include <stdlib.h>
void exit(int code);

Description
Use exit to return control from a program to the host operating envi-
ronment. Use the argument code to pass an exit status to the operating
environment: two particular values, EXIT_SUCCESS and EXIT_FAILURE,
are defined in ‘stdlib.h’ to indicate success or failure in a portable fash-
ion.
exit does two kinds of cleanup before ending execution of your program.
First, it calls all application-defined cleanup functions you have enrolled
with atexit. Second, files and streams are cleaned up: any pending
output is delivered to the host system, each open file or stream is closed,
and files created by tmpfile are deleted.

Returns
exit does not return to its caller.

Portability
ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_
FAILURE must be defined.
Supporting OS subroutines required: _exit.

c y g n u s s u p p o r t 15

Cygnus C Support Library, Full

1.15 getenv—look up environment variable

Synopsis
#include <stdlib.h>
char *getenv(const char *name);

Description
getenv searches the list of environment variable names and values
(using the global pointer ‘char **environ’) for a variable whose name
matches the string at name. If a variable name matches, getenv returns
a pointer to the associated value.

Returns
A pointer to the (string) value of the environment variable, or NULL if
there is no such environment variable.

Portability
getenv is ANSI, but the rules for properly forming names of environment
variables vary from one system to another.
getenv requires a global pointer environ.

16 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.16 labs—long integer absolute value

Synopsis
#include <stdlib.h>
long labs(long i);

Description
labs returns jxj, the absolute value of i (also called the magnitude of
i). That is, if i is negative, the result is the opposite of i, but if i is
nonnegative the result is i.
The similar function abs uses and returns int rather than long values.

Returns
The result is a nonnegative long integer.

Portability
labs is ANSI.
No supporting OS subroutine calls are required.

c y g n u s s u p p o r t 17

Cygnus C Support Library, Full

1.17 ldiv—divide two long integers

Synopsis
#include <stdlib.h>
ldiv_t ldiv(long n, long d);

Description
Divide n=d, returning quotient and remainder as two integers in a struc-
ture ldiv_t.

Returns
The result is represented with the structure

typedef struct
{
long quot;
long rem;

} ldiv_t;

where the quot field represents the quotient, and rem the remainder.
For nonzero d, if ‘r = ldiv(n,d);’ then n equals ‘r.rem + d*r.quot’.
When d is zero, the quot member of the result has the same sign as n
and the largest representable magnitude.
To divide int rather than long values, use the similar function div.

Portability
ldiv is ANSI, but the behavior for zero d is not specified by the standard.
No supporting OS subroutines are required.

18 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.18 malloc, realloc, free—manage memory

Synopsis
#include <stdlib.h>
void *malloc(size_t nbytes);
void *realloc(void *aptr, size_t nbytes);
void free(void *aptr);

void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent,

void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

Description
These functions manage a pool of system memory.
Use malloc to request allocation of an object with at least nbytes bytes
of storage available. If the space is available, malloc returns a pointer
to a newly allocated block as its result.
If you already have a block of storage allocated by malloc, but you no
longer need all the space allocated to it, you can make it smaller by
calling realloc with both the object pointer and the new desired size as
arguments. realloc guarantees that the contents of the smaller object
match the beginning of the original object.
Similarly, if you need more space for an object, use realloc to request
the larger size; again, realloc guarantees that the beginning of the new,
larger object matches the contents of the original object.
When you no longer need an object originally allocated by malloc or
realloc (or the related function calloc), return it to the memory storage
pool by calling free with the address of the object as the argument. You
can also use realloc for this purpose by calling it with 0 as the nbytes
argument.
The alternate functions _malloc_r, _realloc_r, and _free_r are reen-
trant versions. The extra argument reent is a pointer to a reentrancy
structure.

Returns
malloc returns a pointer to the newly allocated space, if successful;
otherwise it returns NULL. If your application needs to generate empty
objects, you may use malloc(0) for this purpose.
realloc returns a pointer to the new block of memory, or NULL if a
new block could not be allocated. NULL is also the result when you use
‘realloc(aptr,0)’ (which has the same effect as ‘free(aptr)’). You

c y g n u s s u p p o r t 19

Cygnus C Support Library, Full

should always check the result of realloc; successful reallocation is not
guaranteed even when you request a smaller object.
free does not return a result.

Portability
malloc, realloc, and free are specified by the ANSI C standard, but
other conforming implementations of malloc may behave differently
when nbytes is zero.
Supporting OS subroutines required: sbrk, write (if WARN VLIMIT).

20 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.19 mbtowc—minimal multibyte to wide char
converter

Synopsis
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

Description
This is a minimal ANSI-conforming implementation of mbtowc. The only
“multi-byte character sequences” recognized are single bytes, and they
are “converted” to themselves.
Each call to mbtowc copies one character from *s to *pwc, unless s is a
null pointer.
In this implementation, the argument n is ignored.

Returns
This implementation of mbtowc returns 0 if s is NULL; it returns 1 other-
wise (reporting the length of the character “sequence” used).

Portability
mbtowc is required in the ANSI C standard. However, the precise effects
vary with the locale.
mbtowc requires no supporting OS subroutines.

c y g n u s s u p p o r t 21

Cygnus C Support Library, Full

1.20 qsort—sort an array

Synopsis
#include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description
qsort sorts an array (beginning at base) of nmemb objects. size describes
the size of each element of the array.
You must supply a pointer to a comparison function, using the argument
shown as compar. (This permits sorting objects of unknown properties.)
Define the comparison function to accept two arguments, each a pointer
to an element of the array starting at base. The result of (*compar)
must be negative if the first argument is less than the second, zero if
the two arguments match, and positive if the first argument is greater
than the second (where “less than” and “greater than” refer to whatever
arbitrary ordering is appropriate).
The array is sorted in place; that is, when qsort returns, the array
elements beginning at base have been reordered.

Returns
qsort does not return a result.

Portability
qsort is required by ANSI (without specifying the sorting algorithm).
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

22 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.21 rand, srand—pseudo-random numbers

Synopsis
#include <stdlib.h>
int rand(void);
void srand(unsigned int seed);

int _rand_r(void *reent);
void _srand_r(void *reent, unsigned int seed);

Description
rand returns a different integer each time it is called; each integer is
chosen by an algorithm designed to be unpredictable, so that you can
use rand when you require a random number. The algorithm depends
on a static variable called the “random seed”; starting with a given value
of the random seed always produces the same sequence of numbers in
successive calls to rand.
You can set the random seed using srand; it does nothing beyond storing
its argument in the static variable used by rand. You can exploit this
to make the pseudo-random sequence less predictable, if you wish, by
using some other unpredictable value (often the least significant parts
of a time-varying value) as the random seed before beginning a sequence
of calls to rand; or, if you wish to ensure (for example, while debugging)
that successive runs of your program use the same “random” numbers,
you can use srand to set the same random seed at the outset.
_rand_r and _srand_r are reentrant versions of rand and srand. The
extra argument reent is a pointer to a reentrancy structure.

Returns
rand returns the next pseudo-random integer in sequence; it is a number
between 0 and RAND_MAX (inclusive).
srand does not return a result.

Portability
rand is required by ANSI, but the algorithm for pseudo-random number
generation is not specified; therefore, even if you use the same random
seed, you cannot expect the same sequence of results on two different
systems.
rand requires no supporting OS subroutines.

c y g n u s s u p p o r t 23

Cygnus C Support Library, Full

1.22 strtod, strtodf—string to double or float

Synopsis
#include <stdlib.h>
double strtod(const char *str, char **tail);
float strtodf(const char *str, char **tail);

double _strtod_r(void *reent,
const char *str, char **tail);

Description
The function strtod parses the character string str, producing a sub-
string which can be converted to a double value. The substring converted
is the longest initial subsequence of str, beginning with the first non-
whitespace character, that has the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring contains no characters if str is empty, consists entirely of
whitespace, or if the first non-whitespace character is something other
than +, -, ., or a digit. If the substring is empty, no conversion is done,
and the value of str is stored in *tail. Otherwise, the substring is
converted, and a pointer to the final string (which will contain at least
the terminating null character of str) is stored in *tail. If you want no
assignment to *tail, pass a null pointer as tail. strtodf is identical
to strtod except for its return type.
This implementation returns the nearest machine number to the input
decimal string. Ties are broken by using the IEEE round-even rule.
The alternate function _strtod_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
strtod returns the converted substring value, if any. If no conversion
could be performed, 0 is returned. If the correct value is out of the
range of representable values, plus or minus HUGE_VAL is returned, and
ERANGE is stored in errno. If the correct value would cause underflow, 0
is returned and ERANGE is stored in errno.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

24 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.23 strtol—string to long

Synopsis
#include <stdlib.h>
long strtol(const char *s, char **ptr,int base);

long _strtol_r(void *reent,
const char *s, char **ptr,int base);

Description
The function strtol converts the string *s to a long. First, it breaks
down the string into three parts: leading whitespace, which is ignored;
a subject string consisting of characters resembling an integer in the
radix specified by base; and a trailing portion consisting of zero or more
unparseable characters, and always including the terminating null char-
acter. Then, it attempts to convert the subject string into a long and
returns the result.

If the value of base is 0, the subject string is expected to look like a
normal C integer constant: an optional sign, a possible ‘0x’ indicating a
hexadecimal base, and a number. If base is between 2 and 36, the ex-
pected form of the subject is a sequence of letters and digits representing
an integer in the radix specified by base, with an optional plus or minus
sign. The letters a–z (or, equivalently, A–Z) are used to signify values
from 10 to 35; only letters whose ascribed values are less than base are
permitted. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string
that has the expected form, starting with the first non-whitespace char-
acter. If the string is empty or consists entirely of whitespace, or if the
first non-whitespace character is not a permissible letter or digit, the
subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol
attempts to determine the radix from the input string. A string with a
leading 0x is treated as a hexadecimal value; a string with a leading 0 and
no x is treated as octal; all other strings are treated as decimal. If base is
between 2 and 36, it is used as the conversion radix, as described above.
If the subject string begins with a minus sign, the value is negated.
Finally, a pointer to the first character past the converted subject string
is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion
is performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtol_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

c y g n u s s u p p o r t 25

Cygnus C Support Library, Full

Returns
strtol returns the converted value, if any. If no conversion was made,
0 is returned.
strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted
value is too large, and sets errno to ERANGE.

Portability
strtol is ANSI.
No supporting OS subroutines are required.

26 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.24 strtoul—string to unsigned long

Synopsis
#include <stdlib.h>
unsigned long strtoul(const char *s, char **ptr,

int base);

unsigned long _strtoul_r(void *reent, const char *s,
char **ptr, int base);

Description
The function strtoul converts the string *s to an unsigned long. First,
it breaks down the string into three parts: leading whitespace, which is
ignored; a subject string consisting of the digits meaningful in the radix
specified by base (for example, 0 through 7 if the value of base is 8);
and a trailing portion consisting of one or more unparseable characters,
which always includes the terminating null character. Then, it attempts
to convert the subject string into an unsigned long integer, and returns
the result.
If the value of base is zero, the subject string is expected to look like
a normal C integer constant (save that no optional sign is permitted):
a possible 0x indicating hexadecimal radix, and a number. If base is
between 2 and 36, the expected form of the subject is a sequence of
digits (which may include letters, depending on the base) representing
an integer in the radix specified by base. The letters a–z (or A–Z) are used
as digits valued from 10 to 35. If base is 16, a leading 0x is permitted.
The subject sequence is the longest initial sequence of the input string
that has the expected form, starting with the first non-whitespace char-
acter. If the string is empty or consists entirely of whitespace, or if
the first non-whitespace character is not a permissible digit, the subject
string is empty.
If the subject string is acceptable, and the value of base is zero, strtoul
attempts to determine the radix from the input string. A string with a
leading 0x is treated as a hexadecimal value; a string with a leading 0
and no x is treated as octal; all other strings are treated as decimal. If
base is between 2 and 36, it is used as the conversion radix, as described
above. Finally, a pointer to the first character past the converted subject
string is stored in ptr, if ptr is not NULL.
If the subject string is empty (that is, if *s does not start with a substring
in acceptable form), no conversion is performed and the value of s is
stored in ptr (if ptr is not NULL).
The alternate function _strtoul_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

c y g n u s s u p p o r t 27

Cygnus C Support Library, Full

Returns
strtoul returns the converted value, if any. If no conversion was made,
0 is returned.
strtoul returns ULONG_MAX if the magnitude of the converted value is
too large, and sets errno to ERANGE.

Portability
strtoul is ANSI.
strtoul requires no supporting OS subroutines.

28 10 July 1995

Chapter 1: Standard Utility Functions (‘stdlib.h’)

1.25 system—execute command string

Synopsis
#include <stdlib.h>
int system(char *s);

int _system_r(void *reent, char *s);

Description

Use system to pass a command string *s to /bin/sh on your system, and
wait for it to finish executing.
Use ‘system(NULL)’ to test whether your system has /bin/sh available.
The alternate function _system_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
system(NULL) returns a non-zero value if /bin/sh is available, and 0 if
it is not.
With a command argument, the result of system is the exit status re-
turned by /bin/sh.

Portability
ANSI C requires system, but leaves the nature and effects of a command
processor undefined. ANSI C does, however, specify that system(NULL)
return zero or nonzero to report on the existence of a command processor.
POSIX.2 requires system, and requires that it invoke /bin/sh.
Supporting OS subroutines required: _exit, execve, fork, wait.

c y g n u s s u p p o r t 29

Cygnus C Support Library, Full

1.26 wctomb—minimal wide char to multibyte
converter

Synopsis
#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description
This is a minimal ANSI-conforming implementation of wctomb. The only
“wide characters” recognized are single bytes, and they are “converted”
to themselves.
Each call to wctomb copies the character wchar to *s, unless s is a null
pointer.

Returns
This implementation of wctomb returns 0 if s is NULL; it returns 1 other-
wise (reporting the length of the character “sequence” generated).

Portability
wctomb is required in the ANSI C standard. However, the precise effects
vary with the locale.
wctomb requires no supporting OS subroutines.

30 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2 Character Type Macros and Functions
(‘ctype.h’)

This chapter groups macros (which are also available as subroutines)
to classify characters into several categories (alphabetic, numeric, con-
trol characters, whitespace, and so on), or to perform simple character
mappings.
The header file ‘ctype.h’ defines the macros.

c y g n u s s u p p o r t 31

Cygnus C Support Library, Full

2.1 isalnum—alphanumeric character predicate

Synopsis
#include <ctype.h>
int isalnum(int c);

Description
isalnum is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for alphabetic or numeric ASCII
characters, and 0 for other arguments. It is defined for all integer values.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isalnum’.

Returns
isalnum returns non-zero if c is a letter (a–z or A–Z) or a digit (0–9).

Portability
isalnum is ANSI C.
No OS subroutines are required.

32 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.2 isalpha—alphabetic character predicate

Synopsis
#include <ctype.h>
int isalpha(int c);

Description
isalpha is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero when c represents an alphabetic
ASCII character, and 0 otherwise. It is defined only when isascii(c) is
true or c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isalpha’.

Returns
isalpha returns non-zero if c is a letter (A–Z or a–z).

Portability
isalpha is ANSI C.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 33

Cygnus C Support Library, Full

2.3 isascii—ASCII character predicate

Synopsis
#include <ctype.h>
int isascii(int c);

Description
isascii is a macro which returns non-zero when c is an ASCII character,
and 0 otherwise. It is defined for all integer values.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isascii’.

Returns
isascii returns non-zero if the low order byte of c is in the range 0 to
127 (0x00–0x7F).

Portability
isascii is ANSI C.
No supporting OS subroutines are required.

34 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.4 iscntrl—control character predicate

Synopsis
#include <ctype.h>
int iscntrl(int c);

Description
iscntrl is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for control characters, and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef iscntrl’.

Returns
iscntrl returns non-zero if c is a delete character or ordinary control
character (0x7F or 0x00–0x1F).

Portability
iscntrl is ANSI C.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 35

Cygnus C Support Library, Full

2.5 isdigit—decimal digit predicate

Synopsis
#include <ctype.h>
int isdigit(int c);

Description
isdigit is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for decimal digits, and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isdigit’.

Returns
isdigit returns non-zero if c is a decimal digit (0–9).

Portability
isdigit is ANSI C.
No supporting OS subroutines are required.

36 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.6 islower—lower-case character predicate

Synopsis
#include <ctype.h>
int islower(int c);

Description
islower is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for minuscules (lower-case alpha-
betic characters), and 0 for other characters. It is defined only when
isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef islower’.

Returns
islower returns non-zero if c is a lower case letter (a–z).

Portability
islower is ANSI C.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 37

Cygnus C Support Library, Full

2.7 isprint, isgraph—printable character
predicates

Synopsis
#include <ctype.h>
int isprint(int c);
int isgraph(int c);

Description
isprint is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for printable characters, and 0 for
other character arguments. It is defined only when isascii(c) is true
or c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining either macro using ‘#undef isprint’ or ‘#undef isgraph’.

Returns
isprint returns non-zero if c is a printing character, (0x20–0x7E).
isgraph behaves identically to isprint, except that the space character
(0x20) is excluded.

Portability
isprint and isgraph are ANSI C.
No supporting OS subroutines are required.

38 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.8 ispunct—punctuation character predicate

Synopsis
#include <ctype.h>
int ispunct(int c);

Description
ispunct is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for printable punctuation characters,
and 0 for other characters. It is defined only when isascii(c) is true or
c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef ispunct’.

Returns
ispunct returns non-zero if c is a printable punctuation character
(isgraph(c) && !isalnum(c)).

Portability
ispunct is ANSI C.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 39

Cygnus C Support Library, Full

2.9 isspace—whitespace character predicate

Synopsis
#include <ctype.h>
int isspace(int c);

Description
isspace is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for whitespace characters, and 0 for
other characters. It is defined only when isascii(c) is true or c is EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isspace’.

Returns
isspace returns non-zero if c is a space, tab, carriage return, new line,
vertical tab, or formfeed (0x09–0x0D, 0x20).

Portability
isspace is ANSI C.
No supporting OS subroutines are required.

40 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.10 isupper—uppercase character predicate

Synopsis
#include <ctype.h>
int isupper(int c);

Description
isupper is a macro which classifies ASCII integer values by table lookup.
It is a predicate returning non-zero for upper-case letters (A–Z), and 0
for other characters. It is defined only when isascii(c) is true or c is
EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isupper’.

Returns
isupper returns non-zero if c is a upper case letter (A-Z).

Portability
isupper is ANSI C.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 41

Cygnus C Support Library, Full

2.11 isxdigit—hexadecimal digit predicate

Synopsis
#include <ctype.h>
int isxdigit(int c);

Description
isxdigit is a macro which classifies ASCII integer values by table
lookup. It is a predicate returning non-zero for hexadecimal digits, and
0 for other characters. It is defined only when isascii(c) is true or c is
EOF.
You can use a compiled subroutine instead of the macro definition by
undefining the macro using ‘#undef isxdigit’.

Returns
isxdigit returns non-zero if c is a hexadecimal digit (0–9, a–f, or A–F).

Portability
isxdigit is ANSI C.
No supporting OS subroutines are required.

42 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.12 toascii—force integers to ASCII range

Synopsis
#include <ctype.h>
int toascii(int c);

Description
toascii is a macro which coerces integers to the ASCII range (0–127)
by zeroing any higher-order bits.
You can use a compiled subroutine instead of the macro definition by
undefining this macro using ‘#undef toascii’.

Returns
toascii returns integers between 0 and 127.

Portability
toascii is not ANSI C.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 43

Cygnus C Support Library, Full

2.13 tolower—translate characters to lower case

Synopsis
#include <ctype.h>
int tolower(int c);
int _tolower(int c);

Description
tolower is a macro which converts upper-case characters to lower case,
leaving all other characters unchanged. It is only defined when c is an
integer in the range EOF to 255.
You can use a compiled subroutine instead of the macro definition by
undefining this macro using ‘#undef tolower’.
_tolower performs the same conversion as tolower, but should only be
used when c is known to be an uppercase character (A–Z).

Returns
tolower returns the lower-case equivalent of c when it is a character
between A and Z, and c otherwise.
_tolower returns the lower-case equivalent of c when it is a character
between A and Z. If c is not one of these characters, the behaviour of
_tolower is undefined.

Portability
tolower is ANSI C. _tolower is not recommended for portable programs.
No supporting OS subroutines are required.

44 10 July 1995

Chapter 2: Character Type Macros and Functions (‘ctype.h’)

2.14 toupper—translate characters to upper case

Synopsis
#include <ctype.h>
int toupper(int c);
int _toupper(int c);

Description
toupper is a macro which converts lower-case characters to upper case,
leaving all other characters unchanged. It is only defined when c is an
integer in the range EOF to 255.
You can use a compiled subroutine instead of the macro definition by
undefining this macro using ‘#undef toupper’.
_toupper performs the same conversion as toupper, but should only be
used when c is known to be a lowercase character (a–z).

Returns
toupper returns the upper-case equivalent of c when it is a character
between a and z, and c otherwise.
_toupper returns the upper-case equivalent of c when it is a character
between a and z. If c is not one of these characters, the behaviour of
_toupper is undefined.

Portability
toupper is ANSI C. _toupper is not recommended for portable programs.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 45

Cygnus C Support Library, Full

46 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3 Input and Output (‘stdio.h’)

This chapter comprises functions to manage files or other input/output
streams. Among these functions are subroutines to generate or scan
strings according to specifications from a format string.
The underlying facilities for input and output depend on the host system,
but these functions provide a uniform interface.
The corresponding declarations are in ‘stdio.h’.
The reentrant versions of these functions use macros

_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument
<[reent]> is a pointer to a reentrancy structure.

c y g n u s s u p p o r t 47

Cygnus C Support Library, Full

3.1 clearerr—clear file or stream error indicator

Synopsis
#include <stdio.h>
void clearerr(FILE *fp);

Description
The stdio functions maintain an error indicator with each file pointer
fp, to record whether any read or write errors have occurred on the
associated file or stream. Similarly, it maintains an end-of-file indicator
to record whether there is no more data in the file.
Use clearerr to reset both of these indicators.
See ferror and feof to query the two indicators.

Returns
clearerr does not return a result.

Portability
ANSI C requires clearerr.
No supporting OS subroutines are required.

48 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.2 fclose—close a file

Synopsis
#include <stdio.h>
int fclose(FILE *fp);

Description
If the file or stream identified by fp is open, fclose closes it, after first
ensuring that any pending data is written (by calling fflush(fp)).

Returns
fclose returns 0 if successful (including when fp is NULL or not an open
file); otherwise, it returns EOF.

Portability
fclose is required by ANSI C.
Required OS subroutines: close, fstat, isatty, lseek, read, sbrk,
write.

c y g n u s s u p p o r t 49

Cygnus C Support Library, Full

3.3 feof—test for end of file

Synopsis
#include <stdio.h>
int feof(FILE *fp);

Description
feof tests whether or not the end of the file identified by fp has been
reached.

Returns
feof returns 0 if the end of file has not yet been reached; if at end of file,
the result is nonzero.

Portability
feof is required by ANSI C.
No supporting OS subroutines are required.

50 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.4 ferror—test whether read/write error has
occurred

Synopsis
#include <stdio.h>
int ferror(FILE *fp);

Description
The stdio functions maintain an error indicator with each file pointer
fp, to record whether any read or write errors have occurred on the
associated file or stream. Use ferror to query this indicator.
See clearerr to reset the error indicator.

Returns
ferror returns 0 if no errors have occurred; it returns a nonzero value
otherwise.

Portability
ANSI C requires ferror.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 51

Cygnus C Support Library, Full

3.5 fflush—flush buffered file output

Synopsis
#include <stdio.h>
int fflush(FILE *fp);

Description
The stdio output functions can buffer output before delivering it to the
host system, in order to minimize the overhead of system calls.
Use fflush to deliver any such pending output (for the file or stream
identified by fp) to the host system.
If fp is NULL, fflush delivers pending output from all open files.

Returns
fflush returns 0 unless it encounters a write error; in that situation, it
returns EOF.

Portability
ANSI C requires fflush.
No supporting OS subroutines are required.

52 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.6 fgetc—get a character from a file or stream

Synopsis
#include <stdio.h>
int fgetc(FILE *fp);

Description
Use fgetc to get the next single character from the file or stream iden-
tified by fp. As a side effect, fgetc advances the file’s current position
indicator.
For a macro version of this function, see getc.

Returns
The next character (read as an unsigned char, and cast to int), unless
there is no more data, or the host system reports a read error; in either
of these situations, fgetc returns EOF.
You can distinguish the two situations that cause an EOF result by using
the ferror and feof functions.

Portability
ANSI C requires fgetc.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 53

Cygnus C Support Library, Full

3.7 fgetpos—record position in a stream or file

Synopsis
#include <stdio.h>
int fgetpos(FILE *fp, fpos_t *pos);

Description
Objects of type FILE can have a “position” that records how much of the
file your program has already read. Many of the stdio functions depend
on this position, and many change it as a side effect.
You can use fgetpos to report on the current position for a file identified
by fp; fgetpos will write a value representing that position at *pos.
Later, you can use this value with fsetpos to return the file to this
position.
In the current implementation, fgetpos simply uses a character count
to represent the file position; this is the same number that would be
returned by ftell.

Returns
fgetpos returns 0 when successful. If fgetpos fails, the result is 1.
Failure occurs on streams that do not support positioning; the global
errno indicates this condition with the value ESPIPE.

Portability
fgetpos is required by the ANSI C standard, but the meaning of the
value it records is not specified beyond requiring that it be acceptable as
an argument to fsetpos. In particular, other conforming C implementa-
tions may return a different result from ftell than what fgetposwrites
at *pos.
No supporting OS subroutines are required.

54 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.8 fgets—get character string from a file or
stream

Synopsis
#include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);

Description
Reads at most n-1 characters from fp until a newline is found. The
characters including to the newline are stored in buf. The buffer is
terminated with a 0.

Returns
fgets returns the buffer passed to it, with the data filled in. If end of file
occurs with some data already accumulated, the data is returned with
no other indication. If no data are read, NULL is returned instead.

Portability
fgets should replace all uses of gets. Note however that fgets re-
turns all of the data, while gets removes the trailing newline (with no
indication that it has done so.)
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 55

Cygnus C Support Library, Full

3.9 fiprintf—format output to file (integer only)

Synopsis
#include <stdio.h>

int fiprintf(FILE *fd, const char *format, ...);

Description
fiprintf is a restricted version of fprintf: it has the same arguments
and behavior, save that it cannot perform any floating-point formatting—
the f, g, G, e, and F type specifiers are not recognized.

Returns
fiprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. fiprintf returns when the end of the
format string is encountered. If an error occurs, fiprintf returns EOF.

Portability
fiprintf is not required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

56 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.10 fopen—open a file

Synopsis
#include <stdio.h>
FILE *fopen(const char *file, const char *mode);

FILE *_fopen_r(void *reent,
const char *file, const char *mode);

Description
fopen initializes the data structures needed to read or write a file. Spec-
ify the file’s name as the string at file, and the kind of access you need
to the file with the string at mode.
The alternate function _fopen_r is a reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.
Three fundamental kinds of access are available: read, write, and ap-
pend. *mode must begin with one of the three characters ‘r’, ‘w’, or ‘a’, to
select one of these:

r Open the file for reading; the operation will fail if the file
does not exist, or if the host system does not permit you to
read it.

w Open the file for writing from the beginning of the file: effec-
tively, this always creates a new file. If the file whose name
you specified already existed, its old contents are discarded.

a Open the file for appending data, that is writing from the end
of file. When you open a file this way, all data always goes to
the current end of file; you cannot change this using fseek.

Some host systems distinguish between “binary” and “text” files. Such
systems may perform data transformations on data written to, or read
from, files opened as “text”. If your system is one of these, then you
can append a ‘b’ to any of the three modes above, to specify that you are
opening the file as a binary file (the default is to open the file as a text
file).
‘rb’, then, means “read binary”; ‘wb’, “write binary”; and ‘ab’, “append
binary”.
To make C programs more portable, the ‘b’ is accepted on all systems,
whether or not it makes a difference.
Finally, you might need to both read and write from the same file. You
can also append a ‘+’ to any of the three modes, to permit this. (If you
want to append both ‘b’ and ‘+’, you can do it in either order: for example,
"rb+" means the same thing as "r+b" when used as a mode string.)

c y g n u s s u p p o r t 57

Cygnus C Support Library, Full

Use "r+" (or "rb+") to permit reading and writing anywhere in an ex-
isting file, without discarding any data; "w+" (or "wb+") to create a new
file (or begin by discarding all data from an old one) that permits read-
ing and writing anywhere in it; and "a+" (or "ab+") to permit reading
anywhere in an existing file, but writing only at the end.

Returns
fopen returns a file pointer which you can use for other file operations,
unless the file you requested could not be opened; in that situation, the
result is NULL. If the reason for failure was an invalid string at mode,
errno is set to EINVAL.

Portability
fopen is required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
open, read, sbrk, write.

58 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.11 fdopen—turn open file into a stream

Synopsis
#include <stdio.h>
FILE *fdopen(int fd, const char *mode);
FILE *_fdopen_r(void *reent,

int fd, const char *mode);

Description
fdopen produces a file descriptor of type FILE *, from a descriptor for an
already-open file (returned, for example, by the system subroutine open
rather than by fopen). The mode argument has the same meanings as
in fopen.

Returns
File pointer or NULL, as for fopen.

Portability
fdopen is ANSI.

c y g n u s s u p p o r t 59

Cygnus C Support Library, Full

3.12 fputc—write a character on a stream or file

Synopsis
#include <stdio.h>
int fputc(int ch, FILE *fp);

Description
fputc converts the argument ch from an int to an unsigned char, then
writes it to the file or stream identified by fp.
If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character is written at the current value of the
position indicator, and the position indicator oadvances by one.
For a macro version of this function, see putc.

Returns
If successful, fputc returns its argument ch. If an error intervenes, the
result is EOF. You can use ‘ferror(fp)’ to query for errors.

Portability
fputc is required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

60 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.13 fputs—write a character string in a file or
stream

Synopsis
#include <stdio.h>
int fputs(const char *s, FILE *fp);

Description
fputs writes the string at s (but without the trailing null) to the file or
stream identified by fp.

Returns
If successful, the result is 0; otherwise, the result is EOF.

Portability
ANSI C requires fputs, but does not specify that the result on success
must be 0; any non-negative value is permitted.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 61

Cygnus C Support Library, Full

3.14 fread—read array elements from a file

Synopsis
#include <stdio.h>
size_t fread(void *buf, size_t size, size_t count,

FILE *fp);

Description
fread attempts to copy, from the file or stream identified by fp, count
elements (each of size size) into memory, starting at buf. fread may
copy fewer elements than count if an error, or end of file, intervenes.
fread also advances the file position indicator (if any) for fp by the
number of characters actually read.

Returns
The result of fread is the number of elements it succeeded in reading.

Portability
ANSI C requires fread.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

62 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.15 freopen—open a file using an existing file
descriptor

Synopsis
#include <stdio.h>
FILE *freopen(const char *file, const char *mode,

FILE *fp);

Description
Use this variant of fopen if you wish to specify a particular file descriptor
fp (notably stdin, stdout, or stderr) for the file.
If fp was associated with another file or stream, freopen closes that
other file or stream (but ignores any errors while closing it).
file and mode are used just as in fopen.

Returns
If successful, the result is the same as the argument fp. If the file cannot
be opened as specified, the result is NULL.

Portability
ANSI C requires freopen.
Supporting OS subroutines required: close, fstat, isatty, lseek,
open, read, sbrk, write.

c y g n u s s u p p o r t 63

Cygnus C Support Library, Full

3.16 fseek—set file position

Synopsis
#include <stdio.h>
int fseek(FILE *fp, long offset, int whence)

Description
Objects of type FILE can have a “position” that records how much of the
file your program has already read. Many of the stdio functions depend
on this position, and many change it as a side effect.
You can use fseek to set the position for the file identified by fp. The
value of offset determines the new position, in one of three ways se-
lected by the value of whence (defined as macros in ‘stdio.h’):
SEEK_SET—offset is the absolute file position (an offset from the begin-
ning of the file) desired. offset must be positive.
SEEK_CUR—offset is relative to the current file position. offset can
meaningfully be either positive or negative.
SEEK_END—offset is relative to the current end of file. offset can
meaningfully be either positive (to increase the size of the file) or nega-
tive.
See ftell to determine the current file position.

Returns
fseek returns 0 when successful. If fseek fails, the result is EOF. The
reason for failure is indicated in errno: either ESPIPE (the stream identi-
fied by fp doesn’t support repositioning) or EINVAL (invalid file position).

Portability
ANSI C requires fseek.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

64 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.17 fsetpos—restore position of a stream or file

Synopsis
#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *pos);

Description
Objects of type FILE can have a “position” that records how much of the
file your program has already read. Many of the stdio functions depend
on this position, and many change it as a side effect.
You can use fsetpos to return the file identified by fp to a previous
position *pos (after first recording it with fgetpos).
See fseek for a similar facility.

Returns
fgetpos returns 0 when successful. If fgetpos fails, the result is 1.
The reason for failure is indicated in errno: either ESPIPE (the stream
identified by fp doesn’t support repositioning) or EINVAL (invalid file
position).

Portability
ANSI C requires fsetpos, but does not specify the nature of *pos beyond
identifying it as written by fgetpos.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 65

Cygnus C Support Library, Full

3.18 ftell—return position in a stream or file

Synopsis
#include <stdio.h>
long ftell(FILE *fp);

Description
Objects of type FILE can have a “position” that records how much of the
file your program has already read. Many of the stdio functions depend
on this position, and many change it as a side effect.
The result of ftell is the current position for a file identified by fp. If
you record this result, you can later use it with fseek to return the file
to this position.
In the current implementation, ftell simply uses a character count
to represent the file position; this is the same number that would be
recorded by fgetpos.

Returns
ftell returns the file position, if possible. If it cannot do this, it returns
-1L. Failure occurs on streams that do not support positioning; the
global errno indicates this condition with the value ESPIPE.

Portability
ftell is required by the ANSI C standard, but the meaning of its result
(when successful) is not specified beyond requiring that it be acceptable
as an argument to fseek. In particular, other conforming C implemen-
tations may return a different result from ftell than what fgetpos
records.
No supporting OS subroutines are required.

66 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.19 fwrite—write array elements

Synopsis
#include <stdio.h>
size_t fwrite(const void *buf, size_t size,

size_t count, FILE *fp);

Description
fwrite attempts to copy, starting from the memory location buf, count
elements (each of size size) into the file or stream identified by fp.
fwrite may copy fewer elements than count if an error intervenes.
fwrite also advances the file position indicator (if any) for fp by the
number of characters actually written.

Returns
If fwrite succeeds in writing all the elements you specify, the result is
the same as the argument count. In any event, the result is the number
of complete elements that fwrite copied to the file.

Portability
ANSI C requires fwrite.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 67

Cygnus C Support Library, Full

3.20 getc—read a character (macro)

Synopsis
#include <stdio.h>
int getc(FILE *fp);

Description
getc is a macro, defined in stdio.h. You can use getc to get the next
single character from the file or stream identified by fp. As a side effect,
getc advances the file’s current position indicator.
For a subroutine version of this macro, see fgetc.

Returns
The next character (read as an unsigned char, and cast to int), unless
there is no more data, or the host system reports a read error; in either
of these situations, getc returns EOF.
You can distinguish the two situations that cause an EOF result by using
the ferror and feof functions.

Portability
ANSI C requires getc; it suggests, but does not require, that getc be
implemented as a macro. The standard explicitly permits macro imple-
mentations of getc to use the argument more than once; therefore, in a
portable program, you should not use an expression with side effects as
the getc argument.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

68 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.21 getchar—read a character (macro)

Synopsis
#include <stdio.h>
int getchar(void);

int _getchar_r(void *reent);

Description
getchar is a macro, defined in stdio.h. You can use getchar to get the
next single character from the standard input stream. As a side effect,
getchar advances the standard input’s current position indicator.
The alternate function _getchar_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
The next character (read as an unsigned char, and cast to int), unless
there is no more data, or the host system reports a read error; in either
of these situations, getchar returns EOF.
You can distinguish the two situations that cause an EOF result by using
‘ferror(stdin)’ and ‘feof(stdin)’.

Portability
ANSI C requires getchar; it suggests, but does not require, that getchar
be implemented as a macro.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 69

Cygnus C Support Library, Full

3.22 gets—get character string (obsolete, use
fgets instead)

Synopsis
#include <stdio.h>

char *gets(char *buf);

char *_gets_r(void *reent, char *buf);

Description
Reads characters from standard input until a newline is found. The
characters up to the newline are stored in buf. The newline is discarded,
and the buffer is terminated with a 0.
This is a dangerous function, as it has no way of checking the amount
of space available in buf. One of the attacks used by the Internet Worm
of 1988 used this to overrun a buffer allocated on the stack of the finger
daemon and overwrite the return address, causing the daemon to execute
code downloaded into it over the connection.
The alternate function _gets_r is a reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns
gets returns the buffer passed to it, with the data filled in. If end of file
occurs with some data already accumulated, the data is returned with
no other indication. If end of file occurs with no data in the buffer, NULL
is returned.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

70 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.23 iprintf—write formatted output (integer
only)

Synopsis
#include <stdio.h>

int iprintf(const char *format, ...);

Description
iprintf is a restricted version of printf: it has the same arguments
and behavior, save that it cannot perform any floating-point formatting:
the f, g, G, e, and F type specifiers are not recognized.

Returns
iprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. iprintf returns when the end of the
format string is encountered. If an error occurs, iprintf returns EOF.

Portability
iprintf is not required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 71

Cygnus C Support Library, Full

3.24 mktemp, mkstemp—generate unused file name

Synopsis
#include <stdio.h>
char *mktemp(char *path);
int mkstemp(char *path);

char *_mktemp_r(void *reent, char *path);
int *_mkstemp_r(void *reent, char *path);

Description
mktemp and mkstemp attempt to generate a file name that is not yet in
use for any existing file. mkstemp creates the file and opens it for reading
and writing; mktemp simply generates the file name.
You supply a simple pattern for the generated file name, as the string at
path. The pattern should be a valid filename (including path information
if you wish) ending with some number of ‘X’ characters. The generated
filename will match the leading part of the name you supply, with the
trailing ‘X’ characters replaced by some combination of digits and letters.
The alternate functions _mktemp_r and _mkstemp_r are reentrant ver-
sions. The extra argument reent is a pointer to a reentrancy structure.

Returns
mktemp returns the pointer path to the modified string representing an
unused filename, unless it could not generate one, or the pattern you
provided is not suitable for a filename; in that case, it returns NULL.
mkstemp returns a file descriptor to the newly created file, unless it
could not generate an unused filename, or the pattern you provided is
not suitable for a filename; in that case, it returns -1.

Portability
ANSI C does not require either mktemp or mkstemp; the System V Inter-
face Definition requires mktemp as of Issue 2.
Supporting OS subroutines required: getpid, open, stat.

72 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.25 perror—print an error message on standard
error

Synopsis
#include <stdio.h>
void perror(char *prefix);

void _perror_r(void *reent, char *prefix);

Description
Use perror to print (on standard error) an error message corresponding
to the current value of the global variable errno. Unless you use NULL
as the value of the argument prefix, the error message will begin with
the string at prefix, followed by a colon and a space (:). The remainder
of the error message is one of the strings described for strerror.
The alternate function _perror_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
perror returns no result.

Portability
ANSI C requires perror, but the strings issued vary from one imple-
mentation to another.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 73

Cygnus C Support Library, Full

3.26 putc—write a character (macro)

Synopsis
#include <stdio.h>
int putc(int ch, FILE *fp);

Description
putc is a macro, defined in stdio.h. putc writes the argument ch to
the file or stream identified by fp, after converting it from an int to an
unsigned char.
If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character is written at the current value of the
position indicator, and the position indicator advances by one.
For a subroutine version of this macro, see fputc.

Returns
If successful, putc returns its argument ch. If an error intervenes, the
result is EOF. You can use ‘ferror(fp)’ to query for errors.

Portability
ANSI C requires putc; it suggests, but does not require, that putc be
implemented as a macro. The standard explicitly permits macro imple-
mentations of putc to use the fp argument more than once; therefore, in
a portable program, you should not use an expression with side effects
as this argument.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

74 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.27 putchar—write a character (macro)

Synopsis
#include <stdio.h>
int putchar(int ch);

int _putchar_r(void *reent, int ch);

Description
putchar is a macro, defined in stdio.h. putchar writes its argument
to the standard output stream, after converting it from an int to an
unsigned char.
The alternate function _putchar_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
If successful, putchar returns its argument ch. If an error intervenes,
the result is EOF. You can use ‘ferror(stdin)’ to query for errors.

Portability
ANSI C requires putchar; it suggests, but does not require, that putchar
be implemented as a macro.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 75

Cygnus C Support Library, Full

3.28 puts—write a character string

Synopsis
#include <stdio.h>
int puts(const char *s);

int _puts_r(void *reent, const char *s);

Description
puts writes the string at s (followed by a newline, instead of the trailing
null) to the standard output stream.
The alternate function _puts_r is a reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns
If successful, the result is 0; otherwise, the result is EOF.

Portability
ANSI C requires puts, but does not specify that the result on success
must be 0; any non-negative value is permitted.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

76 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.29 remove—delete a file’s name

Synopsis
#include <stdio.h>
int remove(char *filename);

int _remove_r(void *reent, char *filename);

Description
Use remove to dissolve the association between a particular filename
(the string at filename) and the file it represents. After calling remove
with a particular filename, you will no longer be able to open the file by
that name.
In this implementation, you may use remove on an open file without
error; existing file descriptors for the file will continue to access the file’s
data until the program using them closes the file.
The alternate function _remove_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
remove returns 0 if it succeeds, -1 if it fails.

Portability
ANSI C requires remove, but only specifies that the result on failure be
nonzero. The behavior of remove when you call it on an open file may
vary among implementations.
Supporting OS subroutine required: unlink.

c y g n u s s u p p o r t 77

Cygnus C Support Library, Full

3.30 rename—rename a file

Synopsis
#include <stdio.h>
int rename(const char *old, const char *new);

int _rename_r(void *reent,
const char *old, const char *new);

Description
Use rename to establish a new name (the string at new) for a file now
known by the string at old. After a successful rename, the file is no
longer accessible by the string at old.
If rename fails, the file named *old is unaffected. The conditions for
failure depend on the host operating system.
The alternate function _rename_r is a reentrant version. The extra
argument reent is a pointer to a reentrancy structure.

Returns
The result is either 0 (when successful) or -1 (when the file could not be
renamed).

Portability
ANSI C requires rename, but only specifies that the result on failure be
nonzero. The effects of using the name of an existing file as *new may
vary from one implementation to another.
Supporting OS subroutines required: link, unlink.

78 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.31 rewind—reinitialize a file or stream

Synopsis
#include <stdio.h>
void rewind(FILE *fp);

Description
rewind returns the file position indicator (if any) for the file or stream
identified by fp to the beginning of the file. It also clears any error
indicator and flushes any pending output.

Returns
rewind does not return a result.

Portability
ANSI C requires rewind.
No supporting OS subroutines are required.

c y g n u s s u p p o r t 79

Cygnus C Support Library, Full

3.32 setbuf—specify full buffering for a file or
stream

Synopsis
#include <stdio.h>
void setbuf(FILE *fp, char *buf);

Description
setbuf specifies that output to the file or stream identified by fp should
be fully buffered. All output for this file will go to a buffer (of size BUFSIZ,
specified in ‘stdio.h’). Output will be passed on to the host system only
when the buffer is full, or when an input operation intervenes.
You may, if you wish, supply your own buffer by passing a pointer to it
as the argument buf. It must have size BUFSIZ. You can also use NULL
as the value of buf, to signal that the setbuf function is to allocate the
buffer.

Warnings
You may only use setbuf before performing any file operation other than
opening the file.
If you supply a non-null buf, you must ensure that the associated storage
continues to be available until you close the stream identified by fp.

Returns
setbuf does not return a result.

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require
setbuf. However, they differ on the meaning of a NULL buffer pointer:
the SVID issue 2 specification says that a NULL buffer pointer requests
unbuffered output. For maximum portability, avoid NULL buffer pointers.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

80 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.33 setvbuf—specify file or stream buffering

Synopsis
#include <stdio.h>
int setvbuf(FILE *fp, char *buf,

int mode, size_t size);

Description
Use setvbuf to specify what kind of buffering you want for the file
or stream identified by fp, by using one of the following values (from
stdio.h) as the mode argument:

_IONBF Do not use a buffer: send output directly to the host system
for the file or stream identified by fp.

_IOFBF Use full output buffering: output will be passed on to the
host system only when the buffer is full, or when an input
operation intervenes.

_IOLBF Use line buffering: pass on output to the host system at every
newline, as well as when the buffer is full, or when an input
operation intervenes.

Use the size argument to specify how large a buffer you wish. You can
supply the buffer itself, if you wish, by passing a pointer to a suitable area
of memory as buf. Otherwise, you may pass NULL as the buf argument,
and setvbuf will allocate the buffer.

Warnings
You may only use setvbuf before performing any file operation other
than opening the file.
If you supply a non-null buf, you must ensure that the associated storage
continues to be available until you close the stream identified by fp.

Returns
A 0 result indicates success, EOF failure (invalid mode or size can cause
failure).

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require
setvbuf. However, they differ on the meaning of a NULL buffer pointer:
the SVID issue 2 specification says that a NULL buffer pointer requests
unbuffered output. For maximum portability, avoid NULL buffer pointers.
Both specifications describe the result on failure only as a nonzero value.

c y g n u s s u p p o r t 81

Cygnus C Support Library, Full

Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

82 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.34 siprintf—write formatted output (integer
only)

Synopsis
#include <stdio.h>

int siprintf(char *str, const char *format [, arg, ...]);

Description
siprintf is a restricted version of sprintf: it has the same arguments
and behavior, save that it cannot perform any floating-point formatting:
the f, g, G, e, and F type specifiers are not recognized.

Returns
siprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. siprintf returns when the end of the
format string is encountered.

Portability
siprintf is not required by ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 83

Cygnus C Support Library, Full

3.35 printf, fprintf, sprintf—format output

Synopsis
#include <stdio.h>

int printf(const char *format [, arg, ...]);
int fprintf(FILE *fd, const char *format [, arg, ...]);
int sprintf(char *str, const char *format [, arg, ...]);

Description
printf accepts a series of arguments, applies to each a format specifier
from *format, and writes the formatted data to stdout, terminated with
a null character. The behavior of printf is undefined if there are not
enough arguments for the format. printf returns when it reaches the
end of the format string. If there are more arguments than the format
requires, excess arguments are ignored.
fprintf and sprintf are identical to printf, other than the destination
of the formatted output: fprintf sends the output to a specified file fd,
while sprintf stores the output in the specified char array str. For
sprintf, the behavior is also undefined if the output *str overlaps with
one of the arguments. format is a pointer to a charater string containing
two types of objects: ordinary characters (other than %), which are copied
unchanged to the output, and conversion specifications, each of which is
introduced by %. (To include % in the output, use %% in the format string.)
A conversion specification has the following form:

%[flags][width][.prec][size][type]

The fields of the conversion specification have the following meanings:
� flags

an optional sequence of characters which control output justifica-
tion, numeric signs, decimal points, trailing zeroes, and octal and
hex prefixes. The flag characters are minus (-), plus (+), space (),
zero (0), and sharp (#). They can appear in any combination.

- The result of the conversion is left justified, and the right
is padded with blanks. If you do not use this flag, the
result is right justified, and padded on the left.

+ The result of a signed conversion (as determined by type)
will always begin with a plus or minus sign. (If you do
not use this flag, positive values do not begin with a plus
sign.)

" " (space)
If the first character of a signed conversion specification
is not a sign, or if a signed conversion results in no char-

84 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

acters, the result will begin with a space. If the space (
) flag and the plus (+) flag both appear, the space flag is
ignored.

0 If the type character is d, i, o, u, x, X, e, E, f, g, or G:
leading zeroes, are used to pad the field width (following
any indication of sign or base); no spaces are used for
padding. If the zero (0) and minus (-) flags both appear,
the zero (0) flag will be ignored. For d, i, o, u, x, and X
conversions, if a precision prec is specified, the zero (0)
flag is ignored. Note that 0 is interpreted as a flag, not
as the beginning of a field width.

The result is to be converted to an alternative form, ac-
cording to the next character:

0 increases precision to force the first digit of
the result to be a zero.

x a non-zero result will have a 0x prefix.

X a non-zero result will have a 0X prefix.

e, E or f The result will always contain a decimal
point even if no digits follow the point. (Nor-
mally, a decimal point appears only if a digit
follows it.) Trailing zeroes are removed.

g or G same as e or E, but trailing zeroes are not
removed.

all others
undefined.

� width

width is an optional minimum field width. You can either specify
it directly as a decimal integer, or indirectly by using instead an
asterisk (*), in which case an int argument is used as the field
width. Negative field widths are not supported; if you attempt to
specify a negative field width, it is interpreted as a minus (-) flag
followed by a positive field width.

� prec

an optional field; if present, it is introduced with ‘.’ (a period). This
field gives the maximum number of characters to print in a con-
version; the minimum number of digits of an integer to print, for
conversions with type d, i, o, u, x, and X; the maximum number
of significant digits, for the g and G conversions; or the number of
digits to print after the decimal point, for e, E, and f conversions.
You can specify the precision either directly as a decimal integer or

c y g n u s s u p p o r t 85

Cygnus C Support Library, Full

indirectly by using an asterisk (*), in which case an int argument is
used as the precision. Supplying a negative precision is equivalent
to omitting the precision. If only a period is specified the precision
is zero. If a precision appears with any other conversion type than
those listed here, the behavior is undefined.

� size

h, l, and L are optional size characters which override the default
way that printf interprets the data type of the corresponding ar-
gument. h forces the following d, i, o, u, x or X conversion type to
apply to a short or unsigned short. h also forces a following n type
to apply to a pointer to a short. Similarily, an l forces the following
d, i, o, u, x or X conversion type to apply to a long or unsigned long.
l also forces a following n type to apply to a pointer to a long. If
an h or an l appears with another conversion specifier, the behavior
is undefined. L forces a following e, E, f, g or G conversion type
to apply to a long double argument. If L appears with any other
conversion type, the behavior is undefined.

� type

type specifies what kind of conversion printf performs. Here is a
table of these:

% prints the percent character (%)

c prints arg as single character

s prints characters until precision is reached or a null ter-
minator is encountered; takes a string pointer

d prints a signed decimal integer; takes an int (same as
i)

i prints a signed decimal integer; takes an int (same as
d)

o prints a signed octal integer; takes an int

u prints an unsigned decimal integer; takes an int

x prints an unsigned hexadecimal integer (using abcdef
as digits beyond 9); takes an int

X prints an unsigned hexadecimal integer (using ABCDEF
as digits beyond 9); takes an int

f prints a signed value of the form [-]9999.9999; takes a
floating point number

e prints a signed value of the form [-]9.9999e[+|-]999;
takes a floating point number

86 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

E prints the same way as e, but using E to introduce the
exponent; takes a floating point number

g prints a signed value in either f or e form, based on
given value and precision—trailing zeros and the deci-
mal point are printed only if necessary; takes a floating
point number

G prints the same way as g, but using E for the exponent if
an exponent is needed; takes a floating point number

n stores (in the same object) a count of the characters writ-
ten; takes a pointer to int

p prints a pointer in an implementation-defined format.
This implementation treats the pointer as an unsigned
long (same as Lu).

Returns
sprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. printf and fprintf return the number
of characters transmitted. If an error occurs, printf and fprintf return
EOF. No error returns occur for sprintf.

Portability
The ANSI C standard specifies that implementations must support at
least formatted output of up to 509 characters.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

c y g n u s s u p p o r t 87

Cygnus C Support Library, Full

3.36 scanf, fscanf, sscanf—scan and format input

Synopsis
#include <stdio.h>

int scanf(const char *format [, arg, ...]);
int fscanf(FILE *fd, const char *format [, arg, ...]);
int sscanf(const char *str, const char *format

[, arg, ...]);

Description
scanf scans a series of input fields from standard input, one character
at a time. Each field is interpreted according to a format specifier passed
to scanf in the format string at *format. scanf stores the interpreted
input from each field at the address passed to it as the corresponding
argument following format. You must supply the same number of format
specifiers and address arguments as there are input fields.
There must be sufficient address arguments for the given format speci-
fiers; if not the results are unpredictable and likely disasterous. Excess
address arguments are merely ignored.
scanf often produces unexpected results if the input diverges from an
expected pattern. Since the combination of gets or fgets followed by
sscanf is safe and easy, that is the preferred way to be certain that a
program is synchronized with input at the end of a line.
fscanf and sscanf are identical to scanf, other than the source of input:
fscanf reads from a file, and sscanf from a string.
The string at *format is a character sequence composed of zero or more
directives. Directives are composed of one or more whitespace charac-
ters, non-whitespace characters, and format specifications.
Whitespace characters are blank (), tab (\t), or newline (\n). When
scanf encounters a whitespace character in the format string it will
read (but not store) all consecutive whitespace characters up to the next
non-whitespace character in the input.
Non-whitespace characters are all other ASCII characters except the
percent sign (%). When scanf encounters a non-whitespace character in
the format string it will read, but not store a matching non-whitespace
character.
Format specifications tell scanf to read and convert characters from the
input field into specific types of values, and store then in the locations
specified by the address arguments.
Trailing whitespace is left unread unless explicitly matched in the format
string.

88 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

The format specifiers must begin with a percent sign (%) and have the
following form:

%[*][width][size]type

Each format specification begins with the percent character (%). The
other fields are:

* an optional marker; if present, it suppresses interpretation
and assignment of this input field.

width an optional maximum field width: a decimal integer, which
controls the maximum number of characters that will be read
before converting the current input field. If the input field
has fewer than width characters, scanf reads all the char-
acters in the field, and then proceeds with the next field and
its format specification.
If a whitespace or a non-convertable character occurs before
width character are read, the characters up to that character
are read, converted, and stored. Then scanf proceeds to the
next format specification.

size h, l, and L are optional size characters which override the
default way that scanf interprets the data type of the corre-
sponding argument.

Modifier Type(s)
h d, i, o, u, x convert input to short,

store in short object

h D, I, O, U, X no effect
e, f, c, s, n, p

l d, i, o, u, x convert input to long,
store in long object

l e, f, g convert input to double
store in a double object

l D, I, O, U, X no effect
c, s, n, p

L d, i, o, u, x convert to long double,
store in long double

L all others no effect

type

A character to specify what kind of conversion scanf per-
forms. Here is a table of the conversion characters:

% No conversion is done; the percent character (%)
is stored.

c y g n u s s u p p o r t 89

Cygnus C Support Library, Full

c Scans one character. Corresponding arg: (char
*arg).

s Reads a character string into the array supplied.
Corresponding arg: (char arg[]).

[pattern]
Reads a non-empty character string into mem-
ory starting at arg. This area must be large
enough to accept the sequence and a terminating
null character which will be added automatically.
(pattern is discussed in the paragraph following
this table). Corresponding arg: (char *arg).

d Reads a decimal integer into the corresponding
arg: (int *arg).

D Reads a decimal integer into the corresponding
arg: (long *arg).

o Reads an octal integer into the corresponding
arg: (int *arg).

O Reads an octal integer into the corresponding
arg: (long *arg).

u Reads an unsigned decimal integer into the cor-
responding arg: (unsigned int *arg).

U Reads an unsigned decimal integer into the cor-
responding arg: (unsigned long *arg).

x,X Read a hexadecimal integer into the correspond-
ing arg: (int *arg).

e, f, g Read a floating point number into the correspond-
ing arg: (float *arg).

E, F, G Read a floating point number into the correspond-
ing arg: (double *arg).

i Reads a decimal, octal or hexadecimal integer
into the corresponding arg: (int *arg).

I Reads a decimal, octal or hexadecimal integer
into the corresponding arg: (long *arg).

n Stores the number of characters read in the cor-
responding arg: (int *arg).

p Stores a scanned pointer. ANSI C leaves the de-
tails to each implementation; this implementa-
tion treats %p exactly the same as %U. Corre-
sponding arg: (void **arg).

90 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

A pattern of characters surrounded by square brackets can
be used instead of the s type character. pattern is a set of
characters which define a search set of possible characters
making up the scanf input field. If the first character in the
brackets is a caret (ˆ), the search set is inverted to include all
ASCII characters except those between the brackets. There
is also a range facility which you can use as a shortcut. %[0-
9] matches all decimal digits. The hyphen must not be the
first or last character in the set. The character prior to the
hyphen must be lexically less than the character after it.
Here are some pattern examples:

%[abcd] matches strings containing only a, b, c, and d.

%[ˆabcd] matches strings containing any characters except
a, b, c, or d

%[A-DW-Z]
matches strings containing A, B, C, D, W, X, Y, Z

%[z-a] matches the characters z, -, and a

Floating point numbers (for field types e, f, g, E, F, G) must
correspond to the following general form:

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

where objects inclosed in square brackets are optional, and
ddd represents decimal, octal, or hexadecimal digits.

Returns
scanf returns the number of input fields successfully scanned, converted
and stored; the return value does not include scanned fields which were
not stored.
If scanf attempts to read at end-of-file, the return value is EOF.
If no fields were stored, the return value is 0.
scanf might stop scanning a particular field before reaching the normal
field end character, or may terminate entirely.
scanf stops scanning and storing the current field and moves to the next
input field (if any) in any of the following situations:
� The assignment suppressing character (*) appears after the % in

the format specification; the current input field is scanned but not
stored.

� width characters have been read (width is a width specification, a
positive decimal integer).

� The next character read cannot be converted under the the current
format (for example, if a Z is read when the format is decimal).

c y g n u s s u p p o r t 91

Cygnus C Support Library, Full

� The next character in the input field does not appear in the search
set (or does appear in the inverted search set).

When scanf stops scanning the current input field for one of these rea-
sons, the next character is considered unread and used as the first char-
acter of the following input field, or the first character in a subsequent
read operation on the input.
scanf will terminate under the following circumstances:
� The next character in the input field conflicts with a corresponding

non-whitespace character in the format string.
� The next character in the input field is EOF.
� The format string has been exhausted.

When the format string contains a character sequence that is not part of
a format specification, the same character sequence must appear in the
input; scanf will scan but not store the matched characters. If a conflict
occurs, the first conflicting character remains in the input as if it had
never been read.

Portability
scanf is ANSI C.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

92 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

3.37 tmpfile—create a temporary file

Synopsis
#include <stdio.h>
FILE *tmpfile(void);

FILE *_tmpfile_r(void *reent);

Description
Create a temporary file (a file which will be deleted automatically), using
a name generated by tmpnam. The temporary file is opened with the mode
"wb+", permitting you to read and write anywhere in it as a binary file
(without any data transformations the host system may perform for text
files).
The alternate function _tmpfile_r is a reentrant version. The argument
reent is a pointer to a reentrancy structure.

Returns
tmpfile normally returns a pointer to the temporary file. If no tempo-
rary file could be created, the result is NULL, and errno records the
reason for failure.

Portability
Both ANSI C and the System V Interface Definition (Issue 2) require
tmpfile.
Supporting OS subroutines required: close, fstat, getpid, isatty,
lseek, open, read, sbrk, write.
tmpfile also requires the global pointer environ.

c y g n u s s u p p o r t 93

Cygnus C Support Library, Full

3.38 tmpnam, tempnam—name for a temporary file

Synopsis
#include <stdio.h>
char *tmpnam(char *s);
char *tempnam(char *dir, char *pfx);
char *_tmpnam_r(void *reent, char *s);
char *_tempnam_r(void *reent, char *dir, char *pfx);

Description
Use either of these functions to generate a name for a temporary file.
The generated name is guaranteed to avoid collision with other files (for
up to TMP_MAX calls of either function).

tmpnam generates file names with the value of P_tmpdir (defined in
‘stdio.h’) as the leading directory component of the path.

You can use the tmpnam argument s to specify a suitable area of memory
for the generated filename; otherwise, you can call tmpnam(NULL) to use
an internal static buffer.

tempnam allows you more control over the generated filename: you can
use the argument dir to specify the path to a directory for temporary
files, and you can use the argument pfx to specify a prefix for the base
filename.

If dir is NULL, tempnam will attempt to use the value of environment
variable TMPDIR instead; if there is no such value, tempnam uses the
value of P_tmpdir (defined in ‘stdio.h’).

If you don’t need any particular prefix to the basename of temporary
files, you can pass NULL as the pfx argument to tempnam.

_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and
tempnam respectively. The extra argument reent is a pointer to a reen-
trancy structure.

Warnings
The generated filenames are suitable for temporary files, but do not in
themselves make files temporary. Files with these names must still be
explicitly removed when you no longer want them.

If you supply your own data area s for tmpnam, you must ensure that it
has room for at least L_tmpnam elements of type char.

Returns
Both tmpnam and tempnam return a pointer to the newly generated file-
name.

94 10 July 1995

Chapter 3: Input and Output (‘stdio.h’)

Portability
ANSI C requires tmpnam, but does not specify the use of P_tmpdir.
The System V Interface Definition (Issue 2) requires both tmpnam and
tempnam.
Supporting OS subroutines required: close, fstat, getpid, isatty,
lseek, open, read, sbrk, write.
The global pointer environ is also required.

c y g n u s s u p p o r t 95

Cygnus C Support Library, Full

3.39 vprintf, vfprintf, vsprintf—format
argument list

Synopsis
#include <stdio.h>
#include <stdarg.h>
int vprintf(const char *fmt, va_list list);
int vfprintf(FILE *fp, const char *fmt, va_list list);
int vsprintf(char *str, const char *fmt, va_list list);

int _vprintf_r(void *reent, const char *fmt,
va_list list);

int _vfprintf_r(void *reent, FILE *fp, const char *fmt,
va_list list);

int _vsprintf_r(void *reent, char *str, const char *fmt,
va_list list);

Description
vprintf, vfprintf, and vsprintf are (respectively) variants of printf,
fprintf, and sprintf. They differ only in allowing their caller to pass
the variable argument list as a va_list object (initialized by va_start)
rather than directly accepting a variable number of arguments.

Returns
The return values are consistent with the corresponding functions:
vsprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. vprintf and vfprintf return the num-
ber of characters transmitted. If an error occurs, vprintf and vfprintf
return EOF. No error returns occur for vsprintf.

Portability
ANSI C requires all three functions.
Supporting OS subroutines required: close, fstat, isatty, lseek,
read, sbrk, write.

96 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4 Strings and Memory (‘string.h’)

This chapter describes string-handling functions and functions for
managing areas of memory. The corresponding declarations are in
‘string.h’.

c y g n u s s u p p o r t 97

Cygnus C Support Library, Full

4.1 bcmp—compare two memory areas

Synopsis
#include <string.h>
int bcmp(const char *s1, const char *s2, size_t n);

Description
This function compares not more than n characters of the object pointed
to by s1 with the object pointed to by s2.
This function is identical to memcmp.
Returns
The function returns an integer greater than, equal to or less than zero
according to whether the object pointed to by s1 is greater than, equal
to or less than the object pointed to by s2.

Portability
bcmp requires no supporting OS subroutines.

98 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.2 bcopy—copy memory regions

Synopsis
#include <string.h>
void bcopy(const char *in, char *out, size_t n);

Description
This function copies n bytes from the memory region pointed to by in to
the memory region pointed to by out.
This function is implemented in term of memmove.

Portability
bcopy requires no supporting OS subroutines.

c y g n u s s u p p o r t 99

Cygnus C Support Library, Full

4.3 bzero—initialize memory to zero

Synopsis
#include <string.h>
void bzero(char *b, size_t length);

Description
bzero initializes length bytes of memory, starting at address b, to zero.

Returns
bzero does not return a result.

Portability
bzero is in the Berkeley Software Distribution. Neither ANSI C nor the
System V Interface Definition (Issue 2) require bzero.
bzero requires no supporting OS subroutines.

100 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.4 index—search for character in string

Synopsis
#include <string.h>
char * index(const char *string, int c);

Description
This function finds the first occurence of c (converted to a char) in the
string pointed to by string (including the terminating null character).
This function is identical to strchr.

Returns
Returns a pointer to the located character, or a null pointer if c does not
occur in string.

Portability
index requires no supporting OS subroutines.

c y g n u s s u p p o r t 101

Cygnus C Support Library, Full

4.5 memchr—find character in memory

Synopsis
#include <string.h>
void *memchr(const void *src, int c, size_t length);

Description
This function searches memory starting at *src for the character c. The
search only ends with the first occurrence of c, or after length characters;
in particular, NULL does not terminate the search.

Returns
If the character c is found within length characters of *src, a pointer
to the character is returned. If c is not found, then NULL is returned.

Portability
memchr> is ANSI C.
memchr requires no supporting OS subroutines.

102 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.6 memcmp—compare two memory areas

Synopsis
#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description
This function compares not more than n characters of the object pointed
to by s1 with the object pointed to by s2.

Returns
The function returns an integer greater than, equal to or less than zero
according to whether the object pointed to by s1 is greater than, equal
to or less than the object pointed to by s2.

Portability
memcmp is ANSI C.
memcmp requires no supporting OS subroutines.

c y g n u s s u p p o r t 103

Cygnus C Support Library, Full

4.7 memcpy—copy memory regions

Synopsis
#include <string.h>
void* memcpy(void *out, const void *in, size_t n);

Description
This function copies n bytes from the memory region pointed to by in to
the memory region pointed to by out.
If the regions overlap, the behavior is undefined.

Returns
memcpy returns a pointer to the first byte of the out region.

Portability
memcpy is ANSI C.
memcpy requires no supporting OS subroutines.

104 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.8 memmove—move possibly overlapping memory

Synopsis
#include <string.h>
void *memmove(void *dst, const void *src, size_t length);

Description
This function moves length characters from the block of memory start-
ing at *src to the memory starting at *dst. memmove reproduces the
characters correctly at *dst even if the two areas overlap.

Returns
The function returns dst as passed.

Portability
memmove is ANSI C.
memmove requires no supporting OS subroutines.

c y g n u s s u p p o r t 105

Cygnus C Support Library, Full

4.9 memset—set an area of memory

Synopsis
#include <string.h>
void *memset(const void *dst, int c, size_t length);

Description
This function converts the argument c into an unsigned char and fills
the first length characters of the array pointed to by dst to the value.

Returns
memset returns the value of m.

Portability
memset is ANSI C.
memset requires no supporting OS subroutines.

106 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.10 rindex—reverse search for character in
string

Synopsis
#include <string.h>
char * rindex(const char *string, int c);

Description
This function finds the last occurence of c (converted to a char) in the
string pointed to by string (including the terminating null character).
This function is identical to strrchr.

Returns
Returns a pointer to the located character, or a null pointer if c does not
occur in string.

Portability
rindex requires no supporting OS subroutines.

c y g n u s s u p p o r t 107

Cygnus C Support Library, Full

4.11 strcat—concatenate strings

Synopsis
#include <string.h>
char *strcat(char *dst, const char *src);

Description
strcat appends a copy of the string pointed to by src (including the
terminating null character) to the end of the string pointed to by dst.
The initial character of src overwrites the null character at the end of
dst.

Returns
This function returns the initial value of dst

Portability
strcat is ANSI C.
strcat requires no supporting OS subroutines.

108 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.12 strchr—search for character in string

Synopsis
#include <string.h>
char * strchr(const char *string, int c);

Description
This function finds the first occurence of c (converted to a char) in the
string pointed to by string (including the terminating null character).

Returns
Returns a pointer to the located character, or a null pointer if c does not
occur in string.

Portability
strchr is ANSI C.
strchr requires no supporting OS subroutines.

c y g n u s s u p p o r t 109

Cygnus C Support Library, Full

4.13 strcmp—character string compare

Synopsis
#include <string.h>
int strcmp(const char *a, const char *b);

Description
strcmp compares the string at a to the string at b.

Returns
If *a sorts lexicographically after *b, strcmp returns a number greater
than zero. If the two strings match, strcmp returns zero. If *a sorts
lexicographically before *b, strcmp returns a number less than zero.

Portability
strcmp is ANSI C.
strcmp requires no supporting OS subroutines.

110 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.14 strcoll—locale specific character string
compare

Synopsis
#include <string.h>
int strcoll(const char *stra, const char * strb);

Description
strcoll compares the string pointed to by stra to the string pointed to
by strb, using an interpretation appropriate to the current LC_COLLATE
state.

Returns
If the first string is greater than the second string, strcoll returns a
number greater than zero. If the two strings are equivalent, strcoll
returns zero. If the first string is less than the second string, strcoll
returns a number less than zero.

Portability
strcoll is ANSI C.
strcoll requires no supporting OS subroutines.

c y g n u s s u p p o r t 111

Cygnus C Support Library, Full

4.15 strcpy—copy string

Synopsis
#include <string.h>
char *strcpy(char *dst, const char *src);

Description
strcpy copies the string pointed to by src (including the terminating
null character) to the array pointed to by dst.

Returns
This function returns the initial value of dst.

Portability
strcpy is ANSI C.
strcpy requires no supporting OS subroutines.

112 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.16 strcspn—count chars not in string

Synopsis
size_t strcspn(const char *s1, const char *s2);

Description
This function computes the length of the initial part of the string pointed
to by s1 which consists entirely of characters NOT from the string pointed
to by s2 (excluding the terminating null character).

Returns
strcspn returns the length of the substring found.

Portability
strcspn is ANSI C.
strcspn requires no supporting OS subroutines.

c y g n u s s u p p o r t 113

Cygnus C Support Library, Full

4.17 strerror—convert error number to string

Synopsis
#include <string.h>
char *strerror(int errnum);

Description
strerror converts the error number errnum into a string. The value
of errnum is usually a copy of errno. If errnum is not a known error
number, the result points to an empty string.
This implementation of strerror prints out the following strings for
each of the values defined in ‘errno.h’:

E2BIG Arg list too long

EACCES Permission denied

EADV Advertise error

EAGAIN No more processes

EBADF Bad file number

EBADMSG Bad message

EBUSY Device or resource busy

ECHILD No children

ECOMM Communication error

EDEADLK Deadlock

EEXIST File exists

EDOM Math argument

EFAULT Bad address

EFBIG File too large

EIDRM Identifier removed

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

ELIBACC Cannot access a needed shared library

ELIBBAD Accessing a corrupted shared library

ELIBEXEC Cannot exec a shared library directly

114 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

ELIBMAX Attempting to link in more shared libraries than system limit

ELIBSCN .lib section in a.out corrupted

EMFILE Too many open files

EMLINK Too many links

EMULTIHOP
Multihop attempted

ENFILE File table overflow

ENODEV No such device

ENOENT No such file or directory

ENOEXEC Exec format error

ENOLCK No lock

ENOLINK Virtual circuit is gone

ENOMEM Not enough space

ENOMSG No message of desired type

ENONET Machine is not on the network

ENOPKG No package

ENOSPC No space left on device

ENOSR No stream resources

ENOSTR Not a stream

ENOTBLK Block device required

ENOTDIR Not a directory

ENOTTY Not a character device

ENXIO No such device or address

EPERM Not owner

EPIPE Broken pipe

EPROTO Protocol error

ERANGE Result too large

EREMOTE Resource is remote

EROFS Read-only file system

ESPIPE Illegal seek

ESRCH No such process

c y g n u s s u p p o r t 115

Cygnus C Support Library, Full

ESRMNT Srmount error

ETIME Stream ioctl timeout

ETXTBSY Text file busy

EXDEV Cross-device link

Returns
This function returns a pointer to a string. Your application must not
modify that string.

Portability
ANSI C requires strerror, but does not specify the strings used for each
error number.
Although this implementation of strerror is reentrant, ANSI C declares
that subsequent calls to strerrormay overwrite the result string; there-
fore portable code cannot depend on the reentrancy of this subroutine.
strerror requires no supporting OS subroutines.

116 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.18 strlen—character string length

Synopsis
#include <string.h>
size_t strlen(const char *str);

Description
The strlen function works out the length of the string starting at *str
by counting chararacters until it reaches a NULL character.

Returns
strlen returns the character count.

Portability
strlen is ANSI C.
strlen requires no supporting OS subroutines.

c y g n u s s u p p o r t 117

Cygnus C Support Library, Full

4.19 strncat—concatenate strings

Synopsis
#include <string.h>
char *strncat(char *dst, const char *src, size_t length);

Description
strncat appends not more than length characters from the string
pointed to by src (including the terminating null character) to the end of
the string pointed to by dst. The initial character of src overwrites the
null character at the end of dst. A terminating null character is always
appended to the result

Warnings
Note that a null is always appended, so that if the copy is limited by the
length argument, the number of characters appended to dst is n + 1.
Returns
This function returns the initial value of dst

Portability
strncat is ANSI C.
strncat requires no supporting OS subroutines.

118 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.20 strncmp—character string compare

Synopsis
#include <string.h>
int strncmp(const char *a, const char * b, size_t length);

Description
strncmp compares up to length characters from the string at a to the
string at b.

Returns
If *a sorts lexicographically after *b, strncmp returns a number greater
than zero. If the two strings are equivalent, strncmp returns zero. If *a
sorts lexicographically before *b, strncmp returns a number less than
zero.

Portability
strncmp is ANSI C.
strncmp requires no supporting OS subroutines.

c y g n u s s u p p o r t 119

Cygnus C Support Library, Full

4.21 strncpy—counted copy string

Synopsis
#include <string.h>
char *strncpy(char *dst, const char *src, size_t length);

Description
strncpy copies not more than length characters from the the string
pointed to by src (including the terminating null character) to the array
pointed to by dst. If the string pointed to by src is shorter than length
characters, null characters are appended to the destination array until
a total of length characters have been written.

Returns
This function returns the initial value of dst.

Portability
strncpy is ANSI C.
strncpy requires no supporting OS subroutines.

120 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.22 strpbrk—find chars in string

Synopsis
#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description
This function locates the first occurence in the string pointed to by s1 of
any character in string pointed to by s2 (excluding the terminating null
character).

Returns
strpbrk returns a pointer to the character found in s1, or a null pointer
if no character from s2 occurs in s1.

Portability
strpbrk requires no supporting OS subroutines.

c y g n u s s u p p o r t 121

Cygnus C Support Library, Full

4.23 strrchr—reverse search for character in
string

Synopsis
#include <string.h>
char * strrchr(const char *string, int c);

Description
This function finds the last occurence of c (converted to a char) in the
string pointed to by string (including the terminating null character).

Returns
Returns a pointer to the located character, or a null pointer if c does not
occur in string.

Portability
strrchr is ANSI C.
strrchr requires no supporting OS subroutines.

122 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.24 strspn—find initial match

Synopsis
#include <string.h>
size_t strspn(const char *s1, const char *s2);

Description
This function computes the length of the initial segment of the string
pointed to by s1 which consists entirely of characters from the string
pointed to by s2 (excluding the terminating null character).

Returns
strspn returns the length of the segment found.

Portability
strspn is ANSI C.
strspn requires no supporting OS subroutines.

c y g n u s s u p p o r t 123

Cygnus C Support Library, Full

4.25 strstr—find string segment

Synopsis
#include <string.h>
char *strstr(const char *s1, const char *s2);

Description
Locates the first occurence in the string pointed to by s1 of the sequence
of characters in the string pointed to by s2 (excluding the terminating
null character).

Returns
Returns a pointer to the located string segment, or a null pointer if the
string s2 is not found. If s2 points to a string with zero length, the s1 is
returned.

Portability
strstr is ANSI C.
strstr requires no supporting OS subroutines.

124 10 July 1995

Chapter 4: Strings and Memory (‘string.h’)

4.26 strtok—get next token from a string

Synopsis
#include <string.h>
char *strtok(char *source, const char *delimiters)

char *_strtok_r(void *reent,
const char *source, const char *delimiters)

Description
A series of calls to strtok break the string starting at *source into
a sequence of tokens. The tokens are delimited from one another by
characters from the string at *delimiters, at the outset. The first call
to strtok normally has a string address as the first argument; subse-
quent calls can use NULL as the first argument, to continue searching the
same string. You can continue searching a single string with different
delimiters by using a different delimiter string on each call.
strtok begins by searching for any character not in the delimiters
string: the first such character is the beginning of a token (and its ad-
dress will be the result of the strtok call). strtok then continues search-
ing until it finds another delimiter character; it replaces that character
by NULL and returns. (If strtok comes to the end of the *source string
without finding any more delimiters, the entire remainder of the string
is treated as the next token). strtok starts its search at *source, unless
you pass NULL as the first argument; if source is NULL, strtok contin-
ues searching from the end of the last search. Exploiting the NULL first
argument leads to non-reentrant code. You can easily circumvent this
problem by saving the last delimiter address in your application, and
always using it to pass a non-null source argument.
_strtok_r performs the same function as strtok, but is reentrant. The
extra argument reent is a pointer to a reentrancy structure.

Returns
strtok returns a pointer to the next token, or NULL if no more tokens
can be found.

Portability
strtok is ANSI C.
strtok requires no supporting OS subroutines.

c y g n u s s u p p o r t 125

Cygnus C Support Library, Full

4.27 strxfrm—transform string

Synopsis
#include <string.h>
size_t strxfrm(char *s1, const char *s2, size_t n);

Description
This function transforms the string pointed to by s2 and places the
resulting string into the array pointed to by s1. The transformation
is such that if the strcmp function is applied to the two transformed
strings, it returns a value greater than, equal to, or less than zero,
correspoinding to the result of a strcoll function applied to the same
two original strings.
No more than n characters are placed into the resulting array pointed to
by s1, including the terminating null character. If n is zero, s1 may be
a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.
With a C locale, this function just copies.

Returns
The strxfrm function returns the length of the transformed string (not
including the terminating null character). If the value returned is n or
more, the contents of the array pointed to by s1 are indeterminate.

Portability
strxfrm is ANSI C.
strxfrm requires no supporting OS subroutines.

126 10 July 1995

Chapter 5: Signal Handling (‘signal.h’)

5 Signal Handling (‘signal.h’)

A signal is an event that interrupts the normal flow of control in your
program. Your operating environment normally defines the full set of sig-
nals available (see ‘sys/signal.h’), as well as the default means of deal-
ing with them—typically, either printing an error message and aborting
your program, or ignoring the signal.
All systems support at least the following signals:

SIGABRT Abnormal termination of a program; raised by the <<abort>>
function.

SIGFPE A domain error in arithmetic, such as overflow, or division
by zero.

SIGILL Attempt to execute as a function data that is not executable.

SIGINT Interrupt; an interactive attention signal.

SIGSEGV An attempt to access a memory location that is not available.

SIGTERM A request that your program end execution.

Two functions are available for dealing with asynchronous signals—one
to allow your program to send signals to itself (this is called raising a
signal), and one to specify subroutines (called handlers to handle partic-
ular signals that you anticipate may occur—whether raised by your own
program or the operating environment.
To support these functions, ‘signal.h’ defines three macros:

SIG_DFL Used with the signal function in place of a pointer to a
handler subroutine, to select the operating environment’s
default handling of a signal.

SIG_IGN Used with the signal function in place of a pointer to a
handler, to ignore a particular signal.

SIG_ERR Returned by the signal function in place of a pointer to a
handler, to indicate that your request to set up a handler
could not be honored for some reason.

‘signal.h’ also defines an integral type, sig_atomic_t. This type is not
used in any function declarations; it exists only to allow your signal han-
dlers to declare a static storage location where they may store a signal
value. (Static storage is not otherwise reliable from signal handlers.)

c y g n u s s u p p o r t 127

Cygnus C Support Library, Full

5.1 raise—send a signal

Synopsis
#include <signal.h>
int raise(int sig);

int _raise_r(void *reent, int sig);

Description
Send the signal sig (one of the macros from ‘sys/signal.h’). This
interrupts your program’s normal flow of execution, and allows a signal
handler (if you’ve defined one, using signal) to take control.
The alternate function _raise_r is a reentrant version. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns
The result is 0 if sig was successfully raised, 1 otherwise. However, the
return value (since it depends on the normal flow of execution) may not
be visible, unless the signal handler for sig terminates with a return
or unless SIG_IGN is in effect for this signal.

Portability
ANSI C requires raise, but allows the full set of signal numbers to vary
from one implementation to another.
Required OS subroutines: getpid, kill.

128 10 July 1995

Chapter 5: Signal Handling (‘signal.h’)

5.2 signal—specify handler subroutine for a
signal

Synopsis
#include <signal.h>
void (* signal(int sig, void(*func)(int)))(int);

void (* _signal_r(void *reent,
int sig, void(*func)(int)))(int);

int raise (int sig);

int _raise_r (void *reent, int sig);

Description
signal, raise provide a simple signal/raise implementation for embed-
ded targets.
signal allows you to request changed treatment for a particular signal
sig. You can use one of the predefined macros SIG_DFL (select system
default handling) or SIG_IGN (ignore this signal) as the value of func;
otherwise, func is a function pointer that identifies a subroutine in your
program as the handler for this signal.
Some of the execution environment for signal handlers is unpredictable;
notably, the only library function required to work correctly from within
a signal handler is signal itself, and only when used to redefine the
handler for the current signal value.
Static storage is likewise unreliable for signal handlers, with one excep-
tion: if you declare a static storage location as ‘volatile sig_atomic_t’,
then you may use that location in a signal handler to store signal values.
If your signal handler terminates using return (or implicit return), your
program’s execution continues at the point where it was when the signal
was raised (whether by your program itself, or by an external event).
Signal handlers can also use functions such as exit and abort to avoid
returning.
raise sends the signal sig to the executing program. It returns zero if
successful, non-zero if unsuccessful.
The alternate functions _signal_r, _raise_r are the reentrant ver-
sions. The extra argument reent is a pointer to a reentrancy structure.

Returns
If your request for a signal handler cannot be honored, the result is
SIG_ERR; a specific error number is also recorded in errno.

c y g n u s s u p p o r t 129

Cygnus C Support Library, Full

Otherwise, the result is the previous handler (a function pointer or one
of the predefined macros).

Portability
ANSI C requires raise, signal.
No supporting OS subroutines are required to link with signal, but it
will not have any useful effects, except for software generated signals,
without an operating system that can actually raise exceptions.

130 10 July 1995

Chapter 6: Time Functions (‘time.h’)

6 Time Functions (‘time.h’)

This chapter groups functions used either for reporting on time (elapsed,
current, or compute time) or to perform calculations based on time.
The header file ‘time.h’ defines three types. clock_t and time_t are
both used for representations of time particularly suitable for arithmetic.
(In this implementation, quantities of type clock_t have the highest res-
olution possible on your machine, and quantities of type time_t resolve
to seconds.) size_t is also defined if necessary for quantities represent-
ing sizes.
‘time.h’ also defines the structure tm for the traditional representation
of Gregorian calendar time as a series of numbers, with the following
fields:

tm_sec Seconds.

tm_min Minutes.

tm_hour Hours.

tm_mday Day.

tm_mon Month.

tm_year Year (since 1900).

tm_wday Day of week: the number of days since Sunday.

tm_yday Number of days elapsed since last January 1.

tm_isdst Daylight Savings Time flag: positive means DST in effect,
zero means DST not in effect, negative means no information
about DST is available.

c y g n u s s u p p o r t 131

Cygnus C Support Library, Full

6.1 asctime—format time as string

Synopsis
#include <time.h>
char *asctime(const struct tm *timp);

#include <time.h>
char *_asctime_r(const struct tm *timp, void *reent);

Description
Format the time value at timp into a string of the form

Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static buffer; each call to asctime overwrites
the string generated by previous calls.
_asctime_r provides the same function as asctime, but is reentrant.
The extra argument reent is a pointer to a reentrancy structure.

Returns
A pointer to the string containing a formatted timestamp.

Portability
ANSI C requires asctime.
asctime requires no supporting OS subroutines.

132 10 July 1995

Chapter 6: Time Functions (‘time.h’)

6.2 clock—cumulative processor time

Synopsis
#include <time.h>
clock_t clock(void);

Description
Calculates the best available approximation of the cumulative amount
of time used by your program since it started. To convert the result into
seconds, divide by the macro CLOCKS_PER_SEC.

Returns
The amount of processor time used so far by your program, in units
defined by the machine-dependent macro CLOCKS_PER_SEC. If no mea-
surement is available, the result is -1.

Portability
ANSI C requires clock and CLOCKS_PER_SEC.
Supporting OS subroutine required: times.

c y g n u s s u p p o r t 133

Cygnus C Support Library, Full

6.3 ctime—convert time to local and format as
string

Synopsis
#include <time.h>
char *ctime(time_t timp);

Description
Convert the time value at timp to local time (like localtime) and format
it into a string of the form

Wed Jun 15 11:38:07 1988\n\0

(like asctime).

Returns
A pointer to the string containing a formatted timestamp.

Portability
ANSI C requires ctime.
ctime requires no supporting OS subroutines.

134 10 July 1995

Chapter 6: Time Functions (‘time.h’)

6.4 difftime—subtract two times

Synopsis
#include <time.h>
double difftime(time_t tim1, time_t tim2);

Description
Subtracts the two times in the arguments: ‘tim1 - tim2’.

Returns
The difference (in seconds) between tim2 and tim1, as a double.

Portability
ANSI C requires difftime, and defines its result to be in seconds in all
implementations.
difftime requires no supporting OS subroutines.

c y g n u s s u p p o r t 135

Cygnus C Support Library, Full

6.5 gmtime—convert time to UTC traditional form

Synopsis
#include <time.h>
struct tm *gmtime(const time_t *timep

Description
gmtime assumes the time at timep represents a local time. gmtime con-
verts it to UTC (Universal Coordinated Time, also known in some coun-
tries as GMT, Greenwich Mean time), then converts the representation
from the arithmetic representation to the traditional representation de-
fined by struct tm.
gmtime constructs the traditional time representation in static storage;
each call to gmtime or localtime will overwrite the information gener-
ated by previous calls to either function.

Returns
A pointer to the traditional time representation (struct tm).

Portability
ANSI C requires gmtime.
gmtime requires no supporting OS subroutines.

136 10 July 1995

Chapter 6: Time Functions (‘time.h’)

6.6 localtime—convert time to local
representation

Synopsis
#include <time.h>
struct tm *localtime(time_t *timep);

Description
localtime converts the time at timep into local time, then converts
its representation from the arithmetic representation to the traditional
representation defined by struct tm.
localtime constructs the traditional time representation in static stor-
age; each call to gmtime or localtime will overwrite the information
generated by previous calls to either function.
mktime is the inverse of localtime.

Returns
A pointer to the traditional time representation (struct tm).

Portability
ANSI C requires localtime.
localtime requires no supporting OS subroutines.

c y g n u s s u p p o r t 137

Cygnus C Support Library, Full

6.7 mktime—convert time to arithmetic
representation

Synopsis
#include <time.h>
time_t mktime(struct tm *timp);

Description
mktime assumes the time at timp is a local time, and converts its repre-
sentation from the traditional representation defined by struct tm into
a representation suitable for arithmetic.
localtime is the inverse of mktime.

Returns
If the contents of the structure at timp do not form a valid calendar
time representation, the result is -1. Otherwise, the result is the time,
converted to a time_t value.

Portability
ANSI C requires mktime.
mktime requires no supporting OS subroutines.

138 10 July 1995

Chapter 6: Time Functions (‘time.h’)

6.8 strftime—flexible calendar time formatter

Synopsis
#include <time.h>
size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timp);

Description
strftime converts a struct tm representation of the time (at timp) into
a string, starting at s and occupying no more than maxsize characters.
You control the format of the output using the string at format. *format
can contain two kinds of specifications: text to be copied literally into the
formatted string, and time conversion specifications. Time conversion
specifications are two-character sequences beginning with ‘%’ (use ‘%%’ to
include a percent sign in the output). Each defined conversion specifica-
tion selects a field of calendar time data from *timp, and converts it to a
string in one of the following ways:

%a An abbreviation for the day of the week.

%A The full name for the day of the week.

%b An abbreviation for the month name.

%B The full name of the month.

%c A string representing the complete date and time, in the form
Mon Apr 01 13:13:13 1992

%d The day of the month, formatted with two digits.

%H The hour (on a 24-hour clock), formatted with two digits.

%I The hour (on a 12-hour clock), formatted with two digits.

%j The count of days in the year, formatted with three digits
(from ‘001’ to ‘366’).

%m The month number, formatted with two digits.

%M The minute, formatted with two digits.

%p Either ‘AM’ or ‘PM’ as appropriate.

%S The second, formatted with two digits.

%U The week number, formatted with two digits (from ‘00’ to ‘53’;
week number 1 is taken as beginning with the first Sunday
in a year). See also %W.

%w A single digit representing the day of the week: Sunday is
day 0.

c y g n u s s u p p o r t 139

Cygnus C Support Library, Full

%W Another version of the week number: like ‘%U’, but counting
week 1 as beginning with the first Monday in a year.

o %x A string representing the complete date, in a format like
Mon Apr 01 1992

%X A string representing the full time of day (hours, minutes,
and seconds), in a format like

13:13:13

%y The last two digits of the year.

%Y The full year, formatted with four digits to include the cen-
tury.

%Z Defined by ANSI C as eliciting the time zone if available; it is
not available in this implementation (which accepts ‘%Z’ but
generates no output for it).

%% A single character, ‘%’.

Returns
When the formatted time takes up no more than maxsize characters, the
result is the length of the formatted string. Otherwise, if the formatting
operation was abandoned due to lack of room, the result is 0, and the
string starting at s corresponds to just those parts of *format that could
be completely filled in within the maxsize limit.

Portability
ANSI C requires strftime, but does not specify the contents of *s when
the formatted string would require more than maxsize characters.
strftime requires no supporting OS subroutines.

140 10 July 1995

Chapter 6: Time Functions (‘time.h’)

6.9 time—get current calendar time (as single
number)

Synopsis
#include <time.h>
time_t time(time_t *t);

Description
time looks up the best available representation of the current time and
returns it, encoded as a time_t. It stores the same value at t unless the
argument is NULL.

Returns
A -1 result means the current time is not available; otherwise the result
represents the current time.

Portability
ANSI C requires time.
Supporting OS subroutine required: Some implementations require
gettimeofday.

c y g n u s s u p p o r t 141

Cygnus C Support Library, Full

142 10 July 1995

Chapter 7: Locale (‘locale.h’)

7 Locale (‘locale.h’)

A locale is the name for a collection of parameters (affecting collating
sequences and formatting conventions) that may be different depending
on location or culture. The "C" locale is the only one defined in the ANSI
C standard.
This is a minimal implementation, supporting only the required ‘‘C’’
value for locale; strings representing other locales are not honored. (‘‘’’
is also accepted; it represents the default locale for an implementation,
here equivalent to ‘‘C’’.
‘locale.h’ defines the structure lconv to collect the information on a
locale, with the following fields:

char *decimal_point
The decimal point character used to format “ordinary” num-
bers (all numbers except those referring to amounts of
money). ‘‘.’’ in the C locale.

char *thousands_sep
The character (if any) used to separate groups of digits, when
formatting ordinary numbers. ‘‘’’ in the C locale.

char *grouping
Specifications for how many digits to group (if any grouping is
done at all) when formatting ordinary numbers. The numeric
value of each character in the string represents the number of
digits for the next group, and a value of 0 (that is, the string’s
trailing NULL) means to continue grouping digits using the
last value specified. Use CHAR_MAX to indicate that no further
grouping is desired. ‘‘’’ in the C locale.

char *int_curr_symbol
The international currency symbol (first three characters),
if any, and the character used to separate it from numbers.
‘‘’’ in the C locale.

char *currency_symbol
The local currency symbol, if any. ‘‘’’ in the C locale.

char *mon_decimal_point
The symbol used to delimit fractions in amounts of money.
‘‘’’ in the C locale.

char *mon_thousands_sep
Similar to thousands_sep, but used for amounts of money.
‘‘’’ in the C locale.

c y g n u s s u p p o r t 143

Cygnus C Support Library, Full

char *mon_grouping
Similar to grouping, but used for amounts of money. ‘‘’’ in
the C locale.

char *positive_sign
A string to flag positive amounts of money when formatting.
‘‘’’ in the C locale.

char *negative_sign
A string to flag negative amounts of money when formatting.
‘‘’’ in the C locale.

char int_frac_digits
The number of digits to display when formatting amounts of
money to international conventions. CHAR_MAX (the largest
number representable as a char) in the C locale.

char frac_digits
The number of digits to display when formatting amounts of
money to local conventions. CHAR_MAX in the C locale.

char p_cs_precedes
1 indicates the local currency symbol is used before a positive
or zero formatted amount of money; 0 indicates the currency
symbol is placed after the formatted number. CHAR_MAX in
the C locale.

char p_sep_by_space
1 indicates the local currency symbol must be separated from
positive or zero numbers by a space; 0 indicates that it is
immediately adjacent to numbers. CHAR_MAX in the C locale.

char n_cs_precedes
1 indicates the local currency symbol is used before a negative
formatted amount of money; 0 indicates the currency symbol
is placed after the formatted number. CHAR_MAX in the C
locale.

char n_sep_by_space
1 indicates the local currency symbol must be separated from
negative numbers by a space; 0 indicates that it is immedi-
ately adjacent to numbers. CHAR_MAX in the C locale.

char p_sign_posn
Controls the position of the positive sign for numbers repre-
senting money. 0 means parentheses surround the number;
1 means the sign is placed before both the number and the
currency symbol; 2 means the sign is placed after both the
number and the currency symbol; 3 means the sign is placed

144 10 July 1995

Chapter 7: Locale (‘locale.h’)

just before the currency symbol; and 4 means the sign is
placed just after the currency symbol. CHAR_MAX in the C
locale.

char n_sign_posn
Controls the position of the negative sign for numbers repre-
senting money, using the same rules as p_sign_posn. CHAR_
MAX in the C locale.

c y g n u s s u p p o r t 145

Cygnus C Support Library, Full

7.1 setlocale, localeconv—select or query locale

Synopsis
#include <locale.h>
char *setlocale(int category, const char *locale);
lconv *localeconv(void);

char *_setlocale_r(void *reent,
int category, const char *locale);

lconv *_localeconv_r(void *reent);

Description
setlocale is the facility defined by ANSI C to condition the execu-
tion environment for international collating and formatting information;
localeconv reports on the settings of the current locale.
This is a minimal implementation, supporting only the required ‘‘C’’
value for locale; strings representing other locales are not honored.
(‘‘’’ is also accepted; it represents the default locale for an implemen-
tation, here equivalent to ‘‘C’’.)
If you use NULL as the locale argument, setlocale returns a pointer
to the string representing the current locale (always ‘‘C’’ in this
implementation). The acceptable values for category are defined in
‘locale.h’ as macros beginning with "LC_", but this implementation
does not check the values you pass in the category argument.
localeconv returns a pointer to a structure (also defined in ‘locale.h’)
describing the locale-specific conventions currently in effect.
_localeconv_r and _setlocale_r are reentrant versions of localeconv
and setlocale respectively. The extra argument reent is a pointer to a
reentrancy structure.

Returns
setlocale returns either a pointer to a string naming the locale cur-
rently in effect (always ‘‘C’’ for this implementation), or, if the locale
request cannot be honored, NULL.
localeconv returns a pointer to a structure of type lconv, which de-
scribes the formatting and collating conventions in effect (in this imple-
mentation, always those of the C locale).

Portability
ANSI C requires setlocale, but the only locale required across all im-
plementations is the C locale.
No supporting OS subroutines are required.

146 10 July 1995

Chapter 7: Locale (‘locale.h’)

c y g n u s s u p p o r t 147

Cygnus C Support Library, Full

148 10 July 1995

Chapter 8: Reentrancy

8 Reentrancy

Reentrancy is a characteristic of library functions which allows multiple
processes to use the same address space with assurance that the values
stored in those spaces will remain constant between calls. Cygnus’s
implementation of the library functions ensures that whenever possible,
these library functions are reentrant. However, there are some functions
that can not be trivially made reentrant. Hooks have been provided to
allow you to use these functions in a fully reentrant fashion.
These hooks use the structure _reent defined in ‘reent.h’. A variable
defined as ‘struct _reent’ is called a reentrancy structure. All functions
which must manipulate global information are available in two versions.
The first version has the usual name, and uses a single global instance
of the reentrancy structure. The second has a different name, normally
formed by prepending ‘_’ and appending ‘_r’, and takes a pointer to the
particular reentrancy structure to use.
For example, the function fopen takes two arguments, file and mode,
and uses the global reentrancy structure. The function _fopen_r takes
the arguments, struct_reent, which is a pointer to an instance of the
reentrancy structure, file and mode.
Each function which uses the global reentrancy structure uses the global
variable _impure_ptr, which points to a reentrancy structure.
This means that you have two ways to achieve reentrancy. Both require
that each thread of execution control initialize a unique global variable
of type ‘struct _reent’:
1. Use the reentrant versions of the library functions, after initializing

a global reentrancy structure for each process. Use the pointer to
this structure as the extra argument for all library functions.

2. Ensure that each thread of execution control has a pointer to its
own unique reentrancy structure in the global variable _impure_
ptr, and call the standard library subroutines.

The following functions are provided in both reentrant and non-
reentrant versions.
Equivalent for errno variable:

_errno_r

Locale functions:
_localeconv_r _setlocale_r

Equivalents for stdio variables:
_stdin_r _stdout_r _stderr_r

c y g n u s s u p p o r t 149

Cygnus C Support Library, Full

150 10 July 1995

Chapter 8: Reentrancy

Stdio functions:
_fdopen_r _mkstemp_r _remove_r
_fopen_r _mktemp_r _rename_r
_getchar_r _perror_r _tempnam_r
_gets_r _putchar_r _tmpnam_r
_iprintf_r _puts_r _tmpfile_r

Signal functions:
_raise_r _signal_r

Stdlib functions:
_dtoa_r _realloc_r _strtoul_r
_free_r _srand_r _system_r
_malloc_r _strtod_r
_rand_r _strtol_r

String functions:
_strtok_r

System functions:
_close_r _lseek_r _stat_r
_fork_r _open_r _unlink_r
_fstat_r _read_r _wait_r
_link_r _sbrk_r _write_r

Time function:
_asctime_r

c y g n u s s u p p o r t 151

Cygnus C Support Library, Full

152 10 July 1995

Chapter 9: System Calls

9 System Calls

The C subroutine library depends on a handful of subroutine calls for
operating system services. If you use the C library on a system that
complies with the POSIX.1 standard (also known as IEEE 1003.1), most
of these subroutines are supplied with your operating system.
If some of these subroutines are not provided with your system—in the
extreme case, if you are developing software for a “bare board” system,
without an OS—you will at least need to provide do-nothing stubs (or
subroutines with minimal functionality) to allow your programs to link
with the subroutines in libc.a.

9.1 Definitions for OS interface

This is the complete set of system definitions (primarily subroutines)
required; the examples shown implement the minimal functionality re-
quired to allow libc to link, and fail gracefully where OS services are
not available.
Graceful failure is permitted by returning an error code. A minor compli-
cation arises here: the C library must be compatible with development
environments that supply fully functional versions of these subroutines.
Such environments usually return error codes in a global errno. How-
ever, the Cygnus C library provides a macro definition for errno in the
header file ‘errno.h’, as part of its support for reentrant routines (see
Chapter 8 “Reentrancy,” page 149).
The bridge between these two interpretations of errno is straightfor-
ward: the C library routines with OS interface calls capture the errno
values returned globally, and record them in the appropriate field of the
reentrancy structure (so that you can query them using the errno macro
from ‘errno.h’).
This mechanism becomes visible when you write stub routines for OS
interfaces. You must include ‘errno.h’, then disable the macro, like this:

#include <errno.h>
#undef errno
extern int errno;

The examples in this chapter include this treatment of errno.

_exit Exit a program without cleaning up files. If your system
doesn’t provide this, it is best to avoid linking with subrou-
tines that require it (exit, system).

close Close a file. Minimal implementation:
int close(int file){

return -1;

c y g n u s s u p p o r t 153

Cygnus C Support Library, Full

}

environ A pointer to a list of environment variables and their values.
For a minimal environment, this empty list is adequate:

char *__env[1] = { 0 };
char **environ = __env;

execve Transfer control to a new process. Minimal implementation
(for a system without processes):

#include <errno.h>
#undef errno
extern int errno;
int execve(char *name, char **argv, char **env){

errno=ENOMEM;
return -1;

}

fork Create a new process. Minimal implementation (for a system
without processes):

#include <errno.h>
#undef errno
extern int errno;
int fork() {

errno=EAGAIN;
return -1;

}

fstat Status of an open file. For consistency with other minimal
implementations in these examples, all files are regarded
as character special devices. The ‘sys/stat.h’ header file
required is distributed in the ‘include’ subdirectory for this
C library.

#include <sys/stat.h>
int fstat(int file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

getpid Process-ID; this is sometimes used to generate strings un-
likely to conflict with other processes. Minimal implementa-
tion, for a system without processes:

int getpid() {
return 1;

}

154 10 July 1995

Chapter 9: System Calls

isatty Query whether output stream is a terminal. For consistency
with the other minimal implementations, which only support
output to stdout, this minimal implementation is suggested:

int isatty(int file){
return 1;

}

kill Send a signal. Minimal implementation:
#include <errno.h>
#undef errno
extern int errno;
int kill(int pid, int sig){

errno=EINVAL;
return(-1);

}

link Establish a new name for an existing file. Minimal imple-
mentation:

#include <errno.h>
#undef errno
extern int errno;
int link(char *old, char *new){

errno=EMLINK;
return -1;

}

lseek Set position in a file. Minimal implementation:
int lseek(int file, int ptr, int dir){

return 0;
}

read Read from a file. Minimal implementation:
int read(int file, char *ptr, int len){

return 0;
}

sbrk Increase program data space. As malloc and related func-
tions depend on this, it is useful to have a working imple-
mentation. The following suffices for a standalone system;
it exploits the symbol end automatically defined by the GNU
linker.

c y g n u s s u p p o r t 155

Cygnus C Support Library, Full

caddr_t sbrk(int incr){
extern char end; /* Defined by the linker */
static char *heap_end;
char *prev_heap_end;

if (heap_end == 0) {
heap_end = &end;

}
prev_heap_end = heap_end;
heap_end += incr;
return (caddr_t) prev_heap_end;

}

stat Status of a file (by name). Minimal implementation:
int stat(char *file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

times Timing information for current process. Minimal implemen-
tation:

int times(struct tms *buf){
return -1;

}

unlink Remove a file’s directory entry. Minimal implementation:
#include <errno.h>
#undef errno
extern int errno;
int unlink(char *name){

errno=ENOENT;
return -1;

}

wait Wait for a child process. Minimal implementation:
#include <errno.h>
#undef errno
extern int errno;
int wait(int *status) {

errno=ECHILD;
return -1;

}

write Write a character to a file. ‘libc’ subroutines will use this
system routine for output to all files, including stdout—so
if you need to generate any output, for example to a serial

156 10 July 1995

Chapter 9: System Calls

port for debugging, you should make your minimal write ca-
pable of doing this. The following minimal implementation
is an incomplete example; it relies on a writechar subrou-
tine (not shown; typically, you must write this in assembler
from examples provided by your hardware manufacturer) to
actually perform the output.

int write(int file, char *ptr, int len){
int todo;

for (todo = 0; todo < len; todo++) {
writechar(*ptr++);

}
return len;

}

c y g n u s s u p p o r t 157

Cygnus C Support Library, Full

9.2 Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that
require reentrancy, ‘libc.a’ provides cover routines (for example, the
reentrant version of fork is _fork_r). These cover routines are consis-
tent with the other reentrant subroutines in this library, and achieve
reentrancy by using a reserved global data block (see Chapter 8 “Reen-
trancy,” page 149).

_open_r A reentrant version of open. It takes a pointer to the global
data block, which holds errno.

int _open_r(void *reent,
const char *file, int flags, int mode);

_close_r A reentrant version of close. It takes a pointer to the global
data block, which holds errno.

int _close_r(void *reent, int fd);

_lseek_r A reentrant version of lseek. It takes a pointer to the global
data block, which holds errno.

off_t _lseek_r(void *reent,
int fd, off_t pos, int whence);

_read_r A reentrant version of read. It takes a pointer to the global
data block, which holds errno.

long _read_r(void *reent,
int fd, void *buf, size_t cnt);

_write_r A reentrant version of write. It takes a pointer to the global
data block, which holds errno.

long _write_r(void *reent,
int fd, const void *buf, size_t cnt);

_fork_r A reentrant version of fork. It takes a pointer to the global
data block, which holds errno.

int _fork_r(void *reent);

_wait_r A reentrant version of wait. It takes a pointer to the global
data block, which holds errno.

int _wait_r(void *reent, int *status);

_stat_r A reentrant version of stat. It takes a pointer to the global
data block, which holds errno.

int _stat_r(void *reent,
const char *file, struct stat *pstat);

_fstat_r A reentrant version of fstat. It takes a pointer to the global
data block, which holds errno.

int _fstat_r(void *reent,

158 10 July 1995

Chapter 9: System Calls

int fd, struct stat *pstat);

_link_r A reentrant version of link. It takes a pointer to the global
data block, which holds errno.

int _link_r(void *reent,
const char *old, const char *new);

_unlink_r
A reentrant version of unlink. It takes a pointer to the global
data block, which holds errno.

int _unlink_r(void *reent, const char *file);

_sbrk_r A reentrant version of sbrk. It takes a pointer to the global
data block, which holds errno.

char *_sbrk_r(void *reent, size_t incr);

c y g n u s s u p p o r t 159

Cygnus C Support Library, Full

160 10 July 1995

Chapter 10: Variable Argument Lists

10 Variable Argument Lists

The printf family of functions is defined to accept a variable number of
arguments, rather than a fixed argument list. You can define your own
functions with a variable argument list, by using macro definitions from
either ‘stdarg.h’ (for compatibility with ANSI C) or from ‘varargs.h’
(for compatibility with a popular convention prior to ANSI C).

10.1 ANSI-standard macros, ‘stdarg.h’

In ANSI C, a function has a variable number of arguments when its
parameter list ends in an ellipsis (...). The parameter list must also
include at least one explicitly named argument; that argument is used
to initialize the variable list data structure.
ANSI C defines three macros (va_start, va_arg, and va_end) to operate
on variable argument lists. ‘stdarg.h’ also defines a special type to
represent variable argument lists: this type is called va_list.

c y g n u s s u p p o r t 161

Cygnus C Support Library, Full

10.1.1 Initialize variable argument list

Synopsis
#include <stdarg.h>
void va_start(va_list ap, rightmost);

Description
Use va_start to initialize the variable argument list ap, so that va_arg
can extract values from it. rightmost is the name of the last explicit
argument in the parameter list (the argument immediately preceding
the ellipsis ‘...’ that flags variable arguments in an ANSI C function
header). You can only use va_start in a function declared using this
ellipsis notation (not, for example, in one of its subfunctions).
Returns
va_start does not return a result.
Portability
ANSI C requires va_start.

162 10 July 1995

Chapter 10: Variable Argument Lists

10.1.2 Extract a value from argument list

Synopsis
#include <stdarg.h>
type va_arg(va_list ap, type);

Description
va_arg returns the next unprocessed value from a variable argument
list ap (which you must previously create with va_start). Specify the
type for the value as the second parameter to the macro, type.
You may pass a va_list object ap to a subfunction, and use va_arg from
the subfunction rather than from the function actually declared with an
ellipsis in the header; however, in that case you may only use va_arg
from the subfunction. ANSI C does not permit extracting successive
values from a single variable-argument list from different levels of the
calling stack.
There is no mechanism for testing whether there is actually a next
argument available; you might instead pass an argument count (or some
other data that implies an argument count) as one of the fixed arguments
in your function call.
Returns
va_arg returns the next argument, an object of type type.
Portability
ANSI C requires va_arg.

c y g n u s s u p p o r t 163

Cygnus C Support Library, Full

10.1.3 Abandon a variable argument list

Synopsis
#include <stdarg.h>
void va_end(va_list ap);

Description
Use va_end to declare that your program will not use the variable argu-
ment list ap any further.
Returns
va_end does not return a result.
Portability
ANSI C requires va_end.

10.2 Traditional macros, ‘varargs.h’

If your C compiler predates ANSI C, you may still be able to use vari-
able argument lists using the macros from the ‘varargs.h’ header file.
These macros resemble their ANSI counterparts, but have important
differences in usage. In particular, since traditional C has no decla-
ration mechanism for variable argument lists, two additional macros
are provided simply for the purpose of defining functions with variable
argument lists.
As with ‘stdarg.h’, the type va_list is used to hold a data structure
representing a variable argument list.

164 10 July 1995

Chapter 10: Variable Argument Lists

10.2.1 Declare variable arguments

Synopsis
#include <varargs.h>
function(va_alist)
va_dcl

Description
To use the ‘varargs.h’ version of variable argument lists, you must
declare your function with a call to the macro va_alist as its argument
list, and use va_dcl as the declaration. Do not use a semicolon after
va_dcl.
Returns
These macros cannot be used in a context where a return is syntactically
possible.
Portability
va_alist and va_dcl were the most widespread method of declaring
variable argument lists prior to ANSI C.

c y g n u s s u p p o r t 165

Cygnus C Support Library, Full

10.2.2 Initialize variable argument list

Synopsis
#include <varargs.h>
va_list ap;
va_start(ap);

Description
With the ‘varargs.h’ macros, use va_start to initialize a data structure
ap to permit manipulating a variable argument list. ap must have the
type va_alist.
Returns
va_start does not return a result.
Portability
va_start is also defined as a macro in ANSI C, but the definitions are
incompatible; the ANSI version has another parameter besides ap.

166 10 July 1995

Chapter 10: Variable Argument Lists

10.2.3 Extract a value from argument list

Synopsis
#include <varargs.h>
type va_arg(va_list ap, type);

Description
va_arg returns the next unprocessed value from a variable argument
list ap (which you must previously create with va_start). Specify the
type for the value as the second parameter to the macro, type.
Returns
va_arg returns the next argument, an object of type type.
Portability
The va_arg defined in ‘varargs.h’ has the same syntax and usage as the
ANSI C version from ‘stdarg.h’.

c y g n u s s u p p o r t 167

Cygnus C Support Library, Full

10.2.4 Abandon a variable argument list

Synopsis
#include <varargs.h>
va_end(va_list ap);

Description
Use va_end to declare that your program will not use the variable argu-
ment list ap any further.
Returns
va_end does not return a result.
Portability
The va_end defined in ‘varargs.h’ has the same syntax and usage as the
ANSI C version from ‘stdarg.h’.

168 10 July 1995

Index

Index

asctime r . 132
calloc r . 10
close r . 158
exit . 153
fdopen r . 59
fopen r . 57
fork r . 158
free r . 19
fstat r . 158
getchar r . 69
gets r . 70
impure ptr . 149
link r . 159
localeconv r . 146
lseek r . 158
malloc r . 19
mkstemp r . 72
mktemp r . 72
open r . 158
perror r . 73
putchar r . 75
puts r . 76
raise r . 128, 129
rand r . 23
read r . 158
realloc r . 19
reent. 149
rename r . 78
sbrk r . 159
setlocale r . 146
signal r . 129
srand r . 23
stat r . 158
strtod r . 24
strtok r . 125
strtol r . 25
strtoul r . 27
system r . 29
tempnam r . 94
tmpfile r . 93
tmpnam r . 94
tolower . 44

toupper . 45
unlink r . 159
wait r . 158
write r . 158

A
abort . 2
abs . 3
asctime . 132
assert . 4
atexit . 5
atof . 6
atoff . 6
atoi . 7
atol . 7

B
bcmp . 98
bsearch . 9
bzero . 100

C
calloc . 10
clearerr . 48
clock . 133
close . 153
ctime . 134

D
difftime . 135
div . 11

E
ecvt . 12
ecvtbuf . 14
environ . 16, 154
errno global vs macro 153
execve . 154
exit . 15
extra argument, reentrant fns 149

c y g n u s s u p p o r t 169

Cygnus C Support Library, Full

F
fclose . 49
fcvt . 12
fcvtbuf . 14
fdopen . 59
feof . 50
ferror . 51
fflush . 52
fgetc. 53
fgetpos . 54
fgets. 55
fiprintf . 56
fopen. 57
fork . 154
fprintf . 84
fputc. 60
fputs. 61
fread. 62
free . 19
freopen . 63
fscanf . 88
fseek. 64
fsetpos . 65
fstat . 154
ftell. 66
fwrite . 67

G
gcvt . 13
gcvtf. 13
getc . 68
getchar . 69
getenv . 16
getpid . 154
gets . 70
global reentrancy structure 149
gmtime . 136

I
index . 101
iprintf . 71
isalnum . 32
isalpha . 33
isascii . 34
isatty . 154
iscntrl . 35
isdigit . 36

isgraph . 38
islower . 37
isprint . 38
ispunct . 39
isspace . 40
isupper . 41
isxdigit . 42

K
kill . 155

L
labs . 17
ldiv . 18
link . 155
linking the C library 153
list of reentrant functions 149
localeconv . 146
localtime . 137
lseek . 155

M
malloc . 19
mbtowc . 21
memchr . 102
memcmp . 103
memmove . 105
memset . 106
mkstemp . 72
mktemp . 72
mktime . 138

O
OS interface subroutines 153

P
perror . 73
printf . 84
putc . 74
putchar . 75
puts . 76

Q
qsort. 22

170 10 July 1995

Index

R
raise . 128, 129
rand . 23
read . 155
realloc . 19
reent.h . 149
reentrancy . 149
reentrancy structure 149
reentrant function list 149
remove . 77
rename . 78
rewind . 79
rindex . 107

S
sbrk . 155
scanf. 88
setbuf . 80
setlocale . 146
setvbuf . 81
signal . 129
siprintf . 83
sprintf . 84
srand. 23
sscanf . 88
stat . 156
strcat . 108
strchr . 109
strcmp . 110
strcoll . 111
strcpy . 112
strcspn . 113
strerror . 114
strftime . 139
strlen . 117
strncat . 118
strncmp . 119
strncpy . 120
strpbrk . 121
strrchr . 122

strspn . 123
strstr . 124
strtod . 24
strtodf . 24
strtok . 125
strtol . 25
strtoul . 27
strxfrm . 126
stubs . 153
subroutines for OS interface 153
system . 29

T
tempnam . 94
time . 141
times . 156
tmpfile . 93
tmpnam . 94
toascii . 43
tolower . 44
toupper . 45

U
unlink . 156

V
va alist . 165
va arg . 163, 167
va dcl. 165
va end . 164, 168
va start . 162, 166
vfprintf . 96
vprintf . 96
vsprintf . 96

W
wait . 156
wctomb . 30
write . 156

c y g n u s s u p p o r t 171

Cygnus C Support Library, Full

The body of this manual is set in
pncr at 10.95pt,

with headings in pncb at 10.95pt
and examples in pcrr.
pncri at 10.95pt and

pcrro
are used for emphasis.

172 10 July 1995

The Cygnus C Math Library

libm 1.4
May 1993

Steve Chamberlain
Roland Pesch
Cygnus Support

Cygnus Support
sac@cygnus.com

pesch@cygnus.com

Copyright c 1992, 1993 Cygnus Support
‘libm’ includes software developed by the University of California, Berke-
ley and its contributors.
‘libm’ includes software developed by Martin Jackson, Graham Haley
and Steve Chamberlain of Tadpole Technology and released to Cygnus.
‘libm’ includes software developed at SunPro, a Sun Microsystems, Inc.
business. Permission to use, copy, modify, and distribute this software
is freely granted, provided that this notice is preserved.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, subject to the terms
of the GNU General Public License, which includes the provision that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Mathematical Functions (‘math.h’) 1
1.1 Version of library . 2
1.2 acos, acosf—arc cosine . 3
1.3 acosh, acoshf—inverse hyperbolic cosine 4
1.4 asin, asinf—arc sine . 5
1.5 asinh, asinhf—inverse hyperbolic sine 6
1.6 atan, atanf—arc tangent . 7
1.7 atan2, atan2f—arc tangent of y/x . 8
1.8 atanh, atanhf—inverse hyperbolic tangent 9
1.9 jN,jNf,yN,yNf—Bessel functions . 10
1.10 cbrt, cbrtf—cube root . 11
1.11 copysign, copysignf—sign of y, magnitude of x 12
1.12 cosh, coshf—hyperbolic cosine . 13
1.13 erf, erff, erfc, erfcf—error function 14
1.14 exp, expf—exponential . 15
1.15 expm1, expm1f—exponential minus 1 16
1.16 fabs, fabsf—absolute value (magnitude) 17
1.17 floor, floorf, ceil, ceilf—floor and ceiling 18
1.18 fmod, fmodf—floating-point remainder (modulo) 19
1.19 frexp, frexpf—split floating-point number 20
1.20 gamma, gammaf, lgamma, lgammaf, gamma r, 21
1.21 hypot, hypotf—distance from origin 23
1.22 ilogb, ilogbf—get exponent of floating point number

. 24
1.23 infinity, infinityf—representation of infinity 25
1.24 isnan,isnanf,isinf,isinff,finite,finitef—test for

exceptional numbers . 26
1.25 ldexp, ldexpf—load exponent . 27
1.26 log, logf—natural logarithms . 28
1.27 log10, log10f—base 10 logarithms . 29
1.28 log1p, log1pf—log of 1 + x . 30
1.29 matherr—modifiable math error handler 31
1.30 modf, modff—split fractional and integer parts 33
1.31 nan, nanf—representation of infinity 34
1.32 nextafter, nextafterf—get next number 35
1.33 pow, powf—x to the power y . 36
1.34 rint, rintf, remainder, remainderf—round and

remainder . 37
1.35 scalbn, scalbnf—scale by integer . 38
1.36 sqrt, sqrtf—positive square root . 39
1.37 sin, sinf, cos, cosf—sine or cosine 40

c y g n u s s u p p o r t i

Cygnus C Math Library

1.38 sinh, sinhf—hyperbolic sine . 41
1.39 tan, tanf—tangent . 42
1.40 tanh, tanhf—hyperbolic tangent . 43

2 Reentrancy Properties of libm 45

Index . 47

ii 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1 Mathematical Functions (‘math.h’)

This chapter groups a wide variety of mathematical functions. The cor-
responding definitions and declarations are in ‘math.h’. Two definitions
from ‘math.h’ are of particular interest.
1. The representation of infinity as a double is defined as HUGE_VAL;

this number is returned on overflow by many functions.
2. The structure exception is used when you write customized error

handlers for the mathematical functions. You can customize error
handling for most of these functions by defining your own version of
matherr; see the section on matherr for details.

Since the error handling code calls fputs, the mathematical subroutines
require stubs or minimal implementations for the same list of OS sub-
routines as fputs: close, fstat, isatty, lseek, read, sbrk, write. See
section “System Calls” in The Cygnus C Support Library, for a discussion
and for sample minimal implementations of these support subroutines.
Alternative declarations of the mathematical functions, which exploit
specific machine capabilities to operate faster—but generally have
less error checking and may reflect additional limitations on some
machines—are available when you include ‘fastmath.h’ instead of
‘math.h’.

c y g n u s s u p p o r t 1

Cygnus C Math Library

1.1 Version of library

There are four different versions of the math library routines: IEEE,
POSIX, X/Open, or SVID. The version may be selected at runtime by
setting the global variable _LIB_VERSION, defined in ‘math.h’. It may
be set to one of the following constants defined in ‘math.h’: _IEEE_, _
POSIX_, _XOPEN_, or _SVID_. The _LIB_VERSION variable is not specific
to any thread, and changing it will affect all threads.
The versions of the library differ only in how errors are handled.
In IEEE mode, the matherr function is never called, no warning mes-
sages are printed, and errno is never set.
In POSIX mode, errno is set correctly, but the matherr function is never
called and no warning messages are printed.
In X/Open mode, errno is set correctly, and matherr is called, but warn-
ing message are not printed.
In SVID mode, functions which overflow return 3.40282346638528860e+38,
the maximum single precision floating point value, rather than infinity.
Also, errno is set correctly, matherr is called, and, if matherr returns 0,
warning messages are printed for some errors. For example, by default
‘log(-1.0)’ writes this message on standard error output:

log: DOMAIN error
The library is set to X/Open mode by default.

2 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.2 acos, acosf—arc cosine

Synopsis
#include <math.h>
double acos(double x);
float acosf(float x);

Description

acos computes the inverse cosine (arc cosine) of the input value. Argu-
ments to acos must be in the range �1 to 1.
acosf is identical to acos, except that it performs its calculations on
floats.

Returns
acos and acosf return values in radians, in the range of 0 to �.
If x is not between �1 and 1, the returned value is NaN (not a number)
the global variable errno is set to EDOM, and a DOMAIN error message is
sent as standard error output.
You can modify error handling for these functions using matherr.

c y g n u s s u p p o r t 3

Cygnus C Math Library

1.3 acosh, acoshf—inverse hyperbolic cosine

Synopsis
#include <math.h>
double acosh(double x);
float acoshf(float x);

Description
acosh calculates the inverse hyperbolic cosine of x. acosh is defined as

ln
�
x +

p
x2 � 1

�

x must be a number greater than or equal to 1.
acoshf is identical, other than taking and returning floats.

Returns
acosh and acoshf return the calculated value. If x less than 1, the
return value is NaN and errno is set to EDOM.
You can change the error-handling behavior with the non-ANSI matherr
function.

Portability
Neither acosh nor acoshf are ANSI C. They are not recommended for
portable programs.

4 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.4 asin, asinf—arc sine

Synopsis
#include <math.h>
double asin(double x);
float asinf(float x);

Description

asin computes the inverse sine (arc sine) of the argument x. Arguments
to asin must be in the range �1 to 1.
asinf is identical to asin, other than taking and returning floats.
You can modify error handling for these routines using matherr.

Returns
asin returns values in radians, in the range of ��=2 to �=2.
If x is not in the range �1 to 1, asin and asinf return NaN (not a
number), set the global variable errno to EDOM, and issue a DOMAIN
error message.
You can change this error treatment using matherr.

c y g n u s s u p p o r t 5

Cygnus C Math Library

1.5 asinh, asinhf—inverse hyperbolic sine

Synopsis
#include <math.h>
double asinh(double x);
float asinhf(float x);

Description
asinh calculates the inverse hyperbolic sine of x. asinh is defined as

sign(x)� ln
�
jxj +

p
1 + x2

�

asinhf is identical, other than taking and returning floats.

Returns
asinh and asinhf return the calculated value.

Portability
Neither asinh nor asinhf are ANSI C.

6 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.6 atan, atanf—arc tangent

Synopsis
#include <math.h>
double atan(double x);
float atanf(float x);

Description

atan computes the inverse tangent (arc tangent) of the input value.
atanf is identical to atan, save that it operates on floats.

Returns
atan returns a value in radians, in the range of ��=2 to �=2.

Portability
atan is ANSI C. atanf is an extension.

c y g n u s s u p p o r t 7

Cygnus C Math Library

1.7 atan2, atan2f—arc tangent of y/x

Synopsis
#include <math.h>
double atan2(double y,double x);
float atan2f(float y,float x);

Description

atan2 computes the inverse tangent (arc tangent) of y/x. atan2 produces
the correct result even for angles near �=2 or ��=2 (that is, when x is
near 0).
atan2f is identical to atan2, save that it takes and returns float.

Returns
atan2 and atan2f return a value in radians, in the range of �� to �.
If both x and y are 0.0, atan2 causes a DOMAIN error.
You can modify error handling for these functions using matherr.

Portability
atan2 is ANSI C. atan2f is an extension.

8 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.8 atanh, atanhf—inverse hyperbolic tangent

Synopsis
#include <math.h>
double atanh(double x);
float atanhf(float x);

Description
atanh calculates the inverse hyperbolic tangent of x.
atanhf is identical, other than taking and returning float values.

Returns
atanh and atanhf return the calculated value.
If jxj is greater than 1, the global errno is set to EDOM and the result is a
NaN. A DOMAIN error is reported.
If jxj is 1, the global errno is set to EDOM; and the result is infinity with
the same sign as x. A SING error is reported.
You can modify the error handling for these routines using matherr.

Portability
Neither atanh nor atanhf are ANSI C.

c y g n u s s u p p o r t 9

Cygnus C Math Library

1.9 jN,jNf,yN,yNf—Bessel functions

Synopsis
#include <math.h>
double j0(double x);
float j0f(float x);
double j1(double x);
float j1f(float x);
double jn(int n, double x);
float jnf(int n, float x);
double y0(double x);
float y0f(float x);
double y1(double x);
float y1f(float x);
double yn(int n, double x);
float ynf(int n, float x);

Description
The Bessel functions are a family of functions that solve the differential
equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 � p2)y = 0

These functions have many applications in engineering and physics.
jn calculates the Bessel function of the first kind of order n. j0 and j1
are special cases for order 0 and order 1 respectively.
Similarly, yn calculates the Bessel function of the second kind of order
n, and y0 and y1 are special cases for order 0 and 1.
jnf, j0f, j1f, ynf, y0f, and y1f perform the same calculations, but on
float rather than double values.

Returns
The value of each Bessel function at x is returned.

Portability
None of the Bessel functions are in ANSI C.

10 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.10 cbrt, cbrtf—cube root

Synopsis
#include <math.h>
double cbrt(double x);
float cbrtf(float x);

Description
cbrt computes the cube root of the argument.

Returns
The cube root is returned.

Portability
cbrt is in System V release 4. cbrtf is an extension.

c y g n u s s u p p o r t 11

Cygnus C Math Library

1.11 copysign, copysignf—sign of y, magnitude of x

Synopsis
#include <math.h>
double copysign (double x, double y);
float copysignf (float x, float y);

Description
copysign constructs a number with the magnitude (absolute value) of
its first argument, x, and the sign of its second argument, y.
copysignf does the same thing; the two functions differ only in the type
of their arguments and result.

Returns
copysign returns a double with the magnitude of x and the sign of y.
copysignf returns a float with the magnitude of x and the sign of y.

Portability
copysign is not required by either ANSI C or the System V Interface
Definition (Issue 2).

12 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.12 cosh, coshf—hyperbolic cosine

Synopsis
#include <math.h>
double cosh(double x);
float coshf(float x)

Description

cosh computes the hyperbolic cosine of the argument x. cosh(x) is
defined as

(ex + e�x)
2

Angles are specified in radians. coshf is identical, save that it takes and
returns float.

Returns
The computed value is returned. When the correct value would create
an overflow, cosh returns the value HUGE_VAL with the appropriate sign,
and the global value errno is set to ERANGE.
You can modify error handling for these functions using the function
matherr.

Portability
cosh is ANSI. coshf is an extension.

c y g n u s s u p p o r t 13

Cygnus C Math Library

1.13 erf, erff, erfc, erfcf—error function

Synopsis
#include <math.h>
double erf(double x);
float erff(float x);
double erfc(double x);
float erfcf(float x);

Description
erf calculates an approximation to the “error function”, which estimates
the probability that an observation will fall within x standard deviations
of the mean (assuming a normal distribution). The error function is
defined as

2p
�
�

Z
x

0

e�t
2

dt

erfc calculates the complementary probability; that is, erfc(x) is 1 -
erf(x). erfc is computed directly, so that you can use it to avoid the
loss of precision that would result from subtracting large probabilities
(on large x) from 1.
erff and erfcf differ from erf and erfc only in the argument and result
types.

Returns
For positive arguments, erf and all its variants return a probability—a
number between 0 and 1.

Portability
None of the variants of erf are ANSI C.

14 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.14 exp, expf—exponential

Synopsis
#include <math.h>
double exp(double x);
float expf(float x);

Description
exp and expf calculate the exponential of x, that is, ex (where e is the
base of the natural system of logarithms, approximately 2.71828).
You can use the (non-ANSI) function matherr to specify error handling
for these functions.

Returns
On success, exp and expf return the calculated value. If the result
underflows, the returned value is 0. If the result overflows, the returned
value is HUGE_VAL. In either case, errno is set to ERANGE.

Portability
exp is ANSI C. expf is an extension.

c y g n u s s u p p o r t 15

Cygnus C Math Library

1.15 expm1, expm1f—exponential minus 1

Synopsis
#include <math.h>
double expm1(double x);
float expm1f(float x);

Description
expm1 and expm1f calculate the exponential of x and subtract 1, that is,
ex � 1 (where e is the base of the natural system of logarithms, approxi-
mately 2.71828). The result is accurate even for small values of x, where
using exp(x)-1 would lose many significant digits.

Returns
e raised to the power x, minus 1.

Portability
Neither expm1 nor expm1f is required by ANSI C or by the System V
Interface Definition (Issue 2).

16 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.16 fabs, fabsf—absolute value (magnitude)

Synopsis
#include <math.h>
double fabs(double x);
float fabsf(float x);

Description
fabs and fabsf calculate jxj, the absolute value (magnitude) of the ar-
gument x, by direct manipulation of the bit representation of x.

Returns
The calculated value is returned. No errors are detected.

Portability
fabs is ANSI. fabsf is an extension.

c y g n u s s u p p o r t 17

Cygnus C Math Library

1.17 floor, floorf, ceil, ceilf—floor and ceiling

Synopsis
#include <math.h>
double floor(double x);
float floorf(float x);
double ceil(double x);
float ceilf(float x);

Description
floor and floorf find bxc, the nearest integer less than or equal to x.
ceil and ceilf find dxe, the nearest integer greater than or equal to x.

Returns
floor and ceil return the integer result as a double. floorf and ceilf
return the integer result as a float.

Portability
floor and ceil are ANSI. floorf and ceilf are extensions.

18 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.18 fmod, fmodf—floating-point remainder
(modulo)

Synopsis
#include <math.h>
double fmod(double x, double y)
float fmodf(float x, float y)

Description
The fmod and fmodf functions compute the floating-point remainder of
x/y (x modulo y).

Returns
The fmod function returns the value x�i�y, for the largest integer i such
that, if y is nonzero, the result has the same sign as x and magnitude
less than the magnitude of y.
fmod(x,0) returns NaN, and sets errno to EDOM.
You can modify error treatment for these functions using matherr.

Portability
fmod is ANSI C. fmodf is an extension.

c y g n u s s u p p o r t 19

Cygnus C Math Library

1.19 frexp, frexpf—split floating-point number

Synopsis
#include <math.h>
double frexp(double val, int *exp);
float frexpf(float val, int *exp);

Description
All non zero, normal numbers can be described as m * 2**p. frexp
represents the double val as a mantissa m and a power of two p. The
resulting mantissa will always be greater than or equal to 0.5, and less
than 1.0 (as long as val is nonzero). The power of two will be stored in
*exp.
m and p are calculated so that val = m� 2p.
frexpf is identical, other than taking and returning floats rather than
doubles.

Returns
frexp returns the mantissa m. If val is 0, infinity, or Nan, frexp will set
*exp to 0 and return val.

Portability
frexp is ANSI. frexpf is an extension.

20 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.20 gamma, gammaf, lgamma, lgammaf, gamma_r,

Synopsis
#include <math.h>
double gamma(double x);
float gammaf(float x);
double lgamma(double x);
float lgammaf(float x);
double gamma_r(double x, int *signgamp);
float gammaf_r(float x, int *signgamp);
double lgamma_r(double x, int *signgamp);
float lgammaf_r(float x, int *signgamp);

Description
gamma calculates ln

�
� (x)

�
, the natural logarithm of the gamma function

of x. The gamma function (exp(gamma(x))) is a generalization of facto-
rial, and retains the property that � (N)�N �� (N �1). Accordingly, the
results of the gamma function itself grow very quickly. gamma is defined
as ln

�
� (x)

�
rather than simply � (x) to extend the useful range of results

representable.

The sign of the result is returned in the global variable signgam, which
is declared in math.h.

gammaf performs the same calculation as gamma, but uses and returns
float values.

lgamma and lgammaf are alternate names for gamma and gammaf. The use
of lgamma instead of gamma is a reminder that these functions compute
the log of the gamma function, rather than the gamma function itself.

The functions gamma_r, gammaf_r, lgamma_r, and lgammaf_r are just like
gamma, gammaf, lgamma, and lgammaf, respectively, but take an additional
argument. This additional argument is a pointer to an integer. This
additional argument is used to return the sign of the result, and the
global variable signgam is not used. These functions may be used for
reentrant calls (but they will still set the global variable errno if an error
occurs).

Do not confuse the function gamma_r, which takes an additional argu-
ment which is a pointer to an integer, with the function _gamma_r, which
takes an additional argument which is a pointer to a reentrancy struc-
ture.

Returns
Normally, the computed result is returned.

c y g n u s s u p p o r t 21

Cygnus C Math Library

When x is a nonpositive integer, gamma returns HUGE_VAL and errno is
set to EDOM. If the result overflows, gamma returns HUGE_VAL and errno
is set to ERANGE.
You can modify this error treatment using matherr.

Portability
Neither gamma nor gammaf is ANSI C.

22 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.21 hypot, hypotf—distance from origin

Synopsis
#include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);

Description
hypot calculates the Euclidean distance

p
x2 + y2 between the origin

(0,0) and a point represented by the Cartesian coordinates (x,y). hypotf
differs only in the type of its arguments and result.

Returns
Normally, the distance value is returned. On overflow, hypot returns
HUGE_VAL and sets errno to ERANGE.
You can change the error treatment with matherr.

Portability
hypot and hypotf are not ANSI C.

c y g n u s s u p p o r t 23

Cygnus C Math Library

1.22 ilogb, ilogbf—get exponent of floating point
number

Synopsis
#include <math.h>
int ilogb(double val);
int ilogbf(float val);

Description

All non zero, normal numbers can be described as m * 2**p. ilogb and
ilogbf examine the argument val, and return p. The functions frexp
and frexpf are similar to ilogb and ilogbf, but also return m.

Returns

ilogb and ilogbf return the power of two used to form the floating
point argument. If val is 0, they return - INT_MAX (INT_MAX is defined
in limits.h). If val is infinite, or NaN, they return INT_MAX.

Portability
Neither ilogb nor ilogbf is required by ANSI C or by the System V
Interface Definition (Issue 2).

24 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.23 infinity, infinityf—representation of
infinity

Synopsis
#include <math.h>
double infinity(void);
float infinityf(void);

Description
infinity and infinityf return the special number IEEE infinity in
double and single precision arithmetic respectivly.

c y g n u s s u p p o r t 25

Cygnus C Math Library

1.24 isnan,isnanf,isinf,isinff,finite,finitef—
test for exceptional numbers

Synopsis
#include <ieeefp.h>
int isnan(double arg);
int isinf(double arg);
int finite(double arg);
int isnanf(float arg);
int isinff(float arg);
int finitef(float arg);

Description
These functions provide information on the floating point argument sup-
plied.
There are five major number formats -

zero a number which contains all zero bits.

subnormal
Is used to represent number with a zero exponent, but a non
zero fraction.

normal A number with an exponent, and a fraction

infinity A number with an all 1’s exponent and a zero fraction.

NAN A number with an all 1’s exponent and a non zero fraction.

isnan returns 1 if the argument is a nan. isinf returns 1 if the argument
is infinity. finite returns 1 if the argument is zero, subnormal or
normal. The isnanf, isinff and finitef perform the same operations
as their isnan, isinf and finite counterparts, but on single precision
floating point numbers.

26 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.25 ldexp, ldexpf—load exponent

Synopsis
#include <math.h>
double ldexp(double val, int exp);
float ldexpf(float val, int exp);

Description
ldexp calculates the value val � 2exp. ldexpf is identical, save that it
takes and returns float rather than double values.

Returns
ldexp returns the calculated value.
Underflow and overflow both set errno to ERANGE. On underflow, ldexp
and ldexpf return 0.0. On overflow, ldexp returns plus or minus HUGE_
VAL.

Portability
ldexp is ANSI, ldexpf is an extension.

c y g n u s s u p p o r t 27

Cygnus C Math Library

1.26 log, logf—natural logarithms

Synopsis
#include <math.h>
double log(double x);
float logf(float x);

Description
Return the natural logarithm of x, that is, its logarithm base e (where
e is the base of the natural system of logarithms, 2.71828: : :). log and
logf are identical save for the return and argument types.
You can use the (non-ANSI) function matherr to specify error handling
for these functions.

Returns
Normally, returns the calculated value. When x is zero, the returned
value is -HUGE_VAL and errno is set to ERANGE. When x is negative, the
returned value is -HUGE_VAL and errno is set to EDOM. You can control
the error behavior via matherr.

Portability
log is ANSI, logf is an extension.

28 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.27 log10, log10f—base 10 logarithms

Synopsis
#include <math.h>
double log10(double x);
float log10f(float x);

Description
log10 returns the base 10 logarithm of x. It is implemented as log(x)
/ log(10).
log10f is identical, save that it takes and returns float values.

Returns
log10 and log10f return the calculated value.
See the description of log for information on errors.

Portability
log10 is ANSI C. log10f is an extension.

c y g n u s s u p p o r t 29

Cygnus C Math Library

1.28 log1p, log1pf—log of 1 + x

Synopsis
#include <math.h>
double log1p(double x);
float log1pf(float x);

Description
log1p calculates ln(1 + x), the natural logarithm of 1+x. You can use
log1p rather than ‘log(1+x)’ for greater precision when x is very small.
log1pf calculates the same thing, but accepts and returns float values
rather than double.

Returns
log1p returns a double, the natural log of 1+x. log1pf returns a float,
the natural log of 1+x.

Portability
Neither log1p nor log1pf is required by ANSI C or by the System V
Interface Definition (Issue 2).

30 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.29 matherr—modifiable math error handler

Synopsis
#include <math.h>
int matherr(struct exception *e);

Description
matherr is called whenever a math library function generates an error.
You can replace matherr by your own subroutine to customize error
treatment. The customized matherr must return 0 if it fails to resolve
the error, and non-zero if the error is resolved.
When matherr returns a nonzero value, no error message is printed and
the value of errno is not modified. You can accomplish either or both of
these things in your own matherr using the information passed in the
structure *e.
This is the exception structure (defined in ‘math.h’):

struct exception {
int type;
char *name;
double arg1, arg2, retval;

int err;
};

The members of the exception structure have the following meanings:

type The type of mathematical error that occured; macros encod-
ing error types are also defined in ‘math.h’.

name a pointer to a null-terminated string holding the name of the
math library function where the error occurred.

arg1, arg2
The arguments which caused the error.

retval The error return value (what the calling function will return).

err If set to be non-zero, this is the new value assigned to errno.

The error types defined in ‘math.h’ represent possible mathematical er-
rors as follows:

DOMAIN An argument was not in the domain of the function; e.g.
log(-1.0).

SING The requested calculation would result in a singularity; e.g.
pow(0.0,-2.0)

OVERFLOW A calculation would produce a result too large to represent;
e.g. exp(1000.0).

c y g n u s s u p p o r t 31

Cygnus C Math Library

UNDERFLOW
A calculation would produce a result too small to represent;
e.g. exp(-1000.0).

TLOSS Total loss of precision. The result would have no significant
digits; e.g. sin(10e70).

PLOSS Partial loss of precision.

Returns
The library definition for matherr returns 0 in all cases.
You can change the calling function’s result from a customized matherr
by modifying e->retval, which propagates backs to the caller.
If matherr returns 0 (indicating that it was not able to resolve the er-
ror) the caller sets errno to an appropriate value, and prints an error
message.

Portability
matherr is not ANSI C.

32 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.30 modf, modff—split fractional and integer
parts

Synopsis
#include <math.h>
double modf(double val, double *ipart);
float modff(float val, float *ipart);

Description
modf splits the double val apart into an integer part and a fractional
part, returning the fractional part and storing the integer part in *ipart.
No rounding whatsoever is done; the sum of the integer and fractional
parts is guaranteed to be exactly equal to val. That is, if . realpart
= modf(val, &intpart); then ‘realpart+intpart’ is the same as val.
modff is identical, save that it takes and returns float rather than
double values.

Returns
The fractional part is returned. Each result has the same sign as the
supplied argument val.

Portability
modf is ANSI C. modff is an extension.

c y g n u s s u p p o r t 33

Cygnus C Math Library

1.31 nan, nanf—representation of infinity

Synopsis
#include <math.h>
double nan(void);
float nanf(void);

Description
nan and nanf return an IEEE NaN (Not a Number) in double and single
precision arithmetic respectivly.

34 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.32 nextafter, nextafterf—get next number

Synopsis
#include <math.h>
double nextafter(double val, double dir);
float nextafterf(float val, float dir);

Description
nextafter returns the double) precision floating point number closest to
val in the direction toward dir. nextafterf performs the same opera-
tion in single precision. For example, nextafter(0.0,1.0) returns the
smallest positive number which is representable in double precision.

Returns
Returns the next closest number to val in the direction toward dir.

Portability
Neither nextafter nor nextafterf is required by ANSI C or by the
System V Interface Definition (Issue 2).

c y g n u s s u p p o r t 35

Cygnus C Math Library

1.33 pow, powf—x to the power y

Synopsis
#include <math.h>
double pow(double x, double y);
float pow(float x, float y);

Description
pow and powf calculate x raised to the exp1.0nt y. (That is, xy.)

Returns
On success, pow and powf return the value calculated.
When the argument values would produce overflow, pow returns HUGE_
VAL and set errno to ERANGE. If the argument x passed to pow or powf is
a negative noninteger, and y is also not an integer, then errno is set to
EDOM. If x and y are both 0, then pow and powf return 1.
You can modify error handling for these functions using matherr.

Portability
pow is ANSI C. powf is an extension.

36 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.34 rint, rintf, remainder, remainderf—round
and remainder

Synopsis
#include <math.h>
double rint(double x);
float rintf(float x);
double remainder(double x, double y);
float remainderf(float x, float y);

Description
rint and rintf returns their argument rounded to the nearest integer.
remainder and remainderf find the remainder of x/y; this value is in
the range -y/2 .. +y/2.

Returns
rint and remainder return the integer result as a double.

Portability
rint and remainder are System V release 4. rintf and remainderf are
extensions.

c y g n u s s u p p o r t 37

Cygnus C Math Library

1.35 scalbn, scalbnf—scale by integer

Synopsis
#include <math.h>
double scalbn(double x, int y);
float scalbnf(float x, int y);

Description
scalbn and scalbnf scale x by n, returning x times 2 to the power n.
The result is computed by manipulating the exponent, rather than by
actually performing an exponentiation or multiplication.

Returns
x times 2 to the power n.

Portability
Neither scalbn nor scalbnf is required by ANSI C or by the System V
Interface Definition (Issue 2).

38 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.36 sqrt, sqrtf—positive square root

Synopsis
#include <math.h>
double sqrt(double x);
float sqrtf(float x);

Description
sqrt computes the positive square root of the argument. You can modify
error handling for this function with matherr.

Returns
On success, the square root is returned. If x is real and positive, then
the result is positive. If x is real and negative, the global value errno is
set to EDOM (domain error).

Portability
sqrt is ANSI C. sqrtf is an extension.

c y g n u s s u p p o r t 39

Cygnus C Math Library

1.37 sin, sinf, cos, cosf—sine or cosine

Synopsis
#include <math.h>
double sin(double x);
float sinf(float x);
double cos(double x);
float cosf(float x);

Description
sin and cos compute (respectively) the sine and cosine of the argument
x. Angles are specified in radians.
sinf and cosf are identical, save that they take and return float values.

Returns
The sine or cosine of x is returned.

Portability
sin and cos are ANSI C. sinf and cosf are extensions.

40 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.38 sinh, sinhf—hyperbolic sine

Synopsis
#include <math.h>
double sinh(double x);
float sinhf(float x);

Description
sinh computes the hyperbolic sine of the argument x. Angles are speci-
fied in radians. sinh(x) is defined as

ex � e�x

2

sinhf is identical, save that it takes and returns float values.

Returns
The hyperbolic sine of x is returned.
When the correct result is too large to be representable (an overflow),
sinh returns HUGE_VAL with the appropriate sign, and sets the global
value errno to ERANGE.
You can modify error handling for these functions with matherr.

Portability
sinh is ANSI C. sinhf is an extension.

c y g n u s s u p p o r t 41

Cygnus C Math Library

1.39 tan, tanf—tangent

Synopsis
#include <math.h>
double tan(double x);
float tanf(float x);

Description
tan computes the tangent of the argument x. Angles are specified in
radians.
tanf is identical, save that it takes and returns float values.

Returns
The tangent of x is returned.

Portability
tan is ANSI. tanf is an extension.

42 10 July 1995

Chapter 1: Mathematical Functions (‘math.h’)

1.40 tanh, tanhf—hyperbolic tangent

Synopsis
#include <math.h>
double tanh(double x);
float tanhf(float x);

Description

tanh computes the hyperbolic tangent of the argument x. Angles are
specified in radians.
tanh(x) is defined as

sinh(x)/cosh(x)

tanhf is identical, save that it takes and returns float values.

Returns
The hyperbolic tangent of x is returned.

Portability
tanh is ANSI C. tanhf is an extension.

c y g n u s s u p p o r t 43

Cygnus C Math Library

44 10 July 1995

Chapter 2: Reentrancy Properties of libm

2 Reentrancy Properties of libm

When a math function detects an error, it sets the static variable errno.
Depending upon the severity of the error, it may also print a message to
stderr. None of this behavior is reentrant. When one process detects
an error, it sets errno. If another process is testing errno, it detects
the change and probably fails. Note that failing system calls can also
set errno. This problem can only be fixed by either ignoring errno, or
treating it as part of the context of a process and switching it along with
the rest of a processor state. In normal debugged programs, there are
usually no math subroutine errors—and therefore no matherr calls; in
that situation, the math functions behave reentrantly.
As an alternative, you can use the reentrant versions of the mathemati-
cal functions: these versions have a different name, normally formed by
prepending ‘_’ and appending ‘_r’, and use an extra argument—a pointer
to the particular reentrancy structure to use. See section “Reentrancy”
in The Cygnus C Support Library, for more discussion of this approach
to reentrancy.
The reentrancy structure is always an additional first argument; for
example, the reentrant version of ‘double acos (double x)’ is ‘double
_acos_r (void *reent, double x)’.
Here is a list of the names for reentrant versions of the mathematical
library functions:

_acos_r _gammaf_r_r _log10f_r
_acosf_r _hypot_r _log_r
_acosh_r _hypotf_r _logf_r
_acoshf_r _j0_r _pow_r
_asin_r _j0f_r _powf_r
_asinf_r _j1_r _remainder_r
_atanh_r _j1f_r _sinh_r
_atanhf_r _jn_r _sinhf_r
_cosh_r _jnf_r _sqrt_r
_coshf_r _ldexp_r _sqrtf_r
_exp_r _ldexpf_r _y0_r
_expf_r _lgamma_r _y0f_r
_fmod_r _lgamma_r_r _y1_r
_fmodf_r _lgammaf_r _y1f_r
_gamma_r _lgammaf_r_r _yn_r
_gamma_r_r _log10_r _ynf_r
_gammaf_r

c y g n u s s u p p o r t 45

Cygnus C Math Library

46 10 July 1995

Index

Index

A
acos . 3
acosf . 3
acosh . 4
acoshf . 4
asin . 5
asinf . 5
asinh . 6
asinhf . 6
atan . 7
atan2 . 8
atan2f . 8
atanf . 7
atanh . 9
atanhf . 9

C
cbrt . 11
cbrtf. 11
ceil . 18
ceilf. 18
copysign . 12
copysignf . 12
cos . 40
cosf . 40

E
erf . 14
erfc . 14
erfcf. 14
erff . 14
exp . 15
expf . 15
expm1. 16
expm1f . 16

F
fabs . 17
fabsf. 17
finite . 26
finitef . 26
floor. 18

floorf . 18
fmod . 19
fmodf. 19
frexp. 20
frexpf . 20

G
gamma. 21
gamma r . 21
gammaf . 21
gammaf r . 21

H
hypot. 23
hypotf . 23

I
ilogb. 24
ilogbf . 24
infinity . 25
infinityf . 25
isinf. 26
isinff . 26
isnan. 26
isnanf . 26

J
j0 . 10
j0f . 10
j1 . 10
j1f . 10
jn . 10
jnf . 10

L
ldexp. 27
ldexpf . 27
lgamma . 21
lgamma r . 21
lgammaf . 21
lgammaf r . 21

c y g n u s s u p p o r t 47

Cygnus C Math Library

log . 28
log10. 29
log10f . 29
log1p. 30
log1pf . 30
logf . 28

M
matherr . 31
matherr and reentrancy. 45
modf . 33
modff. 33

N
nan . 34
nanf . 34
nextafter . 35
nextafterf . 35

O
OS stubs . 1

P
pow . 36
powf . 36

R
reentrancy . 45
remainder . 37

remainderf . 37
rint . 37
rintf. 37

S
scalbn . 38
scalbnf . 38
sin . 40
sinf . 40
sinh . 41
sinhf. 41
sqrt . 39
sqrtf. 39
stubs . 1
support subroutines . 1
system calls . 1

T
tan . 42
tanf . 42
tanh . 43
tanhf. 43

Y
y0 . 10
y0f . 10
y1 . 10
y1f . 10
yn . 10
ynf . 10

48 10 July 1995

Index

The body of this manual is set in
pncr at 10.95pt,

with headings in pncb at 10.95pt
and examples in pcrr.
pncri at 10.95pt and

pcrro
are used for emphasis.

c y g n u s s u p p o r t 49

Cygnus C Math Library

50 10 July 1995

The C Preprocessor
Last revised July 1992

for GCC version 2

Richard M. Stallman

This booklet is eventually intended to form the first chapter of a GNU C
Language manual.

Copyright c 1987, 1989, 1991, 1992, 1993, 1994, 1995 Free Software
Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 The C Preprocessor . 1
1.1 Transformations Made Globally . 1
1.2 Preprocessing Directives . 2
1.3 Header Files . 3

1.3.1 Uses of Header Files . 3
1.3.2 The ‘#include’ Directive . 4
1.3.3 How ‘#include’ Works . 5
1.3.4 Once-Only Include Files . 6
1.3.5 Inheritance and Header Files 7

1.4 Macros . 8
1.4.1 Simple Macros . 8
1.4.2 Macros with Arguments . 10
1.4.3 Predefined Macros . 12

1.4.3.1 Standard Predefined Macros 12
1.4.3.2 Nonstandard Predefined Macros 15

1.4.4 Stringification . 17
1.4.5 Concatenation . 18
1.4.6 Undefining Macros . 19
1.4.7 Redefining Macros . 20
1.4.8 Pitfalls and Subtleties of Macros 20

1.4.8.1 Improperly Nested Constructs 21
1.4.8.2 Unintended Grouping of Arithmetic . . 21
1.4.8.3 Swallowing the Semicolon 22
1.4.8.4 Duplication of Side Effects 23
1.4.8.5 Self-Referential Macros 24
1.4.8.6 Separate Expansion of Macro Arguments

. 25
1.4.8.7 Cascaded Use of Macros 27

1.4.9 Newlines in Macro Arguments 27
1.5 Conditionals . 28

1.5.1 Why Conditionals are Used . 28
1.5.2 Syntax of Conditionals . 29

1.5.2.1 The ‘#if’ Directive . 29
1.5.2.2 The ‘#else’ Directive 30
1.5.2.3 The ‘#elif’ Directive 30

1.5.3 Keeping Deleted Code for Future Reference . . . 31
1.5.4 Conditionals and Macros . 32
1.5.5 Assertions . 33
1.5.6 The ‘#error’ and ‘#warning’ Directives 35

1.6 Combining Source Files . 36
1.7 Miscellaneous Preprocessing Directives 37

c y g n u s s u p p o r t i

The C Preprocessor

1.8 C Preprocessor Output . 37
1.9 Invoking the C Preprocessor . 38

Concept Index . 45

Index of Directives, Macros and Options 47

ii 27 June 1995

Chapter 1: The C Preprocessor

1 The C Preprocessor
The C preprocessor is a macro processor that is used automatically by

the C compiler to transform your program before actual compilation. It
is called a macro processor because it allows you to define macros, which
are brief abbreviations for longer constructs.

The C preprocessor provides four separate facilities that you can use
as you see fit:
� Inclusion of header files. These are files of declarations that can be

substituted into your program.
� Macro expansion. You can define macros, which are abbreviations

for arbitrary fragments of C code, and then the C preprocessor will
replace the macros with their definitions throughout the program.

� Conditional compilation. Using special preprocessing directives,
you can include or exclude parts of the program according to various
conditions.

� Line control. If you use a program to combine or rearrange source
files into an intermediate file which is then compiled, you can use
line control to inform the compiler of where each source line origi-
nally came from.

C preprocessors vary in some details. This manual discusses the GNU
C preprocessor, the C Compatible Compiler Preprocessor. The GNU C
preprocessor provides a superset of the features of ANSI Standard C.

ANSI Standard C requires the rejection of many harmless constructs
commonly used by today’s C programs. Such incompatibility would be
inconvenient for users, so the GNU C preprocessor is configured to accept
these constructs by default. Strictly speaking, to get ANSI Standard C,
you must use the options ‘-trigraphs’, ‘-undef’ and ‘-pedantic’, but
in practice the consequences of having strict ANSI Standard C make it
undesirable to do this. See Section 1.9 “Invocation,” page 38.

1.1 Transformations Made Globally

Most C preprocessor features are inactive unless you give specific
directives to request their use. (Preprocessing directives are lines start-
ing with ‘#’; see Section 1.2 “Directives,” page 2). But there are three
transformations that the preprocessor always makes on all the input it
receives, even in the absence of directives.
� All C comments are replaced with single spaces.
� Backslash-Newline sequences are deleted, no matter where. This

feature allows you to break long lines for cosmetic purposes without
changing their meaning.

c y g n u s s u p p o r t 1

The C Preprocessor

� Predefined macro names are replaced with their expansions (see
Section 1.4.3 “Predefined,” page 12).

The first two transformations are done before nearly all other parsing
and before preprocessing directives are recognized. Thus, for example,
you can split a line cosmetically with Backslash-Newline anywhere (ex-
cept when trigraphs are in use; see below).

/*
/ # /
*/ defi\
ne FO\
O 10\
20

is equivalent into ‘#define FOO 1020’. You can split even an escape se-
quence with Backslash-Newline. For example, you can split "foo\bar"
between the ‘\’ and the ‘b’ to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a Backslash can be
inserted in a string constant as an ordinary character by writing a double
Backslash, and this creates an exception. But the ANSI C standard
requires it. (Strict ANSI C does not allow Newlines in string constants,
so they do not consider this a problem.)

But there are a few exceptions to all three transformations.
� C comments and predefined macro names are not recognized inside

a ‘#include’ directive in which the file name is delimited with ‘<’
and ‘>’.

� C comments and predefined macro names are never recognized
within a character or string constant. (Strictly speaking, this is
the rule, not an exception, but it is worth noting here anyway.)

� Backslash-Newline may not safely be used within an ANSI “tri-
graph”. Trigraphs are converted before Backslash-Newline is
deleted. If you write what looks like a trigraph with a Backslash-
Newline inside, the Backslash-Newline is deleted as usual, but it is
then too late to recognize the trigraph.
This exception is relevant only if you use the ‘-trigraphs’ option to
enable trigraph processing. See Section 1.9 “Invocation,” page 38.

1.2 Preprocessing Directives

Most preprocessor features are active only if you use preprocessing
directives to request their use.

2 27 June 1995

Chapter 1: The C Preprocessor

Preprocessing directives are lines in your program that start with
‘#’. The ‘#’ is followed by an identifier that is the directive name. For
example, ‘#define’ is the directive that defines a macro. Whitespace is
also allowed before and after the ‘#’.

The set of valid directive names is fixed. Programs cannot define new
preprocessing directives.

Some directive names require arguments; these make up the rest of
the directive line and must be separated from the directive name by
whitespace. For example, ‘#define’ must be followed by a macro name
and the intended expansion of the macro. See Section 1.4.1 “Simple
Macros,” page 8.

A preprocessing directive cannot be more than one line in normal
circumstances. It may be split cosmetically with Backslash-Newline,
but that has no effect on its meaning. Comments containing Newlines
can also divide the directive into multiple lines, but the comments are
changed to Spaces before the directive is interpreted. The only way a
significant Newline can occur in a preprocessing directive is within a
string constant or character constant. Note that most C compilers that
might be applied to the output from the preprocessor do not accept string
or character constants containing Newlines.

The ‘#’ and the directive name cannot come from a macro expansion.
For example, if ‘foo’ is defined as a macro expanding to ‘define’, that
does not make ‘#foo’ a valid preprocessing directive.

1.3 Header Files

A header file is a file containing C declarations and macro definitions
(see Section 1.4 “Macros,” page 8) to be shared between several source
files. You request the use of a header file in your program with the C
preprocessing directive ‘#include’.

1.3.1 Uses of Header Files

Header files serve two kinds of purposes.
� System header files declare the interfaces to parts of the operating

system. You include them in your program to supply the definitions
and declarations you need to invoke system calls and libraries.

� Your own header files contain declarations for interfaces between
the source files of your program. Each time you have a group of
related declarations and macro definitions all or most of which are
needed in several different source files, it is a good idea to create a
header file for them.

c y g n u s s u p p o r t 3

The C Preprocessor

Including a header file produces the same results in C compilation
as copying the header file into each source file that needs it. But such
copying would be time-consuming and error-prone. With a header file,
the related declarations appear in only one place. If they need to be
changed, they can be changed in one place, and programs that include the
header file will automatically use the new version when next recompiled.
The header file eliminates the labor of finding and changing all the
copies as well as the risk that a failure to find one copy will result in
inconsistencies within a program.

The usual convention is to give header files names that end with
‘.h’. Avoid unusual characters in header file names, as they reduce
portability.

1.3.2 The ‘#include’ Directive

Both user and system header files are included using the preprocess-
ing directive ‘#include’. It has three variants:

#include <file>
This variant is used for system header files. It searches for a
file named file in a list of directories specified by you, then in
a standard list of system directories. You specify directories
to search for header files with the command option ‘-I’ (see
Section 1.9 “Invocation,” page 38). The option ‘-nostdinc’
inhibits searching the standard system directories; in this
case only the directories you specify are searched.
The parsing of this form of ‘#include’ is slightly special be-
cause comments are not recognized within the ‘<: : :>’. Thus,
in ‘#include <x/*y>’ the ‘/*’ does not start a comment and
the directive specifies inclusion of a system header file named
‘x/*y’. Of course, a header file with such a name is unlikely
to exist on Unix, where shell wildcard features would make
it hard to manipulate.
The argument file may not contain a ‘>’ character. It may,
however, contain a ‘<’ character.

#include "file"
This variant is used for header files of your own program. It
searches for a file named file first in the current directory,
then in the same directories used for system header files.
The current directory is the directory of the current input
file. It is tried first because it is presumed to be the location
of the files that the current input file refers to. (If the ‘-I-’
option is used, the special treatment of the current directory
is inhibited.)

4 27 June 1995

Chapter 1: The C Preprocessor

The argument file may not contain ‘"’ characters. If back-
slashes occur within file, they are considered ordinary text
characters, not escape characters. None of the character
escape sequences appropriate to string constants in C are
processed. Thus, ‘#include "x\n\\y"’ specifies a filename
containing three backslashes. It is not clear why this behav-
ior is ever useful, but the ANSI standard specifies it.

#include anything else
This variant is called a computed #include. Any ‘#include’
directive whose argument does not fit the above two forms is
a computed include. The text anything else is checked for
macro calls, which are expanded (see Section 1.4 “Macros,”
page 8). When this is done, the result must fit one of the
above two variants—in particular, the expanded text must
in the end be surrounded by either quotes or angle braces.
This feature allows you to define a macro which controls the
file name to be used at a later point in the program. One
application of this is to allow a site-specific configuration file
for your program to specify the names of the system include
files to be used. This can help in porting the program to
various operating systems in which the necessary system
header files are found in different places.

1.3.3 How ‘#include’ Works

The ‘#include’ directive works by directing the C preprocessor to scan
the specified file as input before continuing with the rest of the current
file. The output from the preprocessor contains the output already gen-
erated, followed by the output resulting from the included file, followed
by the output that comes from the text after the ‘#include’ directive.
For example, given a header file ‘header.h’ as follows,

char *test ();

and a main program called ‘program.c’ that uses the header file, like
this,

int x;
#include "header.h"

main ()
{

printf (test ());
}

the output generated by the C preprocessor for ‘program.c’ as input
would be

c y g n u s s u p p o r t 5

The C Preprocessor

int x;
char *test ();

main ()
{

printf (test ());
}

Included files are not limited to declarations and macro definitions;
those are merely the typical uses. Any fragment of a C program can
be included from another file. The include file could even contain the
beginning of a statement that is concluded in the containing file, or the
end of a statement that was started in the including file. However, a
comment or a string or character constant may not start in the included
file and finish in the including file. An unterminated comment, string
constant or character constant in an included file is considered to end
(with an error message) at the end of the file.

It is possible for a header file to begin or end a syntactic unit such as
a function definition, but that would be very confusing, so don’t do it.

The line following the ‘#include’ directive is always treated as a
separate line by the C preprocessor even if the included file lacks a final
newline.

1.3.4 Once-Only Include Files

Very often, one header file includes another. It can easily result that a
certain header file is included more than once. This may lead to errors,
if the header file defines structure types or typedefs, and is certainly
wasteful. Therefore, we often wish to prevent multiple inclusion of a
header file.

The standard way to do this is to enclose the entire real contents of
the file in a conditional, like this:

#ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN

the entire file

#endif /* FILE_FOO_SEEN */

The macro FILE_FOO_SEEN indicates that the file has been included
once already. In a user header file, the macro name should not begin
with ‘_’. In a system header file, this name should begin with ‘__’ to
avoid conflicts with user programs. In any kind of header file, the macro

6 27 June 1995

Chapter 1: The C Preprocessor

name should contain the name of the file and some additional text, to
avoid conflicts with other header files.

The GNU C preprocessor is programmed to notice when a header file
uses this particular construct and handle it efficiently. If a header file
is contained entirely in a ‘#ifndef’ conditional, then it records that fact.
If a subsequent ‘#include’ specifies the same file, and the macro in the
‘#ifndef’ is already defined, then the file is entirely skipped, without
even reading it.

There is also an explicit directive to tell the preprocessor that it need
not include a file more than once. This is called ‘#pragma once’, and was
used in addition to the ‘#ifndef’ conditional around the contents of the
header file. ‘#pragma once’ is now obsolete and should not be used at all.

In the Objective C language, there is a variant of ‘#include’ called
‘#import’ which includes a file, but does so at most once. If you use
‘#import’ instead of ‘#include’, then you don’t need the conditionals
inside the header file to prevent multiple execution of the contents.

‘#import’ is obsolete because it is not a well designed feature. It
requires the users of a header file—the applications programmers—to
know that a certain header file should only be included once. It is much
better for the header file’s implementor to write the file so that users
don’t need to know this. Using ‘#ifndef’ accomplishes this goal.

1.3.5 Inheritance and Header Files

Inheritance is what happens when one object or file derives some of
its contents by virtual copying from another object or file. In the case of
C header files, inheritance means that one header file includes another
header file and then replaces or adds something.

If the inheriting header file and the base header file have differ-
ent names, then inheritance is straightforward: simply write ‘#include
"base"’ in the inheriting file.

Sometimes it is necessary to give the inheriting file the same name
as the base file. This is less straightforward.

For example, suppose an application program uses the system header
file ‘sys/signal.h’, but the version of ‘/usr/include/sys/signal.h’ on
a particular system doesn’t do what the application program expects.
It might be convenient to define a “local” version, perhaps under the
name ‘/usr/local/include/sys/signal.h’, to override or add to the
one supplied by the system.

You can do this by using the option ‘-I.’ for compilation, and writing a
file ‘sys/signal.h’ that does what the application program expects. But
making this file include the standard ‘sys/signal.h’ is not so easy—

c y g n u s s u p p o r t 7

The C Preprocessor

writing ‘#include <sys/signal.h>’ in that file doesn’t work, because it
includes your own version of the file, not the standard system version.
Used in that file itself, this leads to an infinite recursion and a fatal error
in compilation.

‘#include </usr/include/sys/signal.h>’ would find the proper file,
but that is not clean, since it makes an assumption about where the
system header file is found. This is bad for maintenance, since it means
that any change in where the system’s header files are kept requires a
change somewhere else.

The clean way to solve this problem is to use ‘#include_next’, which
means, “Include the next file with this name.” This directive works like
‘#include’ except in searching for the specified file: it starts searching
the list of header file directories after the directory in which the current
file was found.

Suppose you specify ‘-I /usr/local/include’, and the list of direc-
tories to search also includes ‘/usr/include’; and suppose that both
directories contain a file named ‘sys/signal.h’. Ordinary ‘#include
<sys/signal.h>’ finds the file under ‘/usr/local/include’. If that file
contains ‘#include_next <sys/signal.h>’, it starts searching after that
directory, and finds the file in ‘/usr/include’.

1.4 Macros

A macro is a sort of abbreviation which you can define once and then
use later. There are many complicated features associated with macros
in the C preprocessor.

1.4.1 Simple Macros

A simple macro is a kind of abbreviation. It is a name which stands
for a fragment of code. Some people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly with the
‘#define’ directive. ‘#define’ is followed by the name of the macro and
then the code it should be an abbreviation for. For example,

#define BUFFER_SIZE 1020

defines a macro named ‘BUFFER_SIZE’ as an abbreviation for the text
‘1020’. If somewhere after this ‘#define’ directive there comes a C state-
ment of the form

foo = (char *) xmalloc (BUFFER_SIZE);

then the C preprocessor will recognize and expand the macro
‘BUFFER_SIZE’, resulting in

8 27 June 1995

Chapter 1: The C Preprocessor

foo = (char *) xmalloc (1020);

The use of all upper case for macro names is a standard convention.
Programs are easier to read when it is possible to tell at a glance which
names are macros.

Normally, a macro definition must be a single line, like all C prepro-
cessing directives. (You can split a long macro definition cosmetically
with Backslash-Newline.) There is one exception: Newlines can be in-
cluded in the macro definition if within a string or character constant.
This is because it is not possible for a macro definition to contain an
unbalanced quote character; the definition automatically extends to in-
clude the matching quote character that ends the string or character
constant. Comments within a macro definition may contain Newlines,
which make no difference since the comments are entirely replaced with
Spaces regardless of their contents.

Aside from the above, there is no restriction on what can go in a
macro body. Parentheses need not balance. The body need not resemble
valid C code. (But if it does not, you may get error messages from the C
compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro defi-
nitions take effect at the place you write them. Therefore, the following
input to the C preprocessor

foo = X;
#define X 4
bar = X;

produces as output

foo = X;

bar = 4;

After the preprocessor expands a macro name, the macro’s definition
body is appended to the front of the remaining input, and the check for
macro calls continues. Therefore, the macro body can contain calls to
other macros. For example, after

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

the name ‘TABLESIZE’ when used in the program would go through two
stages of expansion, resulting ultimately in ‘1020’.

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The
‘#define’ for ‘TABLESIZE’ uses exactly the body you specify—in this case,
‘BUFSIZE’—and does not check to see whether it too is the name of a
macro. It’s only when you use ‘TABLESIZE’ that the result of its expan-

c y g n u s s u p p o r t 9

The C Preprocessor

sion is checked for more macro names. See Section 1.4.8.7 “Cascaded
Macros,” page 27.

1.4.2 Macros with Arguments

A simple macro always stands for exactly the same text, each time
it is used. Macros can be more flexible when they accept arguments.
Arguments are fragments of code that you supply each time the macro
is used. These fragments are included in the expansion of the macro
according to the directions in the macro definition. A macro that accepts
arguments is called a function-like macro because the syntax for using
it looks like a function call.

To define a macro that uses arguments, you write a ‘#define’ direc-
tive with a list of argument names in parentheses after the name of
the macro. The argument names may be any valid C identifiers, sepa-
rated by commas and optionally whitespace. The open-parenthesis must
follow the macro name immediately, with no space in between.

For example, here is a macro that computes the minimum of two
numeric values, as it is defined in many C programs:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

(This is not the best way to define a “minimum” macro in GNU C. See
Section 1.4.8.4 “Side Effects,” page 23, for more information.)

To use a macro that expects arguments, you write the name of the
macro followed by a list of actual arguments in parentheses, separated
by commas. The number of actual arguments you give must match the
number of arguments the macro expects. Examples of use of the macro
‘min’ include ‘min (1, 2)’ and ‘min (x + 28, *p)’.

The expansion text of the macro depends on the arguments you use.
Each of the argument names of the macro is replaced, throughout the
macro definition, with the corresponding actual argument. Using the
same macro ‘min’ defined above, ‘min (1, 2)’ expands into

((1) < (2) ? (1) : (2))

where ‘1’ has been substituted for ‘X’ and ‘2’ for ‘Y’.
Likewise, ‘min (x + 28, *p)’ expands into
((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the actual arguments must balance; a comma within
parentheses does not end an argument. However, there is no require-
ment for brackets or braces to balance, and they do not prevent a comma
from separating arguments. Thus,

macro (array[x = y, x + 1])

10 27 June 1995

Chapter 1: The C Preprocessor

passes two arguments to macro: ‘array[x = y’ and ‘x + 1]’. If you want
to supply ‘array[x = y, x + 1]’ as an argument, you must write it as
‘array[(x = y, x + 1)]’, which is equivalent C code.

After the actual arguments are substituted into the macro body, the
entire result is appended to the front of the remaining input, and the
check for macro calls continues. Therefore, the actual arguments can
contain calls to other macros, either with or without arguments, or even
to the same macro. The macro body can also contain calls to other
macros. For example, ‘min (min (a, b), c)’ expands into this text:

((((a) < (b) ? (a) : (b))) < (c)
? (((a) < (b) ? (a) : (b)))
: (c))

(Line breaks shown here for clarity would not actually be generated.)

If a macro foo takes one argument, and you want to supply an empty
argument, you must write at least some whitespace between the paren-
theses, like this: ‘foo ()’. Just ‘foo ()’ is providing no arguments, which
is an error if foo expects an argument. But ‘foo0 ()’ is the correct way
to call a macro defined to take zero arguments, like this:

#define foo0() : : :

If you use the macro name followed by something other than an open-
parenthesis (after ignoring any spaces, tabs and comments that follow),
it is not a call to the macro, and the preprocessor does not change what
you have written. Therefore, it is possible for the same name to be
a variable or function in your program as well as a macro, and you
can choose in each instance whether to refer to the macro (if an actual
argument list follows) or the variable or function (if an argument list
does not follow).

Such dual use of one name could be confusing and should be avoided
except when the two meanings are effectively synonymous: that is, when
the name is both a macro and a function and the two have similar effects.
You can think of the name simply as a function; use of the name for
purposes other than calling it (such as, to take the address) will refer
to the function, while calls will expand the macro and generate better
but equivalent code. For example, you can use a function named ‘min’ in
the same source file that defines the macro. If you write ‘&min’ with no
argument list, you refer to the function. If you write ‘min (x, bb)’, with
an argument list, the macro is expanded. If you write ‘(min) (a, bb)’,
where the name ‘min’ is not followed by an open-parenthesis, the macro
is not expanded, so you wind up with a call to the function ‘min’.

You may not define the same name as both a simple macro and a
macro with arguments.

c y g n u s s u p p o r t 11

The C Preprocessor

In the definition of a macro with arguments, the list of argument
names must follow the macro name immediately with no space in be-
tween. If there is a space after the macro name, the macro is defined
as taking no arguments, and all the rest of the line is taken to be the
expansion. The reason for this is that it is often useful to define a macro
that takes no arguments and whose definition begins with an identifier
in parentheses. This rule about spaces makes it possible for you to do
either this:

#define FOO(x) - 1 / (x)

(which defines ‘FOO’ to take an argument and expand into minus the
reciprocal of that argument) or this:

#define BAR (x) - 1 / (x)

(which defines ‘BAR’ to take no argument and always expand into ‘(x) -
1 / (x)’).

Note that the uses of a macro with arguments can have spaces before
the left parenthesis; it’s the definition where it matters whether there is
a space.

1.4.3 Predefined Macros

Several simple macros are predefined. You can use them without
giving definitions for them. They fall into two classes: standard macros
and system-specific macros.

1.4.3.1 Standard Predefined Macros

The standard predefined macros are available with the same mean-
ings regardless of the machine or operating system on which you are
using GNU C. Their names all start and end with double underscores.
Those preceding __GNUC__ in this table are standardized by ANSI C; the
rest are GNU C extensions.

__FILE__ This macro expands to the name of the current input file, in
the form of a C string constant. The precise name returned
is the one that was specified in ‘#include’ or as the input file
name argument.

__LINE__ This macro expands to the current input line number, in
the form of a decimal integer constant. While we call it
a predefined macro, it’s a pretty strange macro, since its
“definition” changes with each new line of source code.
This and ‘__FILE__’ are useful in generating an error mes-
sage to report an inconsistency detected by the program; the

12 27 June 1995

Chapter 1: The C Preprocessor

message can state the source line at which the inconsistency
was detected. For example,

fprintf (stderr, "Internal error: "
"negative string length "
"%d at %s, line %d.",

length, __FILE__, __LINE__);

A ‘#include’ directive changes the expansions of ‘__FILE__’
and ‘__LINE__’ to correspond to the included file. At the
end of that file, when processing resumes on the input file
that contained the ‘#include’ directive, the expansions of
‘__FILE__’ and ‘__LINE__’ revert to the values they had be-
fore the ‘#include’ (but ‘__LINE__’ is then incremented by
one as processing moves to the line after the ‘#include’).
The expansions of both ‘__FILE__’ and ‘__LINE__’ are altered
if a ‘#line’ directive is used. See Section 1.6 “Combining
Sources,” page 36.

__INCLUDE_LEVEL__
This macro expands to a decimal integer constant that rep-
resents the depth of nesting in include files. The value of
this macro is incremented on every ‘#include’ directive and
decremented at every end of file. For input files specified by
command line arguments, the nesting level is zero.

__DATE__ This macro expands to a string constant that describes the
date on which the preprocessor is being run. The string
constant contains eleven characters and looks like ‘"Jan 29
1987"’ or ‘"Apr 1 1905"’.

__TIME__ This macro expands to a string constant that describes the
time at which the preprocessor is being run. The string con-
stant contains eight characters and looks like ‘"23:59:01"’.

__STDC__ This macro expands to the constant 1, to signify that this is
ANSI Standard C. (Whether that is actually true depends on
what C compiler will operate on the output from the prepro-
cessor.)

__STDC_VERSION__
This macro expands to the C Standard’s version number, a
long integer constant of the form ‘yyyymmL’ where yyyy and
mm are the year and month of the Standard version. This
signifies which version of the C Standard the preprocessor
conforms to. Like ‘__STDC__’, whether this version number
is accurate for the entire implementation depends on what C
compiler will operate on the output from the preprocessor.

__GNUC__ This macro is defined if and only if this is GNU C. This macro
is defined only when the entire GNU C compiler is in use; if

c y g n u s s u p p o r t 13

The C Preprocessor

you invoke the preprocessor directly, ‘__GNUC__’ is undefined.
The value identifies the major version number of GNU CC
(‘1’ for GNU CC version 1, which is now obsolete, and ‘2’ for
version 2).

__GNUG__ The GNU C compiler defines this when the compilation lan-
guage is C++; use ‘__GNUG__’ to distinguish between GNU C
and GNU C++.

__cplusplus
The draft ANSI standard for C++ used to require predefining
this variable. Though it is no longer required, GNU C++
continues to define it, as do other popular C++ compilers. You
can use ‘__cplusplus’ to test whether a header is compiled
by a C compiler or a C++ compiler.

__STRICT_ANSI__
This macro is defined if and only if the ‘-ansi’ switch was
specified when GNU C was invoked. Its definition is the null
string. This macro exists primarily to direct certain GNU
header files not to define certain traditional Unix constructs
which are incompatible with ANSI C.

__BASE_FILE__
This macro expands to the name of the main input file, in the
form of a C string constant. This is the source file that was
specified as an argument when the C compiler was invoked.

__VERSION__
This macro expands to a string which describes the version
number of GNU C. The string is normally a sequence of dec-
imal numbers separated by periods, such as ‘"2.6.0"’. The
only reasonable use of this macro is to incorporate it into a
string constant.

__OPTIMIZE__
This macro is defined in optimizing compilations. It causes
certain GNU header files to define alternative macro defi-
nitions for some system library functions. It is unwise to
refer to or test the definition of this macro unless you make
very sure that programs will execute with the same effect
regardless.

__CHAR_UNSIGNED__
This macro is defined if and only if the data type char is un-
signed on the target machine. It exists to cause the standard
header file ‘limit.h’ to work correctly. It is bad practice
to refer to this macro yourself; instead, refer to the stan-
dard macros defined in ‘limit.h’. The preprocessor uses this

14 27 June 1995

Chapter 1: The C Preprocessor

macro to determine whether or not to sign-extend large char-
acter constants written in octal; see Section 1.5.2.1 “The ‘#if’
Directive,” page 29.

__REGISTER_PREFIX__
This macro expands to a string describing the prefix applied
to cpu registers in assembler code. It can be used to write
assembler code that is usable in multiple environments. For
example, in the ‘m68k-aout’ environment it expands to the
string ‘""’, but in the ‘m68k-coff’ environment it expands to
the string ‘"%"’.

__USER_LABEL_PREFIX__
This macro expands to a string describing the prefix applied
to user generated labels in assembler code. It can be used
to write assembler code that is usable in multiple environ-
ments. For example, in the ‘m68k-aout’ environment it ex-
pands to the string ‘"_"’, but in the ‘m68k-coff’ environment
it expands to the string ‘""’.

1.4.3.2 Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that vary
between machines because their purpose is to indicate what type of
system and machine is in use. This manual, being for all systems and
machines, cannot tell you exactly what their names are; instead, we
offer a list of some typical ones. You can use ‘cpp -dM’ to see the values
of predefined macros; see Section 1.9 “Invocation,” page 38.

Some nonstandard predefined macros describe the operating system
in use, with more or less specificity. For example,

unix ‘unix’ is normally predefined on all Unix systems.

BSD ‘BSD’ is predefined on recent versions of Berkeley Unix (per-
haps only in version 4.3).

Other nonstandard predefined macros describe the kind of CPU, with
more or less specificity. For example,

vax ‘vax’ is predefined on Vax computers.

mc68000 ‘mc68000’ is predefined on most computers whose CPU is a
Motorola 68000, 68010 or 68020.

m68k ‘m68k’ is also predefined on most computers whose CPU is a
68000, 68010 or 68020; however, some makers use ‘mc68000’
and some use ‘m68k’. Some predefine both names. What
happens in GNU C depends on the system you are using it
on.

c y g n u s s u p p o r t 15

The C Preprocessor

M68020 ‘M68020’ has been observed to be predefined on some systems
that use 68020 CPUs—in addition to ‘mc68000’ and ‘m68k’,
which are less specific.

_AM29K
_AM29000 Both ‘_AM29K’ and ‘_AM29000’ are predefined for the AMD

29000 CPU family.

ns32000 ‘ns32000’ is predefined on computers which use the National
Semiconductor 32000 series CPU.

Yet other nonstandard predefined macros describe the manufacturer
of the system. For example,

sun ‘sun’ is predefined on all models of Sun computers.

pyr ‘pyr’ is predefined on all models of Pyramid computers.

sequent ‘sequent’ is predefined on all models of Sequent computers.

These predefined symbols are not only nonstandard, they are contrary
to the ANSI standard because their names do not start with underscores.
Therefore, the option ‘-ansi’ inhibits the definition of these symbols.

This tends to make ‘-ansi’ useless, since many programs depend on
the customary nonstandard predefined symbols. Even system header
files check them and will generate incorrect declarations if they do not
find the names that are expected. You might think that the header files
supplied for the Uglix computer would not need to test what machine
they are running on, because they can simply assume it is the Uglix; but
often they do, and they do so using the customary names. As a result,
very few C programs will compile with ‘-ansi’. We intend to avoid such
problems on the GNU system.

What, then, should you do in an ANSI C program to test the type of
machine it will run on?

GNU C offers a parallel series of symbols for this purpose, whose
names are made from the customary ones by adding ‘__’ at the beginning
and end. Thus, the symbol __vax__ would be available on a Vax, and so
on.

The set of nonstandard predefined names in the GNU C preprocessor
is controlled (when cpp is itself compiled) by the macro ‘CPP_PREDEFINES’,
which should be a string containing ‘-D’ options, separated by spaces. For
example, on the Sun 3, we use the following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

This macro is usually specified in ‘tm.h’.

16 27 June 1995

Chapter 1: The C Preprocessor

1.4.4 Stringification

Stringification means turning a code fragment into a string constant
whose contents are the text for the code fragment. For example, stringi-
fying ‘foo (z)’ results in ‘"foo (z)"’.

In the C preprocessor, stringification is an option available when
macro arguments are substituted into the macro definition. In the body
of the definition, when an argument name appears, the character ‘#’
before the name specifies stringification of the corresponding actual ar-
gument when it is substituted at that point in the definition. The same
argument may be substituted in other places in the definition without
stringification if the argument name appears in those places with no ‘#’.

Here is an example of a macro definition that uses stringification:
#define WARN_IF(EXP) \
do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \
while (0)

Here the actual argument for ‘EXP’ is substituted once as given, into the
‘if’ statement, and once as stringified, into the argument to ‘fprintf’.
The ‘do’ and ‘while (0)’ are a kludge to make it possible to write ‘WARN_IF
(arg);’, which the resemblance of ‘WARN_IF’ to a function would make
C programmers want to do; see Section 1.4.8.3 “Swallow Semicolon,”
page 22.

The stringification feature is limited to transforming one macro argu-
ment into one string constant: there is no way to combine the argument
with other text and then stringify it all together. But the example above
shows how an equivalent result can be obtained in ANSI Standard C
using the feature that adjacent string constants are concatenated as one
string constant. The preprocessor stringifies the actual value of ‘EXP’
into a separate string constant, resulting in text like

do { if (x == 0) \
fprintf (stderr, "Warning: " "x == 0" "\n"); } \

while (0)

but the C compiler then sees three consecutive string constants and
concatenates them into one, producing effectively

do { if (x == 0) \
fprintf (stderr, "Warning: x == 0\n"); } \

while (0)

Stringification in C involves more than putting doublequote charac-
ters around the fragment; it is necessary to put backslashes in front of
all doublequote characters, and all backslashes in string and character
constants, in order to get a valid C string constant with the proper con-
tents. Thus, stringifying ‘p = "foo\n";’ results in ‘"p = \"foo\\n\";"’.

c y g n u s s u p p o r t 17

The C Preprocessor

However, backslashes that are not inside of string or character constants
are not duplicated: ‘\n’ by itself stringifies to ‘"\n"’.

Whitespace (including comments) in the text being stringified is han-
dled according to precise rules. All leading and trailing whitespace is
ignored. Any sequence of whitespace in the middle of the text is con-
verted to a single space in the stringified result.

1.4.5 Concatenation

Concatenation means joining two strings into one. In the context
of macro expansion, concatenation refers to joining two lexical units
into one longer one. Specifically, an actual argument to the macro can be
concatenated with another actual argument or with fixed text to produce
a longer name. The longer name might be the name of a function,
variable or type, or a C keyword; it might even be the name of another
macro, in which case it will be expanded.

When you define a macro, you request concatenation with the special
operator ‘##’ in the macro body. When the macro is called, after actual
arguments are substituted, all ‘##’ operators are deleted, and so is any
whitespace next to them (including whitespace that was part of an actual
argument). The result is to concatenate the syntactic tokens on either
side of the ‘##’.

Consider a C program that interprets named commands. There prob-
ably needs to be a table of commands, perhaps an array of structures
declared as follows:

struct command
{

char *name;
void (*function) ();

};

struct command commands[] =
{

{ "quit", quit_command},
{ "help", help_command},
: : :

};

It would be cleaner not to have to give each command name twice,
once in the string constant and once in the function name. A macro
which takes the name of a command as an argument can make this
unnecessary. The string constant can be created with stringification,
and the function name by concatenating the argument with ‘_command’.
Here is how it is done:

18 27 June 1995

Chapter 1: The C Preprocessor

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{

COMMAND (quit),
COMMAND (help),
: : :

};

The usual case of concatenation is concatenating two names (or a
name and a number) into a longer name. But this isn’t the only valid
case. It is also possible to concatenate two numbers (or a number and
a name, such as ‘1.5’ and ‘e3’) into a number. Also, multi-character
operators such as ‘+=’ can be formed by concatenation. In some cases it is
even possible to piece together a string constant. However, two pieces of
text that don’t together form a valid lexical unit cannot be concatenated.
For example, concatenation with ‘x’ on one side and ‘+’ on the other is not
meaningful because those two characters can’t fit together in any lexical
unit of C. The ANSI standard says that such attempts at concatenation
are undefined, but in the GNU C preprocessor it is well defined: it puts
the ‘x’ and ‘+’ side by side with no particular special results.

Keep in mind that the C preprocessor converts comments to whites-
pace before macros are even considered. Therefore, you cannot create
a comment by concatenating ‘/’ and ‘*’: the ‘/*’ sequence that starts a
comment is not a lexical unit, but rather the beginning of a “long” space
character. Also, you can freely use comments next to a ‘##’ in a macro
definition, or in actual arguments that will be concatenated, because the
comments will be converted to spaces at first sight, and concatenation
will later discard the spaces.

1.4.6 Undefining Macros

To undefine a macro means to cancel its definition. This is done with
the ‘#undef’ directive. ‘#undef’ is followed by the macro name to be
undefined.

Like definition, undefinition occurs at a specific point in the source
file, and it applies starting from that point. The name ceases to be a
macro name, and from that point on it is treated by the preprocessor as
if it had never been a macro name.

For example,
#define FOO 4
x = FOO;
#undef FOO
x = FOO;

c y g n u s s u p p o r t 19

The C Preprocessor

expands into

x = 4;

x = FOO;

In this example, ‘FOO’ had better be a variable or function as well as
(temporarily) a macro, in order for the result of the expansion to be valid
C code.

The same form of ‘#undef’ directive will cancel definitions with argu-
ments or definitions that don’t expect arguments. The ‘#undef’ directive
has no effect when used on a name not currently defined as a macro.

1.4.7 Redefining Macros

Redefining a macro means defining (with ‘#define’) a name that is
already defined as a macro.

A redefinition is trivial if the new definition is transparently iden-
tical to the old one. You probably wouldn’t deliberately write a trivial
redefinition, but they can happen automatically when a header file is
included more than once (see Section 1.3 “Header Files,” page 3), so they
are accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it pro-
vokes a warning message from the preprocessor. However, sometimes
it is useful to change the definition of a macro in mid-compilation. You
can inhibit the warning by undefining the macro with ‘#undef’ before
the second definition.

In order for a redefinition to be trivial, the new definition must exactly
match the one already in effect, with two possible exceptions:
� Whitespace may be added or deleted at the beginning or the end.

� Whitespace may be changed in the middle (but not inside strings).
However, it may not be eliminated entirely, and it may not be added
where there was no whitespace at all.

Recall that a comment counts as whitespace.

1.4.8 Pitfalls and Subtleties of Macros

In this section we describe some special rules that apply to macros
and macro expansion, and point out certain cases in which the rules
have counterintuitive consequences that you must watch out for.

20 27 June 1995

Chapter 1: The C Preprocessor

1.4.8.1 Improperly Nested Constructs

Recall that when a macro is called with arguments, the arguments
are substituted into the macro body and the result is checked, together
with the rest of the input file, for more macro calls.

It is possible to piece together a macro call coming partially from the
macro body and partially from the actual arguments. For example,

#define double(x) (2*(x))
#define call_with_1(x) x(1)

would expand ‘call_with_1 (double)’ into ‘(2*(1))’.
Macro definitions do not have to have balanced parentheses. By

writing an unbalanced open parenthesis in a macro body, it is possible to
create a macro call that begins inside the macro body but ends outside
of it. For example,

#define strange(file) fprintf (file, "%s %d",
: : :

strange(stderr) p, 35)

This bizarre example expands to ‘fprintf (stderr, "%s %d", p, 35)’!

1.4.8.2 Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition examples
shown above, each occurrence of a macro argument name had parenthe-
ses around it. In addition, another pair of parentheses usually surround
the entire macro definition. Here is why it is best to write macros that
way.

Suppose you define a macro as follows,
#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is
to compute how many ‘int’ objects are needed to hold a certain number
of ‘char’ objects.) Then suppose it is used as follows:

a = ceil_div (b & c, sizeof (int));

This expands into
a = (b & c + sizeof (int) - 1) / sizeof (int);

which does not do what is intended. The operator-precedence rules of C
make it equivalent to this:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is this:
a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as

c y g n u s s u p p o r t 21

The C Preprocessor

#define ceil_div(x, y) ((x) + (y) - 1) / (y)

provides the desired result.
However, unintended grouping can result in another way. Consider

‘sizeof ceil_div(1, 2)’. That has the appearance of a C expression
that would compute the size of the type of ‘ceil_div (1, 2)’, but in fact
it means something very different. Here is what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by two. The prece-
dence rules have put the division outside the ‘sizeof’ when it was in-
tended to be inside.

Parentheses around the entire macro definition can prevent such
problems. Here, then, is the recommended way to define ‘ceil_div’:

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

1.4.8.3 Swallowing the Semicolon

Often it is desirable to define a macro that expands into a compound
statement. Consider, for example, the following macro, that advances
a pointer (the argument ‘p’ says where to find it) across whitespace
characters:

#define SKIP_SPACES (p, limit) \
{ register char *lim = (limit); \

while (p != lim) { \
if (*p++ != ’ ’) { \
p--; break; }}}

Here Backslash-Newline is used to split the macro definition, which
must be a single line, so that it resembles the way such C code would be
laid out if not part of a macro definition.

A call to this macro might be ‘SKIP_SPACES (p, lim)’. Strictly speak-
ing, the call expands to a compound statement, which is a complete
statement with no need for a semicolon to end it. But it looks like a
function call. So it minimizes confusion if you can use it like a function
call, writing a semicolon afterward, as in ‘SKIP_SPACES (p, lim);’

But this can cause trouble before ‘else’ statements, because the semi-
colon is actually a null statement. Suppose you write

if (*p != 0)
SKIP_SPACES (p, lim);

else : : :

The presence of two statements—the compound statement and a null
statement—in between the ‘if’ condition and the ‘else’ makes invalid C
code.

22 27 June 1995

Chapter 1: The C Preprocessor

The definition of the macro ‘SKIP_SPACES’ can be altered to solve this
problem, using a ‘do : : : while’ statement. Here is how:

#define SKIP_SPACES (p, limit) \
do { register char *lim = (limit); \

while (p != lim) { \
if (*p++ != ’ ’) { \

p--; break; }}} \
while (0)

Now ‘SKIP_SPACES (p, lim);’ expands into
do {: : :} while (0);

which is one statement.

1.4.8.4 Duplication of Side Effects

Many C programs define a macro ‘min’, for “minimum”, like this:
#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect,
as shown here,

next = min (x + y, foo (z));

it expands as follows:
next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where ‘x + y’ has been substituted for ‘X’ and ‘foo (z)’ for ‘Y’.
The function ‘foo’ is used only once in the statement as it appears

in the program, but the expression ‘foo (z)’ has been substituted twice
into the macro expansion. As a result, ‘foo’ might be called two times
when the statement is executed. If it has side effects or if it takes a long
time to compute, the results might not be what you intended. We say
that ‘min’ is an unsafe macro.

The best solution to this problem is to define ‘min’ in a way that
computes the value of ‘foo (z)’ only once. The C language offers no
standard way to do this, but it can be done with GNU C extensions as
follows:

#define min(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \

(__x < __y) ? __x : __y; })

If you do not wish to use GNU C extensions, the only solution is to be
careful when using the macro ‘min’. For example, you can calculate the
value of ‘foo (z)’, save it in a variable, and use that variable in ‘min’:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
: : :

c y g n u s s u p p o r t 23

The C Preprocessor

{
int tem = foo (z);
next = min (x + y, tem);

}

(where we assume that ‘foo’ returns type ‘int’).

1.4.8.5 Self-Referential Macros

A self-referential macro is one whose name appears in its definition.
A special feature of ANSI Standard C is that the self-reference is not
considered a macro call. It is passed into the preprocessor output un-
changed.

Let’s consider an example:
#define foo (4 + foo)

where ‘foo’ is also a variable in your program.
Following the ordinary rules, each reference to ‘foo’ will expand into

‘(4 + foo)’; then this will be rescanned and will expand into ‘(4 + (4
+ foo))’; and so on until it causes a fatal error (memory full) in the
preprocessor.

However, the special rule about self-reference cuts this process short
after one step, at ‘(4 + foo)’. Therefore, this macro definition has the
possibly useful effect of causing the program to add 4 to the value of ‘foo’
wherever ‘foo’ is referred to.

In most cases, it is a bad idea to take advantage of this feature.
A person reading the program who sees that ‘foo’ is a variable will
not expect that it is a macro as well. The reader will come across the
identifier ‘foo’ in the program and think its value should be that of the
variable ‘foo’, whereas in fact the value is four greater.

The special rule for self-reference applies also to indirect self-
reference. This is the case where a macro x expands to use a macro ‘y’,
and the expansion of ‘y’ refers to the macro ‘x’. The resulting reference
to ‘x’ comes indirectly from the expansion of ‘x’, so it is a self-reference
and is not further expanded. Thus, after

#define x (4 + y)
#define y (2 * x)

‘x’ would expand into ‘(4 + (2 * x))’. Clear?
But suppose ‘y’ is used elsewhere, not from the definition of ‘x’. Then

the use of ‘x’ in the expansion of ‘y’ is not a self-reference because ‘x’ is not
“in progress”. So it does expand. However, the expansion of ‘x’ contains
a reference to ‘y’, and that is an indirect self-reference now because ‘y’ is
“in progress”. The result is that ‘y’ expands to ‘(2 * (4 + y))’.

24 27 June 1995

Chapter 1: The C Preprocessor

It is not clear that this behavior would ever be useful, but it is specified
by the ANSI C standard, so you may need to understand it.

1.4.8.6 Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the sub-
stituted actual arguments, is scanned over again for macro calls to be
expanded.

What really happens is more subtle: first each actual argument text
is scanned separately for macro calls. Then the results of this are sub-
stituted into the macro body to produce the macro expansion, and the
macro expansion is scanned again for macros to expand.

The result is that the actual arguments are scanned twice to expand
macro calls in them.

Most of the time, this has no effect. If the actual argument contained
any macro calls, they are expanded during the first scan. The result
therefore contains no macro calls, so the second scan does not change it.
If the actual argument were substituted as given, with no prescan, the
single remaining scan would find the same macro calls and produce the
same results.

You might expect the double scan to change the results when a self-
referential macro is used in an actual argument of another macro (see
Section 1.4.8.5 “Self-Reference,” page 24): the self-referential macro
would be expanded once in the first scan, and a second time in the
second scan. But this is not what happens. The self-references that do
not expand in the first scan are marked so that they will not expand in
the second scan either.

The prescan is not done when an argument is stringified or concate-
nated. Thus,

#define str(s) #s
#define foo 4
str (foo)

expands to ‘"foo"’. Once more, prescan has been prevented from having
any noticeable effect.

More precisely, stringification and concatenation use the argument
as written, in un-prescanned form. The same actual argument would be
used in prescanned form if it is substituted elsewhere without stringifi-
cation or concatenation.

#define str(s) #s lose(s)
#define foo 4
str (foo)

expands to ‘"foo" lose(4)’.

c y g n u s s u p p o r t 25

The C Preprocessor

You might now ask, “Why mention the prescan, if it makes no dif-
ference? And why not skip it and make the preprocessor faster?” The
answer is that the prescan does make a difference in three special cases:
� Nested calls to a macro.
� Macros that call other macros that stringify or concatenate.
� Macros whose expansions contain unshielded commas.

We say that nested calls to a macro occur when a macro’s actual
argument contains a call to that very macro. For example, if ‘f’ is a
macro that expects one argument, ‘f (f (1))’ is a nested pair of calls to
‘f’. The desired expansion is made by expanding ‘f (1)’ and substituting
that into the definition of ‘f’. The prescan causes the expected result
to happen. Without the prescan, ‘f (1)’ itself would be substituted as
an actual argument, and the inner use of ‘f’ would appear during the
main scan as an indirect self-reference and would not be expanded.
Here, the prescan cancels an undesirable side effect (in the medical, not
computational, sense of the term) of the special rule for self-referential
macros.

But prescan causes trouble in certain other cases of nested macro
calls. Here is an example:

#define foo a,b
#define bar(x) lose(x)
#define lose(x) (1 + (x))

bar(foo)

We would like ‘bar(foo)’ to turn into ‘(1 + (foo))’, which would
then turn into ‘(1 + (a,b))’. But instead, ‘bar(foo)’ expands into
‘lose(a,b)’, and you get an error because lose requires a single argu-
ment. In this case, the problem is easily solved by the same parentheses
that ought to be used to prevent misnesting of arithmetic operations:

#define foo (a,b)
#define bar(x) lose((x))

The problem is more serious when the operands of the macro are not
expressions; for example, when they are statements. Then parentheses
are unacceptable because they would make for invalid C code:

#define foo { int a, b; : : : }

In GNU C you can shield the commas using the ‘({: : :})’ construct which
turns a compound statement into an expression:

#define foo ({ int a, b; : : : })

Or you can rewrite the macro definition to avoid such commas:
#define foo { int a; int b; : : : }

26 27 June 1995

Chapter 1: The C Preprocessor

There is also one case where prescan is useful. It is possible to use
prescan to expand an argument and then stringify it—if you use two
levels of macros. Let’s add a new macro ‘xstr’ to the example shown
above:

#define xstr(s) str(s)
#define str(s) #s
#define foo 4
xstr (foo)

This expands into ‘"4"’, not ‘"foo"’. The reason for the difference
is that the argument of ‘xstr’ is expanded at prescan (because ‘xstr’
does not specify stringification or concatenation of the argument). The
result of prescan then forms the actual argument for ‘str’. ‘str’ uses
its argument without prescan because it performs stringification; but it
cannot prevent or undo the prescanning already done by ‘xstr’.

1.4.8.7 Cascaded Use of Macros

A cascade of macros is when one macro’s body contains a reference to
another macro. This is very common practice. For example,

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The
‘#define’ for ‘TABLESIZE’ uses exactly the body you specify—in this case,
‘BUFSIZE’—and does not check to see whether it too is the name of a
macro.

It’s only when you use ‘TABLESIZE’ that the result of its expansion is
checked for more macro names.

This makes a difference if you change the definition of ‘BUFSIZE’ at
some point in the source file. ‘TABLESIZE’, defined as shown, will always
expand using the definition of ‘BUFSIZE’ that is currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE
#undef BUFSIZE
#define BUFSIZE 37

Now ‘TABLESIZE’ expands (in two stages) to ‘37’. (The ‘#undef’ is to
prevent any warning about the nontrivial redefinition of BUFSIZE.)

1.4.9 Newlines in Macro Arguments

Traditional macro processing carries forward all newlines in macro
arguments into the expansion of the macro. This means that, if some
of the arguments are substituted more than once, or not at all, or out

c y g n u s s u p p o r t 27

The C Preprocessor

of order, newlines can be duplicated, lost, or moved around within the
expansion. If the expansion consists of multiple statements, then the
effect is to distort the line numbers of some of these statements. The
result can be incorrect line numbers, in error messages or displayed in
a debugger.

The GNU C preprocessor operating in ANSI C mode adjusts appro-
priately for multiple use of an argument—the first use expands all the
newlines, and subsequent uses of the same argument produce no new-
lines. But even in this mode, it can produce incorrect line numbering if
arguments are used out of order, or not used at all.

Here is an example illustrating this problem:
#define ignore_second_arg(a,b,c) a; c

ignore_second_arg (foo (),
ignored (),
syntax error);

The syntax error triggered by the tokens ‘syntax error’ results in an
error message citing line four, even though the statement text comes
from line five.

1.5 Conditionals

In a macro processor, a conditional is a directive that allows a part of
the program to be ignored during compilation, on some conditions. In the
C preprocessor, a conditional can test either an arithmetic expression or
whether a name is defined as a macro.

A conditional in the C preprocessor resembles in some ways an ‘if’
statement in C, but it is important to understand the difference between
them. The condition in an ‘if’ statement is tested during the execution of
your program. Its purpose is to allow your program to behave differently
from run to run, depending on the data it is operating on. The condition
in a preprocessing conditional directive is tested when your program is
compiled. Its purpose is to allow different code to be included in the
program depending on the situation at the time of compilation.

1.5.1 Why Conditionals are Used

Generally there are three kinds of reason to use a conditional.
� A program may need to use different code depending on the machine

or operating system it is to run on. In some cases the code for one
operating system may be erroneous on another operating system;
for example, it might refer to library routines that do not exist on

28 27 June 1995

Chapter 1: The C Preprocessor

the other system. When this happens, it is not enough to avoid
executing the invalid code: merely having it in the program makes
it impossible to link the program and run it. With a preprocessing
conditional, the offending code can be effectively excised from the
program when it is not valid.

� You may want to be able to compile the same source file into two
different programs. Sometimes the difference between the programs
is that one makes frequent time-consuming consistency checks on its
intermediate data, or prints the values of those data for debugging,
while the other does not.

� A conditional whose condition is always false is a good way to exclude
code from the program but keep it as a sort of comment for future
reference.

Most simple programs that are intended to run on only one machine
will not need to use preprocessing conditionals.

1.5.2 Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional di-
rective: ‘#if’, ‘#ifdef’ or ‘#ifndef’. See Section 1.5.4 “Conditionals-
Macros,” page 32, for information on ‘#ifdef’ and ‘#ifndef’; only ‘#if’ is
explained here.

1.5.2.1 The ‘#if’ Directive

The ‘#if’ directive in its simplest form consists of
#if expression
controlled text
#endif /* expression */

The comment following the ‘#endif’ is not required, but it is a good
practice because it helps people match the ‘#endif’ to the corresponding
‘#if’. Such comments should always be used, except in short conditionals
that are not nested. In fact, you can put anything at all after the ‘#endif’
and it will be ignored by the GNU C preprocessor, but only comments
are acceptable in ANSI Standard C.

expression is a C expression of integer type, subject to stringent
restrictions. It may contain
� Integer constants, which are all regarded as long or unsigned long.
� Character constants, which are interpreted according to the char-

acter set and conventions of the machine and operating system
on which the preprocessor is running. The GNU C preprocessor
uses the C data type ‘char’ for these character constants; therefore,

c y g n u s s u p p o r t 29

The C Preprocessor

whether some character codes are negative is determined by the
C compiler used to compile the preprocessor. If it treats ‘char’ as
signed, then character codes large enough to set the sign bit will
be considered negative; otherwise, no character code is considered
negative.

� Arithmetic operators for addition, subtraction, multiplication, divi-
sion, bitwise operations, shifts, comparisons, and logical operations
(‘&&’ and ‘||’).

� Identifiers that are not macros, which are all treated as zero(!).
� Macro calls. All macro calls in the expression are expanded before

actual computation of the expression’s value begins.

Note that ‘sizeof’ operators and enum-type values are not allowed.
enum-type values, like all other identifiers that are not taken as macro
calls and expanded, are treated as zero.

The controlled text inside of a conditional can include preprocess-
ing directives. Then the directives inside the conditional are obeyed
only if that branch of the conditional succeeds. The text can also con-
tain other conditional groups. However, the ‘#if’ and ‘#endif’ directives
must balance.

1.5.2.2 The ‘#else’ Directive

The ‘#else’ directive can be added to a conditional to provide alter-
native text to be used if the condition is false. This is what it looks
like:

#if expression
text-if-true
#else /* Not expression */
text-if-false
#endif /* Not expression */

If expression is nonzero, and thus the text-if-true is active, then
‘#else’ acts like a failing conditional and the text-if-false is ignored.
Contrariwise, if the ‘#if’ conditional fails, the text-if-false is consid-
ered included.

1.5.2.3 The ‘#elif’ Directive

One common case of nested conditionals is used to check for more
than two possible alternatives. For example, you might have

#if X == 1
: : :

#else /* X != 1 */

30 27 June 1995

Chapter 1: The C Preprocessor

#if X == 2
: : :

#else /* X != 2 */
: : :

#endif /* X != 2 */
#endif /* X != 1 */

Another conditional directive, ‘#elif’, allows this to be abbreviated
as follows:

#if X == 1
: : :

#elif X == 2
: : :

#else /* X != 2 and X != 1*/
: : :

#endif /* X != 2 and X != 1*/

‘#elif’ stands for “else if”. Like ‘#else’, it goes in the middle of a ‘#if’-
‘#endif’ pair and subdivides it; it does not require a matching ‘#endif’
of its own. Like ‘#if’, the ‘#elif’ directive includes an expression to be
tested.

The text following the ‘#elif’ is processed only if the original ‘#if’-
condition failed and the ‘#elif’ condition succeeds. More than one
‘#elif’ can go in the same ‘#if’-‘#endif’ group. Then the text after
each ‘#elif’ is processed only if the ‘#elif’ condition succeeds after the
original ‘#if’ and any previous ‘#elif’ directives within it have failed.
‘#else’ is equivalent to ‘#elif 1’, and ‘#else’ is allowed after any number
of ‘#elif’ directives, but ‘#elif’ may not follow ‘#else’.

1.5.3 Keeping Deleted Code for Future Reference

If you replace or delete a part of the program but want to keep the
old code around as a comment for future reference, the easy way to do
this is to put ‘#if 0’ before it and ‘#endif’ after it. This is better than
using comment delimiters ‘/*’ and ‘*/’ since those won’t work if the code
already contains comments (C comments do not nest).

This works even if the code being turned off contains conditionals,
but they must be entire conditionals (balanced ‘#if’ and ‘#endif’).

Conversely, do not use ‘#if 0’ for comments which are not C code. Use
the comment delimiters ‘/*’ and ‘*/’ instead. The interior of ‘#if 0’ must
consist of complete tokens; in particular, singlequote characters must
balance. But comments often contain unbalanced singlequote characters
(known in English as apostrophes). These confuse ‘#if 0’. They do not
confuse ‘/*’.

c y g n u s s u p p o r t 31

The C Preprocessor

1.5.4 Conditionals and Macros

Conditionals are useful in connection with macros or assertions, be-
cause those are the only ways that an expression’s value can vary from
one compilation to another. A ‘#if’ directive whose expression uses no
macros or assertions is equivalent to ‘#if 1’ or ‘#if 0’; you might as well
determine which one, by computing the value of the expression yourself,
and then simplify the program.

For example, here is a conditional that tests the expression ‘BUFSIZE
== 1020’, where ‘BUFSIZE’ must be a macro.

#if BUFSIZE == 1020
printf ("Large buffers!\n");

#endif /* BUFSIZE is large */

(Programmers often wish they could test the size of a variable or
data type in ‘#if’, but this does not work. The preprocessor does not
understand sizeof, or typedef names, or even the type keywords such
as int.)

The special operator ‘defined’ is used in ‘#if’ expressions to test
whether a certain name is defined as a macro. Either ‘defined name’
or ‘defined (name)’ is an expression whose value is 1 if name is defined
as macro at the current point in the program, and 0 otherwise. For
the ‘defined’ operator it makes no difference what the definition of the
macro is; all that matters is whether there is a definition. Thus, for
example,

#if defined (vax) || defined (ns16000)

would succeed if either of the names ‘vax’ and ‘ns16000’ is defined as
a macro. You can test the same condition using assertions (see Sec-
tion 1.5.5 “Assertions,” page 33), like this:

#if #cpu (vax) || #cpu (ns16000)

If a macro is defined and later undefined with ‘#undef’, subsequent
use of the ‘defined’ operator returns 0, because the name is no longer
defined. If the macro is defined again with another ‘#define’, ‘defined’
will recommence returning 1.

Conditionals that test whether just one name is defined are very
common, so there are two special short conditional directives for this
case.

#ifdef name
is equivalent to ‘#if defined (name)’.

#ifndef name
is equivalent to ‘#if ! defined (name)’.

Macro definitions can vary between compilations for several reasons.

32 27 June 1995

Chapter 1: The C Preprocessor

� Some macros are predefined on each kind of machine. For example,
on a Vax, the name ‘vax’ is a predefined macro. On other machines,
it would not be defined.

� Many more macros are defined by system header files. Different sys-
tems and machines define different macros, or give them different
values. It is useful to test these macros with conditionals to avoid
using a system feature on a machine where it is not implemented.

� Macros are a common way of allowing users to customize a pro-
gram for different machines or applications. For example, the macro
‘BUFSIZE’ might be defined in a configuration file for your program
that is included as a header file in each source file. You would use
‘BUFSIZE’ in a preprocessing conditional in order to generate differ-
ent code depending on the chosen configuration.

� Macros can be defined or undefined with ‘-D’ and ‘-U’ command op-
tions when you compile the program. You can arrange to compile
the same source file into two different programs by choosing a macro
name to specify which program you want, writing conditionals to
test whether or how this macro is defined, and then controlling the
state of the macro with compiler command options. See Section 1.9
“Invocation,” page 38.

1.5.5 Assertions

Assertions are a more systematic alternative to macros in writing con-
ditionals to test what sort of computer or system the compiled program
will run on. Assertions are usually predefined, but you can define them
with preprocessing directives or command-line options.

The macros traditionally used to describe the type of target are not
classified in any way according to which question they answer; they
may indicate a hardware architecture, a particular hardware model, an
operating system, a particular version of an operating system, or specific
configuration options. These are jumbled together in a single namespace.
In contrast, each assertion consists of a named question and an answer.
The question is usually called the predicate. An assertion looks like this:

#predicate (answer)

You must use a properly formed identifier for predicate. The value
of answer can be any sequence of words; all characters are significant
except for leading and trailing whitespace, and differences in internal
whitespace sequences are ignored. Thus, ‘x + y’ is different from ‘x+y’
but equivalent to ‘x + y’. ‘)’ is not allowed in an answer.

Here is a conditional to test whether the answer answer is asserted
for the predicate predicate:

c y g n u s s u p p o r t 33

The C Preprocessor

#if #predicate (answer)

There may be more than one answer asserted for a given predicate. If
you omit the answer, you can test whether any answer is asserted for
predicate:

#if #predicate

Most of the time, the assertions you test will be predefined assertions.
GNU C provides three predefined predicates: system, cpu, and machine.
system is for assertions about the type of software, cpu describes the type
of computer architecture, and machine gives more information about
the computer. For example, on a GNU system, the following assertions
would be true:

#system (gnu)
#system (mach)
#system (mach 3)
#system (mach 3.subversion)
#system (hurd)
#system (hurd version)

and perhaps others. The alternatives with more or less version informa-
tion let you ask more or less detailed questions about the type of system
software.

On a Unix system, you would find #system (unix) and perhaps one
of: #system (aix), #system (bsd), #system (hpux), #system (lynx),
#system (mach), #system (posix), #system (svr3), #system (svr4),
or #system (xpg4) with possible version numbers following.

Other values for system are #system (mvs) and #system (vms).

Portability note: Many Unix C compilers provide only one answer
for the system assertion: #system (unix), if they support assertions at
all. This is less than useful.

An assertion with a multi-word answer is completely different from
several assertions with individual single-word answers. For example,
the presence of system (mach 3.0) does not mean that system (3.0) is
true. It also does not directly imply system (mach), but in GNU C, that
last will normally be asserted as well.

The current list of possible assertion values for cpu is: #cpu (a29k),
#cpu (alpha), #cpu (arm), #cpu (clipper), #cpu (convex), #cpu
(elxsi), #cpu (tron), #cpu (h8300), #cpu (i370), #cpu (i386), #cpu
(i860), #cpu (i960), #cpu (m68k), #cpu (m88k), #cpu (mips), #cpu
(ns32k), #cpu (hppa), #cpu (pyr), #cpu (ibm032), #cpu (rs6000),
#cpu (sh), #cpu (sparc), #cpu (spur), #cpu (tahoe), #cpu (vax), #cpu
(we32000).

34 27 June 1995

Chapter 1: The C Preprocessor

You can create assertions within a C program using ‘#assert’, like
this:

#assert predicate (answer)

(Note the absence of a ‘#’ before predicate.)

Each time you do this, you assert a new true answer for predicate.
Asserting one answer does not invalidate previously asserted answers;
they all remain true. The only way to remove an assertion is with
‘#unassert’. ‘#unassert’ has the same syntax as ‘#assert’. You can also
remove all assertions about predicate like this:

#unassert predicate

You can also add or cancel assertions using command options when
you run gcc or cpp. See Section 1.9 “Invocation,” page 38.

1.5.6 The ‘#error’ and ‘#warning’ Directives

The directive ‘#error’ causes the preprocessor to report a fatal error.
The rest of the line that follows ‘#error’ is used as the error message.

You would use ‘#error’ inside of a conditional that detects a com-
bination of parameters which you know the program does not properly
support. For example, if you know that the program will not run properly
on a Vax, you might write

#ifdef __vax__
#error Won’t work on Vaxen. See comments at get_last_object.
#endif

See Section 1.4.3.2 “Nonstandard Predefined,” page 15, for why this
works.

If you have several configuration parameters that must be set up by
the installation in a consistent way, you can use conditionals to detect
an inconsistency and report it with ‘#error’. For example,

#if HASH_TABLE_SIZE % 2 == 0 || HASH_TABLE_SIZE % 3 == 0 \
|| HASH_TABLE_SIZE % 5 == 0

#error HASH_TABLE_SIZE should not be divisible by a small prime
#endif

The directive ‘#warning’ is like the directive ‘#error’, but causes the
preprocessor to issue a warning and continue preprocessing. The rest of
the line that follows ‘#warning’ is used as the warning message.

You might use ‘#warning’ in obsolete header files, with a message
directing the user to the header file which should be used instead.

c y g n u s s u p p o r t 35

The C Preprocessor

1.6 Combining Source Files

One of the jobs of the C preprocessor is to inform the C compiler of
where each line of C code came from: which source file and which line
number.

C code can come from multiple source files if you use ‘#include’; both
‘#include’ and the use of conditionals and macros can cause the line
number of a line in the preprocessor output to be different from the
line’s number in the original source file. You will appreciate the value of
making both the C compiler (in error messages) and symbolic debuggers
such as GDB use the line numbers in your source file.

The C preprocessor builds on this feature by offering a directive by
which you can control the feature explicitly. This is useful when a file
for input to the C preprocessor is the output from another program such
as the bison parser generator, which operates on another file that is
the true source file. Parts of the output from bison are generated from
scratch, other parts come from a standard parser file. The rest are copied
nearly verbatim from the source file, but their line numbers in the bison
output are not the same as their original line numbers. Naturally you
would like compiler error messages and symbolic debuggers to know the
original source file and line number of each line in the bison input.

bison arranges this by writing ‘#line’ directives into the output file.
‘#line’ is a directive that specifies the original line number and source
file name for subsequent input in the current preprocessor input file.
‘#line’ has three variants:

#line linenum
Here linenum is a decimal integer constant. This specifies
that the line number of the following line of input, in its
original source file, was linenum.

#line linenum filename
Here linenum is a decimal integer constant and filename is a
string constant. This specifies that the following line of input
came originally from source file filename and its line number
there was linenum. Keep in mind that filename is not just a
file name; it is surrounded by doublequote characters so that
it looks like a string constant.

#line anything else
anything else is checked for macro calls, which are ex-
panded. The result should be a decimal integer constant
followed optionally by a string constant, as described above.

36 27 June 1995

Chapter 1: The C Preprocessor

‘#line’ directives alter the results of the ‘__FILE__’ and ‘__LINE__’
predefined macros from that point on. See Section 1.4.3.1 “Standard
Predefined,” page 12.

The output of the preprocessor (which is the input for the rest of the
compiler) contains directives that look much like ‘#line’ directives. They
start with just ‘#’ instead of ‘#line’, but this is followed by a line number
and file name as in ‘#line’. See Section 1.8 “Output,” page 37.

1.7 Miscellaneous Preprocessing Directives

This section describes three additional preprocessing directives. They
are not very useful, but are mentioned for completeness.

The null directive consists of a ‘#’ followed by a Newline, with only
whitespace (including comments) in between. A null directive is under-
stood as a preprocessing directive but has no effect on the preprocessor
output. The primary significance of the existence of the null directive is
that an input line consisting of just a ‘#’ will produce no output, rather
than a line of output containing just a ‘#’. Supposedly some old C pro-
grams contain such lines.

The ANSI standard specifies that the ‘#pragma’ directive has an ar-
bitrary, implementation-defined effect. In the GNU C preprocessor,
‘#pragma’ directives are not used, except for ‘#pragma once’ (see Sec-
tion 1.3.4 “Once-Only,” page 6). However, they are left in the preproces-
sor output, so they are available to the compilation pass.

The ‘#ident’ directive is supported for compatibility with certain
other systems. It is followed by a line of text. On some systems, the
text is copied into a special place in the object file; on most systems, the
text is ignored and this directive has no effect. Typically ‘#ident’ is only
used in header files supplied with those systems where it is meaningful.

1.8 C Preprocessor Output

The output from the C preprocessor looks much like the input, except
that all preprocessing directive lines have been replaced with blank lines
and all comments with spaces. Whitespace within a line is not altered;
however, a space is inserted after the expansions of most macro calls.

Source file name and line number information is conveyed by lines of
the form

linenum filename flags

which are inserted as needed into the middle of the input (but never
within a string or character constant). Such a line means that the
following line originated in file filename at line linenum.

c y g n u s s u p p o r t 37

The C Preprocessor

After the file name comes zero or more flags, which are ‘1’, ‘2’ or ‘3’.
If there are multiple flags, spaces separate them. Here is what the flags
mean:

‘1’ This indicates the start of a new file.

‘2’ This indicates returning to a file (after having included an-
other file).

‘3’ This indicates that the following text comes from a system
header file, so certain warnings should be suppressed.

1.9 Invoking the C Preprocessor

Most often when you use the C preprocessor you will not have to
invoke it explicitly: the C compiler will do so automatically. However,
the preprocessor is sometimes useful on its own.

The C preprocessor expects two file names as arguments, infile and
outfile. The preprocessor reads infile together with any other files
it specifies with ‘#include’. All the output generated by the combined
input files is written in outfile.

Either infile or outfile may be ‘-’, which as infile means to read
from standard input and as outfile means to write to standard output.
Also, if outfile or both file names are omitted, the standard output and
standard input are used for the omitted file names.

Here is a table of command options accepted by the C preprocessor.
These options can also be given when compiling a C program; they are
passed along automatically to the preprocessor when it is invoked by the
compiler.

‘-P’ Inhibit generation of ‘#’-lines with line-number information
in the output from the preprocessor (see Section 1.8 “Output,”
page 37). This might be useful when running the preproces-
sor on something that is not C code and will be sent to a
program which might be confused by the ‘#’-lines.

‘-C’ Do not discard comments: pass them through to the output
file. Comments appearing in arguments of a macro call will
be copied to the output before the expansion of the macro
call.

‘-traditional’
Try to imitate the behavior of old-fashioned C, as opposed to
ANSI C.
� Traditional macro expansion pays no attention to single-

quote or doublequote characters; macro argument sym-

38 27 June 1995

Chapter 1: The C Preprocessor

bols are replaced by the argument values even when they
appear within apparent string or character constants.

� Traditionally, it is permissible for a macro expansion to
end in the middle of a string or character constant. The
constant continues into the text surrounding the macro
call.

� However, traditionally the end of the line terminates a
string or character constant, with no error.

� In traditional C, a comment is equivalent to no text at
all. (In ANSI C, a comment counts as whitespace.)

� Traditional C does not have the concept of a “preprocess-
ing number”. It considers ‘1.0e+4’ to be three tokens:
‘1.0e’, ‘+’, and ‘4’.

� A macro is not suppressed within its own definition, in
traditional C. Thus, any macro that is used recursively
inevitably causes an error.

� The character ‘#’ has no special meaning within a macro
definition in traditional C.

� In traditional C, the text at the end of a macro expansion
can run together with the text after the macro call, to
produce a single token. (This is impossible in ANSI C.)

� Traditionally, ‘\’ inside a macro argument suppresses the
syntactic significance of the following character.

‘-trigraphs’
Process ANSI standard trigraph sequences. These are three-
character sequences, all starting with ‘??’, that are defined
by ANSI C to stand for single characters. For example, ‘??/’
stands for ‘\’, so ‘’??/n’’ is a character constant for a new-
line. Strictly speaking, the GNU C preprocessor does not sup-
port all programs in ANSI Standard C unless ‘-trigraphs’
is used, but if you ever notice the difference it will be with
relief.
You don’t want to know any more about trigraphs.

‘-pedantic’
Issue warnings required by the ANSI C standard in certain
cases such as when text other than a comment follows ‘#else’
or ‘#endif’.

‘-pedantic-errors’
Like ‘-pedantic’, except that errors are produced rather than
warnings.

c y g n u s s u p p o r t 39

The C Preprocessor

‘-Wtrigraphs’
Warn if any trigraphs are encountered (assuming they are
enabled).

‘-Wcomment’
Warn whenever a comment-start sequence ‘/*’ appears in a
comment.

‘-Wall’ Requests both ‘-Wtrigraphs’ and ‘-Wcomment’ (but not
‘-Wtraditional’).

‘-Wtraditional’
Warn about certain constructs that behave differently in tra-
ditional and ANSI C.

‘-I directory’
Add the directory directory to the end of the list of directo-
ries to be searched for header files (see Section 1.3.2 “Include
Syntax,” page 4). This can be used to override a system
header file, substituting your own version, since these di-
rectories are searched before the system header file directo-
ries. If you use more than one ‘-I’ option, the directories are
scanned in left-to-right order; the standard system directo-
ries come after.

‘-I-’ Any directories specified with ‘-I’ options before the ‘-I-’
option are searched only for the case of ‘#include "file"’;
they are not searched for ‘#include <file>’.
If additional directories are specified with ‘-I’ options after
the ‘-I-’, these directories are searched for all ‘#include’
directives.
In addition, the ‘-I-’ option inhibits the use of the current
directory as the first search directory for ‘#include "file"’.
Therefore, the current directory is searched only if it is re-
quested explicitly with ‘-I.’. Specifying both ‘-I-’ and ‘-I.’
allows you to control precisely which directories are searched
before the current one and which are searched after.

‘-nostdinc’
Do not search the standard system directories for header
files. Only the directories you have specified with ‘-I’ options
(and the current directory, if appropriate) are searched.

‘-nostdinc++’
Do not search for header files in the C++-specific standard
directories, but do still search the other standard directories.
(This option is used when building libg++.)

‘-D name’ Predefine name as a macro, with definition ‘1’.

40 27 June 1995

Chapter 1: The C Preprocessor

‘-D name=definition’
Predefine name as a macro, with definition definition.
There are no restrictions on the contents of definition, but
if you are invoking the preprocessor from a shell or shell-like
program you may need to use the shell’s quoting syntax to
protect characters such as spaces that have a meaning in the
shell syntax. If you use more than one ‘-D’ for the same name,
the rightmost definition takes effect.

‘-U name’ Do not predefine name. If both ‘-U’ and ‘-D’ are specified
for one name, the ‘-U’ beats the ‘-D’ and the name is not
predefined.

‘-undef’ Do not predefine any nonstandard macros.

‘-A predicate(answer)’
Make an assertion with the predicate predicate and answer
answer. See Section 1.5.5 “Assertions,” page 33.
You can use ‘-A-’ to disable all predefined assertions; it also
undefines all predefined macros that identify the type of tar-
get system.

‘-dM’ Instead of outputting the result of preprocessing, output a list
of ‘#define’ directives for all the macros defined during the
execution of the preprocessor, including predefined macros.
This gives you a way of finding out what is predefined in
your version of the preprocessor; assuming you have no file
‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show the values of any predefined macros.

‘-dD’ Like ‘-dM’ except in two respects: it does not include the pre-
defined macros, and it outputs both the ‘#define’ directives
and the result of preprocessing. Both kinds of output go to
the standard output file.

‘-M [-MG]’ Instead of outputting the result of preprocessing, output a
rule suitable for make describing the dependencies of the
main source file. The preprocessor outputs one make rule
containing the object file name for that source file, a colon,
and the names of all the included files. If there are many
included files then the rule is split into several lines using
‘\’-newline.
‘-MG’ says to treat missing header files as generated files and
assume they live in the same directory as the source file. It
must be specified in addition to ‘-M’.
This feature is used in automatic updating of makefiles.

c y g n u s s u p p o r t 41

The C Preprocessor

‘-MM [-MG]’
Like ‘-M’ but mention only the files included with ‘#include
"file"’. System header files included with ‘#include
<file>’ are omitted.

‘-MD file’ Like ‘-M’ but the dependency information is written to file.
This is in addition to compiling the file as specified—‘-MD’
does not inhibit ordinary compilation the way ‘-M’ does.
When invoking gcc, do not specify the file argument. Gcc
will create file names made by replacing ".c" with ".d" at the
end of the input file names.
In Mach, you can use the utility md to merge multiple depen-
dency files into a single dependency file suitable for using
with the ‘make’ command.

‘-MMD file’
Like ‘-MD’ except mention only user header files, not system
header files.

‘-H’ Print the name of each header file used, in addition to other
normal activities.

‘-imacros file’
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output gener-
ated from file is discarded, the only effect of ‘-imacros file’
is to make the macros defined in file available for use in the
main input.

‘-include file’
Process file as input, and include all the resulting output,
before processing the regular input file.

‘-idirafter dir’
Add the directory dir to the second include path. The direc-
tories on the second include path are searched when a header
file is not found in any of the directories in the main include
path (the one that ‘-I’ adds to).

‘-iprefix prefix’
Specify prefix as the prefix for subsequent ‘-iwithprefix’
options.

‘-iwithprefix dir’
Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where pre-
fix was specified previously with ‘-iprefix’.

42 27 June 1995

Chapter 1: The C Preprocessor

‘-isystem dir’
Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same
special treatment as is applied to the standard system direc-
tories.

‘-lang-c’
‘-lang-c++’
‘-lang-objc’
‘-lang-objc++’

Specify the source language. ‘-lang-c++’ makes the prepro-
cessor handle C++ comment syntax (comments may begin
with ‘//’, in which case they end at end of line), and includes
extra default include directories for C++; and ‘-lang-objc’
enables the Objective C ‘#import’ directive. ‘-lang-c’ explic-
itly turns off both of these extensions, and ‘-lang-objc++’
enables both.
These options are generated by the compiler driver gcc, but
not passed from the ‘gcc’ command line.

‘-lint’ Look for commands to the program checker lint embedded
in comments, and emit them preceded by ‘#pragma lint’. For
example, the comment ‘/* NOTREACHED */’ becomes ‘#pragma
lint NOTREACHED’.
This option is available only when you call cpp directly; gcc
will not pass it from its command line.

‘-$’ Forbid the use of ‘$’ in identifiers. This is required for ANSI
conformance. gcc automatically supplies this option to the
preprocessor if you specify ‘-ansi’, but gcc doesn’t recognize
the ‘-$’ option itself—to use it without the other effects of
‘-ansi’, you must call the preprocessor directly.

c y g n u s s u p p o r t 43

The C Preprocessor

44 27 June 1995

Concept Index

Concept Index

#
‘##’ . 18

A
arguments in macro definitions 10
assertions . 33
assertions, undoing 35

B
blank macro arguments 11

C
cascaded macros . 27
commenting out code. 31
computed ‘#include’ 5
concatenation .. 18
conditionals . 28

D
directives . 2

E
expansion of arguments 25

F
function-like macro 10

H
header file . 3

I
including just once . 6
inheritance . 7
invocation of the preprocessor. 38

L
line control . 36

M
macro argument expansion 25
macro body uses macro 27
macros with argument 10
manifest constant . 8

N
newlines in macro arguments 27
null directive. 37

O
options . 38
output format . 37
overriding a header file 7

P
parentheses in macro bodies 21
pitfalls of macros. 20
predefined macros . 12
predicates . 33
preprocessing directives 2
prescan of macro arguments 25
problems with macros 20

R
redefining macros . 20
repeated inclusion. 6
retracting assertions 35

S
second include path 42
self-reference . 24
semicolons (after macro calls) 22
side effects (in macro arguments) 23
simple macro . 8
space as macro argument 11
standard predefined macros. 12
stringification . 17

T
testing predicates . 33

c y g n u s s u p p o r t 45

The C Preprocessor

U
unassert . 35

undefining macros . 19
unsafe macros . 23

46 27 June 1995

Index of Directives, Macros and Options

Index of Directives, Macros and Options

#
#assert . 34
#cpu . 34
#define . 10
#elif. 30
#else. 30
#error . 35
#ident . 37
#if . 29
#ifdef . 32
#ifndef . 32
#import . 7
#include . 4
#include next . 8
#line. 36
#machine . 34
#pragma . 37
#pragma once . 7
#system . 34
#unassert . 35
#warning . 35

-
-$. 43
-A . 41
-C . 38
-D . 40
-dD . 41
-dM . 41
-H . 42
-I . 40
-idirafter . 42
-imacros . 42
-include . 42
-iprefix . 42
-isystem . 43
-iwithprefix . 42
-lang-c . 43
-lang-c++ . 43
-lang-objc . 43
-lang-objc++ . 43
-M . 41
-MD . 42

-MM . 42
-MMD . 42
-nostdinc . 40
-nostdinc++. 40
-P . 38
-pedantic . 39
-pedantic-errors 39
-traditional . 38
-trigraphs . 39
-U . 41
-undef . 41
-Wall. 40
-Wcomment . 40
-Wtraditional . 40
-Wtrigraphs. 40

BASE FILE . 14
CHAR UNSIGNED 14
cplusplus . 14
DATE . 13
FILE . 12
GNUC . 13
GNUG . 14
INCLUDE LEVEL . 13
LINE . 12
OPTIMIZE . 14
REGISTER PREFIX 15
STDC . 13
STDC VERSION . 13
STRICT ANSI . 14
TIME . 13
USER LABEL PREFIX 15
VERSION . 14
AM29000 . 16
AM29K . 16

B
BSD . 15

D
defined . 32

c y g n u s s u p p o r t 47

The C Preprocessor

M
M68020 . 16
m68k . 15
mc68000 . 15

N
ns32000 . 16

P
pyr . 16

S
sequent . 16
sun . 16
system header files. 3

U
unix . 15

V
vax . 15

48 27 June 1995

Using as
The GNU Assembler

January 1994

The Free Software Foundation Inc. thanks The Nice Computer Company
of Australia for loaning Dean Elsner to write the first (Vax) version of
as for Project GNU. The proprietors, management and staff of TNCCA
thank FSF for distracting the boss while they got some work done.

Dean Elsner, Jay Fenlason & friends

Using as
Edited by Roland Pesch for Cygnus Support

Copyright c 1991, 1992, 1993, 1994 1995 Free Software Foundation,
Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Overview . 1
1.1 Structure of this Manual . 4
1.2 as, the GNU Assembler . 4
1.3 Object File Formats . 5
1.4 Command Line . 5
1.5 Input Files . 5
1.6 Output (Object) File . 6
1.7 Error and Warning Messages . 6

2 Command-Line Options . 9
2.1 Enable Listings: -a[dhlns] . 9
2.2 -D . 9
2.3 Work Faster: -f . 10
2.4 .include search path: -I path . 10
2.5 Difference Tables: -K . 10
2.6 Include Local Labels: -L . 10
2.7 Name the Object File: -o . 11
2.8 Join Data and Text Sections: -R . 11
2.9 Display Assembly Statistics: --statistics 11
2.10 Announce Version: -v . 11
2.11 Suppress Warnings: -W . 11
2.12 Generate Object File in Spite of Errors: -Z 12

3 Syntax . 13
3.1 Preprocessing . 13
3.2 Whitespace . 13
3.3 Comments . 14
3.4 Symbols . 14
3.5 Statements . 15
3.6 Constants . 16

3.6.1 Character Constants . 16
3.6.1.1 Strings . 16
3.6.1.2 Characters . 17

3.6.2 Number Constants . 17
3.6.2.1 Integers . 17
3.6.2.2 Bignums . 18
3.6.2.3 Flonums . 18

4 Sections and Relocation . 21
4.1 Background . 21

c y g n u s s u p p o r t i

Using as

4.2 ld Sections . 23
4.3 as Internal Sections . 24
4.4 Sub-Sections . 24
4.5 bss Section . 25

5 Symbols . 27
5.1 Labels . 27
5.2 Giving Symbols Other Values . 27
5.3 Symbol Names . 27
5.4 The Special Dot Symbol . 28
5.5 Symbol Attributes . 29

5.5.1 Value . 29
5.5.2 Type . 29
5.5.3 Symbol Attributes: a.out . 29

5.5.3.1 Descriptor . 29
5.5.3.2 Other . 30

5.5.4 Symbol Attributes for COFF 30
5.5.4.1 Primary Attributes 30
5.5.4.2 Auxiliary Attributes 30

5.5.5 Symbol Attributes for SOM . 30

6 Expressions . 31
6.1 Empty Expressions . 31
6.2 Integer Expressions . 31

6.2.1 Arguments . 31
6.2.2 Operators . 32
6.2.3 Prefix Operator . 32
6.2.4 Infix Operators . 32

7 Assembler Directives . 35
7.1 .abort . 35
7.2 .ABORT . 35
7.3 .align abs-expr , abs-expr . 35
7.4 .app-file string . 36
7.5 .ascii "string". 36
7.6 .asciz "string". 36
7.7 .byte expressions . 36
7.8 .comm symbol , length . 36
7.9 .data subsection . 36
7.10 .def name . 37
7.11 .desc symbol, abs-expression . 37
7.12 .dim . 37
7.13 .double flonums . 37
7.14 .eject . 37

ii 7 July 1995

7.15 .else . 37
7.16 .endef . 38
7.17 .endif . 38
7.18 .equ symbol, expression . 38
7.19 .extern . 38
7.20 .file string . 38
7.21 .fill repeat , size , value . 38
7.22 .float flonums . 39
7.23 .global symbol, .globl symbol . 39
7.24 .hword expressions . 39
7.25 .ident . 39
7.26 .if absolute expression . 40
7.27 .include "file" . 40
7.28 .int expressions . 40
7.29 .lcomm symbol , length . 40
7.30 .lflags . 41
7.31 .line line-number . 41
7.32 .ln line-number . 41
7.33 .list . 41
7.34 .long expressions . 42
7.35 .nolist . 42
7.36 .octa bignums . 42
7.37 .org new-lc , fill . 42
7.38 .psize lines , columns . 43
7.39 .quad bignums . 43
7.40 .sbttl "subheading" . 43
7.41 .scl class . 43
7.42 .section name, subsection . 44
7.43 .set symbol, expression . 44
7.44 .short expressions . 44
7.45 .single flonums . 44
7.46 .size . 44
7.47 .space size , fill . 45
7.48 .stabd, .stabn, .stabs . 45
7.49 .string "str" . 46
7.50 .tag structname . 46
7.51 .text subsection . 46
7.52 .title "heading" . 46
7.53 .type int . 47
7.54 .val addr . 47
7.55 .word expressions . 47
7.56 Deprecated Directives . 48

c y g n u s s u p p o r t iii

Using as

8 Machine Dependent Features 49
8.1 VAX Dependent Features . 49

8.1.1 VAX Command-Line Options 49
8.1.2 VAX Floating Point . 50
8.1.3 Vax Machine Directives . 50
8.1.4 VAX Opcodes . 51
8.1.5 VAX Branch Improvement . 51
8.1.6 VAX Operands . 53
8.1.7 Not Supported on VAX . 53

8.2 AMD 29K Dependent Features . 54
8.2.1 Options . 54
8.2.2 Syntax . 54

8.2.2.1 Special Characters . 54
8.2.2.2 Register Names . 54

8.2.3 Floating Point . 55
8.2.4 AMD 29K Machine Directives 55
8.2.5 Opcodes . 55

8.3 H8/300 Dependent Features . 56
8.3.1 Options . 56
8.3.2 Syntax . 56

8.3.2.1 Special Characters . 56
8.3.2.2 Register Names . 56
8.3.2.3 Addressing Modes . 56

8.3.3 Floating Point . 57
8.3.4 H8/300 Machine Directives . 58
8.3.5 Opcodes . 58

8.4 H8/500 Dependent Features . 62
8.4.1 Options . 62
8.4.2 Syntax . 62

8.4.2.1 Special Characters . 62
8.4.2.2 Register Names . 62
8.4.2.3 Addressing Modes . 63

8.4.3 Floating Point . 63
8.4.4 H8/500 Machine Directives . 63
8.4.5 Opcodes . 63

8.5 HPPA Dependent Features . 66
8.5.1 Notes . 66
8.5.2 Options . 66
8.5.3 Syntax . 66
8.5.4 Floating Point . 67
8.5.5 HPPA Assembler Directives . 67
8.5.6 Opcodes . 70

8.6 Hitachi SH Dependent Features . 71
8.6.1 Options . 71
8.6.2 Syntax . 71

iv 7 July 1995

8.6.2.1 Special Characters . 71
8.6.2.2 Register Names . 71
8.6.2.3 Addressing Modes . 71

8.6.3 Floating Point . 72
8.6.4 SH Machine Directives . 72
8.6.5 Opcodes . 72

8.7 Intel 80960 Dependent Features . 75
8.7.1 i960 Command-line Options 75
8.7.2 Floating Point . 76
8.7.3 i960 Machine Directives . 76
8.7.4 i960 Opcodes . 77

8.7.4.1 callj . 77
8.7.4.2 Compare-and-Branch 78

8.8 M680x0 Dependent Features . 79
8.8.1 M680x0 Options . 79
8.8.2 Syntax . 79
8.8.3 Motorola Syntax . 80
8.8.4 Floating Point . 81
8.8.5 680x0 Machine Directives . 81
8.8.6 Opcodes . 82

8.8.6.1 Branch Improvement 82
8.8.6.2 Special Characters . 83

8.9 SPARC Dependent Features . 84
8.9.1 Options . 84
8.9.2 Floating Point . 84
8.9.3 Sparc Machine Directives . 84

8.10 80386 Dependent Features . 86
8.10.1 Options . 86
8.10.2 AT&T Syntax versus Intel Syntax 86
8.10.3 Opcode Naming . 86
8.10.4 Register Naming . 87
8.10.5 Opcode Prefixes . 88
8.10.6 Memory References . 88
8.10.7 Handling of Jump Instructions 89
8.10.8 Floating Point . 90
8.10.9 Writing 16-bit Code . 91
8.10.10 Notes . 91

8.11 Z8000 Dependent Features . 93
8.11.1 Options . 93
8.11.2 Syntax . 93

8.11.2.1 Special Characters 93
8.11.2.2 Register Names . 93
8.11.2.3 Addressing Modes 94

8.11.3 Assembler Directives for the Z8000 94
8.11.4 Opcodes . 95

c y g n u s s u p p o r t v

Using as

8.12 MIPS Dependent Features . 99
8.12.1 Assembler options . 99
8.12.2 MIPS ECOFF object code . 100
8.12.3 Directives for debugging information 100
8.12.4 Directives to override the ISA level 101

9 Acknowledgements . 103

Index . 105

vi 7 July 1995

Chapter 1: Overview

1 Overview

This manual is a user guide to the gnu assembler as.
Here is a brief summary of how to invoke as. For details, see Chap-

ter 2 “Comand-Line Options,” page 9.
as [-a[dhlns]] [-D] [-f] [--help]
[-I dir] [-J] [-K] [-L] [-o objfile]
[-R] [--statistics] [-v] [-version] [--version]
[-W] [-w] [-x] [-Z]
[-Av6 | -Av7 | -Av8 | -Av9 | -Asparclite | -bump]
[-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC]
[-b] [-no-relax]
[-l] [-m68000 | -m68010 | -m68020 | ...]
[-nocpp] [-EL] [-EB] [-G num] [-mcpu=CPU]
[-mips1] [-mips2] [-mips3] [-m4650] [-no-m4650]
[--trap] [--break]
[-- | files ...]

-a[dhlns]
Turn on listings, in any of a variety of ways:

-ad omit debugging directives

-ah include high-level source

-al include assembly

-an omit forms processing

-as include symbols

You may combine these options; for example, use ‘-aln’ for
assembly listing without forms processing. By itself, ‘-a’
defaults to ‘-ahls’—that is, all listings turned on.

-D Ignored. This option is accepted for script compatibility with
calls to other assemblers.

-f “fast”—skip whitespace and comment preprocessing (assume
source is compiler output).

--help Print a summary of the command line options and exit.

-I dir Add directory dir to the search list for .include directives.

-J Don’t warn about signed overflow.

-K Issue warnings when difference tables altered for long dis-
placements.

-L Keep (in the symbol table) local symbols, starting with ‘L’.

-o objfile
Name the object-file output from as objfile.

c y g n u s s u p p o r t 1

Using as

-R Fold the data section into the text section.

--statistics
Print the maximum space (in bytes) and total time (in sec-
onds) used by assembly.

-v
-version Print the as version.

--version
Print the as version and exit.

-W Suppress warning messages.

-w Ignored.

-x Ignored.

-Z Generate an object file even after errors.

-- | files . ..
Standard input, or source files to assemble.

The following options are available when as is configured for the Intel
80960 processor.

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Specify which variant of the 960 architecture is the target.

-b Add code to collect statistics about branches taken.

-no-relax
Do not alter compare-and-branch instructions for long dis-
placements; error if necessary.

The following options are available when as is configured for the
Motorola 68000 series.

-l Shorten references to undefined symbols, to one word instead
of two.

-m68000 | -m68008 | -m68010 | -m68020 | -m68030 | -m68040
| -m68302 | -m68331 | -m68332 | -m68333 | -m68340 | -mcpu32

Specify what processor in the 68000 family is the target.
The default is normally the 68020, but this can be changed
at configuration time.

-m68881 | -m68882 | -mno-68881 | -mno-68882
The target machine does (or does not) have a floating-point
coprocessor. The default is to assume a coprocessor for 68020,
68030, and cpu32. Although the basic 68000 is not compati-
ble with the 68881, a combination of the two can be specified,
since it’s possible to do emulation of the coprocessor instruc-
tions with the main processor.

2 7 July 1995

Chapter 1: Overview

-m68851 | -mno-68851
The target machine does (or does not) have a memory-
management unit coprocessor. The default is to assume an
MMU for 68020 and up.

The following options are available when as is configured for the
SPARC architecture:

-Av6 | -Av7 | -Av8 | -Av9 | -Asparclite
Explicitly select a variant of the SPARC architecture.

-bump Warn when the assembler switches to another architecture.

The following options are available when as is configured for a MIPS
processor.

-G num This option sets the largest size of an object that can be
referenced implicitly with the gp register. It is only accepted
for targets that use ECOFF format, such as a DECstation
running Ultrix. The default value is 8.

-EB Generate “big endian” format output.
-EL Generate “little endian” format output.
-mips1
-mips2
-mips3 Generate code for a particular MIPS Instruction Set Archi-

tecture level. ‘-mips1’ corresponds to the r2000 and r3000

processors, ‘-mips2’ to the r6000 processor, and ‘-mips3’ to
the r4000 processor.

-m4650

-no-m4650
Generate code for the MIPS r4650 chip. This tells the as-
sembler to accept the ‘mad’ and ‘madu’ instruction, and to not
schedule ‘nop’ instructions around accesses to the ‘HI’ and
‘LO’ registers. ‘-no-m4650’ turns off this option.

-mcpu=CPU
Generate code for a particular MIPS cpu. This has little
effect on the assembler, but it is passed by gcc.

-nocpp as ignores this option. It is accepted for compatibility with
the native tools.

--trap
--no-trap
--break
--no-break

Control how to deal with multiplication overflow and divi-
sion by zero. ‘--trap’ or ‘--no-break’ (which are synonyms)

c y g n u s s u p p o r t 3

Using as

take a trap exception (and only work for Instruction Set Ar-
chitecture level 2 and higher); ‘--break’ or ‘--no-trap’ (also
synonyms, and the default) take a break exception.

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use gnu
as. We cover the syntax expected in source files, including notation for
symbols, constants, and expressions; the directives that as understands;
and of course how to invoke as.

This manual also describes some of the machine-dependent features
of various flavors of the assembler.

On the other hand, this manual is not intended as an introduction to
programming in assembly language—let alone programming in general!
In a similar vein, we make no attempt to introduce the machine archi-
tecture; we do not describe the instruction set, standard mnemonics,
registers or addressing modes that are standard to a particular architec-
ture. You may want to consult the manufacturer’s machine architecture
manual for this information.

1.2 as, the GNU Assembler

gnu as is really a family of assemblers. If you use (or have used)
the gnu assembler on one architecture, you should find a fairly similar
environment when you use it on another architecture. Each version has
much in common with the others, including object file formats, most
assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the gnu C compiler
gcc for use by the linker ld. Nevertheless, we’ve tried to make as as-
semble correctly everything that other assemblers for the same machine
would assemble. Any exceptions are documented explicitly (see Chap-
ter 8 “Machine Dependencies,” page 49). This doesn’t mean as always
uses the same syntax as another assembler for the same architecture; for
example, we know of several incompatible versions of 680x0 assembly
language syntax.

Unlike older assemblers, as is designed to assemble a source program
in one pass of the source file. This has a subtle impact on the .org
directive (see Section 7.37 “.org,” page 42).

4 7 July 1995

Chapter 1: Overview

1.3 Object File Formats

The gnu assembler can be configured to produce several alternative
object file formats. For the most part, this does not affect how you write
assembly language programs; but directives for debugging symbols are
typically different in different file formats. See Section 5.5 “Symbol
Attributes,” page 29.

1.4 Command Line

After the program name as, the command line may contain options
and file names. Options may appear in any order, and may be before,
after, or between file names. The order of file names is significant.

‘--’ (two hyphens) by itself names the standard input file explicitly,
as one of the files for as to assemble.

Except for ‘--’ any command line argument that begins with a hyphen
(‘-’) is an option. Each option changes the behavior of as. No option
changes the way another option works. An option is a ‘-’ followed by
one or more letters; the case of the letter is important. All options are
optional.

Some options expect exactly one file name to follow them. The file
name may either immediately follow the option’s letter (compatible with
older assemblers) or it may be the next command argument (gnu stan-
dard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

1.5 Input Files

We use the phrase source program, abbreviated source, to describe
the program input to one run of as. The program may be in one or more
files; how the source is partitioned into files doesn’t change the meaning
of the source.

The source program is a concatenation of the text in all the files, in
the order specified.

Each time you run as it assembles exactly one source program. The
source program is made up of one or more files. (The standard input is
also a file.)

You give as a command line that has zero or more input file names.
The input files are read (from left file name to right). A command line
argument (in any position) that has no special meaning is taken to be an
input file name.

c y g n u s s u p p o r t 5

Using as

If you give as no file names it attempts to read one input file from the
as standard input, which is normally your terminal. You may have to
type CTL-D to tell as there is no more program to assemble.

Use ‘--’ if you need to explicitly name the standard input file in your
command line.

If the source is empty, as produces a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and
either may be used in reporting error messages. One way refers to a line
number in a physical file; the other refers to a line number in a “logical”
file. See Section 1.7 “Error and Warning Messages,” page 6.

Physical files are those files named in the command line given to as.
Logical files are simply names declared explicitly by assembler di-

rectives; they bear no relation to physical files. Logical file names help
error messages reflect the original source file, when as source is itself
synthesized from other files. See Section 7.4 “.app-file,” page 36.

1.6 Output (Object) File

Every time you run as it produces an output file, which is your assem-
bly language program translated into numbers. This file is the object
file. Its default name is a.out, or b.out when as is configured for
the Intel 80960. You can give it another name by using the -o option.
Conventionally, object file names end with ‘.o’. The default name is
used for historical reasons: older assemblers were capable of assem-
bling self-contained programs directly into a runnable program. (For
some formats, this isn’t currently possible, but it can be done for the
a.out format.)

The object file is meant for input to the linker ld. It contains as-
sembled program code, information to help ld integrate the assembled
program into a runnable file, and (optionally) symbolic information for
the debugger.

1.7 Error and Warning Messages

as may write warnings and error messages to the standard error file
(usually your terminal). This should not happen when a compiler runs
as automatically. Warnings report an assumption made so that as could
keep assembling a flawed program; errors report a grave problem that
stops the assembly.

6 7 July 1995

Chapter 1: Overview

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been
given (see Section 7.4 “.app-file,” page 36) it is used for the filename,
otherwise the name of the current input file is used. If a logical line
number was given (see Section 7.31 “.line,” page 41) then it is used to
calculate the number printed, otherwise the actual line in the current
source file is printed. The message text is intended to be self explanatory
(in the grand Unix tradition).

Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages.
The actual message text may be rather less explanatory because many
of them aren’t supposed to happen.

c y g n u s s u p p o r t 7

Using as

8 7 July 1995

Chapter 2: Command-Line Options

2 Command-Line Options

This chapter describes command-line options available in all versions
of the gnu assembler; see Chapter 8 “Machine Dependencies,” page 49,
for options specific to particular machine architectures.

If you are invoking as via the gnu C compiler (version 2), you can
use the ‘-Wa’ option to pass arguments through to the assembler. The
assembler arguments must be separated from each other (and the ‘-Wa’)
by commas. For example:

gcc -c -g -O -Wa,-alh,-L file.c

emits a listing to standard output with high-level and assembly source.
Usually you do not need to use this ‘-Wa’ mechanism, since many

compiler command-line options are automatically passed to the assem-
bler by the compiler. (You can call the gnu compiler driver with the ‘-v’
option to see precisely what options it passes to each compilation pass,
including the assembler.)

2.1 Enable Listings: -a[dhlns]

These options enable listing output from the assembler. By itself, ‘-a’
requests high-level, assembly, and symbols listing. You can use other
letters to select specific options for the list: ‘-ah’ requests a high-level
language listing, ‘-al’ requests an output-program assembly listing, and
‘-as’ requests a symbol table listing. High-level listings require that a
compiler debugging option like ‘-g’ be used, and that assembly listings
(‘-al’) be requested also.

Use the ‘-ad’ option to omit debugging directives from the listing.
Once you have specified one of these options, you can further control

listing output and its appearance using the directives .list, .nolist,
.psize, .eject, .title, and .sbttl. The ‘-an’ option turns off all forms
processing. If you do not request listing output with one of the ‘-a’
options, the listing-control directives have no effect.

The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.

2.2 -D

This option has no effect whatsoever, but it is accepted to make it
more likely that scripts written for other assemblers also work with as.

c y g n u s s u p p o r t 9

Using as

2.3 Work Faster: -f

‘-f’ should only be used when assembling programs written by a
(trusted) compiler. ‘-f’ stops the assembler from doing whitespace and
comment preprocessing on the input file(s) before assembling them. See
Section 3.1 “Preprocessing,” page 13.

Warning: if you use ‘-f’ when the files actually need to be pre-
processed (if they contain comments, for example), as does not
work correctly.

2.4 .include search path: -I path

Use this option to add a path to the list of directories as searches
for files specified in .include directives (see Section 7.27 “.include,”
page 40). You may use -I as many times as necessary to include a
variety of paths. The current working directory is always searched first;
after that, as searches any ‘-I’ directories in the same order as they were
specified (left to right) on the command line.

2.5 Difference Tables: -K

as sometimes alters the code emitted for directives of the form ‘.word
sym1-sym2’; see Section 7.55 “.word,” page 47. You can use the ‘-K’ option
if you want a warning issued when this is done.

2.6 Include Local Labels: -L

Labels beginning with ‘L’ (upper case only) are called local labels.
See Section 5.3 “Symbol Names,” page 27. Normally you do not see
such labels when debugging, because they are intended for the use of
programs (like compilers) that compose assembler programs, not for
your notice. Normally both as and ld discard such labels, so you do not
normally debug with them.

This option tells as to retain those ‘L.. .’ symbols in the object file.
Usually if you do this you also tell the linker ld to preserve symbols
whose names begin with ‘L’.

By default, a local label is any label beginning with ‘L’, but each target
is allowed to redefine the local label prefix. On the HPPA local labels
begin with ‘L$’.

10 7 July 1995

Chapter 2: Command-Line Options

2.7 Name the Object File: -o

There is always one object file output when you run as. By default
it has the name ‘a.out’ (or ‘b.out’, for Intel 960 targets only). You use
this option (which takes exactly one filename) to give the object file a
different name.

Whatever the object file is called, as overwrites any existing file of
the same name.

2.8 Join Data and Text Sections: -R

-R tells as to write the object file as if all data-section data lives in the
text section. This is only done at the very last moment: your binary data
are the same, but data section parts are relocated differently. The data
section part of your object file is zero bytes long because all its bytes are
appended to the text section. (See Chapter 4 “Sections and Relocation,”
page 21.)

When you specify -R it would be possible to generate shorter address
displacements (because we do not have to cross between text and data
section). We refrain from doing this simply for compatibility with older
versions of as. In future, -R may work this way.

When as is configured for COFF output, this option is only useful if
you use sections named ‘.text’ and ‘.data’.

-R is not supported for any of the HPPA targets. Using -R generates
a warning from as.

2.9 Display Assembly Statistics: --statistics

Use ‘--statistics’ to display two statistics about the resources used
by as: the maximum amount of space allocated during the assembly
(in bytes), and the total execution time taken for the assembly (in cpu

seconds).

2.10 Announce Version: -v

You can find out what version of as is running by including the option
‘-v’ (which you can also spell as ‘-version’) on the command line.

2.11 Suppress Warnings: -W

as should never give a warning or error message when assembling
compiler output. But programs written by people often cause as to give a

c y g n u s s u p p o r t 11

Using as

warning that a particular assumption was made. All such warnings are
directed to the standard error file. If you use this option, no warnings
are issued. This option only affects the warning messages: it does not
change any particular of how as assembles your file. Errors, which stop
the assembly, are still reported.

2.12 Generate Object File in Spite of Errors: -Z

After an error message, as normally produces no output. If for some
reason you are interested in object file output even after as gives an
error message on your program, use the ‘-Z’ option. If there are any
errors, as continues anyways, and writes an object file after a final
warning message of the form ‘n errors, m warnings, generating bad
object file.’

12 7 July 1995

Chapter 3: Syntax

3 Syntax

This chapter describes the machine-independent syntax allowed in a
source file. as syntax is similar to what many other assemblers use; it
is inspired by the BSD 4.2 assembler, except that as does not assemble
Vax bit-fields.

3.1 Preprocessing

The as internal preprocessor:

� adjusts and removes extra whitespace. It leaves one space or tab
before the keywords on a line, and turns any other whitespace on
the line into a single space.

� removes all comments, replacing them with a single space, or an
appropriate number of newlines.

� converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else
you may get from your C compiler’s preprocessor. You can do include file
processing with the .include directive (see Section 7.27 “.include,”
page 40). You can use the gnu C compiler driver to get other “CPP” style
preprocessing, by giving the input file a ‘.S’ suffix. See section “Options
Controlling the Kind of Output” in Using GNU CC.

Excess whitespace, comments, and character constants cannot be
used in the portions of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the ‘-f’ option,
whitespace and comments are not removed from the input file. Within
an input file, you can ask for whitespace and comment removal in specific
portions of the by putting a line that says #APP before the text that may
contain whitespace or comments, and putting a line that says #NO_APP
after this text. This feature is mainly intend to support asm statements
in compilers whose output is otherwise free of comments and whitespace.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace
is used to separate symbols, and to make programs neater for people to
read. Unless within character constants (see Section 3.6.1 “Character
Constants,” page 16), any whitespace means the same as exactly one
space.

c y g n u s s u p p o r t 13

Using as

3.3 Comments

There are two ways of rendering comments to as. In both cases the
comment is equivalent to one space.

Anything from ‘/*’ through the next ‘*/’ is a comment. This means
you may not nest these comments.

/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is
considered a comment and is ignored. The line comment character is
‘#’ on the Vax; ‘#’ on the i960; ‘!’ on the SPARC; ‘|’ on the 680x0; ‘;’ for
the AMD 29K family; ‘;’ for the H8/300 family; ‘!’ for the H8/500 family;
‘;’ for the HPPA; ‘!’ for the Hitachi SH; ‘!’ for the Z8000; see Chapter 8
“Machine Dependencies,” page 49.

On some machines there are two different line comment characters.
One character only begins a comment if it is the first non-whitespace
character on a line, while the other always begins a comment.

To be compatible with past assemblers, lines that begin with ‘#’ have a
special interpretation. Following the ‘#’ should be an absolute expression
(see Chapter 6 “Expressions,” page 31): the logical line number of the
next line. Then a string (see Section 3.6.1.1 “Strings,” page 16) is allowed:
if present it is a new logical file name. The rest of the line, if any, should
be whitespace.

If the first non-whitespace characters on the line are not numeric, the
line is ignored. (Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name

This is logical line # 36.

This feature is deprecated, and may disappear from future versions
of as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters
(both upper and lower case), digits and the three characters ‘_.$’. On
most machines, you can also use $ in symbol names; exceptions are
noted in Chapter 8 “Machine Dependencies,” page 49. No symbol may
begin with a digit. Case is significant. There is no length limit: all
characters are significant. Symbols are delimited by characters not in
that set, or by the beginning of a file (since the source program must end

14 7 July 1995

Chapter 3: Syntax

with a newline, the end of a file is not a possible symbol delimiter). See
Chapter 5 “Symbols,” page 27.

3.5 Statements

A statement ends at a newline character (‘\n’) or line separator char-
acter. (The line separator is usually ‘;’, unless this conflicts with the
comment character; see Chapter 8 “Machine Dependencies,” page 49.)
The newline or separator character is considered part of the preceding
statement. Newlines and separators within character constants are an
exception: they do not end statements.

It is an error to end any statement with end-of-file: the last character
of any input file should be a newline.

You may write a statement on more than one line if you put a back-
slash (\) immediately in front of any newlines within the statement.
When as reads a backslashed newline both characters are ignored. You
can even put backslashed newlines in the middle of symbol names with-
out changing the meaning of your source program.

An empty statement is allowed, and may include whitespace. It is
ignored.

A statement begins with zero or more labels, optionally followed by
a key symbol which determines what kind of statement it is. The key
symbol determines the syntax of the rest of the statement. If the sym-
bol begins with a dot ‘.’ then the statement is an assembler directive:
typically valid for any computer. If the symbol begins with a letter
the statement is an assembly language instruction: it assembles into
a machine language instruction. Different versions of as for different
computers recognize different instructions. In fact, the same symbol
may represent a different instruction in a different computer’s assembly
language.

A label is a symbol immediately followed by a colon (:). Whitespace
before a label or after a colon is permitted, but you may not have whites-
pace between a label’s symbol and its colon. See Section 5.1 “Labels,”
page 27.

For HPPA targets, labels need not be immediately followed by a colon,
but the definition of a label must begin in column zero. This also implies
that only one label may be defined on each line.

label: .directive followed by something
another_label: # This is an empty statement.

instruction operand_1, operand_2, ...

c y g n u s s u p p o r t 15

Using as

3.6 Constants

A constant is a number, written so that its value is known by inspec-
tion, without knowing any context. Like this:

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-314159265358979323846264338327\

95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one
character in one byte and its value may be used in numeric expressions.
String constants (properly called string literals) are potentially many
bytes and their values may not be used in arithmetic expressions.

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-
quotes or null characters. The way to get special characters into a string
is to escape these characters: precede them with a backslash ‘\’ character.
For example ‘\\’ represents one backslash: the first \ is an escape which
tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The
complete list of escapes follows.

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code
015.

\t Mnemonic for horizontal Tab; for ASCII this is octal code
011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits.
For compatibility with other Unix systems, 8 and 9 are ac-
cepted as digits: for example, \008 has the value 010, and
\009 the value 011.

\x hex-digit hex-digit
A hex character code. The numeric code is 2 hexadecimal
digits. Either upper or lower case x works.

16 7 July 1995

Chapter 3: Syntax

\\ Represents one ‘\’ character.

\" Represents one ‘"’ character. Needed in strings to represent
this character, because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ gives a warning, but
assembles as if the ‘\’ was not present. The idea is that if you
used an escape sequence you clearly didn’t want the literal
interpretation of the following character. However as has no
other interpretation, so as knows it is giving you the wrong
code and warns you of the fact.

Which characters are escapable, and what those escapes represent,
varies widely among assemblers. The current set is what we think the
BSD 4.2 assembler recognizes, and is a subset of what most C compilers
recognize. If you are in doubt, do not use an escape sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately
followed by that character. The same escapes apply to characters as
to strings. So if you want to write the character backslash, you must
write ’\\ where the first \ escapes the second \. As you can see, the
quote is an acute accent, not a grave accent. A newline immediately
following an acute accent is taken as a literal character and does not
count as the end of a statement. The value of a character constant in a
numeric expression is the machine’s byte-wide code for that character.
as assumes your character code is ASCII: ’A means 65, ’B means 66,
and so on.

3.6.2 Number Constants

as distinguishes three kinds of numbers according to how they are
stored in the target machine. Integers are numbers that would fit into
an int in the C language. Bignums are integers, but they are stored in
more than 32 bits. Flonums are floating point numbers, described below.

3.6.2.1 Integers

A binary integer is ‘0b’ or ‘0B’ followed by zero or more of the binary
digits ‘01’.

An octal integer is ‘0’ followed by zero or more of the octal digits
(‘01234567’).

c y g n u s s u p p o r t 17

Using as

A decimal integer starts with a non-zero digit followed by zero or more
digits (‘0123456789’).

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadec-
imal digits chosen from ‘0123456789abcdefABCDEF’.

Integers have the usual values. To denote a negative integer, use the
prefix operator ‘-’ discussed under expressions (see Section 6.2.3 “Prefix
Operators,” page 32).

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except
that the number (or its negative) takes more than 32 bits to represent
in binary. The distinction is made because in some places integers are
permitted while bignums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indi-
rect: a decimal floating point number from the text is converted by as to
a generic binary floating point number of more than sufficient precision.
This generic floating point number is converted to a particular com-
puter’s floating point format (or formats) by a portion of as specialized
to that computer.

A flonum is written by writing (in order)
� The digit ‘0’. (‘0’ is optional on the HPPA.)
� A letter, to tell as the rest of the number is a flonum. e is recom-

mended. Case is not important.
On the H8/300, H8/500, Hitachi SH, and AMD 29K architectures,
the letter must be one of the letters ‘DFPRSX’ (in upper or lower case).
On the Intel 960 architecture, the letter must be one of the letters
‘DFT’ (in upper or lower case).
On the HPPA architecture, the letter must be ‘E’ (upper case only).

� An optional sign: either ‘+’ or ‘-’.
� An optional integer part: zero or more decimal digits.
� An optional fractional part: ‘.’ followed by zero or more decimal

digits.
� An optional exponent, consisting of:

� An ‘E’ or ‘e’.
� Optional sign: either ‘+’ or ‘-’.
� One or more decimal digits.

18 7 July 1995

Chapter 3: Syntax

At least one of the integer part or the fractional part must be present.
The floating point number has the usual base-10 value.

as does all processing using integers. Flonums are computed inde-
pendently of any floating point hardware in the computer running as.

c y g n u s s u p p o r t 19

Using as

20 7 July 1995

Chapter 4: Sections and Relocation

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in”
those addresses is treated the same for some particular purpose. For
example there may be a “read only” section.

The linker ld reads many object files (partial programs) and combines
their contents to form a runnable program. When as emits an object file,
the partial program is assumed to start at address 0. ld assigns the final
addresses for the partial program, so that different partial programs do
not overlap. This is actually an oversimplification, but it suffices to
explain how as uses sections.

ld moves blocks of bytes of your program to their run-time addresses.
These blocks slide to their run-time addresses as rigid units; their length
does not change and neither does the order of bytes within them. Such a
rigid unit is called a section. Assigning run-time addresses to sections is
called relocation. It includes the task of adjusting mentions of object-file
addresses so they refer to the proper run-time addresses. For the H8/300
and H8/500, and for the Hitachi SH, as pads sections if needed to ensure
they end on a word (sixteen bit) boundary.

An object file written by as has at least three sections, any of which
may be empty. These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever
other named sections you specify using the ‘.section’ directive (see
Section 7.42 “.section,” page 44). If you do not use any directives that
place output in the ‘.text’ or ‘.data’ sections, these sections still exist,
but are empty.

When as generates SOM or ELF output for the HPPA, as can also
generate whatever other named sections you specify using the ‘.space’
and ‘.subspace’ directives. See HP9000 Series 800 Assembly Language
Reference Manual (HP 92432-90001) for details on the ‘.space’ and
‘.subspace’ assembler directives.

Additionally, as uses different names for the standard text, data, and
bss sections when generating SOM output. Program text is placed into
the ‘$CODE$’ section, data into ‘$DATA$’, and BSS into ‘BSS’.

Within the object file, the text section starts at address 0, the data
section follows, and the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the
text section starts at address 0, the data section at address 0x4000000,
and the bss section follows the data section.

c y g n u s s u p p o r t 21

Using as

To let ld know which data changes when the sections are relocated,
and how to change that data, as also writes to the object file details of
the relocation needed. To perform relocation ld must know, each time
an address in the object file is mentioned:
� Where in the object file is the beginning of this reference to an

address?
� How long (in bytes) is this reference?
� Which section does the address refer to? What is the numeric value

of
(address) � (start-address of section)?

� Is the reference to an address “Program-Counter relative”?

In fact, every address as ever uses is expressed as
(section) + (offset into section)

Further, most expressions as computes have this section-relative nature.
(For some object formats, such as SOM for the HPPA, some expressions
are symbol-relative instead.)

In this manual we use the notation {secname N} to mean “offset N
into section secname.”

Apart from text, data and bss sections you need to know about the
absolute section. When ld mixes partial programs, addresses in the
absolute section remain unchanged. For example, address {absolute
0} is “relocated” to run-time address 0 by ld. Although the linker never
arranges two partial programs’ data sections with overlapping addresses
after linking, by definition their absolute sections must overlap. Address
{absolute 239} in one part of a program is always the same address
when the program is running as address {absolute 239} in any other
part of the program.

The idea of sections is extended to the undefined section. Any address
whose section is unknown at assembly time is by definition rendered
{undefined U}—where U is filled in later. Since numbers are always
defined, the only way to generate an undefined address is to mention
an undefined symbol. A reference to a named common block would be
such a symbol: its value is unknown at assembly time so it has section
undefined.

By analogy the word section is used to describe groups of sections
in the linked program. ld puts all partial programs’ text sections in
contiguous addresses in the linked program. It is customary to refer to
the text section of a program, meaning all the addresses of all partial
programs’ text sections. Likewise for data and bss sections.

Some sections are manipulated by ld; others are invented for use of
as and have no meaning except during assembly.

22 7 July 1995

Chapter 4: Sections and Relocation

4.2 ld Sections

ld deals with just four kinds of sections, summarized below.

named sections
text section
data section

These sections hold your program. as and ld treat them as
separate but equal sections. Anything you can say of one sec-
tion is true another. When the program is running, however,
it is customary for the text section to be unalterable. The text
section is often shared among processes: it contains instruc-
tions, constants and the like. The data section of a running
program is usually alterable: for example, C variables would
be stored in the data section.

bss section
This section contains zeroed bytes when your program begins
running. It is used to hold unitialized variables or common
storage. The length of each partial program’s bss section is
important, but because it starts out containing zeroed bytes
there is no need to store explicit zero bytes in the object file.
The bss section was invented to eliminate those explicit zeros
from object files.

absolute section
Address 0 of this section is always “relocated” to runtime
address 0. This is useful if you want to refer to an address
that ld must not change when relocating. In this sense we
speak of absolute addresses being “unrelocatable”: they do
not change during relocation.

undefined section
This “section” is a catch-all for address references to objects
not in the preceding sections.

An idealized example of three relocatable sections follows. The ex-
ample uses the traditional section names ‘.text’ and ‘.data’. Memory
addresses are on the horizontal axis.

c y g n u s s u p p o r t 23

Using as

Partial program #1:
text data bss

ttttt dddd 00

Partial program #2:
text data bss

TTT DDDD 000

linked program:
text data bss

TTT ttttt dddd DDDD 00000
: : :

addresses:
0: : :

4.3 as Internal Sections

These sections are meant only for the internal use of as. They have
no meaning at run-time. You do not really need to know about these
sections for most purposes; but they can be mentioned in as warning
messages, so it might be helpful to have an idea of their meanings to as.
These sections are used to permit the value of every expression in your
assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This
means there is a bug in the assembler.

expr section
The assembler stores complex expression internally as com-
binations of symbols. When it needs to represent an expres-
sion as a symbol, it puts it in the expr section.

4.4 Sub-Sections

Assembled bytes conventionally fall into two sections: text and data.
You may have separate groups of data in named sections that you want
to end up near to each other in the object file, even though they are not
contiguous in the assembler source. as allows you to use subsections for
this purpose. Within each section, there can be numbered subsections
with values from 0 to 8192. Objects assembled into the same subsection
go into the object file together with other objects in the same subsection.
For example, a compiler might want to store constants in the text section,
but might not want to have them interspersed with the program being
assembled. In this case, the compiler could issue a ‘.text 0’ before

24 7 July 1995

Chapter 4: Sections and Relocation

each section of code being output, and a ‘.text 1’ before each group of
constants being output.

Subsections are optional. If you do not use subsections, everything
goes in subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Sub-
sections may be padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest num-
bered to highest. (All this to be compatible with other people’s assem-
blers.) The object file contains no representation of subsections; ld and
other programs that manipulate object files see no trace of them. They
just see all your text subsections as a text section, and all your data
subsections as a data section.

To specify which subsection you want subsequent statements assem-
bled into, use a numeric argument to specify it, in a ‘.text expression’
or a ‘.data expression’ statement. When generating COFF output,
you can also use an extra subsection argument with arbitrary named
sections: ‘.section name, expression’. Expression should be an ab-
solute expression. (See Chapter 6 “Expressions,” page 31.) If you just
say ‘.text’ then ‘.text 0’ is assumed. Likewise ‘.data’ means ‘.data 0’.
Assembly begins in text 0. For instance:

.text 0 # The default subsection is text 0 anyway.

.ascii "This lives in the first text subsection. *"

.text 1

.ascii "But this lives in the second text subsection."

.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text 0

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every
byte assembled into that section. Because subsections are merely a
convenience restricted to as there is no concept of a subsection location
counter. There is no way to directly manipulate a location counter—but
the .align directive changes it, and any label definition captures its
current value. The location counter of the section where statements are
being assembled is said to be the active location counter.

4.5 bss Section

The bss section is used for local common variable storage. You may
allocate address space in the bss section, but you may not dictate data
to load into it before your program executes. When your program starts
running, all the contents of the bss section are zeroed bytes.

c y g n u s s u p p o r t 25

Using as

Addresses in the bss section are allocated with special directives; you
may not assemble anything directly into the bss section. Hence there
are no bss subsections. See Section 7.8 “.comm,” page 36, see Section 7.29
“.lcomm,” page 40.

26 7 July 1995

Chapter 5: Symbols

5 Symbols

Symbols are a central concept: the programmer uses symbols to name
things, the linker uses symbols to link, and the debugger uses symbols
to debug.

Warning: as does not place symbols in the object file in the same
order they were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The
symbol then represents the current value of the active location counter,
and is, for example, a suitable instruction operand. You are warned if
you use the same symbol to represent two different locations: the first
definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately
followed by a colon, but instead must start in column zero. Only one
label may be defined on a single line. To work around this, the HPPA
version of as also provides a special directive .label for defining labels
more flexibly.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, fol-
lowed by an equals sign ‘=’, followed by an expression (see Chapter 6
“Expressions,” page 31). This is equivalent to using the .set directive.
See Section 7.43 “.set,” page 44.

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘._’. On most ma-
chines, you can also use $ in symbol names; exceptions are noted in
Chapter 8 “Machine Dependencies,” page 49. That character may be
followed by any string of digits, letters, dollar signs (unless otherwise
noted in Chapter 8 “Machine Dependencies,” page 49), and underscores.
For the AMD 29K family, ‘?’ is also allowed in the body of a symbol name,
though not at its beginning.

Case of letters is significant: foo is a different symbol name than Foo.
Each symbol has exactly one name. Each name in an assembly lan-

guage program refers to exactly one symbol. You may use that symbol
name any number of times in a program.

c y g n u s s u p p o r t 27

Using as

Local Symbol Names

Local symbols help compilers and programmers use names temporar-
ily. There are ten local symbol names, which are re-used throughout the
program. You may refer to them using the names ‘0’ ‘1’ . . . ‘9’. To define
a local symbol, write a label of the form ‘N:’ (where N represents any
digit). To refer to the most recent previous definition of that symbol
write ‘Nb’, using the same digit as when you defined the label. To refer
to the next definition of a local label, write ‘Nf’—where N gives you a
choice of 10 forward references. The ‘b’ stands for “backwards” and the
‘f’ stands for “forwards”.

Local symbols are not emitted by the current gnu C compiler.
There is no restriction on how you can use these labels, but remember

that at any point in the assembly you can refer to at most 10 prior local
labels and to at most 10 forward local labels.

Local symbol names are only a notation device. They are immediately
transformed into more conventional symbol names before the assembler
uses them. The symbol names stored in the symbol table, appearing in
error messages and optionally emitted to the object file have these parts:

L All local labels begin with ‘L’. Normally both as and ld forget
symbols that start with ‘L’. These labels are used for symbols
you are never intended to see. If you use the ‘-L’ option then
as retains these symbols in the object file. If you also instruct
ld to retain these symbols, you may use them in debugging.

digit If the label is written ‘0:’ then the digit is ‘0’. If the label is
written ‘1:’ then the digit is ‘1’. And so on up through ‘9:’.

ˆA This unusual character is included so you do not accidentally
invent a symbol of the same name. The character has ASCII
value ‘\001’.

ordinal number
This is a serial number to keep the labels distinct. The first
‘0:’ gets the number ‘1’; The 15th ‘0:’ gets the number ‘15’;
etc.. Likewise for the other labels ‘1:’ through ‘9:’.

For instance, the first 1: is named L1ˆA1, the 44th 3: is named
L3ˆA44.

5.4 The Special Dot Symbol

The special symbol ‘.’ refers to the current address that as is as-
sembling into. Thus, the expression ‘melvin: .long .’ defines melvin
to contain its own address. Assigning a value to . is treated the same

28 7 July 1995

Chapter 5: Symbols

as a .org directive. Thus, the expression ‘.=.+4’ is the same as saying
‘.space 4’.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and
“Type”. Depending on output format, symbols can also have auxiliary
attributes.

If you use a symbol without defining it, as assumes zero for all these
attributes, and probably won’t warn you. This makes the symbol an
externally defined symbol, which is generally what you would want.

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a
location in the text, data, bss or absolute sections the value is the number
of addresses from the start of that section to the label. Naturally for text,
data and bss sections the value of a symbol changes as ld changes section
base addresses during linking. Absolute symbols’ values do not change
during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0
then the symbol is not defined in this assembler source file, and ld tries
to determine its value from other files linked into the same program. You
make this kind of symbol simply by mentioning a symbol name without
defining it. A non-zero value represents a .comm common declaration.
The value is how much common storage to reserve, in bytes (addresses).
The symbol refers to the first address of the allocated storage.

5.5.2 Type

The type attribute of a symbol contains relocation (section) informa-
tion, any flag settings indicating that a symbol is external, and (option-
ally), other information for linkers and debuggers. The exact format
depends on the object-code output format in use.

5.5.3 Symbol Attributes: a.out

5.5.3.1 Descriptor

This is an arbitrary 16-bit value. You may establish a symbol’s de-
scriptor value by using a .desc statement (see Section 7.11 “.desc,”
page 37). A descriptor value means nothing to as.

c y g n u s s u p p o r t 29

Using as

5.5.3.2 Other

This is an arbitrary 8-bit value. It means nothing to as.

5.5.4 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol at-
tributes; like the primary symbol attributes, they are set between .def
and .endef directives.

5.5.4.1 Primary Attributes

The symbol name is set with .def; the value and type, respectively,
with .val and .type.

5.5.4.2 Auxiliary Attributes

The as directives .dim, .line, .scl, .size, and .tag can generate
auxiliary symbol table information for COFF.

5.5.5 Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol at-
tributes set with the .EXPORT and .IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Lan-
guage Reference Manual (HP 92432-90001) under the IMPORT and EXPORT
assembler directive documentation.

30 7 July 1995

Chapter 6: Expressions

6 Expressions

An expression specifies an address or numeric value. Whitespace may
precede and/or follow an expression.

The result of an expression must be an absolute number, or else an off-
set into a particular section. If an expression is not absolute, and there is
not enough information when as sees the expression to know its section,
a second pass over the source program might be necessary to interpret
the expression—but the second pass is currently not implemented. as
aborts with an error message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wher-
ever an absolute expression is required, you may omit the expression,
and as assumes a value of (absolute) 0. This is compatible with other
assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other con-
texts arguments are sometimes called “arithmetic operands”. In this
manual, to avoid confusing them with the “instruction operands” of the
machine language, we use the term “argument” to refer to parts of ex-
pressions only, reserving the word “operand” to refer only to machine
instruction operands.

Symbols are evaluated to yield {section NNN} where section is one
of text, data, bss, absolute, or undefined. NNN is a signed, 2’s complement
32 bit integer.

Numbers are usually integers.
A number can be a flonum or bignum. In this case, you are warned

that only the low order 32 bits are used, and as pretends these 32 bits
are an integer. You may write integer-manipulating instructions that
act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘(’ followed by an integer ex-
pression, followed by a right parenthesis ‘)’; or a prefix operator followed
by an argument.

c y g n u s s u p p o r t 31

Using as

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are
followed by an argument. Infix operators appear between their argu-
ments. Operators may be preceded and/or followed by whitespace.

6.2.3 Prefix Operator

as has the following prefix operators. They each take one argument,
which must be absolute.

- Negation. Two’s complement negation.

˜ Complementation. Bitwise not.

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators
have precedence, but operations with equal precedence are performed
left to right. Apart from + or -, both arguments must be absolute, and
the result is absolute.

1. Highest Precedence

* Multiplication.

/ Division. Truncation is the same as the C operator ‘/’

% Remainder.

<
<< Shift Left. Same as the C operator ‘<<’.

>
>> Shift Right. Same as the C operator ‘>>’.

2. Intermediate precedence

|

Bitwise Inclusive Or.

& Bitwise And.

ˆ Bitwise Exclusive Or.

! Bitwise Or Not.
3. Lowest Precedence

+ Addition. If either argument is absolute, the result has
the section of the other argument. You may not add
together arguments from different sections.

32 7 July 1995

Chapter 6: Expressions

- Subtraction. If the right argument is absolute, the result
has the section of the left argument. If both arguments
are in the same section, the result is absolute. You may
not subtract arguments from different sections.

In short, it’s only meaningful to add or subtract the offsets in an
address; you can only have a defined section in one of the two arguments.

c y g n u s s u p p o r t 33

Using as

34 7 July 1995

Chapter 7: Assembler Directives

7 Assembler Directives

All assembler directives have names that begin with a period (‘.’).
The rest of the name is letters, usually in lower case.

This chapter discusses directives that are available regardless of the
target machine configuration for the gnu assembler. Some machine
configurations provide additional directives. See Chapter 8 “Machine
Dependencies,” page 49.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility
with other assemblers. The original idea was that the assembly language
source would be piped into the assembler. If the sender of the source
quit, it could use this directive tells as to quit also. One day .abort will
not be supported.

7.2 .ABORT

When producing COFF output, as accepts this directive as a synonym
for ‘.abort’.

When producing b.out output, as accepts this directive, but ignores
it.

7.3 .align abs-expr , abs-expr

Pad the location counter (in the current subsection) to a particular
storage boundary. The first expression (which must be absolute) is the
number of low-order zero bits the location counter must have after ad-
vancement. For example ‘.align 3’ advances the location counter until
it a multiple of 8. If the location counter is already a multiple of 8, no
change is needed.

For the HPPA, the first expression (which must be absolute) is the
alignment request in bytes. For example ‘.align 8’ advances the location
counter until it is a multiple of 8. If the location counter is already a
multiple of 8, no change is needed.

The second expression (also absolute) gives the value to be stored in
the padding bytes. It (and the comma) may be omitted. If it is omitted,
the padding bytes are zero.

c y g n u s s u p p o r t 35

Using as

7.4 .app-file string

.app-file (which may also be spelled ‘.file’) tells as that we are
about to start a new logical file. string is the new file name. In general,
the filename is recognized whether or not it is surrounded by quotes ‘"’;
but if you wish to specify an empty file name is permitted, you must
give the quotes–"". This statement may go away in future: it is only
recognized to be compatible with old as programs.

7.5 .ascii "string". . .

.ascii expects zero or more string literals (see Section 3.6.1.1
“Strings,” page 16) separated by commas. It assembles each string (with
no automatic trailing zero byte) into consecutive addresses.

7.6 .asciz "string". . .

.asciz is just like .ascii, but each string is followed by a zero byte.
The “z” in ‘.asciz’ stands for “zero”.

7.7 .byte expressions

.byte expects zero or more expressions, separated by commas. Each
expression is assembled into the next byte.

7.8 .comm symbol , length

.comm declares a named common area in the bss section. Normally ld
reserves memory addresses for it during linking, so no partial program
defines the location of the symbol. Use .comm to tell ld that it must be
at least length bytes long. ld allocates space for each .comm symbol
that is at least as long as the longest .comm request in any of the partial
programs linked. length is an absolute expression.

The syntax for .comm differs slightly on the HPPA. The syntax is
‘symbol .comm, length’; symbol is optional.

7.9 .data subsection

.data tells as to assemble the following statements onto the end of the
data subsection numbered subsection (which is an absolute expression).
If subsection is omitted, it defaults to zero.

36 7 July 1995

Chapter 7: Assembler Directives

7.10 .def name

Begin defining debugging information for a symbol name; the defini-
tion extends until the .endef directive is encountered.

This directive is only observed when as is configured for COFF format
output; when producing b.out, ‘.def’ is recognized, but ignored.

7.11 .desc symbol, abs-expression

This directive sets the descriptor of the symbol (see Section 5.5 “Sym-
bol Attributes,” page 29) to the low 16 bits of an absolute expression.

The ‘.desc’ directive is not available when as is configured for COFF
output; it is only for a.out or b.out object format. For the sake of
compatibility, as accepts it, but produces no output, when configured for
COFF.

7.12 .dim

This directive is generated by compilers to include auxiliary de-
bugging information in the symbol table. It is only permitted inside
.def/.endef pairs.

‘.dim’ is only meaningful when generating COFF format output; when
as is generating b.out, it accepts this directive but ignores it.

7.13 .double flonums

.double expects zero or more flonums, separated by commas. It
assembles floating point numbers. The exact kind of floating point num-
bers emitted depends on how as is configured. See Chapter 8 “Machine
Dependencies,” page 49.

7.14 .eject

Force a page break at this point, when generating assembly listings.

7.15 .else

.else is part of the as support for conditional assembly; see Sec-
tion 7.26 “.if,” page 40. It marks the beginning of a section of code to
be assembled if the condition for the preceding .if was false.

c y g n u s s u p p o r t 37

Using as

7.16 .endef

This directive flags the end of a symbol definition begun with .def.
‘.endef’ is only meaningful when generating COFF format output; if

as is configured to generate b.out, it accepts this directive but ignores
it.

7.17 .endif

.endif is part of the as support for conditional assembly; it marks
the end of a block of code that is only assembled conditionally. See
Section 7.26 “.if,” page 40.

7.18 .equ symbol, expression

This directive sets the value of symbol to expression. It is synony-
mous with ‘.set’; see Section 7.43 “.set,” page 44.

The syntax for equ on the HPPA is ‘symbol .equ expression’.

7.19 .extern

.extern is accepted in the source program—for compatibility with
other assemblers—but it is ignored. as treats all undefined symbols as
external.

7.20 .file string

.file (which may also be spelled ‘.app-file’) tells as that we are
about to start a new logical file. string is the new file name. In general,
the filename is recognized whether or not it is surrounded by quotes ‘"’;
but if you wish to specify an empty file name, you must give the quotes–
"". This statement may go away in future: it is only recognized to be
compatible with old as programs. In some configurations of as, .file
has already been removed to avoid conflicts with other assemblers. See
Chapter 8 “Machine Dependencies,” page 49.

7.21 .fill repeat , size , value

result, size and value are absolute expressions. This emits repeat
copies of size bytes. Repeat may be zero or more. Size may be zero
or more, but if it is more than 8, then it is deemed to have the value 8,
compatible with other people’s assemblers. The contents of each repeat

38 7 July 1995

Chapter 7: Assembler Directives

bytes is taken from an 8-byte number. The highest order 4 bytes are zero.
The lowest order 4 bytes are value rendered in the byte-order of an inte-
ger on the computer as is assembling for. Each size bytes in a repetition
is taken from the lowest order size bytes of this number. Again, this
bizarre behavior is compatible with other people’s assemblers.

size and value are optional. If the second comma and value are
absent, value is assumed zero. If the first comma and following tokens
are absent, size is assumed to be 1.

7.22 .float flonums

This directive assembles zero or more flonums, separated by commas.
It has the same effect as .single. The exact kind of floating point num-
bers emitted depends on how as is configured. See Chapter 8 “Machine
Dependencies,” page 49.

7.23 .global symbol, .globl symbol

.global makes the symbol visible to ld. If you define symbol in your
partial program, its value is made available to other partial programs
that are linked with it. Otherwise, symbol takes its attributes from a
symbol of the same name from another file linked into the same program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility
with other assemblers.

On the HPPA, .global is not always enough to make it accessible to
other partial programs. You may need the HPPA-only .EXPORT directive
as well. See Section 8.5.5 “HPPA Assembler Directives,” page 67.

7.24 .hword expressions

This expects zero or more expressions, and emits a 16 bit number
for each.

This directive is a synonym for ‘.short’; depending on the target
architecture, it may also be a synonym for ‘.word’.

7.25 .ident

This directive is used by some assemblers to place tags in object files.
as simply accepts the directive for source-file compatibility with such
assemblers, but does not actually emit anything for it.

c y g n u s s u p p o r t 39

Using as

7.26 .if absolute expression

.if marks the beginning of a section of code which is only considered
part of the source program being assembled if the argument (which must
be an absolute expression) is non-zero. The end of the conditional
section of code must be marked by .endif (see Section 7.17 “.endif,”
page 38); optionally, you may include code for the alternative condition,
flagged by .else (see Section 7.15 “.else,” page 37.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol
has been defined.

.ifndef symbol
ifnotdef symbol

Assembles the following section of code if the specified symbol
has not been defined. Both spelling variants are equivalent.

7.27 .include "file"

This directive provides a way to include supporting files at specified
points in your source program. The code from file is assembled as
if it followed the point of the .include; when the end of the included
file is reached, assembly of the original file continues. You can control
the search paths used with the ‘-I’ command-line option (see Chap-
ter 2 “Command-Line Options,” page 9). Quotation marks are required
around file.

7.28 .int expressions

Expect zero or more expressions, of any section, separated by com-
mas. For each expression, emit a number that, at run time, is the value
of that expression. The byte order and bit size of the number depends
on what kind of target the assembly is for.

7.29 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common
denoted by symbol. The section and value of symbol are those of the new
local common. The addresses are allocated in the bss section, so that at
run-time the bytes start off zeroed. Symbol is not declared global (see
Section 7.23 “.global,” page 39), so is normally not visible to ld.

40 7 July 1995

Chapter 7: Assembler Directives

The syntax for .lcomm differs slightly on the HPPA. The syntax is
‘symbol .lcomm, length’; symbol is optional.

7.30 .lflags

as accepts this directive, for compatibility with other assemblers, but
ignores it.

7.31 .line line-number

Change the logical line number. line-number must be an absolute
expression. The next line has that logical line number. Therefore any
other statements on the current line (after a statement separator char-
acter) are reported as on logical line number line-number � 1. One
day as will no longer support this directive: it is recognized only for
compatibility with existing assembler programs.

Warning: In the AMD29K configuration of as, this command is not
available; use the synonym .ln in that context.

Even though this is a directive associated with the a.out or b.out
object-code formats, as still recognizes it when producing COFF output,
and treats ‘.line’ as though it were the COFF ‘.ln’ if it is found outside
a .def/.endef pair.

Inside a .def, ‘.line’ is, instead, one of the directives used by com-
pilers to generate auxiliary symbol information for debugging.

7.32 .ln line-number

‘.ln’ is a synonym for ‘.line’.

7.33 .list

Control (in conjunction with the .nolist directive) whether or not
assembly listings are generated. These two directives maintain an in-
ternal counter (which is zero initially). .list increments the counter,
and .nolist decrements it. Assembly listings are generated whenever
the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’
command line option; see Chapter 2 “Command-Line Options,” page 9),
the initial value of the listing counter is one.

c y g n u s s u p p o r t 41

Using as

7.34 .long expressions

.long is the same as ‘.int’, see Section 7.28 “.int,” page 40.

7.35 .nolist

Control (in conjunction with the .list directive) whether or not as-
sembly listings are generated. These two directives maintain an inter-
nal counter (which is zero initially). .list increments the counter, and
.nolist decrements it. Assembly listings are generated whenever the
counter is greater than zero.

7.36 .octa bignums

This directive expects zero or more bignums, separated by commas.
For each bignum, it emits a 16-byte integer.

The term “octa” comes from contexts in which a “word” is two bytes;
hence octa-word for 16 bytes.

7.37 .org new-lc , fill

Advance the location counter of the current section to new-lc. new-lc
is either an absolute expression or an expression with the same section
as the current subsection. That is, you can’t use .org to cross sections:
if new-lc has the wrong section, the .org directive is ignored. To be
compatible with former assemblers, if the section of new-lc is absolute,
as issues a warning, then pretends the section of new-lc is the same as
the current subsection.

.org may only increase the location counter, or leave it unchanged;
you cannot use .org to move the location counter backwards.

Because as tries to assemble programs in one pass, new-lc may not
be undefined. If you really detest this restriction we eagerly await a
chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not
to the start of the subsection. This is compatible with other people’s
assemblers.

When the location counter (of the current subsection) is advanced,
the intervening bytes are filled with fill which should be an absolute
expression. If the comma and fill are omitted, fill defaults to zero.

42 7 July 1995

Chapter 7: Assembler Directives

7.38 .psize lines , columns

Use this directive to declare the number of lines—and, optionally, the
number of columns—to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You
may omit the comma and columns specification; the default width is 200
columns.

as generates formfeeds whenever the specified number of lines is
exceeded (or whenever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those
explicitly specified with .eject.

7.39 .quad bignums

.quad expects zero or more bignums, separated by commas. For each
bignum, it emits an 8-byte integer. If the bignum won’t fit in 8 bytes, it
prints a warning message; and just takes the lowest order 8 bytes of the
bignum.

The term “quad” comes from contexts in which a “word” is two bytes;
hence quad-word for 8 bytes.

7.40 .sbttl "subheading"

Use subheading as the title (third line, immediately after the title
line) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

7.41 .scl class

Set the storage-class value for a symbol. This directive may only
be used inside a .def/.endef pair. Storage class may flag whether a
symbol is static or external, or it may record further symbolic debugging
information.

The ‘.scl’ directive is primarily associated with COFF output; when
configured to generate b.out output format, as accepts this directive but
ignores it.

c y g n u s s u p p o r t 43

Using as

7.42 .section name, subsection

Assemble the following code into end of subsection numbered subsec-
tion in the COFF named section name. If you omit subsection, as uses
subsection number zero. ‘.section .text’ is equivalent to the .text
directive; ‘.section .data’ is equivalent to the .data directive. This
directive is only supported for targets that actually support arbitrarily
named sections; on a.out targets, for example, it is not accepted, even
with a standard a.out section name as its parameter.

7.43 .set symbol, expression

Set the value of symbol to expression. This changes symbol’s value
and type to conform to expression. If symbol was flagged as external,
it remains flagged. (See Section 5.5 “Symbol Attributes,” page 29.)

You may .set a symbol many times in the same assembly.
If you .set a global symbol, the value stored in the object file is the

last value stored into it.
The syntax for set on the HPPA is ‘symbol .set expression’.

7.44 .short expressions

.short is normally the same as ‘.word’. See Section 7.55 “.word,”
page 47.

In some configurations, however, .short and .word generate num-
bers of different lengths; see Chapter 8 “Machine Dependencies,”
page 49.

7.45 .single flonums

This directive assembles zero or more flonums, separated by commas.
It has the same effect as .float. The exact kind of floating point num-
bers emitted depends on how as is configured. See Chapter 8 “Machine
Dependencies,” page 49.

7.46 .size

This directive is generated by compilers to include auxiliary de-
bugging information in the symbol table. It is only permitted inside
.def/.endef pairs.

‘.size’ is only meaningful when generating COFF format output;
when as is generating b.out, it accepts this directive but ignores it.

44 7 July 1995

Chapter 7: Assembler Directives

7.47 .space size , fill

This directive emits size bytes, each of value fill. Both size and
fill are absolute expressions. If the comma and fill are omitted, fill
is assumed to be zero.

Warning: .space has a completely different meaning for HPPA
targets; use .block as a substitute. See HP9000 Series 800
Assembly Language Reference Manual (HP 92432-90001) for
the meaning of the .space directive. See Section 8.5.5 “HPPA
Assembler Directives,” page 67, for a summary.

On the AMD 29K, this directive is ignored; it is accepted for compat-
ibility with other AMD 29K assemblers.

Warning: In most versions of the gnu assembler, the directive
.space has the effect of .block See Chapter 8 “Machine Depen-
dencies,” page 49.

7.48 .stabd, .stabn, .stabs

There are three directives that begin ‘.stab’. All emit symbols (see
Chapter 5 “Symbols,” page 27), for use by symbolic debuggers. The
symbols are not entered in the as hash table: they cannot be referenced
elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character
except ‘\000’, so is more general than ordinary symbol names.
Some debuggers used to code arbitrarily complex structures
into symbol names using this field.

type An absolute expression. The symbol’s type is set to the low 8
bits of this expression. Any bit pattern is permitted, but ld
and debuggers choke on silly bit patterns.

other An absolute expression. The symbol’s “other” attribute is set
to the low 8 bits of this expression.

desc An absolute expression. The symbol’s descriptor is set to the
low 16 bits of this expression.

value An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs
statement, the symbol has probably already been created; you get a
half-formed symbol in your object file. This is compatible with earlier
assemblers!

c y g n u s s u p p o r t 45

Using as

.stabd type , other , desc
The “name” of the symbol generated is not even an empty
string. It is a null pointer, for compatibility. Older assem-
blers used a null pointer so they didn’t waste space in object
files with empty strings.
The symbol’s value is set to the location counter, relocatably.
When your program is linked, the value of this symbol is
the address of the location counter when the .stabd was
assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

7.49 .string "str"

Copy the characters in str to the object file. You may specify more
than one string to copy, separated by commas. Unless otherwise specified
for a particular machine, the assembler marks the end of each string
with a 0 byte. You can use any of the escape sequences described in
Section 3.6.1.1 “Strings,” page 16.

7.50 .tag structname

This directive is generated by compilers to include auxiliary de-
bugging information in the symbol table. It is only permitted inside
.def/.endef pairs. Tags are used to link structure definitions in the
symbol table with instances of those structures.

‘.tag’ is only used when generating COFF format output; when as is
generating b.out, it accepts this directive but ignores it.

7.51 .text subsection

Tells as to assemble the following statements onto the end of the text
subsection numbered subsection, which is an absolute expression. If
subsection is omitted, subsection number zero is used.

7.52 .title "heading"

Use heading as the title (second line, immediately after the source
file name and pagenumber) when generating assembly listings.

46 7 July 1995

Chapter 7: Assembler Directives

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

7.53 .type int

This directive, permitted only within .def/.endef pairs, records the
integer int as the type attribute of a symbol table entry.

‘.type’ is associated only with COFF format output; when as is con-
figured for b.out output, it accepts this directive but ignores it.

7.54 .val addr

This directive, permitted only within .def/.endef pairs, records the
address addr as the value attribute of a symbol table entry.

‘.val’ is used only for COFF output; when as is configured for b.out,
it accepts this directive but ignores it.

7.55 .word expressions

This directive expects zero or more expressions, of any section, sep-
arated by commas.

The size of the number emitted, and its byte order, depend on what
target computer the assembly is for.

Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit
addressing, require the following special treatment. If the machine of
interest to you does 32-bit addressing (or doesn’t require it; see Chapter 8
“Machine Dependencies,” page 49), you can ignore this issue.

In order to assemble compiler output into something that works, as
occasionlly does strange things to ‘.word’ directives. Directives of the
form ‘.word sym1-sym2’ are often emitted by compilers as part of jump
tables. Therefore, when as assembles a directive of the form ‘.word
sym1-sym2’, and the difference between sym1 and sym2 does not fit in
16 bits, as creates a secondary jump table, immediately before the next
label. This secondary jump table is preceded by a short-jump to the first
byte after the secondary table. This short-jump prevents the flow of
control from accidentally falling into the new table. Inside the table is a
long-jump to sym2. The original ‘.word’ contains sym1 minus the address
of the long-jump to sym2.

If there were several occurrences of ‘.word sym1-sym2’ before the sec-
ondary jump table, all of them are adjusted. If there was a ‘.word

c y g n u s s u p p o r t 47

Using as

sym3-sym4’, that also did not fit in sixteen bits, a long-jump to sym4 is
included in the secondary jump table, and the .word directives are ad-
justed to contain sym3 minus the address of the long-jump to sym4; and
so on, for as many entries in the original jump table as necessary.

7.56 Deprecated Directives

One day these directives won’t work. They are included for compati-
bility with older assemblers.

.abort

.app-file

.line

48 7 July 1995

Chapter 8: Machine Dependent Features

8 Machine Dependent Features

The machine instruction sets are (almost by definition) different on
each machine where as runs. Floating point representations vary as
well, and as often supports a few additional directives or command-line
options for compatibility with other assemblers on a particular plat-
form. Finally, some versions of as support special pseudo-instructions
for branch optimization.

This chapter discusses most of these differences, though it does not
include details on any machine’s instruction set. For details on that
subject, see the hardware manufacturer’s manual.

8.1 VAX Dependent Features

8.1.1 VAX Command-Line Options

The Vax version of as accepts any of the following options, gives
a warning message that the option was ignored and proceeds. These
options are for compatibility with scripts designed for other people’s
assemblers.

-D (Debug)
-S (Symbol Table)
-T (Token Trace)

These are obsolete options used to debug old assemblers.

-d (Displacement size for JUMPs)
This option expects a number following the ‘-d’. Like options
that expect filenames, the number may immediately follow
the ‘-d’ (old standard) or constitute the whole of the command
line argument that follows ‘-d’ (gnu standard).

-V (Virtualize Interpass Temporary File)
Some other assemblers use a temporary file. This option
commanded them to keep the information in active memory
rather than in a disk file. as always does this, so this option
is redundant.

-J (JUMPify Longer Branches)
Many 32-bit computers permit a variety of branch instruc-
tions to do the same job. Some of these instructions are short
(and fast) but have a limited range; others are long (and slow)
but can branch anywhere in virtual memory. Often there are
3 flavors of branch: short, medium and long. Some other

c y g n u s s u p p o r t 49

Using as

assemblers would emit short and medium branches, unless
told by this option to emit short and long branches.

-t (Temporary File Directory)
Some other assemblers may use a temporary file, and this
option takes a filename being the directory to site the tem-
porary file. Since as does not use a temporary disk file, this
option makes no difference. ‘-t’ needs exactly one filename.

The Vax version of the assembler accepts two options when com-
piled for VMS. They are ‘-h’, and ‘-+’. The ‘-h’ option prevents as from
modifying the symbol-table entries for symbols that contain lowercase
characters (I think). The ‘-+’ option causes as to print warning messages
if the FILENAME part of the object file, or any symbol name is larger
than 31 characters. The ‘-+’ option also inserts some code following the
‘_main’ symbol so that the object file is compatible with Vax-11 "C".

8.1.2 VAX Floating Point

Conversion of flonums to floating point is correct, and compatible
with previous assemblers. Rounding is towards zero if the remainder is
exactly half the least significant bit.

D, F, G and H floating point formats are understood.
Immediate floating literals (e.g. ‘S‘$6.9’) are rendered correctly.

Again, rounding is towards zero in the boundary case.
The .float directive produces f format numbers. The .double di-

rective produces d format numbers.

8.1.3 Vax Machine Directives

The Vax version of the assembler supports four directives for gen-
erating Vax floating point constants. They are described in the table
below.

.dfloat This expects zero or more flonums, separated by commas,
and assembles Vax d format 64-bit floating point constants.

.ffloat This expects zero or more flonums, separated by commas,
and assembles Vax f format 32-bit floating point constants.

.gfloat This expects zero or more flonums, separated by commas,
and assembles Vax g format 64-bit floating point constants.

.hfloat This expects zero or more flonums, separated by commas,
and assembles Vax h format 128-bit floating point constants.

50 7 July 1995

Chapter 8: Machine Dependent Features

8.1.4 VAX Opcodes

All DEC mnemonics are supported. Beware that case... instruc-
tions have exactly 3 operands. The dispatch table that follows the
case.. . instruction should be made with .word statements. This is
compatible with all unix assemblers we know of.

8.1.5 VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch instruc-
tions. They expand to the shortest branch instruction that reaches the
target. Generally these mnemonics are made by substituting ‘j’ for ‘b’ at
the start of a DEC mnemonic. This feature is included both for compati-
bility and to help compilers. If you do not need this feature, avoid these
opcodes. Here are the mnemonics, and the code they can expand into.

jbsb ‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.

(byte displacement)
bsbb . ..

(word displacement)
bsbw . ..

(long displacement)
jsb . ..

jbr
jr Unconditional branch.

(byte displacement)
brb . ..

(word displacement)
brw . ..

(long displacement)
jmp . ..

jCOND COND may be any one of the conditional branches neq, nequ,
eql, eqlu, gtr, geq, lss, gtru, lequ, vc, vs, gequ, cc, lssu,
cs. COND may also be one of the bit tests bs, bc, bss, bcs, bsc,
bcc, bssi, bcci, lbs, lbc. NOTCOND is the opposite condition
to COND.

(byte displacement)
bCOND .. .

(word displacement)
bNOTCOND foo ; brw .. . ; foo:

c y g n u s s u p p o r t 51

Using as

(long displacement)
bNOTCOND foo ; jmp .. . ; foo:

jacbX X may be one of b d f g h l w.

(word displacement)
OPCODE . ..

(long displacement)
OPCODE .. ., foo ;
brb bar ;
foo: jmp . .. ;
bar:

jaobYYY YYY may be one of lss leq.

jsobZZZ ZZZ may be one of geq gtr.

(byte displacement)
OPCODE . ..

(word displacement)
OPCODE .. ., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE .. ., foo ;
brb bar ;
foo: jmp destination ;
bar:

aobleq
aoblss
sobgeq
sobgtr

(byte displacement)
OPCODE . ..

(word displacement)
OPCODE .. ., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE .. ., foo ;
brb bar ;
foo: jmp destination ;
bar:

52 7 July 1995

Chapter 8: Machine Dependent Features

8.1.6 VAX Operands

The immediate character is ‘$’ for Unix compatibility, not ‘#’ as DEC
writes it.

The indirect character is ‘*’ for Unix compatibility, not ‘@’ as DEC
writes it.

The displacement sizing character is ‘‘’ (an accent grave) for Unix
compatibility, not ‘ˆ’ as DEC writes it. The letter preceding ‘‘’ may have
either case. ‘G’ is not understood, but all other letters (b i l s w) are
understood.

Register names understood are r0 r1 r2 .. . r15 ap fp sp pc. Upper
and lower case letters are equivalent.

For instance
tstb *w‘$4(r5)

Any expression is permitted in an operand. Operands are comma
separated.

8.1.7 Not Supported on VAX

Vax bit fields can not be assembled with as. Someone can add the
required code if they really need it.

c y g n u s s u p p o r t 53

Using as

8.2 AMD 29K Dependent Features

8.2.1 Options

as has no additional command-line options for the AMD 29K family.

8.2.2 Syntax

8.2.2.1 Special Characters

‘;’ is the line comment character.
‘@’ can be used instead of a newline to separate statements.
The character ‘?’ is permitted in identifiers (but may not begin an

identifier).

8.2.2.2 Register Names

General-purpose registers are represented by predefined symbols of
the form ‘GRnnn’ (for global registers) or ‘LRnnn’ (for local registers), where
nnn represents a number between 0 and 127, written with no leading
zeros. The leading letters may be in either upper or lower case; for
example, ‘gr13’ and ‘LR7’ are both valid register names.

You may also refer to general-purpose registers by specifying the
register number as the result of an expression (prefixed with ‘%%’ to flag
the expression as a register number):

%%expression

—where expression must be an absolute expression evaluating to a
number between 0 and 255. The range [0, 127] refers to global registers,
and the range [128, 255] to local registers.

In addition, as understands the following protected special-purpose
register names for the AMD 29K family:

vab chd pc0
ops chc pc1
cps rbp pc2
cfg tmc mmu
cha tmr lru

These unprotected special-purpose register names are also recog-
nized:

ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop

54 7 July 1995

Chapter 8: Machine Dependent Features

8.2.3 Floating Point

The AMD 29K family uses ieee floating-point numbers.

8.2.4 AMD 29K Machine Directives

.block size , fill
This directive emits size bytes, each of value fill. Both
size and fill are absolute expressions. If the comma and
fill are omitted, fill is assumed to be zero.
In other versions of thegnu assembler, this directive is called
‘.space’.

.cputype This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

.file This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

Warning: in other versions of the gnu assembler,
.file is used for the directive called .app-file in
the AMD 29K support.

.line This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

.sect This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

.use section name
Establishes the section and subsection for the following code;
section name may be one of .text, .data, .data1, or .lit.
With one of the first three section name options, ‘.use’ is
equivalent to the machine directive section name; the re-
maining case, ‘.use .lit’, is the same as ‘.data 200’.

8.2.5 Opcodes

as implements all the standard AMD 29K opcodes. No additional
pseudo-instructions are needed on this family.

For information on the 29K machine instruction set, see Am29000
User’s Manual, Advanced Micro Devices, Inc.

c y g n u s s u p p o r t 55

Using as

8.3 H8/300 Dependent Features

8.3.1 Options

as has no additional command-line options for the Hitachi H8/300
family.

8.3.2 Syntax

8.3.2.1 Special Characters

‘;’ is the line comment character.
‘$’ can be used instead of a newline to separate statements. Therefore

you may not use ‘$’ in symbol names on the H8/300.

8.3.2.2 Register Names

You can use predefined symbols of the form ‘rnh’ and ‘rnl’ to refer to
the H8/300 registers as sixteen 8-bit general-purpose registers. n is a
digit from ‘0’ to ‘7’); for instance, both ‘r0h’ and ‘r7l’ are valid register
names.

You can also use the eight predefined symbols ‘rn’ to refer to the
H8/300 registers as 16-bit registers (you must use this form for address-
ing).

On the H8/300H, you can also use the eight predefined symbols ‘ern’
(‘er0’ . . . ‘er7’) to refer to the 32-bit general purpose registers.

The two control registers are called pc (program counter; a 16-bit
register, except on the H8/300H where it is 24 bits) and ccr (condition
code register; an 8-bit register). r7 is used as the stack pointer, and can
also be called sp.

8.3.2.3 Addressing Modes

as understands the following addressing modes for the H8/300:

rn Register direct

@rn Register indirect

56 7 July 1995

Chapter 8: Machine Dependent Features

@(d, rn)
@(d:16, rn)
@(d:24, rn)

Register indirect: 16-bit or 24-bit displacement d from reg-
ister n. (24-bit displacements are only meaningful on the
H8/300H.)

@rn+ Register indirect with post-increment

@-rn Register indirect with pre-decrement

@aa
@aa:8
@aa:16
@aa:24 Absolute address aa. (The address size ‘:24’ only makes

sense on the H8/300H.)

#xx
#xx:8
#xx:16
#xx:32 Immediate data xx. You may specify the ‘:8’, ‘:16’, or ‘:32’

for clarity, if you wish; but as neither requires this nor uses
it—the data size required is taken from context.

@@aa
@@aa:8 Memory indirect. You may specify the ‘:8’ for clarity, if you

wish; but as neither requires this nor uses it.

8.3.3 Floating Point

The H8/300 family has no hardware floating point, but the .float
directive generates ieee floating-point numbers for compatibility with
other development tools.

c y g n u s s u p p o r t 57

Using as

8.3.4 H8/300 Machine Directives

as has only one machine-dependent directive for the H8/300:

.h8300h Recognize and emit additional instructions for the H8/300H
variant, and also make .int emit 32-bit numbers rather than
the usual (16-bit) for the H8/300 family.

On the H8/300 family (including the H8/300H) ‘.word’ directives gen-
erate 16-bit numbers.

8.3.5 Opcodes

For detailed information on the H8/300 machine instruction set, see
H8/300 Series Programming Manual (Hitachi ADE–602–025). For in-
formation specific to the H8/300H, see H8/300H Series Programming
Manual (Hitachi).

as implements all the standard H8/300 opcodes. No additional
pseudo-instructions are needed on this family.

The following table summarizes the H8/300 opcodes, and their argu-
ments. Entries marked ‘*’ are opcodes used only on the H8/300H.

Legend:
Rs source register
Rd destination register
abs absolute address
imm immediate data

disp:N N-bit displacement from a register
pcrel:N N-bit displacement relative to program counter

add.b #imm,rd * andc #imm,ccr
add.b rs,rd band #imm,rd
add.w rs,rd band #imm,@rd

* add.w #imm,rd band #imm,@abs:8
* add.l rs,rd bra pcrel:8
* add.l #imm,rd * bra pcrel:16

adds #imm,rd bt pcrel:8
addx #imm,rd * bt pcrel:16
addx rs,rd brn pcrel:8
and.b #imm,rd * brn pcrel:16
and.b rs,rd bf pcrel:8

* and.w rs,rd * bf pcrel:16
* and.w #imm,rd bhi pcrel:8
* and.l #imm,rd * bhi pcrel:16
* and.l rs,rd bls pcrel:8

58 7 July 1995

Chapter 8: Machine Dependent Features

* bls pcrel:16 bld #imm,rd
bcc pcrel:8 bld #imm,@rd

* bcc pcrel:16 bld #imm,@abs:8
bhs pcrel:8 bnot #imm,rd

* bhs pcrel:16 bnot #imm,@rd
bcs pcrel:8 bnot #imm,@abs:8

* bcs pcrel:16 bnot rs,rd
blo pcrel:8 bnot rs,@rd

* blo pcrel:16 bnot rs,@abs:8
bne pcrel:8 bor #imm,rd

* bne pcrel:16 bor #imm,@rd
beq pcrel:8 bor #imm,@abs:8

* beq pcrel:16 bset #imm,rd
bvc pcrel:8 bset #imm,@rd

* bvc pcrel:16 bset #imm,@abs:8
bvs pcrel:8 bset rs,rd

* bvs pcrel:16 bset rs,@rd
bpl pcrel:8 bset rs,@abs:8

* bpl pcrel:16 bsr pcrel:8
bmi pcrel:8 bsr pcrel:16

* bmi pcrel:16 bst #imm,rd
bge pcrel:8 bst #imm,@rd

* bge pcrel:16 bst #imm,@abs:8
blt pcrel:8 btst #imm,rd

* blt pcrel:16 btst #imm,@rd
bgt pcrel:8 btst #imm,@abs:8

* bgt pcrel:16 btst rs,rd
ble pcrel:8 btst rs,@rd

* ble pcrel:16 btst rs,@abs:8
bclr #imm,rd bxor #imm,rd
bclr #imm,@rd bxor #imm,@rd
bclr #imm,@abs:8 bxor #imm,@abs:8
bclr rs,rd cmp.b #imm,rd
bclr rs,@rd cmp.b rs,rd
bclr rs,@abs:8 cmp.w rs,rd
biand #imm,rd cmp.w rs,rd
biand #imm,@rd * cmp.w #imm,rd
biand #imm,@abs:8 * cmp.l #imm,rd
bild #imm,rd * cmp.l rs,rd
bild #imm,@rd daa rs
bild #imm,@abs:8 das rs
bior #imm,rd dec.b rs
bior #imm,@rd * dec.w #imm,rd
bior #imm,@abs:8 * dec.l #imm,rd
bist #imm,rd divxu.b rs,rd
bist #imm,@rd * divxu.w rs,rd
bist #imm,@abs:8 * divxs.b rs,rd
bixor #imm,rd * divxs.w rs,rd
bixor #imm,@rd eepmov
bixor #imm,@abs:8 * eepmovw

c y g n u s s u p p o r t 59

Using as

* exts.w rd mov.w rs,@abs:16
* exts.l rd * mov.l #imm,rd
* extu.w rd * mov.l rs,rd
* extu.l rd * mov.l @rs,rd

inc rs * mov.l @(disp:16,rs),rd
* inc.w #imm,rd * mov.l @(disp:24,rs),rd
* inc.l #imm,rd * mov.l @rs+,rd

jmp @rs * mov.l @abs:16,rd
jmp abs * mov.l @abs:24,rd
jmp @@abs:8 * mov.l rs,@rd
jsr @rs * mov.l rs,@(disp:16,rd)
jsr abs * mov.l rs,@(disp:24,rd)
jsr @@abs:8 * mov.l rs,@-rd
ldc #imm,ccr * mov.l rs,@abs:16
ldc rs,ccr * mov.l rs,@abs:24

* ldc @abs:16,ccr movfpe @abs:16,rd
* ldc @abs:24,ccr movtpe rs,@abs:16
* ldc @(disp:16,rs),ccr mulxu.b rs,rd
* ldc @(disp:24,rs),ccr * mulxu.w rs,rd
* ldc @rs+,ccr * mulxs.b rs,rd
* ldc @rs,ccr * mulxs.w rs,rd
* mov.b @(disp:24,rs),rd neg.b rs
* mov.b rs,@(disp:24,rd) * neg.w rs

mov.b @abs:16,rd * neg.l rs
mov.b rs,rd nop
mov.b @abs:8,rd not.b rs
mov.b rs,@abs:8 * not.w rs
mov.b rs,rd * not.l rs
mov.b #imm,rd or.b #imm,rd
mov.b @rs,rd or.b rs,rd
mov.b @(disp:16,rs),rd * or.w #imm,rd
mov.b @rs+,rd * or.w rs,rd
mov.b @abs:8,rd * or.l #imm,rd
mov.b rs,@rd * or.l rs,rd
mov.b rs,@(disp:16,rd) orc #imm,ccr
mov.b rs,@-rd pop.w rs
mov.b rs,@abs:8 * pop.l rs
mov.w rs,@rd push.w rs

* mov.w @(disp:24,rs),rd * push.l rs
* mov.w rs,@(disp:24,rd) rotl.b rs
* mov.w @abs:24,rd * rotl.w rs
* mov.w rs,@abs:24 * rotl.l rs

mov.w rs,rd rotr.b rs
mov.w #imm,rd * rotr.w rs
mov.w @rs,rd * rotr.l rs
mov.w @(disp:16,rs),rd rotxl.b rs
mov.w @rs+,rd * rotxl.w rs
mov.w @abs:16,rd * rotxl.l rs
mov.w rs,@(disp:16,rd) rotxr.b rs
mov.w rs,@-rd * rotxr.w rs

60 7 July 1995

Chapter 8: Machine Dependent Features

* rotxr.l rs * stc ccr,@(disp:24,rd)
bpt * stc ccr,@-rd
rte * stc ccr,@abs:16
rts * stc ccr,@abs:24
shal.b rs sub.b rs,rd

* shal.w rs sub.w rs,rd
* shal.l rs * sub.w #imm,rd

shar.b rs * sub.l rs,rd
* shar.w rs * sub.l #imm,rd
* shar.l rs subs #imm,rd

shll.b rs subx #imm,rd
* shll.w rs subx rs,rd
* shll.l rs * trapa #imm

shlr.b rs xor #imm,rd
* shlr.w rs xor rs,rd
* shlr.l rs * xor.w #imm,rd

sleep * xor.w rs,rd
stc ccr,rd * xor.l #imm,rd

* stc ccr,@rs * xor.l rs,rd
* stc ccr,@(disp:16,rd) xorc #imm,ccr

Four H8/300 instructions (add, cmp, mov, sub) are defined with vari-
ants using the suffixes ‘.b’, ‘.w’, and ‘.l’ to specify the size of a memory
operand. as supports these suffixes, but does not require them; since
one of the operands is always a register, as can deduce the correct size.

For example, since r0 refers to a 16-bit register,
mov r0,@foo

is equivalent to
mov.w r0,@foo

If you use the size suffixes, as issues a warning when the suffix and
the register size do not match.

c y g n u s s u p p o r t 61

Using as

8.4 H8/500 Dependent Features

8.4.1 Options

as has no additional command-line options for the Hitachi H8/500
family.

8.4.2 Syntax

8.4.2.1 Special Characters

‘!’ is the line comment character.
‘;’ can be used instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.

8.4.2.2 Register Names

You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘r4’, ‘r5’, ‘r6’,
and ‘r7’ to refer to the H8/500 registers.

The H8/500 also has these control registers:

cp code pointer

dp data pointer

bp base pointer

tp stack top pointer

ep extra pointer

sr status register

ccr condition code register

All registers are 16 bits long. To represent 32 bit numbers, use two
adjacent registers; for distant memory addresses, use one of the segment
pointers (cp for the program counter; dp for r0–r3; ep for r4 and r5; and
tp for r6 and r7.

62 7 July 1995

Chapter 8: Machine Dependent Features

8.4.2.3 Addressing Modes

as understands the following addressing modes for the H8/500:

Rn Register direct

@Rn Register indirect

@(d:8, Rn)
Register indirect with 8 bit signed displacement

@(d:16, Rn)
Register indirect with 16 bit signed displacement

@-Rn Register indirect with pre-decrement

@Rn+ Register indirect with post-increment

@aa:8 8 bit absolute address

@aa:16 16 bit absolute address

#xx:8 8 bit immediate

#xx:16 16 bit immediate

8.4.3 Floating Point

The H8/500 family uses ieee floating-point numbers.

8.4.4 H8/500 Machine Directives

as has no machine-dependent directives for the H8/500. However, on
this platform the ‘.int’ and ‘.word’ directives generate 16-bit numbers.

8.4.5 Opcodes

For detailed information on the H8/500 machine instruction set, see
H8/500 Series Programming Manual (Hitachi M21T001).

as implements all the standard H8/500 opcodes. No additional
pseudo-instructions are needed on this family.

The following table summarizes H8/500 opcodes and their operands:

c y g n u s s u p p o r t 63

Using as

Legend:
abs8 8-bit absolute address
abs16 16-bit absolute address
abs24 24-bit absolute address
crb ccr, br, ep, dp, tp, dp
disp8 8-bit displacement
ea rn, @rn, @(d:8, rn), @(d:16, rn),

@-rn, @rn+, @aa:8, @aa:16,
#xx:8, #xx:16

ea_mem @rn, @(d:8, rn), @(d:16, rn),
@-rn, @rn+, @aa:8, @aa:16

ea_noimm rn, @rn, @(d:8, rn), @(d:16, rn),
@-rn, @rn+, @aa:8, @aa:16

fp r6
imm4 4-bit immediate data
imm8 8-bit immediate data
imm16 16-bit immediate data
pcrel8 8-bit offset from program counter
pcrel16 16-bit offset from program counter
qim -2, -1, 1, 2
rd any register
rs a register distinct from rd
rlist comma-separated list of registers in parentheses;

register ranges rd-rs are allowed
sp stack pointer (r7)
sr status register
sz size; ‘.b’ or ‘.w’. If omitted, default ‘.w’

ldc[.b] ea,crb bcc[.w] pcrel16
ldc[.w] ea,sr bcc[.b] pcrel8
add[:q] sz qim,ea_noimm bhs[.w] pcrel16
add[:g] sz ea,rd bhs[.b] pcrel8
adds sz ea,rd bcs[.w] pcrel16
addx sz ea,rd bcs[.b] pcrel8
and sz ea,rd blo[.w] pcrel16
andc[.b] imm8,crb blo[.b] pcrel8
andc[.w] imm16,sr bne[.w] pcrel16
bpt bne[.b] pcrel8
bra[.w] pcrel16 beq[.w] pcrel16
bra[.b] pcrel8 beq[.b] pcrel8
bt[.w] pcrel16 bvc[.w] pcrel16
bt[.b] pcrel8 bvc[.b] pcrel8
brn[.w] pcrel16 bvs[.w] pcrel16
brn[.b] pcrel8 bvs[.b] pcrel8
bf[.w] pcrel16 bpl[.w] pcrel16
bf[.b] pcrel8 bpl[.b] pcrel8
bhi[.w] pcrel16 bmi[.w] pcrel16
bhi[.b] pcrel8 bmi[.b] pcrel8
bls[.w] pcrel16 bge[.w] pcrel16
bls[.b] pcrel8 bge[.b] pcrel8

64 7 July 1995

Chapter 8: Machine Dependent Features

blt[.w] pcrel16 mov[:g][.b] imm8,ea_mem
blt[.b] pcrel8 mov[:g][.w] imm16,ea_mem
bgt[.w] pcrel16 movfpe[.b] ea,rd
bgt[.b] pcrel8 movtpe[.b] rs,ea_noimm
ble[.w] pcrel16 mulxu sz ea,rd
ble[.b] pcrel8 neg sz ea
bclr sz imm4,ea_noimm nop
bclr sz rs,ea_noimm not sz ea
bnot sz imm4,ea_noimm or sz ea,rd
bnot sz rs,ea_noimm orc[.b] imm8,crb
bset sz imm4,ea_noimm orc[.w] imm16,sr
bset sz rs,ea_noimm pjmp abs24
bsr[.b] pcrel8 pjmp @rd
bsr[.w] pcrel16 pjsr abs24
btst sz imm4,ea_noimm pjsr @rd
btst sz rs,ea_noimm prtd imm8
clr sz ea prtd imm16
cmp[:e][.b] imm8,rd prts
cmp[:i][.w] imm16,rd rotl sz ea
cmp[:g].b imm8,ea_noimm rotr sz ea
cmp[:g][.w] imm16,ea_noimm rotxl sz ea
Cmp[:g] sz ea,rd rotxr sz ea
dadd rs,rd rtd imm8
divxu sz ea,rd rtd imm16
dsub rs,rd rts
exts[.b] rd scb/f rs,pcrel8
extu[.b] rd scb/ne rs,pcrel8
jmp @rd scb/eq rs,pcrel8
jmp @(imm8,rd) shal sz ea
jmp @(imm16,rd) shar sz ea
jmp abs16 shll sz ea
jsr @rd shlr sz ea
jsr @(imm8,rd) sleep
jsr @(imm16,rd) stc[.b] crb,ea_noimm
jsr abs16 stc[.w] sr,ea_noimm
ldm @sp+,(rlist) stm (rlist),@-sp
link fp,imm8 sub sz ea,rd
link fp,imm16 subs sz ea,rd
mov[:e][.b] imm8,rd subx sz ea,rd
mov[:i][.w] imm16,rd swap[.b] rd
mov[:l][.w] abs8,rd tas[.b] ea
mov[:l].b abs8,rd trapa imm4
mov[:s][.w] rs,abs8 trap/vs
mov[:s].b rs,abs8 tst sz ea
mov[:f][.w] @(disp8,fp),rd unlk fp
mov[:f][.w] rs,@(disp8,fp) xch[.w] rs,rd
mov[:f].b @(disp8,fp),rd xor sz ea,rd
mov[:f].b rs,@(disp8,fp) xorc.b imm8,crb
mov[:g] sz rs,ea_mem xorc.w imm16,sr
mov[:g] sz ea,rd

c y g n u s s u p p o r t 65

Using as

8.5 HPPA Dependent Features

8.5.1 Notes

As a back end for gnu cc as has been throughly tested and should
work extremely well. We have tested it only minimally on hand written
assembly code and no one has tested it much on the assembly output
from the HP compilers.

The format of the debugging sections has changed since the original
as port (version 1.3X) was released; therefore, you must rebuild all HPPA
objects and libraries with the new assembler so that you can debug the
final executable.

The HPPA as port generates a small subset of the relocations avail-
able in the SOM and ELF object file formats. Additional relocation
support will be added as it becomes necessary.

8.5.2 Options

as has no machine-dependent command-line options for the HPPA.

8.5.3 Syntax

The assembler syntax closely follows the HPPA instruction set ref-
erence manual; assembler directives and general syntax closely follow
the HPPA assembly language reference manual, with a few noteworthy
differences.

First, a colon may immediately follow a label definition. This is simply
for compatibility with how most assembly language programmers write
code.

Some obscure expression parsing problems may affect hand written
code which uses the spop instructions, or code which makes significant
use of the ! line separator.

as is much less forgiving about missing arguments and other similar
oversights than the HP assembler. as notifies you of missing arguments
as syntax errors; this is regarded as a feature, not a bug.

Finally, as allows you to use an external symbol without explicitly
importing the symbol. Warning: in the future this will be an error for
HPPA targets.

Special characters for HPPA targets include:
‘;’ is the line comment character.
‘!’ can be used instead of a newline to separate statements.

66 7 July 1995

Chapter 8: Machine Dependent Features

Since ‘$’ has no special meaning, you may use it in symbol names.

8.5.4 Floating Point

The HPPA family uses ieee floating-point numbers.

8.5.5 HPPA Assembler Directives

as for the HPPA supports many additional directives for compatibility
with the native assembler. This section describes them only briefly. For
detailed information on HPPA-specific assembler directives, see HP9000
Series 800 Assembly Language Reference Manual (HP 92432-90001).

as does not support the following assembler directives described in
the HP manual:

.endm .liston

.enter .locct

.leave .macro

.listoff

Beyond those implemented for compatibility, as supports one addi-
tional assembler directive for the HPPA: .param. It conveys register
argument locations for static functions. Its syntax closely follows the
.export directive.

These are the additional directives in as for the HPPA:

.block n

.blockz n
Reserve n bytes of storage, and initialize them to zero.

.call Mark the beginning of a procedure call. Only the special case
with no arguments is allowed.

.callinfo [param=value, .. .] [flag, . ..]
Specify a number of parameters and flags that define the
environment for a procedure.
param may be any of ‘frame’ (frame size), ‘entry_gr’ (end
of general register range), ‘entry_fr’ (end of float register
range), ‘entry_sr’ (end of space register range).
The values for flag are ‘calls’ or ‘caller’ (proc has subrou-
tines), ‘no_calls’ (proc does not call subroutines), ‘save_rp’
(preserve return pointer), ‘save_sp’ (proc preserves stack
pointer), ‘no_unwind’ (do not unwind this proc), ‘hpux_int’
(proc is interrupt routine).

.code Assemble into the standard section called ‘$TEXT$’, subsec-
tion ‘$CODE$’.

c y g n u s s u p p o r t 67

Using as

.copyright "string"
In the SOM object format, insert string into the object code,
marked as a copyright string.

.copyright "string"
In the ELF object format, insert string into the object code,
marked as a version string.

.enter Not yet supported; the assembler rejects programs contain-
ing this directive.

.entry Mark the beginning of a procedure.

.exit Mark the end of a procedure.

.export name [,typ] [,param=r]
Make a procedure name available to callers. typ, if present,
must be one of ‘absolute’, ‘code’ (ELF only, not SOM), ‘data’,
‘entry’, ‘data’, ‘entry’, ‘millicode’, ‘plabel’, ‘pri_prog’, or
‘sec_prog’.
param, if present, provides either relocation information for
the procedure arguments and result, or a privilege level.
param may be ‘argwn’ (where n ranges from 0 to 3, and indi-
cates one of four one-word arguments); ‘rtnval’ (the proce-
dure’s result); or ‘priv_lev’ (privilege level). For arguments
or the result, r specifies how to relocate, and must be one
of ‘no’ (not relocatable), ‘gr’ (argument is in general regis-
ter), ‘fr’ (in floating point register), or ‘fu’ (upper half of float
register). For ‘priv_lev’, r is an integer.

.half n Define a two-byte integer constant n; synonym for the
portable as directive .short.

.import name [,typ]
Converse of .export; make a procedure available to call.
The arguments use the same conventions as the first two
arguments for .export.

.label name
Define name as a label for the current assembly location.

.leave Not yet supported; the assembler rejects programs contain-
ing this directive.

.origin lc
Advance location counter to lc. Synonym for the {No value
for ‘‘as’’} portable directive .org.

.param name [,typ] [,param=r]
Similar to .export, but used for static procedures.

68 7 July 1995

Chapter 8: Machine Dependent Features

.proc Use preceding the first statement of a procedure.

.procend Use following the last statement of a procedure.

label .reg expr
Synonym for .equ; define label with the absolute expression
expr as its value.

.space secname [,params]
Switch to section secname, creating a new section by that
name if necessary. You may only use params when creating a
new section, not when switching to an existing one. secname
may identify a section by number rather than by name.
If specified, the list params declares attributes of the sec-
tion, identified by keywords. The keywords recognized
are ‘spnum=exp’ (identify this section by the number exp,
an absolute expression), ‘sort=exp’ (order sections accord-
ing to this sort key when linking; exp is an absolute ex-
pression), ‘unloadable’ (section contains no loadable data),
‘notdefined’ (this section defined elsewhere), and ‘private’
(data in this section not available to other programs).

.spnum secnam
Allocate four bytes of storage, and initialize them with the
section number of the section named secnam. (You can define
the section number with the HPPA .space directive.)

.string "str"
Copy the characters in the string str to the object file. See
Section 3.6.1.1 “Strings,” page 16, for information on escape
sequences you can use in as strings.
Warning! The HPPA version of .string differs from the
usual as definition: it does not write a zero byte after copying
str.

.stringz "str"
Like .string, but appends a zero byte after copying str to
object file.

.subspa name [,params]
Similar to .space, but selects a subsection name within the
current section. You may only specify params when you cre-
ate a subsection (in the first instance of .subspa for this
name).
If specified, the list params declares attributes of the subsec-
tion, identified by keywords. The keywords recognized are
‘quad=expr’ (“quadrant” for this subsection), ‘align=expr’
(alignment for beginning of this subsection; a power of two),

c y g n u s s u p p o r t 69

Using as

‘access=expr’ (value for “access rights” field), ‘sort=expr’
(sorting order for this subspace in link), ‘code_only’ (subsec-
tion contains only code), ‘unloadable’ (subsection cannot be
loaded into memory), ‘common’ (subsection is common block),
‘dup_comm’ (initialized data may have duplicate names), or
‘zero’ (subsection is all zeros, do not write in object file).

.version "str"
Write str as version identifier in object code.

8.5.6 Opcodes

For detailed information on the HPPA machine instruction set, see
PA-RISC Architecture and Instruction Set Reference Manual (HP 09740-
90039).

70 7 July 1995

Chapter 8: Machine Dependent Features

8.6 Hitachi SH Dependent Features

8.6.1 Options

as has no additional command-line options for the Hitachi SH family.

8.6.2 Syntax

8.6.2.1 Special Characters

‘!’ is the line comment character.
You can use ‘;’ instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.

8.6.2.2 Register Names

You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘r4’, ‘r5’, ‘r6’,
‘r7’, ‘r8’, ‘r9’, ‘r10’, ‘r11’, ‘r12’, ‘r13’, ‘r14’, and ‘r15’ to refer to the SH
registers.

The SH also has these control registers:

pr procedure register (holds return address)

pc program counter

mach
macl high and low multiply accumulator registers

sr status register

gbr global base register

vbr vector base register (for interrupt vectors)

8.6.2.3 Addressing Modes

as understands the following addressing modes for the SH. Rn in the
following refers to any of the numbered registers, but not the control
registers.

Rn Register direct

@Rn Register indirect

@-Rn Register indirect with pre-decrement

c y g n u s s u p p o r t 71

Using as

@Rn+ Register indirect with post-increment

@(disp, Rn)
Register indirect with displacement

@(R0, Rn)
Register indexed

@(disp, GBR)
GBR offset

@(R0, GBR)
GBR indexed

addr
@(disp, PC)

PC relative address (for branch or for addressing memory).
The as implementation allows you to use the simpler form
addr anywhere a PC relative address is called for; the alter-
nate form is supported for compatibility with other assem-
blers.

#imm Immediate data

8.6.3 Floating Point

The SH family uses ieee floating-point numbers.

8.6.4 SH Machine Directives

as has no machine-dependent directives for the SH.

8.6.5 Opcodes

For detailed information on the SH machine instruction set, see SH-
Microcomputer User’s Manual (Hitachi Micro Systems, Inc.).

as implements all the standard SH opcodes. No additional pseudo-
instructions are needed on this family. Note, however, that because as
supports a simpler form of PC-relative addressing, you may simply write
(for example)

mov.l bar,r0

where other assemblers might require an explicit displacement to bar
from the program counter:

mov.l @(disp, PC)

Here is a summary of SH opcodes:

72 7 July 1995

Chapter 8: Machine Dependent Features

Legend:
Rn a numbered register
Rm another numbered register
#imm immediate data
disp displacement
disp8 8-bit displacement
disp12 12-bit displacement

add #imm,Rn lds.l @Rn+,PR
add Rm,Rn mac.w @Rm+,@Rn+
addc Rm,Rn mov #imm,Rn
addv Rm,Rn mov Rm,Rn
and #imm,R0 mov.b Rm,@(R0,Rn)
and Rm,Rn mov.b Rm,@-Rn
and.b #imm,@(R0,GBR) mov.b Rm,@Rn
bf disp8 mov.b @(disp,Rm),R0
bra disp12 mov.b @(disp,GBR),R0
bsr disp12 mov.b @(R0,Rm),Rn
bt disp8 mov.b @Rm+,Rn
clrmac mov.b @Rm,Rn
clrt mov.b R0,@(disp,Rm)
cmp/eq #imm,R0 mov.b R0,@(disp,GBR)
cmp/eq Rm,Rn mov.l Rm,@(disp,Rn)
cmp/ge Rm,Rn mov.l Rm,@(R0,Rn)
cmp/gt Rm,Rn mov.l Rm,@-Rn
cmp/hi Rm,Rn mov.l Rm,@Rn
cmp/hs Rm,Rn mov.l @(disp,Rn),Rm
cmp/pl Rn mov.l @(disp,GBR),R0
cmp/pz Rn mov.l @(disp,PC),Rn
cmp/str Rm,Rn mov.l @(R0,Rm),Rn
div0s Rm,Rn mov.l @Rm+,Rn
div0u mov.l @Rm,Rn
div1 Rm,Rn mov.l R0,@(disp,GBR)
exts.b Rm,Rn mov.w Rm,@(R0,Rn)
exts.w Rm,Rn mov.w Rm,@-Rn
extu.b Rm,Rn mov.w Rm,@Rn
extu.w Rm,Rn mov.w @(disp,Rm),R0
jmp @Rn mov.w @(disp,GBR),R0
jsr @Rn mov.w @(disp,PC),Rn
ldc Rn,GBR mov.w @(R0,Rm),Rn
ldc Rn,SR mov.w @Rm+,Rn
ldc Rn,VBR mov.w @Rm,Rn
ldc.l @Rn+,GBR mov.w R0,@(disp,Rm)
ldc.l @Rn+,SR mov.w R0,@(disp,GBR)
ldc.l @Rn+,VBR mova @(disp,PC),R0
lds Rn,MACH movt Rn
lds Rn,MACL muls Rm,Rn
lds Rn,PR mulu Rm,Rn
lds.l @Rn+,MACH neg Rm,Rn
lds.l @Rn+,MACL negc Rm,Rn

c y g n u s s u p p o r t 73

Using as

nop stc VBR,Rn
not Rm,Rn stc.l GBR,@-Rn
or #imm,R0 stc.l SR,@-Rn
or Rm,Rn stc.l VBR,@-Rn
or.b #imm,@(R0,GBR) sts MACH,Rn
rotcl Rn sts MACL,Rn
rotcr Rn sts PR,Rn
rotl Rn sts.l MACH,@-Rn
rotr Rn sts.l MACL,@-Rn
rte sts.l PR,@-Rn
rts sub Rm,Rn
sett subc Rm,Rn
shal Rn subv Rm,Rn
shar Rn swap.b Rm,Rn
shll Rn swap.w Rm,Rn
shll16 Rn tas.b @Rn
shll2 Rn trapa #imm
shll8 Rn tst #imm,R0
shlr Rn tst Rm,Rn
shlr16 Rn tst.b #imm,@(R0,GBR)
shlr2 Rn xor #imm,R0
shlr8 Rn xor Rm,Rn
sleep xor.b #imm,@(R0,GBR)
stc GBR,Rn xtrct Rm,Rn
stc SR,Rn

74 7 July 1995

Chapter 8: Machine Dependent Features

8.7 Intel 80960 Dependent Features

8.7.1 i960 Command-line Options

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Select the 80960 architecture. Instructions or features not
supported by the selected architecture cause fatal errors.
‘-ACA’ is equivalent to ‘-ACA_A’; ‘-AKC’ is equivalent to ‘-AMC’.
Synonyms are provided for compatibility with other tools.
If you do not specify any of these options, as generates code
for any instruction or feature that is supported by some ver-
sion of the 960 (even if this means mixing architectures!).
In principle, as attempts to deduce the minimal sufficient
processor type if none is specified; depending on the object
code format, the processor type may be recorded in the ob-
ject file. If it is critical that the as output match a specific
architecture, specify that architecture explicitly.

-b Add code to collect information about conditional branches
taken, for later optimization using branch prediction bits.
(The conditional branch instructions have branch prediction
bits in the CA, CB, and CC architectures.) If BR represents a
conditional branch instruction, the following represents the
code generated by the assembler when ‘-b’ is specified:

call increment routine
.word 0 # pre-counter

Label: BR
call increment routine
.word 0 # post-counter

The counter following a branch records the number of times
that branch was not taken; the differenc between the two
counters is the number of times the branch was taken.
A table of every such Label is also generated, so that
the external postprocessor gbr960 (supplied by Intel) can
locate all the counters. This table is always labelled
‘__BRANCH_TABLE__’; this is a local symbol to permit collect-
ing statistics for many separate object files. The table is word
aligned, and begins with a two-word header. The first word,
initialized to 0, is used in maintaining linked lists of branch
tables. The second word is a count of the number of entries in
the table, which follow immediately: each is a word, pointing
to one of the labels illustrated above.

c y g n u s s u p p o r t 75

Using as

*NEXT COUNT: N *BRLAB 1
: : :

*BRLAB N
BRANCH TABLE layout

The first word of the header is used to locate multiple branch
tables, since each object file may contain one. Normally the
links are maintained with a call to an initialization routine,
placed at the beginning of each function in the file. The gnu
C compiler generates these calls automatically when you give
it a ‘-b’ option. For further details, see the documentation of
‘gbr960’.

-no-relax
Normally, Compare-and-Branch instructions with targets
that require displacements greater than 13 bits (or that have
external targets) are replaced with the corresponding com-
pare (or ‘chkbit’) and branch instructions. You can use the
‘-no-relax’ option to specify that as should generate errors
instead, if the target displacement is larger than 13 bits.
This option does not affect the Compare-and-Jump instruc-
tions; the code emitted for them is always adjusted when
necessary (depending on displacement size), regardless of
whether you use ‘-no-relax’.

8.7.2 Floating Point

as generates ieee floating-point numbers for the directives ‘.float’,
‘.double’, ‘.extended’, and ‘.single’.

8.7.3 i960 Machine Directives

.bss symbol, length, align
Reserve length bytes in the bss section for a local symbol,
aligned to the power of two specified by align. length and
align must be positive absolute expressions. This directive
differs from ‘.lcomm’ only in that it permits you to specify an
alignment. See Section 7.29 “.lcomm,” page 40.

.extended flonums
.extended expects zero or more flonums, separated by com-
mas; for each flonum, ‘.extended’ emits an ieee extended-
format (80-bit) floating-point number.

76 7 July 1995

Chapter 8: Machine Dependent Features

.leafproc call-lab, bal-lab
You can use the ‘.leafproc’ directive in conjunction with the
optimized callj instruction to enable faster calls of leaf pro-
cedures. If a procedure is known to call no other procedures,
you may define an entry point that skips procedure prolog
code (and that does not depend on system-supplied saved
context), and declare it as the bal-lab using ‘.leafproc’. If
the procedure also has an entry point that goes through the
normal prolog, you can specify that entry point as call-lab.
A ‘.leafproc’ declaration is meant for use in conjunction
with the optimized call instruction ‘callj’; the directive
records the data needed later to choose between converting
the ‘callj’ into a bal or a call.
call-lab is optional; if only one argument is present, or
if the two arguments are identical, the single argument is
assumed to be the bal entry point.

.sysproc name, index
The ‘.sysproc’ directive defines a name for a system pro-
cedure. After you define it using ‘.sysproc’, you can use
name to refer to the system procedure identified by index
when calling procedures with the optimized call instruction
‘callj’.
Both arguments are required; index must be between 0 and
31 (inclusive).

8.7.4 i960 Opcodes

All Intel 960 machine instructions are supported; see Section 8.7.1
“i960 Command-line Options,” page 75 for a discussion of selecting the
instruction subset for a particular 960 architecture.

Some opcodes are processed beyond simply emitting a single corre-
sponding instruction: ‘callj’, and Compare-and-Branch or Compare-
and-Jump instructions with target displacements larger than 13 bits.

8.7.4.1 callj

You can write callj to have the assembler or the linker determine
the most appropriate form of subroutine call: ‘call’, ‘bal’, or ‘calls’.
If the assembly source contains enough information—a ‘.leafproc’ or
‘.sysproc’ directive defining the operand—then as translates the callj;
if not, it simply emits the callj, leaving it for the linker to resolve.

c y g n u s s u p p o r t 77

Using as

8.7.4.2 Compare-and-Branch

The 960 architectures provide combined Compare-and-Branch in-
structions that permit you to store the branch target in the lower 13 bits
of the instruction word itself. However, if you specify a branch target
far enough away that its address won’t fit in 13 bits, the assembler can
either issue an error, or convert your Compare-and-Branch instruction
into separate instructions to do the compare and the branch.

Whether as gives an error or expands the instruction depends on
two choices you can make: whether you use the ‘-no-relax’ option, and
whether you use a “Compare and Branch” instruction or a “Compare
and Jump” instruction. The “Jump” instructions are always expanded
if necessary; the “Branch” instructions are expanded when necessary
unless you specify -no-relax—in which case as gives an error instead.

These are the Compare-and-Branch instructions, their “Jump” vari-
ants, and the instruction pairs they may expand into:

Compare and
Branch Jump Expanded to

bbc chkbit; bno
bbs chkbit; bo

cmpibe cmpije cmpi; be
cmpibg cmpijg cmpi; bg

cmpibge cmpijge cmpi; bge
cmpibl cmpijl cmpi; bl

cmpible cmpijle cmpi; ble
cmpibno cmpijno cmpi; bno
cmpibne cmpijne cmpi; bne
cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be
cmpobg cmpojg cmpo; bg

cmpobge cmpojge cmpo; bge
cmpobl cmpojl cmpo; bl

cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne

78 7 July 1995

Chapter 8: Machine Dependent Features

8.8 M680x0 Dependent Features

8.8.1 M680x0 Options

The Motorola 680x0 version of ashas two machine dependent options.
One shortens undefined references from 32 to 16 bits, while the other is
used to tell as what kind of machine it is assembling for.

You can use the ‘-l’ option to shorten the size of references to unde-
fined symbols. If you do not use the ‘-l’ option, references to undefined
symbols are wide enough for a full long (32 bits). (Since as cannot know
where these symbols end up, as can only allocate space for the linker to
fill in later. Since as does not know how far away these symbols are, it
allocates as much space as it can.) If you use this option, the references
are only one word wide (16 bits). This may be useful if you want the
object file to be as small as possible, and you know that the relevant
symbols are always less than 17 bits away.

The 680x0 version of as is most frequently used to assemble pro-
grams for the Motorola MC68020 microprocessor. Occasionally it is
used to assemble programs for the mostly similar, but slightly different
MC68000 or MC68010 microprocessors. You can give as the options
‘-m68000’, ‘-mc68000’, ‘-m68010’, ‘-mc68010’, ‘-m68020’, and ‘-mc68020’ to
tell it what processor is the target.

8.8.2 Syntax

This syntax for the Motorola 680x0 was developed at mit.
The 680x0 version of as uses syntax compatible with the Sun assem-

bler. Intervening periods are ignored; for example, ‘movl’ is equivalent
to ‘move.l’.

In the following table apc stands for any of the address registers (‘a0’
through ‘a7’), nothing, (‘’), the Program Counter (‘pc’), or the zero-address
relative to the program counter (‘zpc’).

The following addressing modes are understood:

Immediate
‘#digits’

Data Register
‘%d0’ through ‘%d7’

Address Register
‘%a0’ through ‘%a7’
‘%a7’ is also known as ‘%sp’, i.e. the Stack Pointer. %a6 is also
known as ‘%fp’, the Frame Pointer.

c y g n u s s u p p o r t 79

Using as

Address Register Indirect
‘%a0@’ through ‘%a7@’

Address Register Postincrement
‘%a0@+’ through ‘%a7@+’

Address Register Predecrement
‘%a0@-’ through ‘%a7@-’

Indirect Plus Offset
‘%apc@(digits)’

Index ‘%apc@(digits,%register:size:scale)’
or ‘%apc@(%register:size:scale)’

Postindex ‘%apc@(digits)@(digits,%register:size:scale)’
or ‘%apc@(digits)@(%register:size:scale)’

Preindex ‘%apc@(digits,%register:size:scale)@(digits)’
or ‘%apc@(%register:size:scale)@(digits)’

Memory Indirect
‘%apc@(digits)@(digits)’

Absolute ‘symbol’, or ‘digits’

For some configurations, especially those where the compiler nor-
mally does not prepend an underscore to the names of user variables,
the assembler requires a ‘%’ before any use of a register name. This is
intended to let the assembler distinguish between C variables and reg-
isters named ‘a0’ through ‘a7’, and so on. The ‘%’ is always accepted, but
is not required for certain configurations, notably ‘sun3’.

8.8.3 Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax
already discussed (see Section 8.8.2 “Syntax,” page 79). as can accept
some forms of Motorola syntax for operands, even if mit syntax is used
for other operands in the same instruction. The two kinds of syntax are
fully compatible; our support for Motorola syntax is simply incomplete
at present.

In particular, you may write or generate M68K assembler with the
following conventions:

(In the following table %apc stands for any of the address registers
(‘%a0’ through ‘%a7’), nothing (‘’), the Program Counter (‘%pc’), or the
zero-address relative to the program counter (‘%zpc’).)

The following additional addressing modes are understood:

80 7 July 1995

Chapter 8: Machine Dependent Features

Address Register Indirect
‘%a0’ through ‘%a7’
‘%a7’ is also known as ‘%sp’, i.e. the Stack Pointer. %a6 is also
known as ‘%fp’, the Frame Pointer.

Address Register Postincrement
‘(%a0)+’ through ‘(%a7)+’

Address Register Predecrement
‘-(%a0)’ through ‘-(%a7)’

Indirect Plus Offset
‘digits(%apc)’

Index ‘digits(%apc,(%register.size*scale))’
or ‘(%apc,%register.size*scale)’
In either case, size and scale are optional (scale defaults
to ‘1’, size defaults to ‘l’). scale can be ‘1’, ‘2’, ‘4’, or ‘8’. size
can be ‘w’ or ‘l’. scale is only supported on the 68020 and
greater.

Other, more complex addressing modes permitted in Motorola syntax
are not handled.

8.8.4 Floating Point

The floating point code is not too well tested, and may have subtle
bugs in it.

Packed decimal (P) format floating literals are not supported. Feel
free to add the code!

The floating point formats generated by directives are these.

.float Single precision floating point constants.

.double Double precision floating point constants.

There is no directive to produce regions of memory holding extended
precision numbers, however they can be used as immediate operands to
floating-point instructions. Adding a directive to create extended preci-
sion numbers would not be hard, but it has not yet seemed necessary.

8.8.5 680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler
understands the following directives.

.data1 This directive is identical to a .data 1 directive.

c y g n u s s u p p o r t 81

Using as

.data2 This directive is identical to a .data 2 directive.

.even This directive is identical to a .align 1 directive.

.skip This directive is identical to a .space directive.

8.8.6 Opcodes

8.8.6.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instruction that reach the target. Gener-
ally these mnemonics are made by substituting ‘j’ for ‘b’ at the start of a
Motorola mnemonic.

The following table summarizes the pseudo-operations. A * flags
cases that are more fully described after the table:

Displacement
+---
| 68020 68000/10

Pseudo-Op |BYTE WORD LONG LONG non-PC relative
+---

jbsr |bsrs bsr bsrl jsr jsr
jra |bras bra bral jmp jmp

* jXX |bXXs bXX bXXl bNXs;jmpl bNXs;jmp
* dbXX |dbXX dbXX dbXX; bra; jmpl
* fjXX |fbXXw fbXXw fbXXl fbNXw;jmp

XX: condition
NX: negative of condition XX

*—see full description below

jbsr
jra These are the simplest jump pseudo-operations; they always

map to one particular machine instruction, depending on the
displacement to the branch target.

jXX Here, ‘jXX ’ stands for an entire family of pseudo-operations,
where XX is a conditional branch or condition-code test. The
full list of pseudo-ops in this family is:

jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle

For the cases of non-PC relative displacements and long dis-
placements on the 68000 or 68010, as issues a longer code
fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:

82 7 July 1995

Chapter 8: Machine Dependent Features

jXX foo

gives
bNXs oof
jmp foo

oof:

dbXX The full family of pseudo-operations covered here is
dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Other than for word and byte displacements, when the source
reads ‘dbXX foo’, as emits

dbXX oo1
bra oo2

oo1:jmpl foo
oo2:

fjXX This family includes
fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge fjngl fjngle fjngt
fjnle fjnlt fjoge fjogl fjogt fjole fjolt
fjor fjseq fjsf fjsne fjst fjueq fjuge
fjugt fjule fjult fjun

For branch targets that are not PC relative, as emits
fbNX oof
jmp foo

oof:

when it encounters ‘fjXX foo’.

8.8.6.2 Special Characters

The immediate character is ‘#’ for Sun compatibility. The line-
comment character is ‘|’. If a ‘#’ appears at the beginning of a line,
it is treated as a comment unless it looks like ‘# line file’, in which
case it is treated normally.

c y g n u s s u p p o r t 83

Using as

8.9 SPARC Dependent Features

8.9.1 Options

The SPARC chip family includes several successive levels (or other
variants) of chip, using the same core instruction set, but including a
few additional instructions at each level.

By default, as assumes the core instruction set (SPARC v6), but
“bumps” the architecture level as needed: it switches to successively
higher architectures as it encounters instructions that only exist in the
higher levels.

-Av6 | -Av7 | -Av8 | -Av9 | -Asparclite
Use one of the ‘-A’ options to select one of the SPARC archi-
tectures explicitly. If you select an architecture explicitly, as
reports a fatal error if it encounters an instruction or feature
requiring a higher level.

-bump Permit the assembler to “bump” the architecture level as
required, but warn whenever it is necessary to switch to
another level.

8.9.2 Floating Point

The Sparc uses ieee floating-point numbers.

8.9.3 Sparc Machine Directives

The Sparc version of as supports the following additional machine
directives:

.align This must be followed by the desired alignment in bytes.

.common This must be followed by a symbol name, a positive num-
ber, and "bss". This behaves somewhat like .comm, but the
syntax is different.

.half This is functionally identical to .short.

.proc This directive is ignored. Any text following it on the same
line is also ignored.

.reserve This must be followed by a symbol name, a positive number,
and "bss". This behaves somewhat like .lcomm, but the
syntax is different.

84 7 July 1995

Chapter 8: Machine Dependent Features

.seg This must be followed by "text", "data", or "data1". It
behaves like .text, .data, or .data 1.

.skip This is functionally identical to the .space directive.

.word On the Sparc, the .word directive produces 32 bit values,
instead of the 16 bit values it produces on many other ma-
chines.

.xword On the Sparc V9 processor, the .xword directive produces 64
bit values.

c y g n u s s u p p o r t 85

Using as

8.10 80386 Dependent Features

8.10.1 Options

The 80386 has no machine dependent options.

8.10.2 AT&T Syntax versus Intel Syntax

In order to maintain compatibility with the output of gcc, as supports
AT&T System V/386 assembler syntax. This is quite different from
Intel syntax. We mention these differences because almost all 80386
documents used only Intel syntax. Notable differences between the two
syntaxes are:
� AT&T immediate operands are preceded by ‘$’; Intel immediate

operands are undelimited (Intel ‘push 4’ is AT&T ‘pushl $4’). AT&T
register operands are preceded by ‘%’; Intel register operands are
undelimited. AT&T absolute (as opposed to PC relative) jump/call
operands are prefixed by ‘*’; they are undelimited in Intel syntax.

� AT&T and Intel syntax use the opposite order for source and desti-
nation operands. Intel ‘add eax, 4’ is ‘addl $4, %eax’. The ‘source,
dest’ convention is maintained for compatibility with previous Unix
assemblers.

� In AT&T syntax the size of memory operands is determined from
the last character of the opcode name. Opcode suffixes of ‘b’, ‘w’, and
‘l’ specify byte (8-bit), word (16-bit), and long (32-bit) memory refer-
ences. Intel syntax accomplishes this by prefixes memory operands
(not the opcodes themselves) with ‘byte ptr’, ‘word ptr’, and ‘dword
ptr’. Thus, Intel ‘mov al, byte ptr foo’ is ‘movb foo, %al’ in AT&T
syntax.

� Immediate form long jumps and calls are ‘lcall/ljmp $section,
$offset’ in AT&T syntax; the Intel syntax is ‘call/jmp far sec-
tion:offset’. Also, the far return instruction is ‘lret $stack-
adjust’ in AT&T syntax; Intel syntax is ‘ret far stack-adjust’.

� The AT&T assembler does not provide support for multiple section
programs. Unix style systems expect all programs to be single sec-
tions.

8.10.3 Opcode Naming

Opcode names are suffixed with one character modifiers which spec-
ify the size of operands. The letters ‘b’, ‘w’, and ‘l’ specify byte, word, and
long operands. If no suffix is specified by an instruction and it contains

86 7 July 1995

Chapter 8: Machine Dependent Features

no memory operands then as tries to fill in the missing suffix based on
the destination register operand (the last one by convention). Thus, ‘mov
%ax, %bx’ is equivalent to ‘movw %ax, %bx’; also, ‘mov $1, %bx’ is equiv-
alent to ‘movw $1, %bx’. Note that this is incompatible with the AT&T
Unix assembler which assumes that a missing opcode suffix implies long
operand size. (This incompatibility does not affect compiler output since
compilers always explicitly specify the opcode suffix.)

Almost all opcodes have the same names in AT&T and Intel format.
There are a few exceptions. The sign extend and zero extend instructions
need two sizes to specify them. They need a size to sign/zero extend from
and a size to zero extend to. This is accomplished by using two opcode
suffixes in AT&T syntax. Base names for sign extend and zero extend
are ‘movs. ..’ and ‘movz. ..’ in AT&T syntax (‘movsx’ and ‘movzx’ in Intel
syntax). The opcode suffixes are tacked on to this base name, the from
suffix before the to suffix. Thus, ‘movsbl %al, %edx’ is AT&T syntax for
“move sign extend from %al to %edx.” Possible suffixes, thus, are ‘bl’
(from byte to long), ‘bw’ (from byte to word), and ‘wl’ (from word to long).

The Intel-syntax conversion instructions
� ‘cbw’ — sign-extend byte in ‘%al’ to word in ‘%ax’,
� ‘cwde’ — sign-extend word in ‘%ax’ to long in ‘%eax’,
� ‘cwd’ — sign-extend word in ‘%ax’ to long in ‘%dx:%ax’,
� ‘cdq’ — sign-extend dword in ‘%eax’ to quad in ‘%edx:%eax’,

are called ‘cbtw’, ‘cwtl’, ‘cwtd’, and ‘cltd’ in AT&T naming. as accepts
either naming for these instructions.

Far call/jump instructions are ‘lcall’ and ‘ljmp’ in AT&T syntax, but
are ‘call far’ and ‘jump far’ in Intel convention.

8.10.4 Register Naming

Register operands are always prefixes with ‘%’. The 80386 registers
consist of
� the 8 32-bit registers ‘%eax’ (the accumulator), ‘%ebx’, ‘%ecx’, ‘%edx’,

‘%edi’, ‘%esi’, ‘%ebp’ (the frame pointer), and ‘%esp’ (the stack
pointer).

� the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘%cx’, ‘%dx’, ‘%di’, ‘%si’,
‘%bp’, and ‘%sp’.

� the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%bh’, ‘%bl’, ‘%ch’, ‘%cl’, ‘%dh’, and
‘%dl’ (These are the high-bytes and low-bytes of ‘%ax’, ‘%bx’, ‘%cx’,
and ‘%dx’)

� the 6 section registers ‘%cs’ (code section), ‘%ds’ (data section), ‘%ss’
(stack section), ‘%es’, ‘%fs’, and ‘%gs’.

c y g n u s s u p p o r t 87

Using as

� the 3 processor control registers ‘%cr0’, ‘%cr2’, and ‘%cr3’.
� the 6 debug registers ‘%db0’, ‘%db1’, ‘%db2’, ‘%db3’, ‘%db6’, and ‘%db7’.
� the 2 test registers ‘%tr6’ and ‘%tr7’.
� the 8 floating point register stack ‘%st’ or equivalently ‘%st(0)’,

‘%st(1)’, ‘%st(2)’, ‘%st(3)’, ‘%st(4)’, ‘%st(5)’, ‘%st(6)’, and ‘%st(7)’.

8.10.5 Opcode Prefixes

Opcode prefixes are used to modify the following opcode. They are
used to repeat string instructions, to provide section overrides, to per-
form bus lock operations, and to give operand and address size (16-bit
operands are specified in an instruction by prefixing what would nor-
mally be 32-bit operands with a “operand size” opcode prefix). Opcode
prefixes are usually given as single-line instructions with no operands,
and must directly precede the instruction they act upon. For example,
the ‘scas’ (scan string) instruction is repeated with:

repne
scas

Here is a list of opcode prefixes:
� Section override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’. These are au-

tomatically added by specifying using the section:memory-operand
form for memory references.

� Operand/Address size prefixes ‘data16’ and ‘addr16’ change 32-bit
operands/addresses into 16-bit operands/addresses. Note that 16-
bit addressing modes (i.e. 8086 and 80286 addressing modes) are
not supported (yet).

� The bus lock prefix ‘lock’ inhibits interrupts during execution of the
instruction it precedes. (This is only valid with certain instructions;
see a 80386 manual for details).

� The wait for coprocessor prefix ‘wait’ waits for the coprocessor to
complete the current instruction. This should never be needed for
the 80386/80387 combination.

� The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string instructions
to make them repeat ‘%ecx’ times.

8.10.6 Memory References

An Intel syntax indirect memory reference of the form
section:[base + index*scale + disp]

is translated into the AT&T syntax

88 7 July 1995

Chapter 8: Machine Dependent Features

section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers,
disp is the optional displacement, and scale, taking the values 1, 2, 4,
and 8, multiplies index to calculate the address of the operand. If no
scale is specified, scale is taken to be 1. section specifies the optional
section register for the memory operand, and may override the default
section register (see a 80386 manual for section register defaults). Note
that section overrides in AT&T syntax must have be preceded by a ‘%’.
If you specify a section override which coincides with the default section
register, as does not output any section register override prefixes to
assemble the given instruction. Thus, section overrides can be specified
to emphasize which section register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4(%ebp)’, Intel: ‘[ebp - 4]’
base is ‘%ebp’; disp is ‘-4’. section is missing, and the
default section is used (‘%ss’ for addressing with ‘%ebp’ as the
base register). index, scale are both missing.

AT&T: ‘foo(,%eax,4)’, Intel: ‘[foo + eax*4]’
index is ‘%eax’ (scaled by a scale 4); disp is ‘foo’. All other
fields are missing. The section register here defaults to ‘%ds’.

AT&T: ‘foo(,1)’; Intel ‘[foo]’
This uses the value pointed to by ‘foo’ as a memory operand.
Note that base and index are both missing, but there is only
one ‘,’. This is a syntactic exception.

AT&T: ‘%gs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with section
register section being ‘%gs’.

Absolute (as opposed to PC relative) call and jump operands must
be prefixed with ‘*’. If no ‘*’ is specified, as always chooses PC relative
addressing for jump/call labels.

Any instruction that has a memory operand must specify its size
(byte, word, or long) with an opcode suffix (‘b’, ‘w’, or ‘l’, respectively).

8.10.7 Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible
displacements. This is accomplished by using byte (8-bit) displacement
jumps whenever the target is sufficiently close. If a byte displacement is
insufficient a long (32-bit) displacement is used. We do not support word
(16-bit) displacement jumps (i.e. prefixing the jump instruction with the
‘addr16’ opcode prefix), since the 80386 insists upon masking ‘%eip’ to
16 bits after the word displacement is added.

c y g n u s s u p p o r t 89

Using as

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’ and
‘loopne’ instructions only come in byte displacements, so that if you use
these instructions (gcc does not use them) you may get an error message
(and incorrect code). The AT&T 80386 assembler tries to get around this
problem by expanding ‘jcxz foo’ to

jcxz cx_zero
jmp cx_nonzero

cx_zero: jmp foo
cx_nonzero:

8.10.8 Floating Point

All 80387 floating point types except packed BCD are supported.
(BCD support may be added without much difficulty). These data types
are 16-, 32-, and 64- bit integers, and single (32-bit), double (64-bit),
and extended (80-bit) precision floating point. Each supported type has
an opcode suffix and a constructor associated with it. Opcode suffixes
specify operand’s data types. Constructors build these data types into
memory.

� Floating point constructors are ‘.float’ or ‘.single’, ‘.double’, and
‘.tfloat’ for 32-, 64-, and 80-bit formats. These correspond to op-
code suffixes ‘s’, ‘l’, and ‘t’. ‘t’ stands for temporary real, and that
the 80387 only supports this format via the ‘fldt’ (load temporary
real to stack top) and ‘fstpt’ (store temporary real and pop stack)
instructions.

� Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’ for the
16-, 32-, and 64-bit integer formats. The corresponding opcode suf-
fixes are ‘s’ (single), ‘l’ (long), and ‘q’ (quad). As with the temporary
real format the 64-bit ‘q’ format is only present in the ‘fildq’ (load
quad integer to stack top) and ‘fistpq’ (store quad integer and pop
stack) instructions.

Register to register operations do not require opcode suffixes, so that
‘fst %st, %st(1)’ is equivalent to ‘fstl %st, %st(1)’.

Since the 80387 automatically synchronizes with the 80386 ‘fwait’
instructions are almost never needed (this is not the case for the
80286/80287 and 8086/8087 combinations). Therefore, as suppresses
the ‘fwait’ instruction whenever it is implicitly selected by one of the
‘fn. ..’ instructions. For example, ‘fsave’ and ‘fnsave’ are treated iden-
tically. In general, all the ‘fn. ..’ instructions are made equivalent to
‘f. ..’ instructions. If ‘fwait’ is desired it must be explicitly coded.

90 7 July 1995

Chapter 8: Machine Dependent Features

8.10.9 Writing 16-bit Code

While GAS normally writes only “pure” 32-bit i386 code, it has lim-
ited support for writing code to run in real mode or in 16-bit protected
mode code segments. To do this, insert a ‘.code16’ directive before the
assembly language instructions to be run in 16-bit mode. You can switch
GAS back to writing normal 32-bit code with the ‘.code32’ directive.

GAS understands exactly the same assembly language syntax in 16-
bit mode as in 32-bit mode. The function of any given instruction is
exactly the same regardless of mode, as long as the resulting object code
is executed in the mode for which GAS wrote it. So, for example, the ‘ret’
mnemonic produces a 32-bit return instruction regardless of whether it
is to be run in 16-bit or 32-bit mode. (If GAS is in 16-bit mode, it will add
an operand size prefix to the instruction to force it to be a 32-bit return.)

This means, for one thing, that you can use GNU CC to write code to
be run in real mode or 16-bit protected mode. Just insert the statement
‘asm(".code16");’ at the beginning of your C source file, and while GNU
CC will still be generating 32-bit code, GAS will automatically add all
the necessary size prefixes to make that code run in 16-bit mode. Of
course, since GNU CC only writes small-model code (it doesn’t know
how to attach segment selectors to pointers like native x86 compilers
do), any 16-bit code you write with GNU CC will essentially be limited
to a 64K address space. Also, there will be a code size and performance
penalty due to all the extra address and operand size prefixes GAS has
to add to the instructions.

Note that placing GAS in 16-bit mode does not mean that the resulting
code will necessarily run on a 16-bit pre-80386 processor. To write code
that runs on such a processor, you would have to refrain from using any
32-bit constructs which require GAS to output address or operand size
prefixes. At the moment this would be rather difficult, because GAS
currently supports only 32-bit addressing modes: when writing 16-bit
code, it always outputs address size prefixes for any instruction that
uses a non-register addressing mode. So you can write code that runs
on 16-bit processors, but only if that code never references memory.

8.10.10 Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions
that deserves mention. The 16-, 32-, and 64-bit expanding multiplies
(base opcode ‘0xf6’; extension 4 for ‘mul’ and 5 for ‘imul’) can be output
only in the one operand form. Thus, ‘imul %ebx, %eax’ does not select
the expanding multiply; the expanding multiply would clobber the ‘%edx’
register, and this would confuse gcc output. Use ‘imul %ebx’ to get the
64-bit product in ‘%edx:%eax’.

c y g n u s s u p p o r t 91

Using as

We have added a two operand form of ‘imul’ when the first operand
is an immediate mode expression and the second operand is a register.
This is just a shorthand, so that, multiplying ‘%eax’ by 69, for example,
can be done with ‘imul $69, %eax’ rather than ‘imul $69, %eax, %eax’.

92 7 July 1995

Chapter 8: Machine Dependent Features

8.11 Z8000 Dependent Features

The Z8000 as supports both members of the Z8000 family: the unseg-
mented Z8002, with 16 bit addresses, and the segmented Z8001 with 24
bit addresses.

When the assembler is in unsegmented mode (specified with the
unsegm directive), an address takes up one word (16 bit) sized regis-
ter. When the assembler is in segmented mode (specified with the segm
directive), a 24-bit address takes up a long (32 bit) register. See Sec-
tion 8.11.3 “Assembler Directives for the Z8000,” page 94, for a list of
other Z8000 specific assembler directives.

8.11.1 Options

as has no additional command-line options for the Zilog Z8000 family.

8.11.2 Syntax

8.11.2.1 Special Characters

‘!’ is the line comment character.
You can use ‘;’ instead of a newline to separate statements.

8.11.2.2 Register Names

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can
refer to different sized groups of registers by register number, with the
prefix ‘r’ for 16 bit registers, ‘rr’ for 32 bit registers and ‘rq’ for 64 bit
registers. You can also refer to the contents of the first eight (of the
sixteen 16 bit registers) by bytes. They are named ‘rnh’ and ‘rnl’.
byte registers

r0l r0h r1h r1l r2h r2l r3h r3l
r4h r4l r5h r5l r6h r6l r7h r7l

word registers
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

long word registers
rr0 rr2 rr4 rr6 rr8 rr10 rr12 rr14

quad word registers
rq0 rq4 rq8 rq12

c y g n u s s u p p o r t 93

Using as

8.11.2.3 Addressing Modes

as understands the following addressing modes for the Z8000:

rn Register direct

@rn Indirect register

addr Direct: the 16 bit or 24 bit address (depending on whether
the assembler is in segmented or unsegmented mode) of the
operand is in the instruction.

address(rn)
Indexed: the 16 or 24 bit address is added to the 16 bit reg-
ister to produce the final address in memory of the operand.

rn(#imm) Base Address: the 16 or 24 bit register is added to the 16 bit
sign extended immediate displacement to produce the final
address in memory of the operand.

rn(rm) Base Index: the 16 or 24 bit register rn is added to the sign
extended 16 bit index register rm to produce the final address
in memory of the operand.

#xx Immediate data xx.

8.11.3 Assembler Directives for the Z8000

The Z8000 port of as includes these additional assembler directives,
for compatibility with other Z8000 assemblers. As shown, these do not
begin with ‘.’ (unlike the ordinary as directives).

segm Generates code for the segmented Z8001.

unsegm Generates code for the unsegmented Z8002.

name Synonym for .file

global Synonum for .global

wval Synonym for .word

lval Synonym for .long

bval Synonym for .byte

sval Assemble a string. sval expects one string literal, delimited
by single quotes. It assembles each byte of the string into
consecutive addresses. You can use the escape sequence ‘%xx’
(where xx represents a two-digit hexadecimal number) to
represent the character whose ascii value is xx. Use this
feature to describe single quote and other characters that

94 7 July 1995

Chapter 8: Machine Dependent Features

may not appear in string literals as themselves. For example,
the C statement ‘char *a = "he said \"it’s 50% off\"";’ is
represented in Z8000 assembly language (shown with the
assembler output in hex at the left) as
68652073 sval ’he said %22it%27s 50%25 off%22%00’
61696420
22697427
73203530
25206F66
662200

rsect synonym for .section

block synonym for .space

even synonym for .align 1

8.11.4 Opcodes

For detailed information on the Z8000 machine instruction set, see
Z8000 Technical Manual.

The following table summarizes the opcodes and their arguments:

rs 16 bit source register
rd 16 bit destination register
rbs 8 bit source register
rbd 8 bit destination register
rrs 32 bit source register
rrd 32 bit destination register
rqs 64 bit source register
rqd 64 bit destination register
addr 16/24 bit address
imm immediate data

adc rd,rs clrb addr cpsir @rd,@rs,rr,cc
adcb rbd,rbs clrb addr(rd) cpsirb @rd,@rs,rr,cc
add rd,@rs clrb rbd dab rbd
add rd,addr com @rd dbjnz rbd,disp7
add rd,addr(rs) com addr dec @rd,imm4m1
add rd,imm16 com addr(rd) dec addr(rd),imm4m1
add rd,rs com rd dec addr,imm4m1
addb rbd,@rs comb @rd dec rd,imm4m1
addb rbd,addr comb addr decb @rd,imm4m1
addb rbd,addr(rs) comb addr(rd) decb addr(rd),imm4m1
addb rbd,imm8 comb rbd decb addr,imm4m1
addb rbd,rbs comflg flags decb rbd,imm4m1
addl rrd,@rs cp @rd,imm16 di i2
addl rrd,addr cp addr(rd),imm16 div rrd,@rs
addl rrd,addr(rs) cp addr,imm16 div rrd,addr
addl rrd,imm32 cp rd,@rs div rrd,addr(rs)
addl rrd,rrs cp rd,addr div rrd,imm16

c y g n u s s u p p o r t 95

Using as

and rd,@rs cp rd,addr(rs) div rrd,rs
and rd,addr cp rd,imm16 divl rqd,@rs
and rd,addr(rs) cp rd,rs divl rqd,addr
and rd,imm16 cpb @rd,imm8 divl rqd,addr(rs)
and rd,rs cpb addr(rd),imm8 divl rqd,imm32
andb rbd,@rs cpb addr,imm8 divl rqd,rrs
andb rbd,addr cpb rbd,@rs djnz rd,disp7
andb rbd,addr(rs) cpb rbd,addr ei i2
andb rbd,imm8 cpb rbd,addr(rs) ex rd,@rs
andb rbd,rbs cpb rbd,imm8 ex rd,addr
bit @rd,imm4 cpb rbd,rbs ex rd,addr(rs)
bit addr(rd),imm4 cpd rd,@rs,rr,cc ex rd,rs
bit addr,imm4 cpdb rbd,@rs,rr,cc exb rbd,@rs
bit rd,imm4 cpdr rd,@rs,rr,cc exb rbd,addr
bit rd,rs cpdrb rbd,@rs,rr,cc exb rbd,addr(rs)
bitb @rd,imm4 cpi rd,@rs,rr,cc exb rbd,rbs
bitb addr(rd),imm4 cpib rbd,@rs,rr,cc ext0e imm8
bitb addr,imm4 cpir rd,@rs,rr,cc ext0f imm8
bitb rbd,imm4 cpirb rbd,@rs,rr,cc ext8e imm8
bitb rbd,rs cpl rrd,@rs ext8f imm8
bpt cpl rrd,addr exts rrd
call @rd cpl rrd,addr(rs) extsb rd
call addr cpl rrd,imm32 extsl rqd
call addr(rd) cpl rrd,rrs halt
calr disp12 cpsd @rd,@rs,rr,cc in rd,@rs
clr @rd cpsdb @rd,@rs,rr,cc in rd,imm16
clr addr cpsdr @rd,@rs,rr,cc inb rbd,@rs
clr addr(rd) cpsdrb @rd,@rs,rr,cc inb rbd,imm16
clr rd cpsi @rd,@rs,rr,cc inc @rd,imm4m1
clrb @rd cpsib @rd,@rs,rr,cc inc addr(rd),imm4m1
inc addr,imm4m1 ldb rbd,rs(rx) mult rrd,addr(rs)
inc rd,imm4m1 ldb rd(imm16),rbs mult rrd,imm16
incb @rd,imm4m1 ldb rd(rx),rbs mult rrd,rs
incb addr(rd),imm4m1 ldctl ctrl,rs multl rqd,@rs
incb addr,imm4m1 ldctl rd,ctrl multl rqd,addr
incb rbd,imm4m1 ldd @rs,@rd,rr multl rqd,addr(rs)
ind @rd,@rs,ra lddb @rs,@rd,rr multl rqd,imm32
indb @rd,@rs,rba lddr @rs,@rd,rr multl rqd,rrs
inib @rd,@rs,ra lddrb @rs,@rd,rr neg @rd
inibr @rd,@rs,ra ldi @rd,@rs,rr neg addr
iret ldib @rd,@rs,rr neg addr(rd)
jp cc,@rd ldir @rd,@rs,rr neg rd
jp cc,addr ldirb @rd,@rs,rr negb @rd
jp cc,addr(rd) ldk rd,imm4 negb addr
jr cc,disp8 ldl @rd,rrs negb addr(rd)
ld @rd,imm16 ldl addr(rd),rrs negb rbd
ld @rd,rs ldl addr,rrs nop
ld addr(rd),imm16 ldl rd(imm16),rrs or rd,@rs
ld addr(rd),rs ldl rd(rx),rrs or rd,addr
ld addr,imm16 ldl rrd,@rs or rd,addr(rs)
ld addr,rs ldl rrd,addr or rd,imm16
ld rd(imm16),rs ldl rrd,addr(rs) or rd,rs
ld rd(rx),rs ldl rrd,imm32 orb rbd,@rs

96 7 July 1995

Chapter 8: Machine Dependent Features

ld rd,@rs ldl rrd,rrs orb rbd,addr
ld rd,addr ldl rrd,rs(imm16) orb rbd,addr(rs)
ld rd,addr(rs) ldl rrd,rs(rx) orb rbd,imm8
ld rd,imm16 ldm @rd,rs,n orb rbd,rbs
ld rd,rs ldm addr(rd),rs,n out @rd,rs
ld rd,rs(imm16) ldm addr,rs,n out imm16,rs
ld rd,rs(rx) ldm rd,@rs,n outb @rd,rbs
lda rd,addr ldm rd,addr(rs),n outb imm16,rbs
lda rd,addr(rs) ldm rd,addr,n outd @rd,@rs,ra
lda rd,rs(imm16) ldps @rs outdb @rd,@rs,rba
lda rd,rs(rx) ldps addr outib @rd,@rs,ra
ldar rd,disp16 ldps addr(rs) outibr @rd,@rs,ra
ldb @rd,imm8 ldr disp16,rs pop @rd,@rs
ldb @rd,rbs ldr rd,disp16 pop addr(rd),@rs
ldb addr(rd),imm8 ldrb disp16,rbs pop addr,@rs
ldb addr(rd),rbs ldrb rbd,disp16 pop rd,@rs
ldb addr,imm8 ldrl disp16,rrs popl @rd,@rs
ldb addr,rbs ldrl rrd,disp16 popl addr(rd),@rs
ldb rbd,@rs mbit popl addr,@rs
ldb rbd,addr mreq rd popl rrd,@rs
ldb rbd,addr(rs) mres push @rd,@rs
ldb rbd,imm8 mset push @rd,addr
ldb rbd,rbs mult rrd,@rs push @rd,addr(rs)
ldb rbd,rs(imm16) mult rrd,addr push @rd,imm16
push @rd,rs set addr,imm4 subl rrd,imm32
pushl @rd,@rs set rd,imm4 subl rrd,rrs
pushl @rd,addr set rd,rs tcc cc,rd
pushl @rd,addr(rs) setb @rd,imm4 tccb cc,rbd
pushl @rd,rrs setb addr(rd),imm4 test @rd
res @rd,imm4 setb addr,imm4 test addr
res addr(rd),imm4 setb rbd,imm4 test addr(rd)
res addr,imm4 setb rbd,rs test rd
res rd,imm4 setflg imm4 testb @rd
res rd,rs sinb rbd,imm16 testb addr
resb @rd,imm4 sinb rd,imm16 testb addr(rd)
resb addr(rd),imm4 sind @rd,@rs,ra testb rbd
resb addr,imm4 sindb @rd,@rs,rba testl @rd
resb rbd,imm4 sinib @rd,@rs,ra testl addr
resb rbd,rs sinibr @rd,@rs,ra testl addr(rd)
resflg imm4 sla rd,imm8 testl rrd
ret cc slab rbd,imm8 trdb @rd,@rs,rba
rl rd,imm1or2 slal rrd,imm8 trdrb @rd,@rs,rba
rlb rbd,imm1or2 sll rd,imm8 trib @rd,@rs,rbr
rlc rd,imm1or2 sllb rbd,imm8 trirb @rd,@rs,rbr
rlcb rbd,imm1or2 slll rrd,imm8 trtdrb @ra,@rb,rbr
rldb rbb,rba sout imm16,rs trtib @ra,@rb,rr
rr rd,imm1or2 soutb imm16,rbs trtirb @ra,@rb,rbr
rrb rbd,imm1or2 soutd @rd,@rs,ra trtrb @ra,@rb,rbr
rrc rd,imm1or2 soutdb @rd,@rs,rba tset @rd
rrcb rbd,imm1or2 soutib @rd,@rs,ra tset addr
rrdb rbb,rba soutibr @rd,@rs,ra tset addr(rd)
rsvd36 sra rd,imm8 tset rd
rsvd38 srab rbd,imm8 tsetb @rd

c y g n u s s u p p o r t 97

Using as

rsvd78 sral rrd,imm8 tsetb addr
rsvd7e srl rd,imm8 tsetb addr(rd)
rsvd9d srlb rbd,imm8 tsetb rbd
rsvd9f srll rrd,imm8 xor rd,@rs
rsvdb9 sub rd,@rs xor rd,addr
rsvdbf sub rd,addr xor rd,addr(rs)
sbc rd,rs sub rd,addr(rs) xor rd,imm16
sbcb rbd,rbs sub rd,imm16 xor rd,rs
sc imm8 sub rd,rs xorb rbd,@rs
sda rd,rs subb rbd,@rs xorb rbd,addr
sdab rbd,rs subb rbd,addr xorb rbd,addr(rs)
sdal rrd,rs subb rbd,addr(rs) xorb rbd,imm8
sdl rd,rs subb rbd,imm8 xorb rbd,rbs
sdlb rbd,rs subb rbd,rbs xorb rbd,rbs
sdll rrd,rs subl rrd,@rs
set @rd,imm4 subl rrd,addr
set addr(rd),imm4 subl rrd,addr(rs)

98 7 July 1995

Chapter 8: Machine Dependent Features

8.12 MIPS Dependent Features

gnu as for mips architectures supports the mips r2000, r3000, r4000
and r6000 processors. For information about the mips instruction set,
see MIPS RISC Architecture, by Kane and Heindrich (Prentice-Hall).
For an overview of mips assembly conventions, see “Appendix D: Assem-
bly Language Programming” in the same work.

8.12.1 Assembler options

The mips configurations of gnu as support these special options:

-G num This option sets the largest size of an object that can be
referenced implicitly with the gp register. It is only accepted
for targets that use ecoff format. The default value is 8.

-EB
-EL Any mips configuration of as can select big-endian or little-

endian output at run time (unlike the othergnu development
tools, which must be configured for one or the other). Use
‘-EB’ to select big-endian output, and ‘-EL’ for little-endian.

-mips1
-mips2
-mips3 Generate code for a particular MIPS Instruction Set Archi-

tecture level. ‘-mips1’ corresponds to the r2000 and r3000

processors, ‘-mips2’ to the r6000 processor, and ‘-mips3’ to
ther4000 processor. You can also switch instruction sets dur-
ing the assembly; see Section 8.12.4 “Directives to override
the ISA level,” page 101.

-m4650

-no-m4650
Generate code for the MIPS r4650 chip. This tells the as-
sembler to accept the ‘mad’ and ‘madu’ instruction, and to not
schedule ‘nop’ instructions around accesses to the ‘HI’ and
‘LO’ registers. ‘-no-m4650’ turns off this option.

-mcpu=CPU
Generate code for a particular MIPS cpu. This has little
effect on the assembler, but it is passed by gcc.

-nocpp This option is ignored. It is accepted for command-line com-
patibility with other assemblers, which use it to turn off
C style preprocessing. With gnu as, there is no need for
‘-nocpp’, because the gnu assembler itself never runs the C
preprocessor.

c y g n u s s u p p o r t 99

Using as

--trap
--no-break

as automatically macro expands certain division and multi-
plication instructions to check for overflow and division by
zero. This option causes as to generate code to take a trap
exception rather than a break exception when an error is
detected. The trap instructions are only supported at In-
struction Set Architecture level 2 and higher.

--break
--no-trap

Generate code to take a break exception rather than a trap
exception when an error is detected. This is the default.

8.12.2 MIPS ECOFF object code

Assembling for a mips ecoff target supports some additional sections
besides the usual .text, .data and .bss. The additional sections are
.rdata, used for read-only data, .sdata, used for small data, and .sbss,
used for small common objects.

When assembling for ecoff, the assembler uses the $gp ($28) register
to form the address of a “small object”. Any object in the .sdata or .sbss
sections is considered “small” in this sense. For external objects, or for
objects in the .bss section, you can use the gcc ‘-G’ option to control the
size of objects addressed via $gp; the default value is 8, meaning that
a reference to any object eight bytes or smaller uses $gp. Passing ‘-G 0’
to as prevents it from using the $gp register on the basis of object size
(but the assembler uses $gp for objects in .sdata or sbss in any case).
The size of an object in the .bss section is set by the .comm or .lcomm
directive that defines it. The size of an external object may be set with
the .extern directive. For example, ‘.extern sym,4’ declares that the
object at sym is 4 bytes in length, whie leaving sym otherwise undefined.

Using small ecoff objects requires linker support, and assumes that
the $gp register is correctly initialized (normally done automatically by
the startup code). mips ecoff assembly code must not modify the $gp
register.

8.12.3 Directives for debugging information

mips ecoff as supports several directives used for generating debug-
ging information which are not support by traditional mips assemblers.
These are .def, .endef, .dim, .file, .scl, .size, .tag, .type, .val,
.stabd, .stabn, and .stabs. The debugging information generated by
the three .stab directives can only be read by gdb, not by traditional

100 7 July 1995

Chapter 8: Machine Dependent Features

mips debuggers (this enhancement is required to fully support C++ de-
bugging). These directives are primarily used by compilers, not assembly
language programmers!

8.12.4 Directives to override the ISA level

gnu as supports an additional directive to change themips Instruction
Set Architecture level on the fly: .set mipsn. n should be a number from
0 to 3. A value from 1 to 3 makes the assembler accept instructions for
the corresponding isa level, from that point on in the assembly. .set
mipsn affects not only which instructions are permitted, but also how
certain macros are expanded. .set mips0 restores the isa level to its
original level: either the level you selected with command line options,
or the default for your configuration. You can use this feature to permit
specific r4000 instructions while assembling in 32 bit mode. Use this
directive with care!

Traditional mips assemblers do not support this directive.

c y g n u s s u p p o r t 101

Using as

102 7 July 1995

Chapter 9: Acknowledgements

9 Acknowledgements

If you have contributed to as and your name isn’t listed here, it is
not meant as a slight. We just don’t know about it. Send mail to the
maintainer, and we’ll correct the situation. Currently the maintainer is
Ken Raeburn (email address raeburn@cygnus.com).

Dean Elsner wrote the original gnu assembler for the VAX.1

Jay Fenlason maintained GAS for a while, adding support for GDB-
specific debug information and the 68k series machines, most of the pre-
processing pass, and extensive changes in ‘messages.c’, ‘input-file.c’,
‘write.c’.

K. Richard Pixley maintained GAS for a while, adding various en-
hancements and many bug fixes, including merging support for several
processors, breaking GAS up to handle multiple object file format back
ends (including heavy rewrite, testing, an integration of the coff and
b.out back ends), adding configuration including heavy testing and veri-
fication of cross assemblers and file splits and renaming, converted GAS
to strictly ANSI C including full prototypes, added support for m680[34]0
and cpu32, did considerable work on i960 including a COFF port (includ-
ing considerable amounts of reverse engineering), a SPARC opcode file
rewrite, DECstation, rs6000, and hp300hpux host ports, updated “know”
assertions and made them work, much other reorganization, cleanup,
and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most
of the code in format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric
Youngdale has done much work with it since.

The Intel 80386 machine description was written by Eliot Dressel-
haus.

Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
The Motorola 88k machine description was contributed by Devon

Bowen of Buffalo University and Torbjorn Granlund of the Swedish In-
stitute of Computer Science.

Keith Knowles at the Open Software Foundation wrote the original
MIPS back end (‘tc-mips.c’, ‘tc-mips.h’), and contributed Rose format
support (which hasn’t been merged in yet). Ralph Campbell worked with
the MIPS code to support a.out format.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors
(tc-z8k, tc-h8300, tc-h8500), and IEEE 695 object file format (obj-ieee),

1 Any more details?

c y g n u s s u p p o r t 103

Using as

was written by Steve Chamberlain of Cygnus Support. Steve also mod-
ified the COFF back end to use BFD for some low-level operations, for
use with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include sup-
port, and simplified the configuration of which versions accept which
directives. He updated the 68k machine description so that Motorola’s
opcodes always produced fixed-size instructions (e.g. jsr), while syn-
thetic instructions remained shrinkable (jbsr). John fixed many bugs,
including true tested cross-compilation support, and one bug in relax-
ation that took a week and required the proverbial one-bit fix.

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT
syntax for the 68k, completed support for some COFF targets (68k, i386
SVR3, and SCO Unix), added support for MIPS ECOFF and ELF targets,
and made a few other minor patches.

Steve Chamberlain made as able to generate listings.
Hewlett-Packard contributed support for the HP9000/300.
Jeff Law wrote GAS and BFD support for the native HPPA object

format (SOM) along with a fairly extensive HPPA testsuite (for both SOM
and ELF object formats). This work was supported by both the Center
for Software Science at the University of Utah and Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of
Cygnus Support (original, incomplete implementation for SPARC), Pete
Hoogenboom and Jeff Law at the University of Utah (HPPA mainly),
Michael Meissner of the Open Software Foundation (i386 mainly), and
Ken Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Several engineers at Cygnus Support have also provided many small
bug fixes and configuration enhancements.

Many others have contributed large or small bugfixes and enhance-
ments. If you have contributed significant work and are not mentioned
on this list, and want to be, let us know. Some of the history has been
lost; we are not intentionally leaving anyone out.

104 7 July 1995

Index

Index

#
. 14
#APP . 13
#NO APP . 13

$
$ in symbol names 62, 71

-
-- . 5
--statistics . 11
-+ option, VAX/VMS 50
-a . 9
-A options, i960 . 75
-ad . 9
-ah . 9
-al . 9
-an . 9
-as . 9
-Asparclite. 84
-Av6 . 84
-Av8 . 84
-Av9 . 84
-b option, i960 . 75
-D . 9
-D, ignored on VAX 49
-d, VAX option . 49
-EB option (MIPS) . 99
-EL option (MIPS) . 99
-f . 10
-G option (MIPS). 99
-h option, VAX/VMS 50
-I path . 10
-J, ignored on VAX 49
-K . 10
-L . 10
-l option, M680x0 . 79
-m68000 and related options 79
-no-relax option, i960. 76
-nocpp ignored (MIPS) 99
-o . 11
-R . 11
-S, ignored on VAX 49

-t, ignored on VAX 50
-T, ignored on VAX 49
-v . 11
-V, redundant on VAX 49
-version . 11
-W . 11

.

. (symbol). 28

.o . 6

.param on HPPA . 67

.set mipsn . 101

:
: (label) . 15

\
\" (doublequote character) 17
\\ (‘\’ character) . 16
\b (backspace character) 16
\ddd (octal character code) 16
\f (formfeed character) 16
\n (newline character) 16
\r (carriage return character) 16
\t (tab) . 16
\xdd (hex character code). 16

1
16-bit code, i386 . 91

2
29K support . 54

A
a.out . 6
a.out symbol attributes 29
abort directive . 35
ABORT directive . 35
absolute section . 23
addition, permitted arguments. 32
addresses . 31

c y g n u s s u p p o r t 105

Using as

addresses, format of 22
addressing modes, H8/300 56
addressing modes, H8/500 63
addressing modes, M680x0 79, 80
addressing modes, SH 71
addressing modes, Z8000 94
advancing location counter 42
align directive . 35
align directive, SPARC 84
altered difference tables 47
alternate syntax for the 680x0 80
AMD 29K floating point (ieee) 55
AMD 29K identifiers 54
AMD 29K line comment character 54
AMD 29K line separator 54
AMD 29K machine directives 55
AMD 29K opcodes . 55
AMD 29K options (none) 54
AMD 29K protected registers 54
AMD 29K register names 54
AMD 29K special purpose registers . . . 54
AMD 29K statement separator 54
AMD 29K support . 54
app-file directive 36
architecture options, i960 75
architecture options, M680x0 79
architectures, SPARC 84
arguments for addition 32
arguments for subtraction 32
arguments in expressions 31
arithmetic functions 32
arithmetic operands 31
as version . 11
ascii directive . 36
asciz directive . 36
assembler internal logic error 24
assembler, and linker 21
assembly listings, enabling 9
assigning values to symbols 27, 38
attributes, symbol . 29
auxiliary attributes, COFF symbols . . . 30
auxiliary symbol information, COFF . . 37
Av7 . 84

B
backslash (\\) . 16
backspace (\b) . 16
big endian output, MIPS 3

big-endian output, MIPS 99
bignums . 18
binary integers. 17
bitfields, not supported on VAX 53
block. 95
block directive, AMD 29K 55
branch improvement, M680x0 82
branch improvement, VAX 51
branch recording, i960 75
branch statistics table, i960 75
bss directive, i960 . 76
bss section . 23, 25
bus lock prefixes, i386. 88
bval . 94
byte directive . 36

C
call instructions, i386 87
callj, i960 pseudo-opcode 77
carriage return (\r) 16
character constants 16
character escape codes 16
character, single . 17
characters used in symbols 14
code16 directive, i386 91
code32 directive, i386 91
COFF auxiliary symbol information . . 37
COFF named section. 44
COFF structure debugging 46
COFF symbol attributes 30
COFF symbol descriptor 37
COFF symbol storage class 43
COFF symbol type . 47
COFF symbols, debugging 37
COFF value attribute 47
comm directive . 36
command line conventions 5
command-line options ignored, VAX . . 49
comments . 14
comments, M680x0 83
comments, removed by preprocessor . . 13
common directive, SPARC 84
common variable storage. 25
compare and jump expansions, i960 . . 78
compare/branch instructions, i960 78
conditional assembly 40
constant, single character 17
constants . 16

106 7 July 1995

Index

constants, bignum . 18
constants, character 16
constants, converted by preprocessor . . 13
constants, floating point 18
constants, integer . 17
constants, number . 17
constants, string . 16
continuing statements 15
conversion instructions, i386 87
coprocessor wait, i386 88
cputype directive, AMD 29K 55
current address . 28
current address, advancing 42

D
data and text sections, joining 11
data directive . 36
data section . 23
data1 directive, M680x0. 81
data2 directive, M680x0. 81
debuggers, and symbol order 27
debugging COFF symbols 37
decimal integers . 17
def directive . 37
deprecated directives 48
desc directive . 37
descriptor, of a.out symbol 29
dfloat directive, VAX 50
difference tables altered 47
difference tables, warning 10
dim directive . 37
directives and instructions 15
directives, M680x0 . 81
directives, machine independent 35
directives, Z8000 . 94
displacement sizing character, VAX . . . 53
dot (symbol) . 28
double directive . 37
double directive, i386 90
double directive, M680x0 81
double directive, VAX 50
doublequote (\") . 17

E
ECOFF sections . 100
eight-byte integer . 43
eject directive . 37

else directive . 37
empty expressions . 31
endef directive . 38
endianness, MIPS . 3
endif directive . 38
EOF, newline must precede 15
equ directive . 38
error messsages . 6
errors, continuing after 12
escape codes, character 16
even . 95
even directive, M680x0 82
expr (internal section) 24
expression arguments 31
expressions . 31
expressions, empty . 31
expressions, integer 31
extended directive, i96 76
extern directive . 38

F
faster processing (-f) 10
ffloat directive, VAX 50
file directive . 38
file directive, AMD 29K 55
file name, logical 36, 38
files, including . 40
files, input . 5
fill directive . 38
filling memory . 45
float directive . 39
float directive, i386 90
float directive, M680x0. 81
float directive, VAX 50
floating point numbers 18
floating point numbers (double) 37
floating point numbers (single) 39, 44
floating point, AMD 29K (ieee) 55
floating point, H8/300 (ieee) 57
floating point, H8/500 (ieee) 63
floating point, HPPA (ieee) 67
floating point, i386 . 90
floating point, i960 (ieee) 76
floating point, M680x0 81
floating point, SH (ieee) 72
floating point, SPARC (ieee). 84
floating point, VAX . 50
flonums . 18

c y g n u s s u p p o r t 107

Using as

format of error messages 7
format of warning messages. 6
formfeed (\f) . 16
functions, in expressions 32
fwait instruction, i386 90

G
gbr960, i960 postprocessor 75
gfloat directive, VAX 50
global . 94
global directive . 39
gp register, MIPS . 100
grouping data . 24

H
H8/300 addressing modes 56
H8/300 floating point (ieee) 57
H8/300 line comment character 56
H8/300 line separator 56
H8/300 machine directives (none) 58
H8/300 opcode summary 58
H8/300 options (none) 56
H8/300 registers . 56
H8/300 size suffixes 61
H8/300 support . 56
H8/300H, assembling for 58
H8/500 addressing modes 63
H8/500 floating point (ieee) 63
H8/500 line comment character 62
H8/500 line separator 62
H8/500 machine directives (none) 63
H8/500 opcode summary 63
H8/500 options (none) 62
H8/500 registers . 62
H8/500 support . 62
half directive, SPARC. 84
hex character code (\xdd). 16
hexadecimal integers 18
hfloat directive, VAX 50
HPPA directives not supported 67
HPPA floating point (ieee) 67
HPPA Syntax . 66
HPPA-only directives 67
hword directive . 39

I
i386 16-bit code . 91

i386 conversion instructions 87
i386 floating point . 90
i386 fwait instruction 90
i386 immediate operands 86
i386 jump optimization 89
i386 jump, call, return 86
i386 jump/call operands 86
i386 memory references 88
i386 mul, imul instructions 91
i386 opcode naming 86
i386 opcode prefixes 88
i386 options (none) . 86
i386 register operands 86
i386 registers . 87
i386 sections . 86
i386 size suffixes . 86
i386 source, destination operands 86
i386 support . 86
i386 syntax compatibility 86
i80306 support . 86
i960 architecture options. 75
i960 branch recording 75
i960 callj pseudo-opcode 77
i960 compare and jump expansions . . . 78
i960 compare/branch instructions 78
i960 floating point (ieee) 76
i960 machine directives 76
i960 opcodes . 77
i960 options . 75
i960 support . 75
ident directive . 39
identifiers, AMD 29K 54
if directive . 40
ifdef directive . 40
ifndef directive . 40
ifnotdef directive 40
immediate character, M680x0 83
immediate character, VAX 53
immediate operands, i386 86
imul instruction, i386 91
include directive . 40
include directive search path 10
indirect character, VAX 53
infix operators . 32
inhibiting interrupts, i386 88
input . 5
input file linenumbers. 6
instruction set, M680x0 82

108 7 July 1995

Index

instruction summary, H8/300 58
instruction summary, H8/500 63
instruction summary, SH 72
instruction summary, Z8000 95
instructions and directives 15
int directive . 40
int directive, H8/300 58
int directive, H8/500 63
int directive, i386 . 90
int directive, SH . 72
integer expressions 31
integer, 16-byte . 42
integer, 8-byte . 43
integers . 17
integers, 16-bit . 39
integers, 32-bit . 40
integers, binary . 17
integers, decimal . 17
integers, hexadecimal 18
integers, octal . 17
integers, one byte . 36
internal as sections 24
invocation summary 1

J
joining text and data sections 11
jump instructions, i386 87
jump optimization, i386 89
jump/call operands, i386 86

L
label (:) . 15
labels . 27
lcomm directive . 40
ld . 6
leafproc directive, i960 76
length of symbols . 15
lflags directive (ignored) 41
line comment character 14
line comment character, AMD 29K 54
line comment character, H8/300 56
line comment character, H8/500 62
line comment character, M680x0 83
line comment character, SH 71
line comment character, Z8000 93
line directive . 41
line directive, AMD 29K 55

line numbers, in input files 6
line numbers, in warnings/errors. 7
line separator character. 15
line separator, AMD 29K. 54
line separator, H8/300 56
line separator, H8/500 62
line separator, SH. 71
line separator, Z8000. 93
lines starting with # 14
linker . 6
linker, and assembler 21
list directive . 41
listing control, turning off 42
listing control, turning on 41
listing control: new page 37
listing control: paper size 43
listing control: subtitle 43
listing control: title line 46
listings, enabling . 9
little endian output, MIPS 3
little-endian output, MIPS 99
ln directive . 41
local common symbols 40
local labels, retaining in output 10
local symbol names 28
location counter . 28
location counter, advancing 42
logical file name 36, 38
logical line number 41
logical line numbers 14
long directive . 42
long directive, i386 90
lval . 94

M
M680x0 addressing modes 79, 80
M680x0 architecture options 79
M680x0 branch improvement 82
M680x0 directives . 81
M680x0 floating point 81
M680x0 immediate character 83
M680x0 line comment character 83
M680x0 opcodes . 82
M680x0 options . 79
M680x0 pseudo-opcodes. 82
M680x0 size modifiers 79
M680x0 support . 79
M680x0 syntax . 79, 80

c y g n u s s u p p o r t 109

Using as

machine dependencies 49
machine directives, AMD 29K 55
machine directives, H8/300 (none) 58
machine directives, H8/500 (none) 63
machine directives, i960 76
machine directives, SH (none) 72
machine directives, SPARC 84
machine directives, VAX 50
machine independent directives 35
machine instructions (not covered) 4
machine-independent syntax 13
manual, structure and purpose. 4
memory references, i386 88
merging text and data sections 11
messages from as . 6
minus, permitted arguments 32
MIPS architecture options 99
MIPS big-endian output 99
MIPS debugging directives 100
MIPS ECOFF sections 100
MIPS endianness . 3
MIPS ISA . 3
MIPS ISA override 101
MIPS little-endian output. 99
MIPS R2000 . 99
MIPS R3000 . 99
MIPS R4000 . 99
MIPS R6000 . 99
mit . 79
mnemonics for opcodes, VAX 51
mnemonics, H8/300 58
mnemonics, H8/500 63
mnemonics, SH . 72
mnemonics, Z8000 . 95
Motorola syntax for the 680x0 80
mul instruction, i386 91
multi-line statements 15

N
name . 94
named section (COFF) 44
named sections . 23
names, symbol . 27
naming object file . 11
new page, in listings 37
newline (\n) . 16
newline, required at file end 15
nolist directive . 42

null-terminated strings 36
number constants . 17
numbered subsections 24
numbers, 16-bit . 39
numeric values . 31

O
object file . 6
object file format . 5
object file name . 11
object file, after errors 12
obsolescent directives 48
octa directive . 42
octal character code (\ddd) 16
octal integers . 17
opcode mnemonics, VAX 51
opcode naming, i386 86
opcode prefixes, i386 88
opcode suffixes, i386 86
opcode summary, H8/300. 58
opcode summary, H8/500. 63
opcode summary, SH 72
opcode summary, Z8000 95
opcodes for AMD 29K 55
opcodes, i960 . 77
opcodes, M680x0 . 82
operand delimiters, i386 86
operand notation, VAX 53
operands in expressions 31
operator precedence 32
operators, in expressions 32
operators, permitted arguments 32
option summary . 1
options for AMD29K (none) 54
options for i386 (none) 86
options for SPARC . 84
options for VAX/VMS 50
options, all versions of as 9
options, command line 5
options, H8/300 (none) 56
options, H8/500 (none) 62
options, i960 . 75
options, M680x0 . 79
options, SH (none) . 71
options, Z8000 . 93
org directive . 42
other attribute, of a.out symbol 30
output file . 6

110 7 July 1995

Index

P
padding the location counter 35
page, in listings . 37
paper size, for listings. 43
paths for .include 10
patterns, writing in memory 38
plus, permitted arguments 32
precedence of operators 32
precision, floating point 18
prefix operators . 32
prefixes, i386. 88
preprocessing . 13
preprocessing, turning on and off 13
primary attributes, COFF symbols. . . . 30
proc directive, SPARC. 84
protected registers, AMD 29K 54
pseudo-opcodes, M680x0 82
pseudo-ops for branch, VAX 51
pseudo-ops, machine independent 35
psize directive . 43
purpose of gnu as . 4

Q
quad directive . 43
quad directive, i386 90

R
real-mode code, i386 91
register names, AMD 29K 54
register names, H8/300 56
register names, VAX 53
register operands, i386 86
registers, H8/500. 62
registers, i386. 87
registers, SH . 71
registers, Z8000 . 93
relocation .. 21
relocation example . 23
repeat prefixes, i386 88
reserve directive, SPARC. 84
return instructions, i386 86
rsect. 95

S
sbttl directive . 43
scl directive . 43
search path for .include 10

sect directive, AMD 29K 55
section directive . 44
section override prefixes, i386 88
section-relative addressing 22
sections . 21
sections in messages, internal 24
sections, i386 . 86
sections, named . 23
seg directive, SPARC 84
segm . 94
set directive . 44
SH addressing modes 71
SH floating point (ieee) 72
SH line comment character 71
SH line separator . 71
SH machine directives (none) 72
SH opcode summary 72
SH options (none) . 71
SH registers . 71
SH support . 71
short directive . 44
single character constant 17
single directive . 44
single directive, i386 90
sixteen bit integers 39
sixteen byte integer 42
size directive . 44
size modifiers, M680x0 79
size prefixes, i386 . 88
size suffixes, H8/300 61
sizes operands, i386 86
skip directive, M680x0 82
skip directive, SPARC. 85
small objects, MIPS ECOFF 100
SOM symbol attributes 30
source program . 5
source, destination operands; i386 86
space directive . 45
space used, maximum for assembly . . . 11
SPARC architectures 84
SPARC floating point (ieee) 84
SPARC machine directives 84
SPARC options . 84
SPARC support . 84
special characters, M680x0 83
special purpose registers, AMD 29K . . 54
stabd directive . 45
stabn directive . 46

c y g n u s s u p p o r t 111

Using as

stabs directive . 46
stabx directives . 45
standard as sections 21
standard input, as input file. 5
statement on multiple lines 15
statement separator character 15
statement separator, AMD 29K 54
statement separator, H8/300 56
statement separator, H8/500 62
statement separator, SH 71
statement separator, Z8000 93
statements, structure of. 15
statistics, about assembly 11
stopping the assembly 35
string constants . 16
string directive . 46
string directive on HPPA 69
string literals . 36
string, copying to object file 46
structure debugging, COFF 46
subexpressions . 31
subtitles for listings 43
subtraction, permitted arguments 32
summary of options . 1
support . 66
supporting files, including 40
suppressing warnings 11
sval . 94
symbol attributes . 29
symbol attributes, a.out 29
symbol attributes, COFF. 30
symbol attributes, SOM 30
symbol descriptor, COFF 37
symbol names . 27
symbol names, ‘$’ in 62, 71
symbol names, local 28
symbol names, temporary 28
symbol storage class (COFF) 43
symbol type . 29
symbol type, COFF 47
symbol value . 29
symbol value, setting 44
symbol values, assigning 27
symbol, common . 36
symbol, making visible to linker 39
symbolic debuggers, information for . . 45
symbols . 27
symbols with lowercase, VAX/VMS. . . . 50

symbols, assigning values to 38
symbols, local common 40
syntax compatibility, i386 86
syntax, M680x0 79, 80
syntax, machine-independent 13
sysproc directive, i960 77

T
tab (\t) . 16
tag directive . 46
temporary symbol names 28
text and data sections, joining 11
text directive . 46
text section . 23
tfloat directive, i386 90
time, total for assembly 11
title directive . 46
trusted compiler . 10
turning preprocessing on and off 13
type directive . 47
type of a symbol . 29

U
undefined section . 23
unsegm . 94
use directive, AMD 29K 55

V
val directive . 47
value attribute, COFF 47
value of a symbol . 29
VAX bitfields not supported 53
VAX branch improvement 51
VAX command-line options ignored . . . 49
VAX displacement sizing character . . . 53
VAX floating point . 50
VAX immediate character 53
VAX indirect character 53
VAX machine directives 50
VAX opcode mnemonics 51
VAX operand notation 53
VAX register names 53
VAX support . 49
Vax-11 C compatibility 50
VAX/VMS options . 50
version of as . 11
VMS (VAX) options 50

112 7 July 1995

Index

W
warning for altered difference tables . . 10
warning messages. 6
warnings, suppressing 11
whitespace . 13
whitespace, removed by preprocessor

. 13
wide floating point directives, VAX 50
word directive . 47
word directive, H8/300 58
word directive, H8/500 63
word directive, i386 90
word directive, SH . 72
word directive, SPARC. 85
writing patterns in memory 38

wval . 94

X
xword directive, SPARC 85

Z
Z800 addressing modes 94
Z8000 directives . 94
Z8000 line comment character 93
Z8000 line separator 93
Z8000 opcode summary 95
Z8000 options . 93
Z8000 registers . 93
Z8000 support . 93
zero-terminated strings 36

c y g n u s s u p p o r t 113

Using as

114 7 July 1995

GASP, an assembly preprocessor
for GASP version 1

March 1994

Roland Pesch

Cygnus Support

Copyright c 1994 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 What is GASP? . 1

2 Command Line Options . 3

3 Preprocessor Commands . 5
3.1 Conditional assembly . 5
3.2 Repetitive sections of assembly . 6
3.3 Preprocessor variables . 7
3.4 Defining your own directives . 9
3.5 Data output . 11

3.5.1 Initialized data . 11
3.5.2 Uninitialized data . 12

3.6 Assembly listing control . 13
3.7 Miscellaneous commands . 13
3.8 Details of the GASP syntax . 14

3.8.1 Special syntactic markers . 15
3.8.2 String and numeric constants 16
3.8.3 Symbols . 16
3.8.4 Arithmetic expressions in GASP 16
3.8.5 String primitives . 17

3.9 Alternate macro syntax . 17

Index . 19

c y g n u s s u p p o r t i

GASP

ii 7 July 1995

Chapter 1: What is GASP?

1 What is GASP?

The primary purpose of the gnu assembler is to assemble the output
of other programs—notably compilers. When you have to hand-code
specialized routines in assembly, that means the gnu assembler is an
unfriendly processor: it has no directives for macros, conditionals, or
many other conveniences that you might expect.

In some cases you can simply use the C preprocessor, or a generalized
preprocessor like m4; but this can be awkward, since none of these things
are designed with assembly in mind.

gasp fills this need. It is expressly designed to provide the facilities
you need with hand-coded assembly code. Implementing it as a prepro-
cessor, rather than part of the assembler, allows the maximum flexibility:
you can use it with hand-coded assembly, without paying a penalty of
added complexity in the assembler you use for compiler output.

Here is a small example to give the flavor of gasp. This input to gasp
� �

.MACRO saveregs from=8 to=14
count .ASSIGNA \from

! save r\from..r\to
.AWHILE \&count LE \to
mov r\&count,@-sp

count .ASSIGNA \&count + 1
.AENDW
.ENDM

saveregs from=12

bar: mov #H’dead+10,r0
foo .SDATAC "hello"<10>

.END

 	

generates this assembly program:
� �

! save r12..r14
mov r12,@-sp
mov r13,@-sp
mov r14,@-sp

bar: mov #57005+10,r0
foo: .byte 6,104,101,108,108,111,10

 	

c y g n u s s u p p o r t 1

GASP

2 7 July 1995

Chapter 2: Command Line Options

2 Command Line Options
The simplest way to use gasp is to run it as a filter and assemble its

output. In Unix and its ilk, you can do this, for example:
$ gasp prog.asm | as -o prog.o

Naturally, there are also a few command-line options to allow you to
request variations on this basic theme. Here is the full set of possibilities
for the gasp command line.

gasp [-a | --alternate]
[-c char | --commentchar char]
[-d | --debug] [-h | --help]
[-o outfile | --output outfile]
[-p | --print] [-s | --copysource]
[-u | --unreasonable] [-v | --version]
infile .. .

infile . ..
The input file names. You must specify at least one input file;
if you specify more, gasp preprocesses them all, concatenat-
ing the output in the order you list the infile arguments.
Mark the end of each input file with the preprocessor com-
mand .END. See Section 3.7 “Miscellaneous commands,”
page 13.

-a
--alternate

Use alternative macro syntax. See Section 3.9 “Alternate
macro syntax,” page 17, for a discussion of how this syntax
differs from the default gasp syntax.

-c ’char’
--commentchar ’char’

Use char as the comment character. The default comment
character is ‘!’. For example, to use a semicolon as the com-
ment character, specify ‘-c ’;’’ on the gasp command line.
Since assembler command characters often have special sig-
nificance to command shells, it is a good idea to quote or
escape char when you specify a comment character.
For the sake of simplicity, all examples in this manual use
the default comment character ‘!’.

-d
--debug Show debugging statistics. In this version of gasp, this op-

tion produces statistics about the string buffers that gasp al-
locates internally. For each defined buffersize s, gasp shows
the number of strings n that it allocated, with a line like this:

c y g n u s s u p p o r t 3

GASP

strings size s : n

gasp displays these statistics on the standard error stream,
when done preprocessing.

-h
--help Display a summary of the gasp command line options.

-o outfile
--output outfile

Write the output in a file called outfile. If you do not use
the ‘-o’ option, gasp writes its output on the standard output
stream.

-p
--print Print line numbers. gasp obeys this option only if you also

specify ‘-s’ to copy source lines to its output. With ‘-s -p’,
gasp displays the line number of each source line copied
(immediately after the comment character at the beginning
of the line).

-s
--copysource

Copy the source lines to the output file. Use this option to see
the effect of each preprocessor line on the gasp output. gasp
places a comment character (‘!’ by default) at the beginning
of each source line it copies, so that you can use this option
and still assemble the result.

-u
--unreasonable

Bypass “unreasonable expansion” limit. Since you can define
gasp macros inside other macro definitions, the preprocessor
normally includes a sanity check. If your program requires
more than 1,000 nested expansions, gasp normally exits with
an error message. Use this option to turn off this check,
allowing unlimited nested expansions.

-v
--version

Display the gasp version number.

4 7 July 1995

Chapter 3: Preprocessor Commands

3 Preprocessor Commands

gasp commands have a straightforward syntax that fits in well with
assembly conventions. In general, a command extends for a line, and
may have up to three fields: an optional label, the command itself,
and optional arguments to the command. You can write commands in
upper or lower case, though this manual shows them in upper case. See
Section 3.8 “Details of the GASP syntax,” page 14, for more information.

3.1 Conditional assembly

The conditional-assembly directives allow you to include or exclude
portions of an assembly depending on how a pair of expressions, or a
pair of strings, compare.

The overall structure of conditionals is familiar from many other
contexts. .AIF marks the start of a conditional, and precedes assembly
for the case when the condition is true. An optional .AELSE precedes
assembly for the converse case, and an .AENDI marks the end of the
condition.

You may nest conditionals up to a depth of 100; gasp rejects nesting
beyond that, because it may indicate a bug in your macro structure.

Conditionals are primarily useful inside macro definitions, where you
often need different effects depending on argument values. See Sec-
tion 3.4 “Defining your own directives,” page 9, for details about defining
macros.

.AIF expra cmp exprb

.AIF "stra" cmp "strb"
The governing condition goes on the same line as the .AIF
preprocessor command. You may compare either two strings,
or two expressions.
When you compare strings, only two conditional cmp compar-
ison operators are available: ‘EQ’ (true if stra and strb are
identical), and ‘NE’ (the opposite).
When you compare two expressions, both expressions must be
absolute (see Section 3.8.4 “Arithmetic expressions in GASP,”
page 16). You can use these cmp comparison operators with
expressions:

EQ Are expra and exprb equal? (For strings, are
stra and strb identical?)

NE Are expra and exprb different? (For strings, are
stra and strb different?

c y g n u s s u p p o r t 5

GASP

LT Is expra less than exprb? (Not allowed for
strings.)

LE Is expra less than or equal toexprb? (Not allowed
for strings.)

GT Is expra greater than exprb? (Not allowed for
strings.)

GE Is expra greater than or equal to exprb? (Not
allowed for strings.)

.AELSE Marks the start of assembly code to be included if the con-
dition fails. Optional, and only allowed within a conditional
(between .AIF and .AENDI).

.AENDI Marks the end of a conditional assembly.

3.2 Repetitive sections of assembly

Two preprocessor directives allow you to repeatedly issue copies of
the same block of assembly code.

.AREPEAT aexp

.AENDR If you simply need to repeat the same block of assembly over
and over a fixed number of times, sandwich one instance of
the repeated block between .AREPEAT and .AENDR. Specify
the number of copies as aexp (which must be an absolute
expression). For example, this repeats two assembly state-
ments three times in succession:
� �

.AREPEAT 3
rotcl r2
div1 r0,r1
.AENDR

 	

.AWHILE expra cmp exprb

.AENDW

.AWHILE stra cmp strb

.AENDW To repeat a block of assembly depending on a conditional test,
rather than repeating it for a specific number of times, use
.AWHILE. .AENDW marks the end of the repeated block. The
conditional comparison works exactly the same way as for
.AIF, with the same comparison operators (see Section 3.1
“Conditional assembly,” page 5).

6 7 July 1995

Chapter 3: Preprocessor Commands

Since the terms of the comparison must be absolute expres-
sion, .AWHILE is primarily useful within macros. See Sec-
tion 3.4 “Defining your own directives,” page 9.

You can use the .EXITM preprocessor directive to break out of loops
early (as well as to break out of macros). See Section 3.4 “Defining your
own directives,” page 9.

3.3 Preprocessor variables

You can use variables in gasp to represent strings, registers, or the
results of expressions.

You must distinguish two kinds of variables:
1. Variables defined with .EQU or .ASSIGN. To evaluate this kind of

variable in your assembly output, simply mention its name. For
example, these two lines define and use a variable ‘eg’:
� �

eg .EQU FLIP-64
. ..
mov.l eg,r0

 	

Do not use this kind of variable in conditional expressions or while
loops; gasp only evaluates these variables when writing assembly
output.

2. Variables for use during preprocessing. You can define these with
.ASSIGNC or .ASSIGNA. To evaluate this kind of variable, write ‘\&’
before the variable name; for example,
� �

opcit .ASSIGNA 47
. ..
.AWHILE \&opcit GT 0
. ..
.AENDW

 	

gasp treats macro arguments almost the same way, but to evaluate
them you use the prefix ‘\’ rather than ‘\&’. See Section 3.4 “Defining
your own directives,” page 9.

pvar .EQU expr
Assign preprocessor variable pvar the value of the expression
expr. There are no restrictions on redefinition; use ‘.EQU’
with the same pvar as often as you find it convenient.

c y g n u s s u p p o r t 7

GASP

pvar .ASSIGN expr
Almost the same as .EQU, save that you may not redefine
pvar using .ASSIGN once it has a value.

pvar .ASSIGNA aexpr
Define a variable with a numeric value, for use during pre-
processing. aexpr must be an absolute expression. You can
redefine variables with .ASSIGNA at any time.

pvar .ASSIGNC "str"
Define a variable with a string value, for use during prepro-
cessing. You can redefine variables with .ASSIGNC at any
time.

pvar .REG (register)
Use .REG to define a variable that represents a register. In
particular, register is not evaluated as an expression. You
may use .REG at will to redefine register variables.

All these directives accept the variable name in the “label” position,
that is at the left margin. You may specify a colon after the variable
name if you wish; the first example above could have started ‘eg:’ with
the same effect.

8 7 July 1995

Chapter 3: Preprocessor Commands

3.4 Defining your own directives

The commands .MACRO and .ENDM allow you to define macros that
generate assembly output. You can use these macros with a syntax sim-
ilar to built-in gasp or assembler directives. For example, this definition
specifies a macro SUM that adds together a range of consecutive registers:
� �

.MACRO SUM FROM=0, TO=9
! \FROM \TO
mov r\FROM,r10

COUNT .ASSIGNA \FROM+1
.AWHILE \&COUNT LE \TO
add r\&COUNT,r10

COUNT .ASSIGNA \&COUNT+1
.AENDW
.ENDM

 	

With that definition, ‘SUM 0,5’ generates this assembly output:
� �

! 0 5
mov r0,r10
add r1,r10
add r2,r10
add r3,r10
add r4,r10
add r5,r10

 	

.MACRO macname

.MACRO macname macargs . ..
Begin the definition of a macro called macname. If your macro
definition requires arguments, specify their names after the
macro name, separated by commas or spaces. You can supply
a default value for any macro argument by following the
name with ‘=deflt’. For example, these are all valid .MACRO
statements:

.MACRO COMM
Begin the definition of a macro called COMM, which
takes no arguments.

.MACRO PLUS1 P, P1

.MACRO PLUS1 P P1
Either statement begins the definition of a macro
called PLUS1, which takes two arguments; within

c y g n u s s u p p o r t 9

GASP

the macro definition, write ‘\P’ or ‘\P1’ to evaluate
the arguments.

.MACRO RESERVE_STR P1=0 P2
Begin the definition of a macro called RESERVE_
STR, with two arguments. The first argument
has a default value, but not the second. After
the definition is complete, you can call the macro
either as ‘RESERVE_STR a,b’ (with ‘\P1’ evaluating
to a and ‘\P2’ evaluating to b), or as ‘RESERVE_STR
,b’ (with ‘\P1’ evaluating as the default, in this
case ‘0’, and ‘\P2’ evaluating to b).

When you call a macro, you can specify the argument values
either by position, or by keyword. For example, ‘SUM 9,17’
is equivalent to ‘SUM TO=17, FROM=9’. Macro arguments are
preprocessor variables similar to the variables you define
with ‘.ASSIGNA’ or ‘.ASSIGNC’; in particular, you can use them
in conditionals or for loop control. (The only difference is
the prefix you write to evaluate the variable: for a macro
argument, write ‘\argname’, but for a preprocessor variable,
write ‘\&varname’.)

name .MACRO
name .MACRO (macargs .. .)

An alternative form of introducing a macro definition: specify
the macro name in the label position, and the arguments
(if any) between parentheses after the name. Defaulting
rules and usage work the same way as for the other macro
definition syntax.

.ENDM Mark the end of a macro definition.

.EXITM Exit early from the current macro definition, .AREPEAT loop,
or .AWHILE loop.

\@ gasp maintains a counter of how many macros it has exe-
cuted in this pseudo-variable; you can copy that number to
your output with ‘\@’, but only within a macro definition.

LOCAL name [, ...]
Warning: LOCAL is only available if you select “alternate
macro syntax” with ‘-a’ or ‘--alternate’. See Section 3.9
“Alternate macro syntax,” page 17.
Generate a string replacement for each of the name argu-
ments, and replace any instances of name in each macro ex-
pansion. The replacement string is unique in the assembly,

10 7 July 1995

Chapter 3: Preprocessor Commands

and different for each separate macro expansion. LOCAL al-
lows you to write macros that define symbols, without fear of
conflict between separate macro expansions.

3.5 Data output

In assembly code, you often need to specify working areas of memory;
depending on the application, you may want to initialize such memory or
not. gasp provides preprocessor directives to help you avoid repetitive
coding for both purposes.

You can use labels as usual to mark the data areas.

3.5.1 Initialized data

These are the gasp directives for initialized data, and the standard
gnu assembler directives they expand to:

.DATA expr, expr, ...

.DATA.B expr, expr, . ..

.DATA.W expr, expr, . ..

.DATA.L expr, expr, . ..
Evaluate arithmetic expressions expr, and emit the corre-
sponding as directive (labelled with lab). The unqualified
.DATA emits ‘.long’; .DATA.B emits ‘.byte’; .DATA.W emits
‘.short’; and .DATA.L emits ‘.long’.
For example, ‘foo .DATA 1,2,3’ emits ‘foo: .long 1,2,3’.

.DATAB repeat, expr

.DATAB.B repeat, expr

.DATAB.W repeat, expr

.DATAB.L repeat, expr
Make as emit repeat copies of the value of the expres-
sion expr (using the as directive .fill). ‘.DATAB.B’ re-
peats one-byte values; ‘.DATAB.W’ repeats two-byte values;
and ‘.DATAB.L’ repeats four-byte values. ‘.DATAB’ without a
suffix repeats four-byte values, just like ‘.DATAB.L’.
repeat must be an absolute expression with a positive value.

.SDATA "str" .. .
String data. Emits a concatenation of bytes, precisely as
you specify them (in particular, nothing is added to mark the
end of the string). See Section 3.8.2 “String and numeric
constants,” page 16, for details about how to write strings.
.SDATA concatenates multiple arguments, making it easy to

c y g n u s s u p p o r t 11

GASP

switch between string representations. You can use com-
mas to separate the individual arguments for clarity, if you
choose.

.SDATAB repeat, "str" .. .
Repeated string data. The first argument specifies how many
copies of the string to emit; the remaining arguments specify
the string, in the same way as the arguments to .SDATA.

.SDATAZ "str" .. .
Zero-terminated string data. Just like .SDATA, except that
.SDATAZ writes a zero byte at the end of the string.

.SDATAC "str" .. .
Count-prefixed string data. Just like .SDATA, except that
gasp precedes the string with a leading one-byte count. For
example, ‘.SDATAC "HI"’ generates ‘.byte 2,72,73’. Since
the count field is only one byte, you can only use .SDATAC for
strings less than 256 bytes in length.

3.5.2 Uninitialized data

Use the .RES, .SRES, .SRESC, and .SRESZ directives to reserve mem-
ory and leave it uninitialized. gasp resolves these directives to appro-
priate calls of the gnu as .space directive.

.RES count

.RES.B count

.RES.W count

.RES.L count
Reserve room for count uninitialized elements of data. The
suffix specifies the size of each element: .RES.B reserves
count bytes, .RES.W reserves count pairs of bytes, and
.RES.L reserves count quartets. .RES without a suffix is
equivalent to .RES.L.

.SRES count

.SRES.B count

.SRES.W count

.SRES.L count
.SRES is a synonym for ‘.RES’.

.SRESC count

.SRESC.B count

.SRESC.W count

.SRESC.L count
Like .SRES, but reserves space for count+1 elements.

12 7 July 1995

Chapter 3: Preprocessor Commands

.SRESZ count

.SRESZ.B count

.SRESZ.W count

.SRESZ.L count
Like .SRES, but reserves space for count+1 elements.

3.6 Assembly listing control

The gasp listing-control directives correspond to related gnu as di-
rectives.

.PRINT LIST

.PRINT NOLIST
Print control. This directive emits thegnu as directive .list
or .nolist, according to its argument. See section “.list”
in Using as, for details on how these directives interact.

.FORM LIN=ln

.FORM COL=cols

.FORM LIN=ln COL=cols
Specify the page size for assembly listings: ln represents
the number of lines, and cols the number of columns. You
may specify either page dimension independently, or both
together. If you do not specify the number of lines, gasp as-
sumes 60 lines; if you do not specify the number of columns,
gasp assumes 132 columns. (Any values you may have spec-
ified in previous instances of .FORM do not carry over as de-
faults.) Emits the .psize assembler directive.

.HEADING string
Specify string as the title of your assembly listings. Emits
‘.title "string"’.

.PAGE Force a new page in assembly listings. Emits ‘.eject’.

3.7 Miscellaneous commands

.ALTERNATE
Use the alternate macro syntax henceforth in the assembly.
See Section 3.9 “Alternate macro syntax,” page 17.

.ORG This command is recognized, but not yet implemented. gasp
generates an error message for programs that use .ORG.

.RADIX s gasp understands numbers in any of base two, eight, ten, or
sixteen. You can encode the base explicitly in any numeric

c y g n u s s u p p o r t 13

GASP

constant (see Section 3.8.2 “String and numeric constants,”
page 16). If you write numbers without an explicit indication
of the base, the most recent ‘.RADIX s’ command determines
how they are interpreted. s is a single letter, one of the
following:

.RADIX B Base 2.

.RADIX Q Base 8.

.RADIX D Base 10. This is the original default radix.

.RADIX H Base 16.

You may specify the argument s in lower case (any of ‘bqdh’)
with the same effects.

.EXPORT name

.GLOBAL name
Declare name global (emits ‘.global name’). The two direc-
tives are synonymous.

.PROGRAM No effect: gasp accepts this directive, and silently ignores it.

.END Mark end of each preprocessor file. gasp issues a warning if
it reaches end of file without seeing this command.

.INCLUDE "str"
Preprocess the file named by str, as if its contents appeared
where the .INCLUDE directive does. gasp imposes a maxi-
mum limit of 30 stacked include files, as a sanity check.

.ALIGN size
Evaluate the absolute expression size, and emit the assem-
bly instruction ‘.align size’ using the result.

3.8 Details of the GASP syntax

Since gasp is meant to work with assembly code, its statement syntax
has no surprises for the assembly programmer.

Whitespace (blanks or tabs; not newline) is partially significant, in
that it delimits up to three fields in a line. The amount of whitespace
does not matter; you may line up fields in separate lines if you wish, but
gasp does not require that.

The first field, an optional label, must be flush left in a line (with no
leading whitespace) if it appears at all. You may use a colon after the
label if you wish; gasp neither requires the colon nor objects to it (but
will not include it as part of the label name).

14 7 July 1995

Chapter 3: Preprocessor Commands

The second field, which must appear after some whitespace, contains
a gasp or assembly directive.

Any further fields on a line are arguments to the directive; you can
separate them from one another using either commas or whitespace.

3.8.1 Special syntactic markers

gasp recognizes a few special markers: to delimit comments, to con-
tinue a statement on the next line, to separate symbols from other char-
acters, and to copy text to the output literally. (One other special marker,
‘\@’, works only within macro definitions; see Section 3.4 “Defining your
own directives,” page 9.)

The trailing part of any gasp source line may be a comment. A com-
ment begins with the first unquoted comment character (‘!’ by default),
or an escaped or doubled comment character (‘\!’ or ‘!!’ by default), and
extends to the end of a line. You can specify what comment character to
use with the ‘-c’ option (see Chapter 2 “Command Line Options,” page 3).
The two kinds of comment markers lead to slightly different treatment:

! A single, un-escaped comment character generates an as-
sembly comment in the gasp output. gasp evaluates any
preprocessor variables (macro arguments, or variables de-
fined with .ASSIGNA or .ASSIGNC) present. For example, a
macro that begins like this

.MACRO SUM FROM=0, TO=9
! \FROM \TO

issues as the first line of output a comment that records the
values you used to call the macro.

\!
!! Either an escaped comment character, or a double comment

character, marks a gasp source comment. gasp does not copy
such comments to the assembly output.

To continue a statement on the next line of the file, begin the second
line with the character ‘+’.

Occasionally you may want to prevent gasp from preprocessing some
particular bit of text. To copy literally from the gasp source to its output,
place ‘\(’ before the string to copy, and ‘)’ at the end. For example, write
‘\(\!)’ if you need the characters ‘\!’ in your assembly output.

To separate a preprocessor variable from text to appear immediately
after its value, write a single quote (’). For example, ‘.SDATA "\P’1"’
writes a string built by concatenating the value of P and the digit ‘1’.
(You cannot achieve this by writing just ‘\P1’, since ‘P1’ is itself a valid
name for a preprocessor variable.)

c y g n u s s u p p o r t 15

GASP

3.8.2 String and numeric constants

There are two ways of writing string constants in gasp: as literal
text, and by numeric byte value. Specify a string literal between double
quotes ("str"). Specify an individual numeric byte value as an abso-
lute expression between angle brackets (<expr>. Directives that output
strings allow you to specify any number of either kind of value, in what-
ever order is convenient, and concatenate the result. (Alternate syntax
mode introduces a number of alternative string notations; see Section 3.9
“Alternate macro syntax,” page 17.)

You can write numeric constants either in a specific base, or in what-
ever base is currently selected (either 10, or selected by the most recent
.RADIX).

To write a number in a specific base, use the pattern s’ddd: a base
specifier character s, followed by a single quote followed by digits ddd.
The base specifier character matches those you can specify with .RADIX:
‘B’ for base 2, ‘Q’ for base 8, ‘D’ for base 10, and ‘H’ for base 16. (You can
write this character in lower case if you prefer.)

3.8.3 Symbols

gasp recognizes symbol names that start with any alphabetic char-
acter, ‘_’, or ‘$’, and continue with any of the same characters or with
digits. Label names follow the same rules.

3.8.4 Arithmetic expressions in GASP

There are two kinds of expressions, depending on their result: abso-
lute expressions, which resolve to a constant (that is, they do not involve
any values unknown to gasp), and relocatable expressions, which must
reduce to the form

addsym+const-subsym

where addsym and subsym are assembly symbols of unknown value, and
const is a constant.

Arithmetic for gasp expressions follows very similar rules to C. You
can use parentheses to change precedence; otherwise, arithmetic primi-
tives have decreasing precedence in the order of the following list.
1. Single-argument + (identity), - (arithmetic opposite), or ˜ (bitwise

negation). The argument must be an absolute expression.
2. * (multiplication) and / (division). Both arguments must be absolute

expressions.
3. + (addition) and - (subtraction). At least one argument must be

absolute.

16 7 July 1995

Chapter 3: Preprocessor Commands

4. & (bitwise and). Both arguments must be absolute.
5. | (bitwise or) and ˜ (bitwise exclusive or; ˆ in C). Both arguments

must be absolute.

3.8.5 String primitives

You can use these primitives to manipulate strings (in the argument
field of gasp statements):

.LEN("str")
Calculate the length of string "str", as an absolute expres-
sion. For example, ‘.RES.B .LEN("sample")’ reserves six
bytes of memory.

.INSTR("string", "seg", ix)
Search for the first occurrence of seg after position ix of
string. For example, ‘.INSTR("ABCDEFG", "CDE", 0)’ eval-
uates to the absolute result 2.
The result is -1 if seg does not occur in string after position
ix.

.SUBSTR("string",start,len)
The substring of string beginning at byte number start
and extending for len bytes.

3.9 Alternate macro syntax

If you specify ‘-a’ or ‘--alternate’ on the gasp command line, the
preprocessor uses somewhat different syntax. This syntax is reminiscent
of the syntax of Phar Lap macro assembler, but it is not meant to be a
full emulation of Phar Lap or similar assemblers. In particular, gasp
does not support directives such as DB and IRP, even in alternate syntax
mode.

In particular, ‘-a’ (or ‘--alternate’) elicits these differences:

Preprocessor directives
You can use gasp preprocessor directives without a leading
‘.’ dot. For example, you can write ‘SDATA’ with the same
effect as ‘.SDATA’.

LOCAL One additional directive, LOCAL, is available. See Section 3.4
“Defining your own directives,” page 9, for an explanation of
how to use LOCAL.

c y g n u s s u p p o r t 17

GASP

String delimiters
You can write strings delimited in these other ways besides
"string":

’string’ You can delimit strings with single-quote
charaters.

<string> You can delimit strings with matching angle
brackets.

single-character string escape
To include any single character literally in a string (even if
the character would otherwise have some special meaning),
you can prefix the character with ‘!’ (an exclamation mark).
For example, you can write ‘<4.3 !> 5.4!!>’ to get the literal
text ‘4.3 > 5.4!’.

Expression results as strings
You can write ‘%expr’ to evaluate the expression expr and
use the result as a string.

18 7 July 1995

Index

Index

!
! default comment char 3

-
--alternate . 3
--commentchar ’char’ 3
--copysource . 4
--debug . 3
--help . 4
--output outfile . 4
--print . 4
--unreasonable . 4
--version . 4
-a . 3
-c ’char’ . 3
-d . 3
-h . 4
-o outfile . 4
-p . 4
-s . 4
-u . 4
-v . 4

.

.AELSE . 6

.AENDI . 6

.AENDR . 6

.AENDW . 6

.AIF "stra" cmp "strb" 5

.AIF expra cmp exprb 5

.ALIGN size . 14

.ALTERNATE . 13

.AREPEAT aexp . 6

.AWHILE expra cmp exprb 6

.AWHILE stra cmp strb. 6

.DATA expr, expr, : : : 11

.DATA.B expr, expr, : : : 11

.DATA.L expr, expr, : : : 11

.DATA.W expr, expr, : : : 11

.DATAB repeat, expr 11

.DATAB.B repeat, expr 11

.DATAB.L repeat, expr 11

.DATAB.W repeat, expr 11

.END . 14

.ENDM. 10

.EXITM . 10

.EXPORT name . 14

.FORM COL=cols . 13

.FORM LIN=ln . 13

.FORM LIN=ln COL=cols 13

.GLOBAL name . 14

.HEADING string . 13

.INCLUDE "str" . 14

.INSTR("string", "seg", ix) 17

.LEN("str") . 17

.MACRO macname . 9

.MACRO macname macargs : : : 9

.ORG . 13

.PAGE. 13

.PRINT LIST . 13

.PRINT NOLIST. 13

.PROGRAM . 14

.RADIX s . 13

.RES count . 12

.RES.B count . 12

.RES.L count . 12

.RES.W count . 12

.SDATA "str" : : : . 11

.SDATAB repeat, "str" : : : 12

.SDATAC "str" : : : 12

.SDATAZ "str" : : : 12

.SRES count . 12

.SRES.B count . 12

.SRES.L count . 12

.SRES.W count . 12

.SRESC count . 12

.SRESC.B count . 12

.SRESC.L count . 12

.SRESC.W count . 12

.SRESZ count . 13

.SRESZ.B count . 13

.SRESZ.L count . 13

.SRESZ.W count . 13

.SUBSTR("string",start,len) . . . 17

c y g n u s s u p p o r t 19

GASP

;
; as comment char . 3

+
+ . 15

\
\@ . 10

A
absolute expressions 16
argument fields . 15
avoiding preprocessing 15

B
bang, as comment . 3
breaking out of loops 7

C
comment character, changing 3
comments . 15
continuation character 15
copying literally to output. 15

D
directive field . 14

E
EQ . 5
exclamation mark, as comment 3

F
fields of gasp source line 14

G
GE . 6
GT . 6

I
infile : : : . 3

L
label field . 14
LE . 6
literal copy to output 15
LOCAL name [, : : :] 10
loops, breaking out of 7
LT . 6

M
macros, count executed 10

N
name .MACRO . 10
name .MACRO (macargs : : :) 10
NE . 5
number of macros executed 10

P
preprocessing, avoiding 15
pvar .ASSIGN expr 8
pvar .ASSIGNA aexpr 8
pvar .ASSIGNC "str" 8
pvar .EQU expr . 7
pvar .REG (register) 8

R
relocatable expressions 16

S
semicolon, as comment 3
shriek, as comment . 3
symbol separator. 15
symbols, separating from text 15

T
text, separating from symbols 15

W
whitespace . 14

20 7 July 1995

Using ld
The GNU linker

ld version 2
January 1994

Steve Chamberlain and Roland Pesch
Cygnus Support

Cygnus Support
steve@cygnus.com, pesch@cygnus.com

Using LD, the GNU linker
Edited by Jeffrey Osier (jeffrey@cygnus.com)

and Roland Pesch (pesch@cygnus.com)

Copyright c 1991, 1992, 1993, 1994 1995 Free Software Foundation,
Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Overview . 1

2 Invocation . 3
2.1 Command Line Options . 3
2.2 Environment Variables . 13

3 Command Language . 15
3.1 Linker Scripts . 15
3.2 Expressions . 15

3.2.1 Integers . 16
3.2.2 Symbol Names . 16
3.2.3 The Location Counter . 17
3.2.4 Operators . 18
3.2.5 Evaluation . 18
3.2.6 Assignment: Defining Symbols 18
3.2.7 Arithmetic Functions . 20

3.3 Memory Layout . 22
3.4 Specifying Output Sections . 23

3.4.1 Section Definitions . 24
3.4.2 Section Placement . 25
3.4.3 Section Data Expressions . 27
3.4.4 Optional Section Attributes . 29

3.5 The Entry Point . 31
3.6 Option Commands . 32

4 Machine Dependent Features 35
4.1 ld and the H8/300 . 35
4.2 ld and the Intel 960 family . 35

5 BFD . 37
5.1 How it works: an outline of BFD . 37

5.1.1 Information Loss . 38
5.1.2 The BFD canonical object-file format 38

Appendix A MRI Compatible Script Files 41

Index . 45

c y g n u s s u p p o r t i

Using LD, the GNU linker

ii 7 July 1995

Chapter 1: Overview

1 Overview

ld combines a number of object and archive files, relocates their data and
ties up symbol references. Usually the last step in compiling a program
is to run ld.
ld accepts Linker Command Language files written in a superset of
AT&T’s Link Editor Command Language syntax, to provide explicit and
total control over the linking process.
This version of ld uses the general purpose BFD libraries to operate
on object files. This allows ld to read, combine, and write object files in
many different formats—for example, COFF or a.out. Different formats
may be linked together to produce any available kind of object file. See
Chapter 5 “BFD,” page 37, for more information.
Aside from its flexibility, the GNU linker is more helpful than other
linkers in providing diagnostic information. Many linkers abandon ex-
ecution immediately upon encountering an error; whenever possible, ld
continues executing, allowing you to identify other errors (or, in some
cases, to get an output file in spite of the error).

c y g n u s s u p p o r t 1

Using LD, the GNU linker

2 7 July 1995

Chapter 2: Invocation

2 Invocation

The GNU linker ld is meant to cover a broad range of situations, and
to be as compatible as possible with other linkers. As a result, you have
many choices to control its behavior.

2.1 Command Line Options

Here is a summary of the options you can use on the ld command line:
ld [-o output] objfile. ..
[-Aarchitecture] [-b input-format] [-Bstatic]
[-c MRI-commandfile] [-d | -dc | -dp]
[-defsym symbol=expression]
[-dynamic-linker file] [-embedded-relocs]
[-e entry] [-F] [-F format]
[-format input-format] [-g] [-G size] [-help]
[-i] [-larchive] [-Lsearchdir] [-M]
[-Map mapfile] [-m emulation] [-N | -n]
[-noinhibit-exec] [-no-keep-memory] [-oformat output-format]
[-R filename] [-relax] [-retain-symbols-file filename]
[-r | -Ur] [-rpath dir] [-S] [-s] [-soname name]
[-sort-common] [-stats] [-T commandfile]
[-Ttext org] [-Tdata org]
[-Tbss org] [-t] [-traditional-format]
[-u symbol] [-V] [-v] [-verbose] [-version]
[-warn-common] [-warn-once] [-y symbol] [-X] [-x]
[-([archives] -)] [--start-group [archives] --end-group]
[-split-by-reloc count] [-split-by-file] [--whole-archive]

This plethora of command-line options may seem intimidating, but in
actual practice few of them are used in any particular context.
For instance, a frequent use of ld is to link standard Unix object files
on a standard, supported Unix system. On such a system, to link a file
hello.o:

ld -o output /lib/crt0.o hello.o -lc

This tells ld to produce a file called output as the result of linking the
file /lib/crt0.o with hello.o and the library libc.a, which will come
from the standard search directories. (See the discussion of the ‘-l’
option below.)
The command-line options to ld may be specified in any order, and may
be repeated at will. Repeating most options with a different argument
will either have no further effect, or override prior occurrences (those
further to the left on the command line) of that option.
The exceptions—which may meaningfully be used more than once—are
‘-A’, ‘-b’ (or its synonym ‘-format’), ‘-defsym’, ‘-L’, ‘-l’, ‘-R’, ‘-u’, and ‘-(’
(or its synonym ‘--start-group’)..

c y g n u s s u p p o r t 3

Using LD, the GNU linker

The list of object files to be linked together, shown as objfile. . ., may
follow, precede, or be mixed in with command-line options, except that
an objfile argument may not be placed between an option and its
argument.
Usually the linker is invoked with at least one object file, but you can
specify other forms of binary input files using ‘-l’, ‘-R’, and the script
command language. If no binary input files at all are specified, the linker
does not produce any output, and issues the message ‘No input files’.
If the linker can not recognize the format of an object file, it will assume
that it is a linker script. A script specified in this way augments the
main linker script used for the link (either the default linker script or
the one specified by using ‘-T’). This feature permits the linker to link
against a file which appears to be an object or an archive, but actually
merely defines some symbol values, or uses INPUT or GROUP to load other
objects. See Chapter 3 “Commands,” page 15.
For options whose names are a single letter, option arguments must ei-
ther follow the option letter without intervening whitespace, or be given
as separate arguments immediately following the option that requires
them.
For options whose names are multiple letters, either one dash or two can
precede the option name; for example, ‘--oformat’ and ‘-oformat’ are
equivalent. Arguments to multiple-letter options must either be sepa-
rated from the option name by an equals sign, or be given as separate
arguments immediately following the option that requires them. For ex-
ample, ‘--oformat srec’ and ‘--oformat=srec’ are equivalent. Unique
abbreviations of the names of multiple-letter options are accepted.

-Aarchitecture
In the current release of ld, this option is useful only for
the Intel 960 family of architectures. In that ld configu-
ration, the architecture argument identifies the particular
architecture in the 960 family, enabling some safeguards and
modifying the archive-library search path. See Section 4.2
“ld and the Intel 960 family,” page 35, for details.
Future releases of ld may support similar functionality for
other architecture families.

-b input-format
ld may be configured to support more than one kind of ob-
ject file. If your ld is configured this way, you can use the
‘-b’ option to specify the binary format for input object files
that follow this option on the command line. Even when
ld is configured to support alternative object formats, you
don’t usually need to specify this, as ld should be config-

4 7 July 1995

Chapter 2: Invocation

ured to expect as a default input format the most usual for-
mat on each machine. input-format is a text string, the
name of a particular format supported by the BFD libraries.
(You can list the available binary formats with ‘objdump
-i’.) ‘-format input-format’ has the same effect, as does
the script command TARGET. See Chapter 5 “BFD,” page 37.
You may want to use this option if you are linking files with
an unusual binary format. You can also use ‘-b’ to switch
formats explicitly (when linking object files of different for-
mats), by including ‘-b input-format’ before each group of
object files in a particular format.
The default format is taken from the environment variable
GNUTARGET. See Section 2.2 “Environment,” page 13. You can
also define the input format from a script, using the command
TARGET; see Section 3.6 “Option Commands,” page 32.

-Bstatic Do not link against shared libraries. This option is accepted
for command-line compatibility with the SunOS linker.

-c MRI-commandfile
For compatibility with linkers produced by MRI, ld accepts
script files written in an alternate, restricted command lan-
guage, described in Appendix A “MRI Compatible Script
Files,” page 41. Introduce MRI script files with the option
‘-c’; use the ‘-T’ option to run linker scripts written in the
general-purpose ld scripting language. If MRI-cmdfile does
not exist, ld looks for it in the directories specified by any
‘-L’ options.

-d
-dc
-dp These three options are equivalent; multiple forms are sup-

ported for compatibility with other linkers. They assign
space to common symbols even if a relocatable output file
is specified (with ‘-r’). The script command FORCE_COMMON_
ALLOCATION has the same effect. See Section 3.6 “Option
Commands,” page 32.

-defsym symbol=expression
Create a global symbol in the output file, containing the ab-
solute address given by expression. You may use this option
as many times as necessary to define multiple symbols in the
command line. A limited form of arithmetic is supported for
the expression in this context: you may give a hexadecimal
constant or the name of an existing symbol, or use + and -
to add or subtract hexadecimal constants or symbols. If you

c y g n u s s u p p o r t 5

Using LD, the GNU linker

need more elaborate expressions, consider using the linker
command language from a script (see Section 3.2.6 “Assign-
ment: Symbol Definitions,” page 18). Note: there should be
no white space between symbol, the equals sign (“=”), and
expression.

-dynamic-linker file
Set the name of the dynamic linker. This is only meaningful
when generating dynamically linked ELF executables. The
default dynamic linker is normally correct; don’t use this
unless you know what you are doing.

-embedded-relocs
This option is only meaningful when linking MIPS embedded
PIC code, generated by the -membedded-pic option to the
GNU compiler and assembler. It causes the linker to create
a table which may be used at runtime to relocate any data
which was statically initialized to pointer values. See the
code in testsuite/ld-empic for details.

-e entry Use entry as the explicit symbol for beginning execution
of your program, rather than the default entry point. See
Section 3.5 “Entry Point,” page 31, for a discussion of defaults
and other ways of specifying the entry point.

-F
-Fformat Ignored. Some older linkers used this option throughout

a compilation toolchain for specifying object-file format for
both input and output object files. The mechanisms ld uses
for this purpose (the ‘-b’ or ‘-format’ options for input files,
‘-oformat’ option or the TARGET command in linker scripts for
output files, the GNUTARGET environment variable) are more
flexible, but ld accepts the ‘-F’ option for compatibility with
scripts written to call the old linker.

-format input-format
Synonym for ‘-b input-format’.

-g Ignored. Provided for compatibility with other tools.

-Gvalue
-G value Set the maximum size of objects to be optimized using the

GP register to size under MIPS ECOFF. Ignored for other
object file formats.

-help Print a summary of the command-line options on the stan-
dard output and exit.

-i Perform an incremental link (same as option ‘-r’).

6 7 July 1995

Chapter 2: Invocation

-lar Add archive file archive to the list of files to link. This option
may be used any number of times. ld will search its path-list
for occurrences of libar.a for every archive specified.

-Lsearchdir
-L searchdir

Add path searchdir to the list of paths that ld will search
for archive libraries and ld control scripts. You may use this
option any number of times.
The default set of paths searched (without being specified
with ‘-L’) depends on which emulation mode ld is using, and
in some cases also on how it was configured. See Section 2.2
“Environment,” page 13.
The paths can also be specified in a link script with the
SEARCH_DIR command.

-M Print (to the standard output) a link map—diagnostic infor-
mation about where symbols are mapped by ld, and infor-
mation on global common storage allocation.

-Map mapfile
Print to the file mapfile a link map—diagnostic information
about where symbols are mapped by ld, and information on
global common storage allocation.

-memulation
-m emulation

Emulate the emulation linker. You can list the available
emulations with the ‘--verbose’ or ‘-V’ options. The default
depends on how your ld was configured.

-N Set the text and data sections to be readable and writable.
Also, do not page-align the data segment. If the output for-
mat supports Unix style magic numbers, mark the output as
OMAGIC.

-n Set the text segment to be read only, and mark the output as
NMAGIC if possible.

-noinhibit-exec
Retain the executable output file whenever it is still usable.
Normally, the linker will not produce an output file if it en-
counters errors during the link process; it exits without writ-
ing an output file when it issues any error whatsoever.

-no-keep-memory
ld normally optimizes for speed over memory usage by
caching the symbol tables of input files in memory. This op-

c y g n u s s u p p o r t 7

Using LD, the GNU linker

tion tells ld to instead optimize for memory usage, by reread-
ing the symbol tables as necessary. This may be required if
ld runs out of memory space while linking a large executable.

-o output
Use output as the name for the program produced by ld;
if this option is not specified, the name ‘a.out’ is used by
default. The script command OUTPUT can also specify the
output file name.

-oformat output-format
ld may be configured to support more than one kind of ob-
ject file. If your ld is configured this way, you can use the
‘-oformat’ option to specify the binary format for the output
object file. Even when ld is configured to support alternative
object formats, you don’t usually need to specify this, as ld
should be configured to produce as a default output format
the most usual format on each machine. output-format is
a text string, the name of a particular format supported by
the BFD libraries. (You can list the available binary formats
with ‘objdump -i’.) The script command OUTPUT_FORMAT can
also specify the output format, but this option overrides it.
See Chapter 5 “BFD,” page 37.

-R filename
Read symbol names and their addresses from filename, but
do not relocate it or include it in the output. This allows
your output file to refer symbolically to absolute locations of
memory defined in other programs.

-relax An option with machine dependent effects. Currently this
option is only supported on the H8/300 and the Intel 960. See
Section 4.1 “ld and the H8/300,” page 35. See Section 4.2 “ld
and the Intel 960 family,” page 35.
On some platforms, the ‘-relax’ option performs global op-
timizations that become possible when the linker resolves
addressing in the program, such as relaxing address modes
and synthesizing new instructions in the output object file.
On platforms where this is not supported, ‘-relax’ is ac-
cepted, but ignored.

-retain-symbols-file filename
Retain only the symbols listed in the file filename, discard-
ing all others. filename is simply a flat file, with one symbol
name per line. This option is especially useful in environ-
ments (such as VxWorks) where a large global symbol table
is accumulated gradually, to conserve run-time memory.

8 7 July 1995

Chapter 2: Invocation

‘-retain-symbols-file’ does not discard undefined symbols,
or symbols needed for relocations.
You may only specify ‘-retain-symbols-file’ once in the
command line. It overrides ‘-s’ and ‘-S’.

-rpath dir
Add a directory to the runtime library search path. This
is only meaningful when linking an ELF executable with
shared objects. All -rpath arguments are concatenated and
passed to the runtime linker, which uses them to locate
shared objects at runtime.

-r Generate relocatable output—i.e., generate an output file
that can in turn serve as input to ld. This is often called
partial linking. As a side effect, in environments that sup-
port standard Unix magic numbers, this option also sets the
output file’s magic number to OMAGIC. If this option is not
specified, an absolute file is produced. When linking C++
programs, this option will not resolve references to construc-
tors; to do that, use ‘-Ur’.
This option does the same thing as ‘-i’.

-S Omit debugger symbol information (but not all symbols) from
the output file.

-s Omit all symbol information from the output file.

-soname name
When creating an ELF shared object, set the internal
DT SONAME field to the specified name. When an ex-
ecutable is linked with a shared object which has a
DT SONAME field, then when the executable is run the dy-
namic linker will attempt to load the shared object specified
by the DT SONAME field rather than the using the file name
given to the linker.

-sort-common
Normally, when ld places the global common symbols in the
appropriate output sections, it sorts them by size. First come
all the one byte symbols, then all the two bytes, then all the
four bytes, and then everything else. This is to prevent gaps
between symbols due to alignment constraints. This option
disables that sorting.

-split-by-reloc count
Trys to creates extra sections in the output file so that no
single output section in the file contains more than count
relocations. This is useful when generating huge relocatable

c y g n u s s u p p o r t 9

Using LD, the GNU linker

for downloading into certain real time kernels with the COFF
object file format; since COFF cannot represent more than
65535 relocations in a single section. Note that this will
fail to work with object file formats which do not support
arbitrary sections. The linker will not split up individual
input sections for redistribution, so if a single input section
contains more than count relocations one output section will
contain that many relocations.

-split-by-file
Similar to -split-by-reloc but creates a new output section for
each input file.

-stats Compute and display statistics about the operation of the
linker, such as execution time and memory usage.

-Tbss org
-Tdata org
-Ttext org

Use org as the starting address for—respectively—the bss,
data, or the text segment of the output file. org must be
a single hexadecimal integer; for compatibility with other
linkers, you may omit the leading ‘0x’ usually associated with
hexadecimal values.

-T commandfile
-Tcommandfile

Read link commands from the file commandfile. These com-
mands replace ld’s default link script (rather than adding
to it), so commandfile must specify everything necessary
to describe the target format. See Chapter 3 “Commands,”
page 15. If commandfile does not exist, ld looks for it in the
directories specified by any preceding ‘-L’ options. Multiple
‘-T’ options accumulate.

-t Print the names of the input files as ld processes them.

-traditional-format
For some targets, the output of ld is different in some ways
from the output of some existing linker. This switch requests
ld to use the traditional format instead.
For example, on SunOS, ld combines duplicate entries in the
symbol string table. This can reduce the size of an output file
with full debugging information by over 30 percent. Unfor-
tunately, the SunOS dbx program can not read the resulting
program (gdb has no trouble). The ‘-traditional-format’
switch tells ld to not combine duplicate entries.

10 7 July 1995

Chapter 2: Invocation

-u symbol
Force symbol to be entered in the output file as an unde-
fined symbol. Doing this may, for example, trigger linking
of additional modules from standard libraries. ‘-u’ may be
repeated with different option arguments to enter additional
undefined symbols.

-Ur For anything other than C++ programs, this option is equiv-
alent to ‘-r’: it generates relocatable output—i.e., an output
file that can in turn serve as input to ld. When linking
C++ programs, ‘-Ur’ does resolve references to constructors,
unlike ‘-r’. It does not work to use ‘-Ur’ on files that were
themselves linked with ‘-Ur’; once the constructor table has
been built, it cannot be added to. Use ‘-Ur’ only for the last
partial link, and ‘-r’ for the others.

--verbose
Display the version number for ld and list the linker emula-
tions supported. Display which input files can and cannot be
opened.

-v
-V Display the version number for ld. The -V option also lists

the supported emulations.

-version Display the version number for ld and exit.

-warn-common
Warn when a common symbol is combined with another com-
mon symbol or with a symbol definition. Unix linkers allow
this somewhat sloppy practice, but linkers on some other
operating systems do not. This option allows you to find
potential problems from combining global symbols. Unfor-
tunately, some C libraries use this practice, so you may get
some warnings about symbols in the libraries as well as in
your programs.
There are three kinds of global symbols, illustrated here by
C examples:

‘int i = 1;’
A definition, which goes in the initialized data
section of the output file.

‘extern int i;’
An undefined reference, which does not allocate
space. There must be either a definition or a
common symbol for the variable somewhere.

c y g n u s s u p p o r t 11

Using LD, the GNU linker

‘int i;’ A common symbol. If there are only (one or more)
common symbols for a variable, it goes in the
uninitialized data area of the output file. The
linker merges multiple common symbols for the
same variable into a single symbol. If they are
of different sizes, it picks the largest size. The
linker turns a common symbol into a declaration,
if there is a definition of the same variable.

The ‘-warn-common’ option can produce five kinds of warn-
ings. Each warning consists of a pair of lines: the first de-
scribes the symbol just encountered, and the second describes
the previous symbol encountered with the same name. One
or both of the two symbols will be a common symbol.

1. Turning a common symbol into a reference, because
there is already a definition for the symbol.

file(section): warning: common of ‘symbol’
overridden by definition

file(section): warning: defined here

2. Turning a common symbol into a reference, because a
later definition for the symbol is encountered. This is
the same as the previous case, except that the symbols
are encountered in a different order.

file(section): warning: definition of ‘symbol’
overriding common

file(section): warning: common is here

3. Merging a common symbol with a previous same-sized
common symbol.

file(section): warning: multiple common
of ‘symbol’

file(section): warning: previous common is here

4. Merging a common symbol with a previous larger com-
mon symbol.

file(section): warning: common of ‘symbol’
overridden by larger common

file(section): warning: larger common is here

5. Merging a common symbol with a previous smaller com-
mon symbol. This is the same as the previous case,
except that the symbols are encountered in a different
order.

file(section): warning: common of ‘symbol’
overriding smaller common

file(section): warning: smaller common is here

12 7 July 1995

Chapter 2: Invocation

-warn-once
Only warn once for each undefined symbol, rather than once
per module which refers to it.
For each archive mentioned on the command line, include ev-
ery object file in the archive in the link, rather than searching
the archive for the required object files. This is normally used
to turn an archive file into a shared library, forcing every ob-
ject to be included in the resulting shared library.

-X Delete all temporary local symbols. For most targets, this is
all local symbols whose names begin with ‘L’.

-x Delete all local symbols.

-y symbol
Print the name of each linked file in which symbol appears.
This option may be given any number of times. On many
systems it is necessary to prepend an underscore.
This option is useful when you have an undefined symbol in
your link but don’t know where the reference is coming from.

-(archives -)
--start-group archives --end-group

The archives should be a list of archive files. They may be
either explicit file names, or ‘-l’ options.
The specified archives are searched repeatedly until no new
undefined references are created. Normally, an archive is
searched only once in the order that it is specified on the
command line. If a symbol in that archive is needed to resolve
an undefined symbol referred to by an object in an archive
that appears later on the command line, the linker would not
be able to resolve that reference. By grouping the archives,
they all be searched repeatedly until all possible references
are resolved.
Using this option has a significant performance cost. It is
best to use it only when there are unavoidable circular refer-
ences between two or more archives.

2.2 Environment Variables

You can change the behavior of ld with the environment variable
GNUTARGET.
GNUTARGET determines the input-file object format if you don’t use ‘-b’ (or
its synonym ‘-format’). Its value should be one of the BFD names for an
input format (see Chapter 5 “BFD,” page 37). If there is no GNUTARGET in

c y g n u s s u p p o r t 13

Using LD, the GNU linker

the environment, ld uses the natural format of the target. If GNUTARGET
is set to default then BFD attempts to discover the input format by
examining binary input files; this method often succeeds, but there are
potential ambiguities, since there is no method of ensuring that the
magic number used to specify object-file formats is unique. However, the
configuration procedure for BFD on each system places the conventional
format for that system first in the search-list, so ambiguities are resolved
in favor of convention.

14 7 July 1995

Chapter 3: Command Language

3 Command Language

The command language provides explicit control over the link process,
allowing complete specification of the mapping between the linker’s in-
put files and its output. It controls:
� input files
� file formats
� output file layout
� addresses of sections
� placement of common blocks

You may supply a command file (also known as a link script) to the linker
either explicitly through the ‘-T’ option, or implicitly as an ordinary file.
If the linker opens a file which it cannot recognize as a supported object
or archive format, it reports an error.

3.1 Linker Scripts

The ld command language is a collection of statements; some are sim-
ple keywords setting a particular option, some are used to select and
group input files or name output files; and two statement types have a
fundamental and pervasive impact on the linking process.
The most fundamental command of the ld command language is the
SECTIONS command (see Section 3.4 “SECTIONS,” page 23). Every
meaningful command script must have a SECTIONS command: it spec-
ifies a “picture” of the output file’s layout, in varying degrees of detail.
No other command is required in all cases.
The MEMORY command complements SECTIONS by describing the available
memory in the target architecture. This command is optional; if you don’t
use a MEMORY command, ld assumes sufficient memory is available in a
contiguous block for all output. See Section 3.3 “MEMORY,” page 22.
You may include comments in linker scripts just as in C: delimited by ‘/*’
and ‘*/’. As in C, comments are syntactically equivalent to whitespace.

3.2 Expressions

Many useful commands involve arithmetic expressions. The syntax for
expressions in the command language is identical to that of C expres-
sions, with the following features:
� All expressions evaluated as integers and are of “long” or “unsigned

long” type.

c y g n u s s u p p o r t 15

Using LD, the GNU linker

� All constants are integers.
� All of the C arithmetic operators are provided.
� You may reference, define, and create global variables.

� You may call special purpose built-in functions.

3.2.1 Integers

An octal integer is ‘0’ followed by zero or more of the octal digits
(‘01234567’).

_as_octal = 0157255;

A decimal integer starts with a non-zero digit followed by zero or more
digits (‘0123456789’).

_as_decimal = 57005;

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal
digits chosen from ‘0123456789abcdefABCDEF’.

_as_hex = 0xdead;

To write a negative integer, use the prefix operator ‘-’; see Section 3.2.4
“Operators,” page 18.

_as_neg = -57005;

Additionally the suffixes K and M may be used to scale a constant by 1024
or 10242 respectively. For example, the following all refer to the same
quantity:

_fourk_1 = 4K;
_fourk_2 = 4096;
_fourk_3 = 0x1000;

3.2.2 Symbol Names

Unless quoted, symbol names start with a letter, underscore, or point
and may include any letters, underscores, digits, points, and hyphens.
Unquoted symbol names must not conflict with any keywords. You can
specify a symbol which contains odd characters or has the same name
as a keyword, by surrounding the symbol name in double quotes:

"SECTION" = 9;
"with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to
delimit symbols with spaces. For example, ‘A-B’ is one symbol, whereas
‘A - B’ is an expression involving subtraction.

16 7 July 1995

Chapter 3: Command Language

3.2.3 The Location Counter

The special linker variable dot ‘.’ always contains the current output
location counter. Since the . always refers to a location in an output
section, it must always appear in an expression within a SECTIONS com-
mand. The . symbol may appear anywhere that an ordinary symbol is
allowed in an expression, but its assignments have a side effect. Assign-
ing a value to the . symbol will cause the location counter to be moved.
This may be used to create holes in the output section. The location
counter may never be moved backwards.

SECTIONS
{

output :
{
file1(.text)
. = . + 1000;
file2(.text)
. += 1000;
file3(.text)
} = 0x1234;

}

In the previous example, file1 is located at the beginning of the output
section, then there is a 1000 byte gap. Then file2 appears, also with a
1000 byte gap following before file3 is loaded. The notation ‘= 0x1234’
specifies what data to write in the gaps (see Section 3.4.4 “Section Op-
tions,” page 29).

c y g n u s s u p p o r t 17

Using LD, the GNU linker

3.2.4 Operators

The linker recognizes the standard C set of arithmetic operators, with
the standard bindings and precedence levels:

Precedence Associativity Operators
highest

1 left - ˜ ! y
2 left * / %
3 left + -
4 left >> <<
5 left == != > < <= >=
6 left &
7 left |
8 left &&
9 left ||
10 right ? :
11 right &= += -= *= /= z

lowest

y Prefix operators.
z See Section 3.2.6 “Assignment,” page 18.

3.2.5 Evaluation

The linker uses “lazy evaluation” for expressions; it only calculates an
expression when absolutely necessary. The linker needs the value of
the start address, and the lengths of memory regions, in order to do
any linking at all; these values are computed as soon as possible when
the linker reads in the command file. However, other values (such as
symbol values) are not known or needed until after storage allocation.
Such values are evaluated later, when other information (such as the
sizes of output sections) is available for use in the symbol assignment
expression.

3.2.6 Assignment: Defining Symbols

You may create global symbols, and assign values (addresses) to global
symbols, using any of the C assignment operators:

18 7 July 1995

Chapter 3: Command Language

symbol = expression ;
symbol &= expression ;
symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;

Two things distinguish assignment from other operators in ld expres-
sions.
� Assignment may only be used at the root of an expression; ‘a=b+3;’

is allowed, but ‘a+b=3;’ is an error.
� You must place a trailing semicolon (“;”) at the end of an assignment

statement.

Assignment statements may appear:
� as commands in their own right in an ld script; or
� as independent statements within a SECTIONS command; or
� as part of the contents of a section definition in a SECTIONS command.

The first two cases are equivalent in effect—both define a symbol with
an absolute address. The last case defines a symbol whose address is
relative to a particular section (see Section 3.4 “SECTIONS,” page 23).
When a linker expression is evaluated and assigned to a variable, it is
given either an absolute or a relocatable type. An absolute expression
type is one in which the symbol contains the value that it will have in
the output file; a relocatable expression type is one in which the value is
expressed as a fixed offset from the base of a section.
The type of the expression is controlled by its position in the script file.
A symbol assigned within a section definition is created relative to the
base of the section; a symbol assigned in any other place is created as an
absolute symbol. Since a symbol created within a section definition is
relative to the base of the section, it will remain relocatable if relocatable
output is requested. A symbol may be created with an absolute value
even when assigned to within a section definition by using the abso-
lute assignment function ABSOLUTE. For example, to create an absolute
symbol whose address is the last byte of an output section named .data:

SECTIONS{ ...
.data :

{
*(.data)
_edata = ABSOLUTE(.) ;

}
... }

The linker tries to put off the evaluation of an assignment until all the
terms in the source expression are known (see Section 3.2.5 “Evaluation,”

c y g n u s s u p p o r t 19

Using LD, the GNU linker

page 18). For instance, the sizes of sections cannot be known until after
allocation, so assignments dependent upon these are not performed until
after allocation. Some expressions, such as those depending upon the
location counter dot, ‘.’ must be evaluated during allocation. If the result
of an expression is required, but the value is not available, then an error
results. For example, a script like the following

SECTIONS { ...
text 9+this_isnt_constant :

{ ...
}

... }

will cause the error message “Non constant expression for initial
address”.

In some cases, it is desirable for a linker script to define a symbol only
if it is referenced, and only if it is not defined by any object included in
the link. For example, traditional linkers defined the symbol ‘etext’.
However, ANSI C requires that the user be able to use ‘etext’ as a
function name without encountering an error. The PROVIDE keyword
may be used to define a symbol, such as ‘etext’, only if it is referenced
but not defined. The syntax is PROVIDE(symbol = expression).

3.2.7 Arithmetic Functions

The command language includes a number of built-in functions for use
in link script expressions.

ABSOLUTE(exp)
Return the absolute (non-relocatable, as opposed to non-
negative) value of the expression exp. Primarily useful to
assign an absolute value to a symbol within a section defini-
tion, where symbol values are normally section-relative.

ADDR(section)
Return the absolute address of the named section. Your
script must previously have defined the location of that sec-
tion. In the following example, symbol_1 and symbol_2 are
assigned identical values:

20 7 July 1995

Chapter 3: Command Language

SECTIONS{ ...

.output1 :

{

start_of_output_1 = ABSOLUTE(.);
...

}

.output :

{

symbol_1 = ADDR(.output1);
symbol_2 = start_of_output_1;

}

... }

ALIGN(exp)
Return the result of the current location counter (.) aligned
to the next exp boundary. exp must be an expression whose
value is a power of two. This is equivalent to

(. + exp - 1) & ˜(exp - 1)

ALIGN doesn’t change the value of the location counter—it
just does arithmetic on it. As an example, to align the output
.data section to the next 0x2000 byte boundary after the
preceding section and to set a variable within the section to
the next 0x8000 boundary after the input sections:

SECTIONS{ ...

.data ALIGN(0x2000): {
*(.data)

variable = ALIGN(0x8000);

}

... }

The first use of ALIGN in this example specifies the location
of a section because it is used as the optional start attribute
of a section definition (see Section 3.4.4 “Section Options,”
page 29). The second use simply defines the value of a vari-
able.

The built-in NEXT is closely related to ALIGN.

DEFINED(symbol)
Return 1 if symbol is in the linker global symbol table and
is defined, otherwise return 0. You can use this function to
provide default values for symbols. For example, the follow-
ing command-file fragment shows how to set a global symbol
begin to the first location in the .text section—but if a sym-
bol called begin already existed, its value is preserved:

c y g n u s s u p p o r t 21

Using LD, the GNU linker

SECTIONS{ ...

.text : {

begin = DEFINED(begin) ? begin : . ;

...
}

... }

NEXT(exp)
Return the next unallocated address that is a multiple of exp.
This function is closely related to ALIGN(exp); unless you use
the MEMORY command to define discontinuous memory for the
output file, the two functions are equivalent.

SIZEOF(section)
Return the size in bytes of the named section, if that section
has been allocated. In the following example, symbol_1 and
symbol_2 are assigned identical values:

SECTIONS{ ...

.output {

.start = . ;

...

.end = . ;

}

symbol_1 = .end - .start ;

symbol_2 = SIZEOF(.output);
... }

SIZEOF_HEADERS
sizeof_headers

Return the size in bytes of the output file’s headers. You can
use this number as the start address of the first section, if
you choose, to facilitate paging.

3.3 Memory Layout

The linker’s default configuration permits allocation of all available
memory. You can override this configuration by using the MEMORY com-
mand. The MEMORY command describes the location and size of blocks
of memory in the target. By using it carefully, you can describe which
memory regions may be used by the linker, and which memory regions it
must avoid. The linker does not shuffle sections to fit into the available
regions, but does move the requested sections into the correct regions
and issue errors when the regions become too full.
A command file may contain at most one use of the MEMORY command;
however, you can define as many blocks of memory within it as you wish.
The syntax is:

22 7 July 1995

Chapter 3: Command Language

MEMORY

{

name (attr) : ORIGIN = origin, LENGTH = len
...

}

name is a name used internally by the linker to refer to the region.
Any symbol name may be used. The region names are stored
in a separate name space, and will not conflict with symbols,
file names or section names. Use distinct names to specify
multiple regions.

(attr) is an optional list of attributes, permitted for compatibility
with the AT&T linker but not used by ld beyond checking
that the attribute list is valid. Valid attribute lists must be
made up of the characters “LIRWX”. If you omit the attribute
list, you may omit the parentheses around it as well.

origin is the start address of the region in physical memory. It is
an expression that must evaluate to a constant before mem-
ory allocation is performed. The keyword ORIGIN may be
abbreviated to org or o (but not, for example, ‘ORG’).

len is the size in bytes of the region (an expression). The keyword
LENGTH may be abbreviated to len or l.

For example, to specify that memory has two regions available for
allocation—one starting at 0 for 256 kilobytes, and the other starting
at 0x40000000 for four megabytes:

MEMORY

{

rom : ORIGIN = 0, LENGTH = 256K

ram : org = 0x40000000, l = 4M
}

Once you have defined a region of memory named mem, you can direct
specific output sections there by using a command ending in ‘>mem’ within
the SECTIONS command (see Section 3.4.4 “Section Options,” page 29).
If the combined output sections directed to a region are too big for the
region, the linker will issue an error message.

3.4 Specifying Output Sections

The SECTIONS command controls exactly where input sections are placed
into output sections, their order in the output file, and to which output
sections they are allocated.

c y g n u s s u p p o r t 23

Using LD, the GNU linker

You may use at most one SECTIONS command in a script file, but you can
have as many statements within it as you wish. Statements within the
SECTIONS command can do one of three things:
� define the entry point;
� assign a value to a symbol;
� describe the placement of a named output section, and which input

sections go into it.

You can also use the first two operations—defining the entry point and
defining symbols—outside the SECTIONS command: see Section 3.5 “En-
try Point,” page 31, and see Section 3.2.6 “Assignment,” page 18. They
are permitted here as well for your convenience in reading the script, so
that symbols and the entry point can be defined at meaningful points in
your output-file layout.
If you do not use a SECTIONS command, the linker places each input
section into an identically named output section in the order that the
sections are first encountered in the input files. If all input sections are
present in the first file, for example, the order of sections in the output
file will match the order in the first input file.

3.4.1 Section Definitions

The most frequently used statement in the SECTIONS command is the
section definition, which specifies the properties of an output section: its
location, alignment, contents, fill pattern, and target memory region.
Most of these specifications are optional; the simplest form of a section
definition is

SECTIONS { ...
secname : {

contents
}

... }

secname is the name of the output section, and contents a specification
of what goes there—for example, a list of input files or sections of input
files (see Section 3.4.2 “Section Placement,” page 25). As you might
assume, the whitespace shown is optional. You do need the colon ‘:’ and
the braces ‘{}’, however.
secname must meet the constraints of your output format. In formats
which only support a limited number of sections, such as a.out, the name
must be one of the names supported by the format (a.out, for example,
allows only .text, .data or .bss). If the output format supports any
number of sections, but with numbers and not names (as is the case
for Oasys), the name should be supplied as a quoted numeric string. A
section name may consist of any sequence of characters, but any name

24 7 July 1995

Chapter 3: Command Language

which does not conform to the standard ld symbol name syntax must be
quoted. See Section 3.2.2 “Symbol Names,” page 16.
The linker will not create output sections which do not have any contents.
This is for convenience when referring to input sections that may or may
not exist. For example,

.foo { *(.foo }

will only create a ‘.foo’ section in the output file if there is a ‘.foo’
section in at least one input file.

3.4.2 Section Placement

In a section definition, you can specify the contents of an output section
by listing particular input files, by listing particular input-file sections,
or by a combination of the two. You can also place arbitrary data in the
section, and define symbols relative to the beginning of the section.
The contents of a section definition may include any of the following
kinds of statement. You can include as many of these as you like in a
single section definition, separated from one another by whitespace.

filename You may simply name a particular input file to be placed
in the current output section; all sections from that file are
placed in the current section definition. If the file name has
already been mentioned in another section definition, with
an explicit section name list, then only those sections which
have not yet been allocated are used.
To specify a list of particular files by name:

.data : { afile.o bfile.o cfile.o }

The example also illustrates that multiple statements can be
included in the contents of a section definition, since each file
name is a separate statement.

filename(section)
filename(section, section, .. .)
filename(section section .. .)

You can name one or more sections from your input files, for
insertion in the current output section. If you wish to specify
a list of input-file sections inside the parentheses, you may
separate the section names by either commas or whitespace.

* (section)
* (section, section, . ..)
* (section section . ..)

Instead of explicitly naming particular input files in a link
control script, you can refer to all files from the ld command

c y g n u s s u p p o r t 25

Using LD, the GNU linker

line: use ‘*’ instead of a particular file name before the paren-
thesized input-file section list.
If you have already explicitly included some files by name,
‘*’ refers to all remaining files—those whose places in the
output file have not yet been defined.
For example, to copy sections 1 through 4 from an Oasys file
into the .text section of an a.out file, and sections 13 and
14 into the .data section:

SECTIONS {

.text :{

*("1" "2" "3" "4")

}

.data :{

*("13" "14")

}

}

‘[section .. .]’ used to be accepted as an alternate way
to specify named sections from all unallocated input files.
Because some operating systems (VMS) allow brackets in
file names, that notation is no longer supported.

filename(COMMON)
*(COMMON)

Specify where in your output file to place uninitialized data
with this notation. *(COMMON) by itself refers to all uninitial-
ized data from all input files (so far as it is not yet allocated);
filename(COMMON) refers to uninitialized data from a partic-
ular file. Both are special cases of the general mechanisms
for specifying where to place input-file sections: ld permits
you to refer to uninitialized data as if it were in an input-file
section named COMMON, regardless of the input file’s format.

For example, the following command script arranges the output file into
three consecutive sections, named .text, .data, and .bss, taking the
input for each from the correspondingly named sections of all the input
files:

SECTIONS {

.text : { *(.text) }

.data : { *(.data) }

.bss : { *(.bss) *(COMMON) }

}

The following example reads all of the sections from file all.o and places
them at the start of output section outputa which starts at location

26 7 July 1995

Chapter 3: Command Language

0x10000. All of section .input1 from file foo.o follows immediately, in
the same output section. All of section .input2 from foo.o goes into
output section outputb, followed by section .input1 from foo1.o. All of
the remaining .input1 and .input2 sections from any files are written
to output section outputc.

SECTIONS {

outputa 0x10000 :

{

all.o
foo.o (.input1)

}

outputb :

{

foo.o (.input2)

foo1.o (.input1)
}

outputc :

{

*(.input1)

*(.input2)
}

}

3.4.3 Section Data Expressions

The foregoing statements arrange, in your output file, data originating
from your input files. You can also place data directly in an output section
from the link command script. Most of these additional statements
involve expressions; see Section 3.2 “Expressions,” page 15. Although
these statements are shown separately here for ease of presentation, no
such segregation is needed within a section definition in the SECTIONS
command; you can intermix them freely with any of the statements we’ve
just described.

CREATE_OBJECT_SYMBOLS
Create a symbol for each input file in the current section,
set to the address of the first byte of data written from that
input file. For instance, with a.out files it is conventional to
have a symbol for each input file. You can accomplish this by
defining the output .text section as follows:

c y g n u s s u p p o r t 27

Using LD, the GNU linker

SECTIONS {

.text 0x2020 :

{

CREATE_OBJECT_SYMBOLS
*(.text)

_etext = ALIGN(0x2000);

}

...

}

If sample.ld is a file containing this script, and a.o, b.o, c.o,
and d.o are four input files with contents like the following—

/* a.c */

afunction() { }
int adata=1;

int abss;

‘ld -M -T sample.ld a.o b.o c.o d.o’ would create a map
like this, containing symbols matching the object file names:

00000000 A __DYNAMIC
00004020 B _abss
00004000 D _adata
00002020 T _afunction
00004024 B _bbss
00004008 D _bdata
00002038 T _bfunction
00004028 B _cbss
00004010 D _cdata
00002050 T _cfunction
0000402c B _dbss
00004018 D _ddata
00002068 T _dfunction
00004020 D _edata
00004030 B _end
00004000 T _etext
00002020 t a.o
00002038 t b.o
00002050 t c.o
00002068 t d.o

symbol = expression ;
symbol f= expression ;

symbol is any symbol name (see Section 3.2.2 “Symbols,”
page 16). “f=” refers to any of the operators &= += -= *= /=
which combine arithmetic and assignment.

When you assign a value to a symbol within a particular
section definition, the value is relative to the beginning of

28 7 July 1995

Chapter 3: Command Language

the section (see Section 3.2.6 “Assignment,” page 18). If you
write

SECTIONS {

abs = 14 ;
...

.data : { ... rel = 14 ; ... }

abs2 = 14 + ADDR(.data);

...

}

abs and rel do not have the same value; rel has the same
value as abs2.

BYTE(expression)
SHORT(expression)
LONG(expression)
QUAD(expression)

By including one of these four statements in a section defi-
nition, you can explicitly place one, two, four, or eight bytes
(respectively) at the current address of that section. QUAD is
only supported when using a 64 bit host or target.
Multiple-byte quantities are represented in whatever byte
order is appropriate for the output file format (see Chapter 5
“BFD,” page 37).

FILL(expression)
Specify the “fill pattern” for the current section. Any other-
wise unspecified regions of memory within the section (for
example, regions you skip over by assigning a new value to
the location counter ‘.’) are filled with the two least signifi-
cant bytes from the expression argument. A FILL statement
covers memory locations after the point it occurs in the sec-
tion definition; by including more than one FILL statement,
you can have different fill patterns in different parts of an
output section.

3.4.4 Optional Section Attributes

Here is the full syntax of a section definition, including all the optional
portions:

SECTIONS {

...

secname start BLOCK(align) (NOLOAD) : AT (ldadr)
{ contents } >region =fill

...

}

c y g n u s s u p p o r t 29

Using LD, the GNU linker

secname and contents are required. See Section 3.4.1 “Section Defini-
tion,” page 24, and see Section 3.4.2 “Section Placement,” page 25 for
details on contents. The remaining elements—start, BLOCK(align),
(NOLOAD), AT (ldadr), >region, and =fill—are all optional.

start You can force the output section to be loaded at a specified
address by specifying start immediately following the sec-
tion name. start can be represented as any expression.
The following example generates section output at location
0x40000000:

SECTIONS {

...

output 0x40000000: {

...

}
...

}

BLOCK(align)
You can include BLOCK() specification to advance the location
counter . prior to the beginning of the section, so that the
section will begin at the specified alignment. align is an
expression.

(NOLOAD) Use ‘(NOLOAD)’ to prevent a section from being loaded into
memory each time it is accessed. For example, in the script
sample below, the ROM segment is addressed at memory loca-
tion ‘0’ and does not need to be loaded into each object file:

SECTIONS {

ROM 0 (NOLOAD) : { ... }
...

}

AT (ldadr)
The expression ldadr that follows the AT keyword specifies
the load address of the section. The default (if you do not use
the AT keyword) is to make the load address the same as the
relocation address. This feature is designed to make it easy
to build a ROM image. For example, this SECTIONS definition
creates two output sections: one called ‘.text’, which starts
at 0x1000, and one called ‘.mdata’, which is loaded at the end
of the ‘.text’ section even though its relocation address is
0x2000. The symbol _data is defined with the value 0x2000:

30 7 July 1995

Chapter 3: Command Language

SECTIONS

{

.text 0x1000 : { *(.text) _etext = . ; }

.mdata 0x2000 :
AT (ADDR(.text) + SIZEOF (.text))

{ _data = . ; *(.data); _edata = . ; }

.bss 0x3000 :

{ _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}

}

The run-time initialization code (for C programs, usually
crt0) for use with a ROM generated this way has to include
something like the following, to copy the initialized data from
the ROM image to its runtime address:

char *src = _etext;

char *dst = _data;

/* ROM has data at end of text; copy it. */
while (dst < _edata) {

*dst++ = *src++;

}

/* Zero bss */
for (dst = _bstart; dst< _bend; dst++)

*dst = 0;

>region Assign this section to a previously defined region of memory.
See Section 3.3 “MEMORY,” page 22.

=fill Including =fill in a section definition specifies the initial fill
value for that section. You may use any expression to specify
fill. Any unallocated holes in the current output section
when written to the output file will be filled with the two
least significant bytes of the value, repeated as necessary.
You can also change the fill value with a FILL statement in
the contents of a section definition.

3.5 The Entry Point

The linker command language includes a command specifically for defin-
ing the first executable instruction in an output file (its entry point). Its
argument is a symbol name:

ENTRY(symbol)

Like symbol assignments, the ENTRY command may be placed either as
an independent command in the command file, or among the section

c y g n u s s u p p o r t 31

Using LD, the GNU linker

definitions within the SECTIONS command—whatever makes the most
sense for your layout.
ENTRY is only one of several ways of choosing the entry point. You may
indicate it in any of the following ways (shown in descending order of
priority: methods higher in the list override methods lower down).
� the ‘-e’ entry command-line option;
� the ENTRY(symbol) command in a linker control script;
� the value of the symbol start, if present;
� the value of the symbol _main, if present;
� the address of the first byte of the .text section, if present;
� The address 0.

For example, you can use these rules to generate an entry point with an
assignment statement: if no symbol start is defined within your input
files, you can simply define it, assigning it an appropriate value—

start = 0x2020;

The example shows an absolute address, but you can use any expres-
sion. For example, if your input object files use some other symbol-name
convention for the entry point, you can just assign the value of whatever
symbol contains the start address to start:

start = other_symbol ;

3.6 Option Commands

The command language includes a number of other commands that
you can use for specialized purposes. They are similar in purpose to
command-line options.

CONSTRUCTORS
This command ties up C++ style constructor and destruc-
tor records. The details of the constructor representation
vary from one object format to another, but usually lists
of constructors and destructors appear as special sections.
The CONSTRUCTORS command specifies where the linker is
to place the data from these sections, relative to the rest
of the linked output. Constructor data is marked by the
symbol __CTOR_LIST__ at the start, and __CTOR_LIST_END
at the end; destructor data is bracketed similarly, between
__DTOR_LIST__ and __DTOR_LIST_END. (The compiler must
arrange to actually run this code; GNU C++ calls construc-
tors from a subroutine __main, which it inserts automatically
into the startup code for main, and destructors from _exit.)

32 7 July 1995

Chapter 3: Command Language

FLOAT
NOFLOAT These keywords were used in some older linkers to request

a particular math subroutine library. ld doesn’t use the key-
words, assuming instead that any necessary subroutines are
in libraries specified using the general mechanisms for link-
ing to archives; but to permit the use of scripts that were writ-
ten for the older linkers, the keywords FLOAT and NOFLOAT
are accepted and ignored.

FORCE_COMMON_ALLOCATION
This command has the same effect as the ‘-d’ command-line
option: to make ld assign space to common symbols even if
a relocatable output file is specified (‘-r’).

INPUT (file, file, . ..)
INPUT (file file . ..)

Use this command to include binary input files in the link,
without including them in a particular section definition.
Specify the full name for each file, including ‘.a’ if required.
ld searches for each file through the archive-library search
path, just as for files you specify on the command line. See
the description of ‘-L’ in Section 2.1 “Command Line Op-
tions,” page 3.
If you use ‘-lfile’, ld will transform the name to libfile.a
as with the command line argument ‘-l’.

GROUP (file, file, . ..)
GROUP (file file . ..)

This command is like INPUT, except that the named files
should all be archives, and they are searched repeatedly until
no new undefined references are created. See the description
of ‘-(’ in Section 2.1 “Command Line Options,” page 3.

OUTPUT (filename)
Use this command to name the link output file filename.
The effect of OUTPUT(filename) is identical to the effect of
‘-o filename’, which overrides it. You can use this command
to supply a default output-file name other than a.out.

OUTPUT_ARCH (bfdname)
Specify a particular output machine architecture, with one of
the names used by the BFD back-end routines (see Chapter 5
“BFD,” page 37). This command is often unnecessary; the
architecture is most often set implicitly by either the system
BFD configuration or as a side effect of the OUTPUT_FORMAT
command.

c y g n u s s u p p o r t 33

Using LD, the GNU linker

OUTPUT_FORMAT (bfdname)
When ld is configured to support multiple object code for-
mats, you can use this command to specify a particular out-
put format. bfdname is one of the names used by the BFD
back-end routines (see Chapter 5 “BFD,” page 37). The ef-
fect is identical to the effect of the ‘-oformat’ command-line
option. This selection affects only the output file; the related
command TARGET affects primarily input files.

SEARCH_DIR (path)
Add path to the list of paths where ld looks for archive li-
braries. SEARCH_DIR(path) has the same effect as ‘-Lpath’
on the command line.

STARTUP (filename)
Ensure that filename is the first input file used in the link
process.

TARGET (format)
When ld is configured to support multiple object code for-
mats, you can use this command to change the input-file ob-
ject code format (like the command-line option ‘-b’ or its syn-
onym ‘-format’). The argument format is one of the strings
used by BFD to name binary formats. If TARGET is speci-
fied but OUTPUT_FORMAT is not, the last TARGET argument is
also used as the default format for the ld output file. See
Chapter 5 “BFD,” page 37.
If you don’t use the TARGET command, ld uses the value of
the environment variable GNUTARGET, if available, to select
the output file format. If that variable is also absent, ld uses
the default format configured for your machine in the BFD
libraries.

34 7 July 1995

Chapter 4: Machine Dependent Features

4 Machine Dependent Features

ld has additional features on some platforms; the following sections
describe them. Machines where ld has no additional functionality are
not listed.

4.1 ld and the H8/300

For the H8/300, ld can perform these global optimizations when you
specify the ‘-relax’ command-line option.

relaxing address modes
ld finds all jsr and jmp instructions whose targets are within
eight bits, and turns them into eight-bit program-counter
relative bsr and bra instructions, respectively.

synthesizing instructions
ld finds all mov.b instructions which use the sixteen-bit ab-
solute address form, but refer to the top page of memory, and
changes them to use the eight-bit address form. (That is: the
linker turns ‘mov.b @aa:16’ into ‘mov.b @aa:8’ whenever the
address aa is in the top page of memory).

4.2 ld and the Intel 960 family

You can use the ‘-Aarchitecture’ command line option to specify one of
the two-letter names identifying members of the 960 family; the option
specifies the desired output target, and warns of any incompatible in-
structions in the input files. It also modifies the linker’s search strategy
for archive libraries, to support the use of libraries specific to each par-
ticular architecture, by including in the search loop names suffixed with
the string identifying the architecture.
For example, if your ld command line included ‘-ACA’ as well as ‘-ltry’,
the linker would look (in its built-in search paths, and in any paths you
specify with ‘-L’) for a library with the names

try

libtry.a
tryca

libtryca.a

The first two possibilities would be considered in any event; the last two
are due to the use of ‘-ACA’.
You can meaningfully use ‘-A’ more than once on a command line, since
the 960 architecture family allows combination of target architectures;

c y g n u s s u p p o r t 35

Using LD, the GNU linker

each use will add another pair of name variants to search for when ‘-l’
specifies a library.
ld supports the ‘-relax’ option for the i960 family. If you specify ‘-relax’,
ld finds all balx and calx instructions whose targets are within 24 bits,
and turns them into 24-bit program-counter relative bal and cal instruc-
tions, respectively. ld also turns cal instructions into bal instructions
when it determines that the target subroutine is a leaf routine (that is,
the target subroutine does not itself call any subroutines).

36 7 July 1995

Chapter 5: BFD

5 BFD

The linker accesses object and archive files using the BFD libraries.
These libraries allow the linker to use the same routines to operate
on object files whatever the object file format. A different object file
format can be supported simply by creating a new BFD back end and
adding it to the library. To conserve runtime memory, however, the linker
and associated tools are usually configured to support only a subset of
the object file formats available. You can use objdump -i (see section
“objdump” in The GNU Binary Utilities) to list all the formats available
for your configuration.

As with most implementations, BFD is a compromise between several
conflicting requirements. The major factor influencing BFD design was
efficiency: any time used converting between formats is time which
would not have been spent had BFD not been involved. This is partly
offset by abstraction payback; since BFD simplifies applications and
back ends, more time and care may be spent optimizing algorithms for
a greater speed.
One minor artifact of the BFD solution which you should bear in mind
is the potential for information loss. There are two places where useful
information can be lost using the BFD mechanism: during conversion
and during output. See Section 5.1.1 “BFD information loss,” page 38.

5.1 How it works: an outline of BFD

When an object file is opened, BFD subroutines automatically determine
the format of the input object file. They then build a descriptor in
memory with pointers to routines that will be used to access elements of
the object file’s data structures.
As different information from the the object files is required, BFD reads
from different sections of the file and processes them. For example, a
very common operation for the linker is processing symbol tables. Each
BFD back end provides a routine for converting between the object file’s
representation of symbols and an internal canonical format. When the
linker asks for the symbol table of an object file, it calls through a memory
pointer to the routine from the relevant BFD back end which reads and
converts the table into a canonical form. The linker then operates upon
the canonical form. When the link is finished and the linker writes
the output file’s symbol table, another BFD back end routine is called
to take the newly created symbol table and convert it into the chosen
output format.

c y g n u s s u p p o r t 37

Using LD, the GNU linker

5.1.1 Information Loss

Information can be lost during output. The output formats supported
by BFD do not provide identical facilities, and information which can be
described in one form has nowhere to go in another format. One example
of this is alignment information in b.out. There is nowhere in an a.out
format file to store alignment information on the contained data, so when
a file is linked from b.out and an a.out image is produced, alignment
information will not propagate to the output file. (The linker will still use
the alignment information internally, so the link is performed correctly).
Another example is COFF section names. COFF files may contain an
unlimited number of sections, each one with a textual section name. If
the target of the link is a format which does not have many sections (e.g.,
a.out) or has sections without names (e.g., the Oasys format), the link
cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command
language.
Information can be lost during canonicalization. The BFD internal
canonical form of the external formats is not exhaustive; there are struc-
tures in input formats for which there is no direct representation inter-
nally. This means that the BFD back ends cannot maintain all possible
data richness through the transformation between external to internal
and back to external formats.
This limitation is only a problem when an application reads one format
and writes another. Each BFD back end is responsible for maintaining
as much data as possible, and the internal BFD canonical form has
structures which are opaque to the BFD core, and exported only to the
back ends. When a file is read in one format, the canonical form is
generated for BFD and the application. At the same time, the back
end saves away any information which may otherwise be lost. If the
data is then written back in the same format, the back end routine
will be able to use the canonical form provided by the BFD core as
well as the information it prepared earlier. Since there is a great deal
of commonality between back ends, there is no information lost when
linking or copying big endian COFF to little endian COFF, or a.out to
b.out. When a mixture of formats is linked, the information is only lost
from the files whose format differs from the destination.

5.1.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the
least overlap between the information provided by the source format,
that stored by the canonical format, and that needed by the destina-
tion format. A brief description of the canonical form may help you

38 7 July 1995

Chapter 5: BFD

understand which kinds of data you can count on preserving across con-
versions.

files Information stored on a per-file basis includes target ma-
chine architecture, particular implementation format type,
a demand pageable bit, and a write protected bit. Informa-
tion like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both
the demand pageable bit and the write protected text bit set.
The byte order of the target is stored on a per-file basis, so
that big- and little-endian object files may be used with one
another.

sections Each section in the input file contains the name of the sec-
tion, the section’s original address in the object file, size and
alignment information, various flags, and pointers into other
BFD data structures.

symbols Each symbol contains a pointer to the information for the
object file which originally defined it, its name, its value, and
various flag bits. When a BFD back end reads in a symbol
table, it relocates all symbols to make them relative to the
base of the section where they were defined. Doing this en-
sures that each symbol points to its containing section. Each
symbol also has a varying amount of hidden private data for
the BFD back end. Since the symbol points to the original
file, the private data format for that symbol is accessible.
ld can operate on a collection of symbols of wildly different
formats without problems.
Normal global and simple local symbols are maintained on
output, so an output file (no matter its format) will retain
symbols pointing to functions and to global, static, and com-
mon variables. Some symbol information is not worth re-
taining; in a.out, type information is stored in the symbol
table as long symbol names. This information would be use-
less to most COFF debuggers; the linker has command line
switches to allow users to throw it away.
There is one word of type information within the symbol,
so if the format supports symbol type information within
symbols (for example, COFF, IEEE, Oasys) and the type is
simple enough to fit within one word (nearly everything but
aggregates), the information will be preserved.

relocation level
Each canonical BFD relocation record contains a pointer
to the symbol to relocate to, the offset of the data to relo-
cate, the section the data is in, and a pointer to a relocation

c y g n u s s u p p o r t 39

Using LD, the GNU linker

type descriptor. Relocation is performed by passing mes-
sages through the relocation type descriptor and the symbol
pointer. Therefore, relocations can be performed on output
data using a relocation method that is only available in one of
the input formats. For instance, Oasys provides a byte relo-
cation format. A relocation record requesting this relocation
type would point indirectly to a routine to perform this, so
the relocation may be performed on a byte being written to a
68k COFF file, even though 68k COFF has no such relocation
type.

line numbers
Object formats can contain, for debugging purposes, some
form of mapping between symbols, source line numbers, and
addresses in the output file. These addresses have to be relo-
cated along with the symbol information. Each symbol with
an associated list of line number records points to the first
record of the list. The head of a line number list consists of a
pointer to the symbol, which allows finding out the address
of the function whose line number is being described. The
rest of the list is made up of pairs: offsets into the section
and line numbers. Any format which can simply derive this
information can pass it successfully between formats (COFF,
IEEE and Oasys).

40 7 July 1995

Appendix A: MRI Compatible Script Files

Appendix A MRI Compatible Script Files
To aid users making the transition to gnu ld from the MRI linker, ld
can use MRI compatible linker scripts as an alternative to the more
general-purpose linker scripting language described in Chapter 3 “Com-
mand Language,” page 15. MRI compatible linker scripts have a much
simpler command set than the scripting language otherwise used with
ld. gnu ld supports the most commonly used MRI linker commands;
these commands are described here.
In general, MRI scripts aren’t of much use with the a.out object file for-
mat, since it only has three sections and MRI scripts lack some features
to make use of them.
You can specify a file containing an MRI-compatible script using the ‘-c’
command-line option.
Each command in an MRI-compatible script occupies its own line; each
command line starts with the keyword that identifies the command
(though blank lines are also allowed for punctuation). If a line of an
MRI-compatible script begins with an unrecognized keyword, ld issues
a warning message, but continues processing the script.
Lines beginning with ‘*’ are comments.
You can write these commands using all upper-case letters, or all lower
case; for example, ‘chip’ is the same as ‘CHIP’. The following list shows
only the upper-case form of each command.

ABSOLUTE secname

ABSOLUTE secname, secname, .. . secname
Normally, ld includes in the output file all sections from all
the input files. However, in an MRI-compatible script, you
can use the ABSOLUTE command to restrict the sections that
will be present in your output program. If the ABSOLUTE
command is used at all in a script, then only the sections
named explicitly in ABSOLUTE commands will appear in the
linker output. You can still use other input sections (what-
ever you select on the command line, or using LOAD) to resolve
addresses in the output file.

ALIAS out-secname, in-secname
Use this command to place the data from input section in-
secname in a section called out-secname in the linker output
file.
in-secname may be an integer.

BASE expression
Use the value of expression as the lowest address (other
than absolute addresses) in the output file.

c y g n u s s u p p o r t 41

Using LD, the GNU linker

CHIP expression
CHIP expression, expression

This command does nothing; it is accepted only for compati-
bility.

END This command does nothing whatever; it’s only accepted for
compatibility.

FORMAT output-format
Similar to the OUTPUT_FORMAT command in the more general
linker language, but restricted to one of these output formats:
1. S-records, if output-format is ‘S’
2. IEEE, if output-format is ‘IEEE’
3. COFF (the ‘coff-m68k’ variant in BFD), if output-

format is ‘COFF’

LIST anything...
Print (to the standard output file) a link map, as produced
by the ld command-line option ‘-M’.
The keyword LIST may be followed by anything on the same
line, with no change in its effect.

LOAD filename

LOAD filename, filename, .. . filename
Include one or more object file filename in the link; this
has the same effect as specifying filename directly on the ld
command line.

NAME output-name
output-name is the name for the program produced by ld;
the MRI-compatible command NAME is equivalent to the
command-line option ‘-o’ or the general script language com-
mand OUTPUT.

ORDER secname, secname, .. . secname
ORDER secname secname secname

Normally, ld orders the sections in its output file in the order
in which they first appear in the input files. In an MRI-
compatible script, you can override this ordering with the
ORDER command. The sections you list with ORDERwill appear
first in your output file, in the order specified.

PUBLIC name=expression
PUBLIC name,expression
PUBLIC name expression

Supply a value (expression) for external symbol name used
in the linker input files.

42 7 July 1995

Appendix A: MRI Compatible Script Files

SECT secname, expression
SECT secname=expression
SECT secname expression

You can use any of these three forms of the SECT command to
specify the start address (expression) for section secname.
If you have more than one SECT statement for the same sec-
name, only the first sets the start address.

c y g n u s s u p p o r t 43

Using LD, the GNU linker

44 7 July 1995

Index

Index

*
*(COMMON) . 26
*(section) . 25

-
-(. 13
--verbose . 11
--whole-archive 13
-Aarch . 4
-b format . 4
-Bstatic . 5
-c MRI-cmdfile . 5
-d . 5
-dc . 5
-defsym symbol=exp 5
-dp . 5
-dynamic-linker file 6
-e entry . 6
-embedded-relocs 6
-F . 6
-format . 6
-g . 6
-G . 6
-help . 6
-i . 6
-larchive . 6
-Ldir . 7
-M . 7
-m emulation . 7
-Map . 7
-n . 7
-N . 7
-no-keep-memory . 7
-noinhibit-exec . 7
-o output . 8
-oformat . 8
-r . 9
-R file . 8
-relax . 8
-relax on i960 . 36
-rpath . 9
-s . 9
-S . 9

-soname . 9
-t . 10
-T script . 10
-Tbss org . 10
-Tdata org . 10
-traditional-format 10
-Ttext org . 10
-u symbol . 10
-Ur . 11
-v . 11
-V . 11
-version . 11
-warn-comon. 11
-warn-once . 12
-x . 13
-X . 13
-y symbol . 13

.

. 17

;
; . 19

=
=fill. 31

[
[section: : :], not supported 26

"
" . 16

>
>region . 31

0
0x . 16

A
ABSOLUTE (MRI) . 41

c y g n u s s u p p o r t 45

Using LD, the GNU linker

absolute and relocatable symbols 19
ABSOLUTE(exp) . 20
ADDR(section) . 20
ALIAS (MRI) . 41
ALIGN(exp) . 21
aligning sections . 30
allocating memory . 22
architectures . 4
archive files, from cmd line 6
arithmetic . 15
arithmetic operators 18
assignment in scripts 18
assignment, in section defn 28
AT (ldadr) . 30

B
back end . 37
BASE (MRI) . 41
BFD canonical format 39
BFD requirements . 37
binary input files. 33
binary input format . 4
BLOCK(align) . 30
BYTE(expression) 29

C
C++ constructors, arranging in link . . . 32
CHIP (MRI) . 41
combining symbols, warnings on 11
command files . 15
command line . 3
commands, fundamental 15
comments . 15
common allocation. 5, 33
commons in output. 26
compatibility, MRI . 5
constructors. 11
CONSTRUCTORS . 32
constructors, arranging in link 32
contents of a section 25
CREATE OBJECT SYMBOLS 27
current output location 17

D
dbx. 10
decimal integers . 16
default input format 13

DEFINED(symbol) 21
deleting local symbols 13
direct output . 29
discontinuous memory 22
dot . 17
dynamic linker, from command line 6

E
emulation . 7
END (MRI). 42
entry point, defaults 32
entry point, from command line 6
ENTRY(symbol) . 31
expression evaluation order 18
expression syntax . 15
expression, absolute 20
expressions in a section 27

F
filename . 25
filename symbols . 27
filename(section) 25
files and sections, section defn 25
files, including in output sections 25
fill pattern, entire section 31
FILL(expression) 29
first input file . 34
first instruction . 31
FLOAT. 33
FORCE COMMON ALLOCATION 33
FORMAT (MRI). 42
format, output file . 33
functions in expression language 20
fundamental script commands 15

G
GNU linker . 1
GNUTARGET . 13, 34
GROUP (files) . 33
grouping input files 33
groups of archives . 13

H
H8/300 support . 35
header size . 22
help . 6
hexadecimal integers 16

46 7 July 1995

Index

holes . 17
holes, filling . 29

I
i960 support . 35
including an entire archive 13
incremental link . 6
INPUT (files) . 33
input file format . 34
input filename symbols 27
input files, displaying 10
input files, section defn 25
input format . 4
input sections to output section 25
integer notation . 16
integer suffixes . 16
internal object-file format 39

K
K and M integer suffixes 16

L
l = . 23
L, deleting symbols beginning 13
layout of output file 15
lazy evaluation. 18
len = . 23
LENGTH = . 23
link map . 7
LIST (MRI) . 42
LOAD (MRI) . 42
load address, specifying 30
loading, preventing 30
local symbols, deleting 13
location counter . 17
LONG(expression) 29

M
M and K integer suffixes 16
machine architecture, output 33
machine dependencies 35
MEMORY . 22
memory region attributes 23
memory regions and sections 31
memory usage. 7
MIPS embedded PIC code 6
MRI compatibility . 41

N
NAME (MRI) . 42
names. 16
naming memory regions 23
naming output sections 24
naming the output file 8, 33
negative integers . 16
NEXT(exp) . 22
NMAGIC . 7
NOFLOAT . 33
NOLOAD . 30
Non constant expression 20

O
o = . 23
objdump -i. 37
object file management 37
object files . 3
object formats available 37
object size . 6
octal integers . 16
OMAGIC . 7
opening object files . 37
Operators for arithmetic 18
options . 3
ORDER (MRI) . 42
org = . 23
ORIGIN = . 23
OUTPUT (filename) 33
output file after errors 7
output file layout. 15
OUTPUT ARCH (bfdname) 33
OUTPUT FORMAT (bfdname). 33

P
partial link . 9
path for libraries . 34
precedence in expressions 18
prevent unnecessary loading 30
provide . 20
PUBLIC (MRI). 42

Q
QUAD(expression) 29
quoted symbol names 16

c y g n u s s u p p o r t 47

Using LD, the GNU linker

R
read-only text . 7
read/write from cmd line 7
regions of memory . 22
relaxing addressing modes 8
relaxing on H8/300 . 35
relaxing on i960 . 36
relocatable and absolute symbols 19
relocatable output . 9
requirements for BFD 37
retaining specified symbols 8
rounding up location counter. 21
runtime library name 9
runtime library search path 9

S
scaled integers . 16
script files. 10
search directory, from cmd line 7
search path, libraries 34
SEARCH DIR (path). 34
SECT (MRI) . 42
section address . 20, 30
section alignment . 30
section definition . 24
section defn, full syntax 29
section fill pattern . 31
section size. 22
section start . 30
section, assigning to memory region . . 31
SECTIONS . 23
segment origins, cmd line 10
semicolon . 19
SHORT(expression) 29
SIZEOF(section) 22
sizeof headers . 22
SIZEOF HEADERS . 22
specify load address 30
split . 9, 10
standard Unix system 3
start address, section 30

start of execution . 31
STARTUP (filename) 34
strip all symbols . 9
strip debugger symbols 9
stripping all but some symbols 8
suffixes for integers 16
symbol = expression ; 28
symbol defaults . 21
symbol definition, scripts 18
symbol f= expression ; 28
symbol names . 16
symbol tracing . 13
symbol-only input . 8
symbols, from command line 5
symbols, relocatable and absolute 19
symbols, retaining selectively 8
synthesizing linker . 8
synthesizing on H8/300 35

T
TARGET (format) 34
traditional format . 10

U
unallocated address, next 22
undefined symbol . 10
undefined symbols, warnings on 12
uninitialized data . 26
unspecified memory 29
usage. 6

V
variables, defining . 18
verbose . 10
version . 11

W
warnings, on combining symbols 11
warnings, on undefined symbols 12
what is this? . 1

48 7 July 1995

Index

The body of this manual is set in
pncr at 10.95pt,

with headings in pncb at 10.95pt
and examples in pcrr.
pncri at 10.95pt and

pcrro
are used for emphasis.

c y g n u s s u p p o r t 49

Using LD, the GNU linker

50 7 July 1995

The GNU Binary Utilities
Version 2.2

May 1993

Roland H. Pesch
Jeffrey M. Osier
Cygnus Support

Cygnus Support
TEXinfo 2.122-95q3 (Cygnus)

Copyright c 1991, 1992, 1993, 1994 1995 Free Software Foundation,
Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

Introduction . 1

1 ar . 3
1.1 Controlling ar on the command line . 4
1.2 Controlling ar with a script . 6

2 ld. 11

3 nm . 13

4 objcopy . 17

5 objdump . 21

6 ranlib . 25

7 size . 27

8 strings . 29

9 strip . 31

10 c++filt . 33

11 nlmconv . 35

12 Selecting the target system 37
12.1 Target Selection . 37
12.2 Architecture selection . 39
12.3 Linker emulation selection . 39

Index . 41

c y g n u s s u p p o r t i

GNU Binary Utilities

ii 7 July 1995

Introduction

Introduction

This brief manual contains preliminary documentation for the GNU
binary utilities (collectively version 2.2):

ar Create, modify, and extract from archives

nm List symbols from object files

objcopy Copy and translate object files

objdump Display information from object files

ranlib Generate index to archive contents

size List file section sizes and total size

strings List printable strings from files

strip Discard symbols

c++filt Demangle encoded C++ symbols

nlmconv Convert object code into a Netware Loadable Module

c y g n u s s u p p o r t 1

GNU Binary Utilities

2 7 July 1995

Chapter 1: ar

1 ar
ar [-]p[mod [relpos]] archive [member. ..]
ar -M [<mri-script]

The GNU ar program creates, modifies, and extracts from archives.
An archive is a single file holding a collection of other files in a structure
that makes it possible to retrieve the original individual files (called
members of the archive).

The original files’ contents, mode (permissions), timestamp, owner,
and group are preserved in the archive, and can be restored on extrac-
tion.

GNU ar can maintain archives whose members have names of any
length; however, depending on how ar is configured on your system, a
limit on member-name length may be imposed for compatibility with
archive formats maintained with other tools. If it exists, the limit is
often 15 characters (typical of formats related to a.out) or 16 characters
(typical of formats related to coff).

ar is considered a binary utility because archives of this sort are most
often used as libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object mod-
ules in the archive when you specify the modifier ‘s’. Once created, this
index is updated in the archive whenever ar makes a change to its con-
tents (save for the ‘q’ update operation). An archive with such an index
speeds up linking to the library, and allows routines in the library to call
each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If
an archive lacks the table, another form of ar called ranlib can be used
to add just the table.

GNU ar is designed to be compatible with two different facilities. You
can control its activity using command-line options, like the different
varieties of ar on Unix systems; or, if you specify the single command-
line option ‘-M’, you can control it with a script supplied via standard
input, like the MRI “librarian” program.

c y g n u s s u p p o r t 3

GNU Binary Utilities

1.1 Controlling ar on the command line
ar [-]p[mod [relpos]] archive [member. ..]

When you use ar in the Unix style, ar insists on at least two ar-
guments to execute: one keyletter specifying the operation (optionally
accompanied by other keyletters specifying modifiers), and the archive
name to act on.

Most operations can also accept further member arguments, specifying
particular files to operate on.

GNU ar allows you to mix the operation code p and modifier flags mod
in any order, within the first command-line argument.

If you wish, you may begin the first command-line argument with a
dash.

The p keyletter specifies what operation to execute; it may be any of
the following, but you must specify only one of them:

d Delete modules from the archive. Specify the names of mod-
ules to be deleted as member. . .; the archive is untouched if
you specify no files to delete.
If you specify the ‘v’ modifier, ar lists each module as it is
deleted.

m Use this operation to move members in an archive.
The ordering of members in an archive can make a difference
in how programs are linked using the library, if a symbol is
defined in more than one member.
If no modifiers are used with m, any members you name in
the member arguments are moved to the end of the archive;
you can use the ‘a’, ‘b’, or ‘i’ modifiers to move them to a
specified place instead.

p Print the specified members of the archive, to the standard
output file. If the ‘v’ modifier is specified, show the member
name before copying its contents to standard output.
If you specify nomember arguments, all the files in the archive
are printed.

q Quick append; add the files member. . . to the end of archive,
without checking for replacement.
The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new
members are always placed at the end of the archive.
The modifier ‘v’ makes ar list each file as it is appended.
Since the point of this operation is speed, the archive’s symbol
table index is not updated, even if it already existed; you can

4 7 July 1995

Chapter 1: ar

use ‘ar s’ or ranlib explicitly to update the symbol table
index.

r Insert the files member. . . into archive (with replacement).
This operation differs from ‘q’ in that any previously existing
members are deleted if their names match those being added.
If one of the files named in member. . . does not exist, ar dis-
plays an error message, and leaves undisturbed any existing
members of the archive matching that name.
By default, new members are added at the end of the file;
but you may use one of the modifiers ‘a’, ‘b’, or ‘i’ to request
placement relative to some existing member.
The modifier ‘v’ used with this operation elicits a line of out-
put for each file inserted, along with one of the letters ‘a’ or
‘r’ to indicate whether the file was appended (no old member
deleted) or replaced.

t Display a table listing the contents of archive, or those of
the files listed in member. . . that are present in the archive.
Normally only the member name is shown; if you also want to
see the modes (permissions), timestamp, owner, group, and
size, you can request that by also specifying the ‘v’ modifier.
If you do not specify a member, all files in the archive are
listed.
If there is more than one file with the same name (say, ‘fie’)
in an archive (say ‘b.a’), ‘ar t b.a fie’ lists only the first in-
stance; to see them all, you must ask for a complete listing—
in our example, ‘ar t b.a’.

x Extract members (named member) from the archive. You can
use the ‘v’ modifier with this operation, to request that ar
list each name as it extracts it.
If you do not specify a member, all files in the archive are
extracted.

A number of modifiers (mod) may immediately follow the p keyletter,
to specify variations on an operation’s behavior:

a Add new files after an existing member of the archive. If you
use the modifier ‘a’, the name of an existing archive member
must be present as the relpos argument, before the archive
specification.

b Add new files before an existing member of the archive. If you
use the modifier ‘b’, the name of an existing archive member
must be present as the relpos argument, before the archive
specification. (same as ‘i’).

c y g n u s s u p p o r t 5

GNU Binary Utilities

c Create the archive. The specified archive is always created if
it did not exist, when you request an update. But a warning
is issued unless you specify in advance that you expect to
create it, by using this modifier.

i Insert new files before an existing member of the archive.
If you use the modifier ‘i’, the name of an existing archive
member must be present as the relpos argument, before the
archive specification. (same as ‘b’).

l This modifier is accepted but not used.

o Preserve the original dates of members when extracting
them. If you do not specify this modifier, files extracted from
the archive are stamped with the time of extraction.

s Write an object-file index into the archive, or update an ex-
isting one, even if no other change is made to the archive.
You may use this modifier flag either with any operation, or
alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

u Normally, ‘ar r’. . . inserts all files listed into the archive.
If you would like to insert only those of the files you list
that are newer than existing members of the same names,
use this modifier. The ‘u’ modifier is allowed only for the
operation ‘r’ (replace). In particular, the combination ‘qu’ is
not allowed, since checking the timestamps would lose any
speed advantage from the operation ‘q’.

v This modifier requests the verbose version of an operation.
Many operations display additional information, such as file-
names processed, when the modifier ‘v’ is appended.

V This modifier shows the version number of ar.

1.2 Controlling ar with a script
ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control
its operation with a rudimentary command language. This form of ar
operates interactively if standard input is coming directly from a ter-
minal. During interactive use, ar prompts for input (the prompt is ‘AR
>’), and continues executing even after errors. If you redirect standard
input to a script file, no prompts are issued, and ar abandons execution
(with a nonzero exit code) on any error.

The ar command language is not designed to be equivalent to the
command-line options; in fact, it provides somewhat less control over

6 7 July 1995

Chapter 1: ar

archives. The only purpose of the command language is to ease the
transition to GNU ar for developers who already have scripts written
for the MRI “librarian” program.

The syntax for the ar command language is straightforward:
� commands are recognized in upper or lower case; for example, LIST

is the same as list. In the following descriptions, commands are
shown in upper case for clarity.

� a single command may appear on each line; it is the first word on
the line.

� empty lines are allowed, and have no effect.
� comments are allowed; text after either of the characters ‘*’ or ‘;’ is

ignored.
� Whenever you use a list of names as part of the argument to an

ar command, you can separate the individual names with either
commas or blanks. Commas are shown in the explanations below,
for clarity.

� ‘+’ is used as a line continuation character; if ‘+’ appears at the end of
a line, the text on the following line is considered part of the current
command.

Here are the commands you can use in ar scripts, or when using ar
interactively. Three of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file
required for most of the other commands.

SAVE commits the changes so far specified by the script. Prior to SAVE,
commands affect only the temporary copy of the current archive.

ADDLIB archive
ADDLIB archive (module, module, .. . module)

Add all the contents of archive (or, if specified, each named
module from archive) to the current archive.
Requires prior use of OPEN or CREATE.

ADDMOD member, member, . .. member
Add each named member as a module in the current archive.
Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, cancelling the
effect of any operations since the last SAVE. May be executed
(with no effect) even if no current archive is specified.

CREATE archive
Creates an archive, and makes it the current archive (re-
quired for many other commands). The new archive is cre-
ated with a temporary name; it is not actually saved as

c y g n u s s u p p o r t 7

GNU Binary Utilities

archive until you use SAVE. You can overwrite existing
archives; similarly, the contents of any existing file named
archive will not be destroyed until SAVE.

DELETE module, module, . .. module
Delete each listed module from the current archive; equiva-
lent to ‘ar -d archive module . .. module’.
Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, .. . module)
DIRECTORY archive (module, .. . module) outputfile

List each named module present in archive. The separate
command VERBOSE specifies the form of the output: when
verbose output is off, output is like that of ‘ar -t archive
module...’. When verbose output is on, the listing is like
‘ar -tv archive module...’.
Output normally goes to the standard output stream; how-
ever, if you specify outputfile as a final argument, ar directs
the output to that file.

END Exit from ar, with a 0 exit code to indicate successful comple-
tion. This command does not save the output file; if you have
changed the current archive since the last SAVE command,
those changes are lost.

EXTRACT module, module, .. . module
Extract each named module from the current archive, writing
them into the current directory as separate files. Equivalent
to ‘ar -x archive module.. .’.
Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in “verbose” style
regardless of the state of VERBOSE. The effect is like ‘ar tv
archive’). (This single command is a GNU ld enhancement,
rather than present for MRI compatibility.)
Requires prior use of OPEN or CREATE.

OPEN archive
Opens an existing archive for use as the current archive (re-
quired for many other commands). Any changes as the result
of subsequent commands will not actually affect archive un-
til you next use SAVE.

REPLACE module, module, .. . module
In the current archive, replace each existing module (named
in the REPLACE arguments) from files in the current working
directory. To execute this command without errors, both the
file, and the module in the current archive, must exist.

8 7 July 1995

Chapter 1: ar

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from DIRECTORY.
When the flag is on, DIRECTORY output matches output from
‘ar -tv ’. . ..

SAVE Commit your changes to the current archive, and actually
save it as a file with the name specified in the last CREATE or
OPEN command.
Requires prior use of OPEN or CREATE.

c y g n u s s u p p o r t 9

GNU Binary Utilities

10 7 July 1995

Chapter 2: ld

2 ld

The GNU linker ld is now described in a separate manual. See section
“Overview” in Using LD: the GNU linker.

c y g n u s s u p p o r t 11

GNU Binary Utilities

12 7 July 1995

Chapter 3: nm

3 nm
nm [-a | --debug-syms] [-g | --extern-only]

[-B] [-C | --demangle] [-D | --dynamic]
[-s | --print-armap] [-A | -o | --print-file-name]
[-n | -v | --numeric-sort] [-p | --no-sort]
[-r | --reverse-sort] [--size-sort] [-u | --undefined-

only]
[-t radix | --radix=radix] [-P | --portability]
[--target=bfdname] [-f format | --format=format]
[--no-demangle] [-V | --version] [--help]

[objfile. ..]

GNU nm lists the symbols from object files objfile. . .. If no object
files are listed as arguments, nm assumes ‘a.out’.

For each symbol, nm shows:
� The symbol value, in the radix selected by options (see below), or

hexadecimal by default.
� The symbol type. At least the following types are used; others are,

as well, depending on the object file format. If lowercase, the symbol
is local; if uppercase, the symbol is global (external).

A Absolute.

B BSS (uninitialized data).

C Common.

D Initialized data.

I Indirect reference.

T Text (program code).

U Undefined.
� The symbol name.

The long and short forms of options, shown here as alternatives, are
equivalent.

-A
-o
--print-file-name

Precede each symbol by the name of the input file (or archive
element) in which it was found, rather than identifying the
input file once only, before all of its symbols.

-a
--debug-syms

Display all symbols, even debugger-only symbols; normally
these are not listed.

c y g n u s s u p p o r t 13

GNU Binary Utilities

-B The same as ‘--format=bsd’ (for compatibility with the MIPS
nm).

-C
--demangle

Decode (demangle) low-level symbol names into user-level
names. Besides removing any initial underscore prepended
by the system, this makes C++ function names readable. See
Chapter 10 “c++filt,” page 33, for more information on de-
mangling.

--no-demangle
Do not demangle low-level symbol names. This is the default.

-D
--dynamic

Display the dynamic symbols rather than the normal sym-
bols. This is only meaningful for dynamic objects, such as
certain types of shared libraries.

-f format
--format=format

Use the output format format, which can be bsd, sysv, or
posix. The default is bsd. Only the first character of format
is significant; it can be either upper or lower case.

-g
--extern-only

Display only external symbols.
-n
-v
--numeric-sort

Sort symbols numerically by their addresses, rather than
alphabetically by their names.

-p
--no-sort

Do not bother to sort the symbols in any order; print them in
the order encountered.

-P
--portability

Use the POSIX.2 standard output format instead of the de-
fault format. Equivalent to ‘-f posix’.

-s
--print-armap

When listing symbols from archive members, include the
index: a mapping (stored in the archive by ar or ranlib) of
which modules contain definitions for which names.

14 7 July 1995

Chapter 3: nm

-r
--reverse-sort

Reverse the order of the sort (whether numeric or alphabetic);
let the last come first.

--size-sort
Sort symbols by size. The size is computed as the difference
between the value of the symbol and the value of the symbol
with the next higher value. The size of the symbol is printed,
rather than the value.

-t radix
--radix=radix

Use radix as the radix for printing the symbol values. It
must be ‘d’ for decimal, ‘o’ for octal, or ‘x’ for hexadecimal.

--target=bfdname
Specify an object code format other than your system’s de-
fault format. See Section 12.1 “Target Selection,” page 37,
for more information.

-u
--undefined-only

Display only undefined symbols (those external to each object
file).

-V
--version

Show the version number of nm and exit.

--help Show a summary of the options to nm and exit.

c y g n u s s u p p o r t 15

GNU Binary Utilities

16 7 July 1995

Chapter 4: objcopy

4 objcopy

objcopy [-F bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-S | --strip-all] [-g | --strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-b byte | --byte=byte]
[-i interleave | --interleave=interleave]
[-R sectionname | --remove-section=sectionname]
[--gap-fill=val] [--pad-to=address]
[--set-start=val] [--adjust-start=incr]
[--adjust-vma=incr]
[--adjust-section-vma=section{=,+,-}val]
[--adjust-warnings] [--no-adjust-warnings]
[--set-section-flags=section=flags]
[--add-section=sectionname=filename]
[-v | --verbose] [-V | --version] [--help]
infile [outfile]

The gnu objcopyutility copies the contents of an object file to another.
objcopy uses the gnu bfd Library to read and write the object files. It
can write the destination object file in a format different from that of
the source object file. The exact behavior of objcopy is controlled by
command-line options.

objcopy creates temporary files to do its translations and deletes
them afterward. objcopy uses bfd to do all its translation work; it has
access to all the formats described in bfd and thus is able to recognize
most formats without being told explicitly. See section “BFD” in Using
LD.

objcopy can be used to generate S-records by using an output target
of ‘srec’ (e.g., use ‘-O srec’).

objcopy can be used to generate a raw binary file by using an output
target of ‘binary’ (e.g., use ‘-O binary’). When objcopy generates a raw
binary file, it will essentially produce a memory dump of the contents
of the input object file. All symbols and relocation information will be
discarded. The memory dump will start at the virtual address of the
lowest section copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to
use ‘-S’ to remove sections containing debugging information. In some
cases ‘-R’ will be useful to remove sections which contain information
which is not needed by the binary file.

c y g n u s s u p p o r t 17

GNU Binary Utilities

infile
outfile The source and output files, respectively. If you do not specify

outfile, objcopy creates a temporary file and destructively
renames the result with the name of infile.

-I bfdname
--input-target=bfdname

Consider the source file’s object format to be bfdname, rather
than attempting to deduce it. See Section 12.1 “Target Se-
lection,” page 37, for more information.

-O bfdname
--output-target=bfdname

Write the output file using the object format bfdname. See
Section 12.1 “Target Selection,” page 37, for more informa-
tion.

-F bfdname
--target=bfdname

Use bfdname as the object format for both the input and the
output file; i.e., simply transfer data from source to destina-
tion with no translation. See Section 12.1 “Target Selection,”
page 37, for more information.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output file.
This option may be given more than once. Using this option
inappropriately may make the output file unusable.

-S
--strip-all

Do not copy relocation and symbol information from the
source file.

-g
--strip-debug

Do not copy debugging symbols from the source file.
-K symbolname
--keep-symbol=symbolname

Copy only symbol symbolname from the source file. This
option may be given more than once.

-N symbolname
--strip-symbol=symbolname

Do not copy symbol symbolname from the source file. This
option may be given more than once, and may be combined
with strip options other than -K.

18 7 July 1995

Chapter 4: objcopy

-x
--discard-all

Do not copy non-global symbols from the source file.

-X
--discard-locals

Do not copy compiler-generated local symbols. (These usu-
ally start with ‘L’ or ‘.’.)

-b byte
--byte=byte

Keep only every byteth byte of the input file (header data is
not affected). byte can be in the range from 0 to interleave-
1, where interleave is given by the ‘-i’ or ‘--interleave’
option, or the default of 4. This option is useful for creating
files to program rom. It is typically used with an srec output
target.

-i interleave
--interleave=interleave

Only copy one out of every interleave bytes. Select which
byte to copy with the -b or ‘--byte’ option. The default is 4.
objcopy ignores this option if you do not specify either ‘-b’
or ‘--byte’.

--gap-fill val
Fill gaps between sections with val. This is done by increas-
ing the size of the section with the lower address, and filling
in the extra space created with val.

--pad-to address
Pad the output file up to the virtual address address. This
is done by increasing the size of the last section. The extra
space is filled in with the value specified by ‘--gap-fill’
(default zero).

--set-start val
Set the address of the new file to val. Not all object file
formats support setting the start address.

--adjust-start incr
Adjust the start address by adding incr. Not all object file
formats support setting the start address.

--adjust-vma incr
Adjust the address of all sections, as well as the start address,
by adding incr. Some object file formats do not permit sec-
tion addresses to be changed arbitrarily. Note that this does
not relocate the sections; if the program expects sections to

c y g n u s s u p p o r t 19

GNU Binary Utilities

be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a different
address, the program may fail.

--adjust-section-vma section{=,+,-}val
Set or adjust the address of the named section. If ‘=’ is
used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the
comments under ‘--adjust-vma’, above. If section does
not exist in the input file, a warning will be issued, unless
‘--no-adjust-warnings’ is used.

--adjust-warnings
If ‘--adjust-section-vma’ is used, and the named section
does not exist, issue a warning. This is the default.

--no-adjust-warnings
Do not issue a warning if ‘--adjust-section-vma’ is used,
even if the named section does not exist.

--set-section-flags section=flags
Set the flags for the named section. The flags argument
is a comma separated string of flag names. The recognized
names are ‘alloc’, ‘load’, ‘readonly’, ‘code’, ‘data’, and ‘rom’.
Not all flags are meaningful for all object file formats.

--add-section sectionname=filename
Add a new section named sectionname while copying the
file. The contents of the new section are taken from the file
filename. The size of the section will be the size of the file.
This option only works on file formats which can support
sections with arbitrary names.

-V
--version

Show the version number of objcopy.

-v
--verbose

Verbose output: list all object files modified. In the case of
archives, ‘objcopy -V’ lists all members of the archive.

--help Show a summary of the options to objcopy.

20 7 July 1995

Chapter 5: objdump

5 objdump

objdump [-a | --archive-headers]
[-b bfdname | --target=bfdname]
[-d | --disassemble] [-D | --disassemble-all]
[-f | --file-headers]
[-h | --section-headers | --headers] [-i | --info]
[-j section | --section=section]
[-l | --line-numbers] [-S | --source]
[-m machine | --architecture=machine]
[-r | --reloc] [-R | --dynamic-reloc]
[-s | --full-contents] [--stabs]
[-t | --syms] [-T | --dynamic-syms] [-x]

--all-headers]
[--version] [--help] objfile. ..

objdump displays information about one or more object files. The
options control what particular information to display. This information
is mostly useful to programmers who are working on the compilation
tools, as opposed to programmers who just want their program to compile
and work.

objfile. . . are the object files to be examined. When you specify
archives, objdump shows information on each of the member object files.

The long and short forms of options, shown here as alternatives, are
equivalent. At least one option besides ‘-l’ must be given.

-a
--archive-header

If any of the objfile files are archives, display the archive
header information (in a format similar to ‘ls -l’). Besides
the information you could list with ‘ar tv’, ‘objdump -a’ shows
the object file format of each archive member.

-b bfdname
--target=bfdname

Specify that the object-code format for the object files is bfd-
name. This option may not be necessary; objdump can auto-
matically recognize many formats.
For example,

objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (‘-h’)
of ‘fu.o’, which is explicitly identified (‘-m’) as a VAX object
file in the format produced by Oasys compilers. You can list
the formats available with the ‘-i’ option. See Section 12.1
“Target Selection,” page 37, for more information.

c y g n u s s u p p o r t 21

GNU Binary Utilities

-d
--disassemble

Display the assembler mnemonics for the machine instruc-
tions from objfile. This option only disassembles those
sections which are expected to contain instructions.

-D
--disassemble-all

Like ‘-d’, but disassemble the contents of all sections, not
just those expected to contain instructions.

-f
--file-header

Display summary information from the overall header of
each of the objfile files.

-h
--section-header
--header Display summary information from the section headers of

the object file.
File segments may be relocated to nonstandard addresses,
for example by using the ‘-Ttext’, ‘-Tdata’, or ‘-Tbss’ options
to ld. However, some object file formats, such as a.out, do
not store the starting address of the file segments. In those
situations, although ld relocates the sections correctly, using
‘objdump -h’ to list the file section headers cannot show the
correct addresses. Instead, it shows the usual addresses,
which are implicit for the target.

--help Print a summary of the options to objdump and exit.
-i
--info Display a list showing all architectures and object formats

available for specification with ‘-b’ or ‘-m’.
-j name
--section=name

Display information only for section name.
-l
--line-numbers

Label the display (using debugging information) with the
filename and source line numbers corresponding to the object
code shown. Only useful with ‘-d’ or ‘-D’.

-m machine
--architecture=machine

Specify that the object files objfile are for architecture ma-
chine. List available architectures using the ‘-i’ option.

22 7 July 1995

Chapter 5: objdump

-r
--reloc Print the relocation entries of the file. If used with ‘-d’ or

‘-D’, the relocations are printed interspersed with the disas-
sembly.

-R
--dynamic-reloc

Print the dynamic relocation entries of the file. This is only
meaningful for dynamic objects, such as certain types of
shared libraries.

-s
--full-contents

Display the full contents of any sections requested.

-S
--source Display source code intermixed with disassembly, if possible.

Implies ‘-d’.

--stabs Display the full contents of any sections requested. Display
the contents of the .stab and .stab.index and .stab.excl sec-
tions from an ELF file. This is only useful on systems (such as
Solaris 2.0) in which .stab debugging symbol-table entries
are carried in an ELF section. In most other file formats,
debugging symbol-table entries are interleaved with linkage
symbols, and are visible in the ‘--syms’ output.

-t
--syms Print the symbol table entries of the file. This is similar to

the information provided by the ‘nm’ program.

-T
--dynamic-syms

Print the dynamic symbol table entries of the file. This is
only meaningful for dynamic objects, such as certain types of
shared libraries. This is similar to the information provided
by the ‘nm’ program when given the ‘-D’ (‘--dynamic’) option.

--version
Print the version number of objdump and exit.

-x
--all-header

Display all available header information, including the sym-
bol table and relocation entries. Using ‘-x’ is equivalent to
specifying all of ‘-a -f -h -r -t’.

c y g n u s s u p p o r t 23

GNU Binary Utilities

24 7 July 1995

Chapter 6: ranlib

6 ranlib
ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it
in the archive. The index lists each symbol defined by a member of an
archive that is a relocatable object file.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index.
An archive with such an index speeds up linking to the library and

allows routines in the library to call each other without regard to their
placement in the archive.

The GNU ranlib program is another form of GNU ar; running ranlib
is completely equivalent to executing ‘ar -s’. See Chapter 1 “ar,” page 3.

-v
-V Show the version number of ranlib.

c y g n u s s u p p o r t 25

GNU Binary Utilities

26 7 July 1995

Chapter 7: size

7 size

size [-A | -B | --format=compatibility]
[--help] [-d | -o | -x | --radix=number]
[--target=bfdname] [-V | --version]
objfile. ..

The GNU size utility lists the section sizes—and the total size—
for each of the object or archive files objfile in its argument list. By
default, one line of output is generated for each object file or each module
in an archive.

objfile. . . are the object files to be examined.
The command line options have the following meanings:

-A
-B
--format=compatibility

Using one of these options, you can choose whether the out-
put from GNU size resembles output from System V size
(using ‘-A’, or ‘--format=sysv’), or Berkeley size (using ‘-B’,
or ‘--format=berkeley’). The default is the one-line format
similar to Berkeley’s.
Here is an example of the Berkeley (default) format of output
from size:

size --format=Berkeley ranlib size
text data bss dec hex filename
294880 81920 11592 388392 5ed28 ranlib
294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V con-
ventions:

size --format=SysV ranlib size
ranlib :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392

size :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

--help Show a summary of acceptable arguments and options.

c y g n u s s u p p o r t 27

GNU Binary Utilities

-d
-o
-x
--radix=number

Using one of these options, you can control whether the size
of each section is given in decimal (‘-d’, or ‘--radix=10’); octal
(‘-o’, or ‘--radix=8’); or hexadecimal (‘-x’, or ‘--radix=16’).
In ‘--radix=number’, only the three values (8, 10, 16) are
supported. The total size is always given in two radices;
decimal and hexadecimal for ‘-d’ or ‘-x’ output, or octal and
hexadecimal if you’re using ‘-o’.

--target=bfdname
Specify that the object-code format for objfile is bfdname.
This option may not be necessary; size can automatically
recognize many formats. See Section 12.1 “Target Selection,”
page 37, for more information.

-V
--version

Display the version number of size.

28 7 July 1995

Chapter 8: strings

8 strings

strings [-afov] [-min-len] [-n min-len] [-t radix] [-]
[--all] [--print-file-name] [--bytes=min-len]
[--radix=radix] [--target=bfdname]
[--help] [--version] file. ..

For each file given, GNU strings prints the printable character
sequences that are at least 4 characters long (or the number given with
the options below) and are followed by a NUL or newline character. By
default, it only prints the strings from the initialized data sections of
object files; for other types of files, it prints the strings from the whole
file.

strings is mainly useful for determining the contents of non-text
files.

-a
--all
- Do not scan only the initialized data section of object files;

scan the whole files.

-f
--print-file-name

Print the name of the file before each string.

--help Print a summary of the program usage on the standard out-
put and exit.

-min-len

-n min-len
--bytes=min-len

Print sequences of characters that are at least min-len char-
acters long, instead of the default 4.

-o Like ‘-t o’. Some other versions of strings have ‘-o’ act
like ‘-t d’ instead. Since we can not be compatible with both
ways, we simply chose one.

-t radix
--radix=radix

Print the offset within the file before each string. The single
character argument specifies the radix of the offset—‘o’ for
octal, ‘x’ for hexadecimal, or ‘d’ for decimal.

--target=bfdname
Specify an object code format other than your system’s de-
fault format. See Section 12.1 “Target Selection,” page 37,
for more information.

c y g n u s s u p p o r t 29

GNU Binary Utilities

-v
--version

Print the program version number on the standard output
and exit.

30 7 July 1995

Chapter 9: strip

9 strip

strip [-F bfdname | --target=bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-s | --strip-all] [-S | -g | --strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-R sectionname | --remove-section=sectionname]
[-v | --verbose] [-V | --version] [--help]
objfile. ..

GNU strip discards all symbols from object files objfile. The list of
object files may include archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing
modified copies under different names.

-F bfdname
--target=bfdname

Treat the original objfile as a file with the object code for-
mat bfdname, and rewrite it in the same format. See Sec-
tion 12.1 “Target Selection,” page 37, for more information.

--help Show a summary of the options to strip and exit.

-I bfdname
--input-target=bfdname

Treat the original objfile as a file with the object code for-
mat bfdname. See Section 12.1 “Target Selection,” page 37,
for more information.

-O bfdname
--output-target=bfdname

Replace objfile with a file in the output format bfdname.
See Section 12.1 “Target Selection,” page 37, for more infor-
mation.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output
file. This option may be given more than once. Note that
using this option inappropriately may make the output file
unusable.

-s
--strip-all

Remove all symbols.

c y g n u s s u p p o r t 31

GNU Binary Utilities

-g
-S
--strip-debug

Remove debugging symbols only.

-K symbolname
--keep-symbol=symbolname

Keep only symbol symbolname from the source file. This
option may be given more than once.

-N symbolname
--strip-symbol=symbolname

Remove symbol symbolname from the source file. This option
may be given more than once, and may be combined with
strip options other than -K.

-x
--discard-all

Remove non-global symbols.

-X
--discard-locals

Remove compiler-generated local symbols. (These usually
start with ‘L’ or ‘.’.)

-V
--version

Show the version number for strip.

-v
--verbose

Verbose output: list all object files modified. In the case of
archives, ‘strip -v’ lists all members of the archive.

32 7 July 1995

Chapter 10: c++filt

10 c++filt
c++filt [-_ | --strip-underscores]
[-n | --no-strip-underscores]

[-s format | --format=format]
[--help] [--version] [symbol. ..]

The C++ language provides function overloading, which means that
you can write many functions with the same name (providing each takes
parameters of different types). All C++ function names are encoded into
a low-level assembly label (this process is known as mangling). The
c++filt program does the inverse mapping: it decodes (demangles) low-
level names into user-level names so that the linker can keep these
overloaded functions from clashing.

Every alphanumeric word (consisting of letters, digits, underscores,
dollars, or periods) seen in the input is a potential label. If the label
decodes into a C++ name, the C++ name replaces the low-level name in
the output.

You can use c++filt to decipher individual symbols:
c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from
the standard input and writes the demangled names to the standard
output. All results are printed on the standard output.

-_
--strip-underscores

On some systems, both the C and C++ compilers put an un-
derscore in front of every name. For example, the C name foo
gets the low-level name _foo. This option removes the ini-
tial underscore. Whether c++filt removes the underscore
by default is target dependent.

-n
--no-strip-underscores

Do not remove the initial underscore.
-s format
--format=format

GNU nm can decode three different methods of mangling,
used by different C++ compilers. The argument to this option
selects which method it uses:
gnu the one used by the GNU compiler (the default

method)
lucid the one used by the Lucid compiler
arm the one specified by the C++ Annotated Reference

Manual

c y g n u s s u p p o r t 33

GNU Binary Utilities

--help Print a summary of the options to c++filt and exit.

--version
Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user
interface are subject to change in future releases. In particular,
a command-line option may be required in the the future to
decode a name passed as an argument on the command line; in
other words,

c++filt symbol

may in a future release become
c++filt option symbol

34 7 July 1995

Chapter 11: nlmconv

11 nlmconv

nlmconv converts a relocatable object file into a NetWare Loadable
Module.

Warning: nlmconv is not always built as part of the binary
utilities, since it is only useful for NLM targets.
nlmconv [-I bfdname | --input-target=bfdname]

[-O bfdname | --output-target=bfdname]
[-T headerfile | --header-file=headerfile]
[-d | --debug] [-l linker | --linker=linker]
[-h | --help] [-V | --version]
infile outfile

nlmconv converts the relocatable ‘i386’ object file infile into the Net-
Ware Loadable Module outfile, optionally reading headerfile for NLM
header information. For instructions on writing the NLM command file
language used in header files, see the ‘linkers’ section, ‘NLMLINK’ in par-
ticular, of the NLM Development and Tools Overview, which is part of
the NLM Software Developer’s Kit (“NLM SDK”), available from Novell,
Inc. nlmconv uses the gnuBinary File Descriptor library to read infile;
see section “BFD” in Using LD, for more information.

nlmconv can perform a link step. In other words, you can list more
than one object file for input if you list them in the definitions file (rather
than simply specifying one input file on the command line). In this case,
nlmconv calls the linker for you.

-I bfdname
--input-target=bfdname

Object format of the input file. nlmconv can usually deter-
mine the format of a given file (so no default is necessary).
See Section 12.1 “Target Selection,” page 37, for more infor-
mation.

-O bfdname
--output-target=bfdname

Object format of the output file. nlmconv infers the output
format based on the input format, e.g. for a ‘i386’ input file
the output format is ‘nlm32-i386’. See Section 12.1 “Target
Selection,” page 37, for more information.

-T headerfile
--header-file=headerfile

Reads headerfile for NLM header information. For instruc-
tions on writing the NLM command file language used in
header files, see see the ‘linkers’ section, of the NLM De-
velopment and Tools Overview, which is part of the NLM
Software Developer’s Kit, available from Novell, Inc.

c y g n u s s u p p o r t 35

GNU Binary Utilities

-d
--debug Displays (on standard error) the linker command line used

by nlmconv.

-l linker
--linker=linker

Use linker for any linking. linker can be an abosolute or a
relative pathname.

-h
--help Prints a usage summary.

-V
--version

Prints the version number for nlmconv.

36 7 July 1995

Chapter 12: Selecting the target system

12 Selecting the target system
You can specify three aspects of the target system to the gnu binary

file utilities, each in several ways:
� the target
� the architecture
� the linker emulation (which applies to the linker only)

In the following summaries, the lists of ways to specify values are
in order of decreasing precedence. The ways listed first override those
listed later.

The commands to list valid values only list the values for which the
programs you are running were configured. If they were configured with
‘--with-targets=all’, the commands list most of the available values,
but a few are left out; not all targets can be configured in at once because
some of them can only be configured native (on hosts with the same type
as the target system).

12.1 Target Selection

A target is an object file format. A given target may be supported
for multiple architectures (see Section 12.2 “Architecture Selection,”
page 39). A target selection may also have variations for different oper-
ating systems or architectures.

The command to list valid target values is ‘objdump -i’ (the first col-
umn of output contains the relevant information).

Some sample values are: ‘a.out-hp300bsd’, ‘ecoff-littlemips’,
‘a.out-sunos-big’.

objdump Target

Ways to specify:
1. command line option: ‘-b’ or ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

objcopy and strip Input Target

Ways to specify:
1. command line options: ‘-I’ or ‘--input-target’, or ‘-F’ or ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

c y g n u s s u p p o r t 37

GNU Binary Utilities

objcopy and strip Output Target

Ways to specify:
1. command line options: ‘-O’ or ‘--output-target’, or ‘-F’ or

‘--target’
2. the input target (see “objcopy and strip Input Target” above)

3. environment variable GNUTARGET

4. deduced from the input file

nm, size, and strings Target

Ways to specify:
1. command line option: ‘--target’

2. environment variable GNUTARGET

3. deduced from the input file

Linker Input Target

Ways to specify:
1. command line option: ‘-b’ or ‘--format’ (see section “Options” in

Using LD)

2. script command TARGET (see section “Option Commands” in Using
LD)

3. environment variable GNUTARGET (see section “Environment” in Us-
ing LD)

4. the default target of the selected linker emulation (see Section 12.3
“Linker Emulation Selection,” page 39)

Linker Output Target

Ways to specify:
1. command line option: ‘-oformat’ (see section “Options” in Using LD)
2. script command OUTPUT_FORMAT (see section “Option Commands” in

Using LD)

3. the linker input target (see “Linker Input Target” above)

38 7 July 1995

Chapter 12: Selecting the target system

12.2 Architecture selection

An architecture is a type of cpu on which an object file is to run. Its
name may contain a colon, separating the name of the processor family
from the name of the particular cpu.

The command to list valid architecture values is ‘objdump -i’ (the
second column contains the relevant information).

Sample values: ‘m68k:68020’, ‘mips:3000’, ‘sparc’.

objdump Architecture

Ways to specify:
1. command line option: ‘-m’ or ‘--architecture’
2. deduced from the input file

objcopy, nm, size, strings Architecture

Ways to specify:
1. deduced from the input file

Linker Input Architecture

Ways to specify:
1. deduced from the input file

Linker Output Architecture

Ways to specify:
1. script command OUTPUT_ARCH (see section “Option Commands” in

Using LD)
2. the default architecture from the linker output target (see Sec-

tion 12.1 “Target Selection,” page 37)

12.3 Linker emulation selection

A linker emulation is a “personality” of the linker, which gives the
linker default values for the other aspects of the target system. In
particular, it consists of
� the linker script
� the target

c y g n u s s u p p o r t 39

GNU Binary Utilities

� several “hook” functions that are run at certain stages of the linking
process to do special things that some targets require

The command to list valid linker emulation values is ‘ld -V’.
Sample values: ‘hp300bsd’, ‘mipslit’, ‘sun4’.
Ways to specify:

1. command line option: ‘-m’ (see section “Options” in Using LD)
2. environment variable LDEMULATION

3. compiled-in DEFAULT_EMULATION from ‘Makefile’, which comes from
EMUL in ‘config/target.mt’

40 7 July 1995

Index

Index

.

.stab . 23

A
all header information, object file 23
ar . 3
ar compatibility . 3
architecture . 22
architectures available 22
archive contents . 25
archive headers . 21
archives . 3

C
c++filt . 33
collections of files . 3
compatibility, ar . 3
contents of archive . 5
creating archives . 5

D
dates in archive . 6
debug symbols . 23
debugging symbols . 13
deleting from archive. 4
demangling C++ symbols 14, 33
disassembling object code 22
disassembly, with source 23
discarding symbols . 31
dynamic relocation entries, in object file

. 23
dynamic symbol table entries, printing

. 23
dynamic symbols . 14

E
ELF object file format 23
external symbols 14, 15
extract from archive . 5

F
file name . 13

H
header information, all 23

I
input file name . 13

L
ld . 11
libraries . 3
linker . 11
listings strings . 29

M
machine instructions. 22
moving in archive . 4
MRI compatibility, ar 6

N
name duplication in archive 5
name length . 3
nm . 13
nm compatibility 13, 14
nm format . 13, 14

O
objdump . 21
object code format 15, 21, 28, 29
object file header . 22
object file information 21
object file sections . 23
object formats available 22
operations on archive 4

P
printing from archive 4
printing strings . 29

Q
quick append to archive 4

c y g n u s s u p p o r t 41

GNU Binary Utilities

R
radix for section sizes 28
ranlib . 25
relative placement in archive 5
relocation entries, in object file 22
removing symbols . 31
repeated names in archive 5
replacement in archive 5

S
scripts, ar . 6
section headers . 22
section information 22
section sizes . 27
sections, full contents 23
size . 27
size display format 27
size number format 28
sorting symbols . 14
source disassembly 23
source file name. 13

source filenames for object files 22
stab . 23
strings . 29
strings, printing . 29
strip . 31
symbol index . 3, 25
symbol index, listing 14
symbol table entries, printing 23
symbols . 13
symbols, discarding 31

U
undefined symbols . 15
Unix compatibility, ar. 4
updating an archive . 6

V
version . 1

W
writing archive index 6

42 7 July 1995

GNU Make
A Program for Directing Recompilation

Edition 0.48, for make Version 3.73 Beta.
April 1995

Richard M. Stallman and Roland McGrath

Copyright c 1988, ’89, ’90, ’91, ’92, ’93, ’94, ’95 Free Software Founda-
tion, Inc.

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA
Printed copies are available for $20 each.
ISBN 1-882114-50-7

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation ap-
proved by the Free Software Foundation.

Cover art by Etienne Suvasa.

Short Contents
1 Overview of make . 1
2 An Introduction to Makefiles . 3
3 Writing Makefiles . 11
4 Writing Rules . 17
5 Writing the Commands in Rules . 37
6 How to Use Variables . 51
7 Conditional Parts of Makefiles . 65
8 Functions for Transforming Text . 71
9 How to Run make . 83
10 Using Implicit Rules . 95
11 Using make to Update Archive Files 115
12 Features of GNU make . 119
13 Incompatibilities and Missing Features 123
14 Makefile Conventions . 125
Appendix A Quick Reference . 137
Appendix B Complex Makefile Example 143
Index of Concepts . 149
Index of Functions, Variables, & Directives 157

c y g n u s s u p p o r t i

GNU make

ii 7 July 1995

Table of Contents

1 Overview of make . 1
1.1 How to Read This Manual . 1
1.2 Problems and Bugs . 2

2 An Introduction to Makefiles 3
2.1 What a Rule Looks Like . 3
2.2 A Simple Makefile . 4
2.3 How make Processes a Makefile . 5
2.4 Variables Make Makefiles Simpler . 6
2.5 Letting make Deduce the Commands . 7
2.6 Another Style of Makefile . 8
2.7 Rules for Cleaning the Directory . 9

3 Writing Makefiles . 11
3.1 What Makefiles Contain . 11
3.2 What Name to Give Your Makefile . 12
3.3 Including Other Makefiles . 12
3.4 The Variable MAKEFILES . 14
3.5 How Makefiles Are Remade . 14
3.6 Overriding Part of Another Makefile . 16

4 Writing Rules . 17
4.1 Rule Syntax . 17
4.2 Using Wildcard Characters in File Names 18

4.2.1 Wildcard Examples . 18
4.2.2 Pitfalls of Using Wildcards . 19
4.2.3 The Function wildcard . 20

4.3 Searching Directories for Dependencies 20
4.3.1 VPATH: Search Path for All Dependencies 21
4.3.2 The vpath Directive . 21
4.3.3 Writing Shell Commands with Directory Search

. 23
4.3.4 Directory Search and Implicit Rules 23
4.3.5 Directory Search for Link Libraries 23

4.4 Phony Targets . 24
4.5 Rules without Commands or Dependencies 26
4.6 Empty Target Files to Record Events 26
4.7 Special Built-in Target Names . 27
4.8 Multiple Targets in a Rule . 28
4.9 Multiple Rules for One Target . 29

c y g n u s s u p p o r t iii

GNU make

4.10 Static Pattern Rules . 30
4.10.1 Syntax of Static Pattern Rules 30
4.10.2 Static Pattern Rules versus Implicit Rules . . . 32

4.11 Double-Colon Rules . 32
4.12 Generating Dependencies Automatically 33

5 Writing the Commands in Rules 37
5.1 Command Echoing . 37
5.2 Command Execution . 38
5.3 Parallel Execution . 38
5.4 Errors in Commands . 40
5.5 Interrupting or Killing make . 41
5.6 Recursive Use of make . 41

5.6.1 How the MAKE Variable Works 42
5.6.2 Communicating Variables to a Sub-make 43
5.6.3 Communicating Options to a Sub-make 45
5.6.4 The ‘--print-directory’ Option 47

5.7 Defining Canned Command Sequences 47
5.8 Using Empty Commands . 48

6 How to Use Variables . 51
6.1 Basics of Variable References . 51
6.2 The Two Flavors of Variables . 52
6.3 Advanced Features for Reference to Variables 54

6.3.1 Substitution References . 55
6.3.2 Computed Variable Names . 55

6.4 How Variables Get Their Values . 58
6.5 Setting Variables . 58
6.6 Appending More Text to Variables . 59
6.7 The override Directive . 61
6.8 Defining Variables Verbatim . 61
6.9 Variables from the Environment . 62

7 Conditional Parts of Makefiles 65
7.1 Example of a Conditional . 65
7.2 Syntax of Conditionals . 66
7.3 Conditionals that Test Flags . 69

8 Functions for Transforming Text 71
8.1 Function Call Syntax . 71
8.2 Functions for String Substitution and Analysis 72
8.3 Functions for File Names . 75
8.4 The foreach Function . 78

iv 7 July 1995

8.5 The origin Function . 79
8.6 The shell Function . 80

9 How to Run make . 83
9.1 Arguments to Specify the Makefile . 83
9.2 Arguments to Specify the Goals . 83
9.3 Instead of Executing the Commands . 85
9.4 Avoiding Recompilation of Some Files 87
9.5 Overriding Variables . 87
9.6 Testing the Compilation of a Program 88
9.7 Summary of Options . 89

10 Using Implicit Rules . 95
10.1 Using Implicit Rules . 95
10.2 Catalogue of Implicit Rules . 96
10.3 Variables Used by Implicit Rules . 100
10.4 Chains of Implicit Rules . 103
10.5 Defining and Redefining Pattern Rules 104

10.5.1 Introduction to Pattern Rules 104
10.5.2 Pattern Rule Examples . 105
10.5.3 Automatic Variables . 106
10.5.4 How Patterns Match . 108
10.5.5 Match-Anything Pattern Rules 109
10.5.6 Canceling Implicit Rules . 110

10.6 Defining Last-Resort Default Rules 111
10.7 Old-Fashioned Suffix Rules . 111
10.8 Implicit Rule Search Algorithm . 113

11 Using make to Update Archive Files 115
11.1 Archive Members as Targets . 115
11.2 Implicit Rule for Archive Member Targets 115

11.2.1 Updating Archive Symbol Directories 116
11.3 Dangers When Using Archives . 117
11.4 Suffix Rules for Archive Files . 117

12 Features of GNU make . 119

13 Incompatibilities and Missing Features . . . 123

c y g n u s s u p p o r t v

GNU make

14 Makefile Conventions . 125
14.1 General Conventions for Makefiles 125
14.2 Utilities in Makefiles . 126
14.3 Standard Targets for Users . 126
14.4 Variables for Specifying Commands 130
14.5 Variables for Installation Directories 131

Appendix A Quick Reference 137

Appendix B Complex Makefile Example 143

Index of Concepts . 149

Index of Functions, Variables, & Directives . . . 157

vi 7 July 1995

Chapter 1: Overview of make

1 Overview of make

The make utility automatically determines which pieces of a large
program need to be recompiled, and issues commands to recompile them.
This manual describes GNU make, which was implemented by Richard
Stallman and Roland McGrath. GNU make conforms to section 6.2 of
IEEE Standard 1003.2-1992 (POSIX.2).

Our examples show C programs, since they are most common, but
you can use make with any programming language whose compiler can
be run with a shell command. Indeed, make is not limited to programs.
You can use it to describe any task where some files must be updated
automatically from others whenever the others change.

To prepare to use make, you must write a file called the makefile that
describes the relationships among files in your program and provides
commands for updating each file. In a program, typically, the executable
file is updated from object files, which are in turn made by compiling
source files.

Once a suitable makefile exists, each time you change some source
files, this simple shell command:

make

suffices to perform all necessary recompilations. The make program uses
the makefile data base and the last-modification times of the files to
decide which of the files need to be updated. For each of those files, it
issues the commands recorded in the data base.

You can provide command line arguments to make to control which
files should be recompiled, or how. See Chapter 9 “How to Run make,”
page 83.

1.1 How to Read This Manual

If you are new to make, or are looking for a general introduction, read
the first few sections of each chapter, skipping the later sections. In each
chapter, the first few sections contain introductory or general informa-
tion and the later sections contain specialized or technical information.
The exception is Chapter 2 “An Introduction to Makefiles,” page 3, all of
which is introductory.

If you are familiar with other make programs, see Chapter 12 “Fea-
tures of GNU make,” page 119, which lists the enhancements GNU make
has, and Chapter 13 “Incompatibilities and Missing Features,” page 123,
which explains the few things GNU make lacks that others have.

c y g n u s s u p p o r t 1

GNU make

For a quick summary, see Section 9.7 “Options Summary,” page 89,
Appendix A “Quick Reference,” page 137, and Section 4.7 “Special Tar-
gets,” page 27.

1.2 Problems and Bugs

If you have problems with GNU make or think you’ve found a bug,
please report it to the developers; we cannot promise to do anything but
we might well want to fix it.

Before reporting a bug, make sure you’ve actually found a real bug.
Carefully reread the documentation and see if it really says you can do
what you’re trying to do. If it’s not clear whether you should be able to
do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to
the smallest possible makefile that reproduces the problem. Then send
us the makefile and the exact results make gave you. Also say what
you expected to occur; this will help us decide whether the problem was
really in the documentation.

Once you’ve got a precise problem, please send electronic mail either
through the Internet or via UUCP:

Internet address:
bug-gnu-utils@prep.ai.mit.edu

UUCP path:
mit-eddie!prep.ai.mit.edu!bug-gnu-utils

Please include the version number of make you are using. You can get
this information with the command ‘make --version’. Be sure also to
include the type of machine and operating system you are using. If
possible, include the contents of the file ‘config.h’ that is generated by
the configuration process.

Non-bug suggestions are always welcome as well. If you have ques-
tions about things that are unclear in the documentation or are just
obscure features, send a message to the bug reporting address. We can-
not guarantee you’ll get help with your problem, but many seasoned
make users read the mailing list and they will probably try to help you
out. The maintainers sometimes answer such questions as well, when
time permits.

2 7 July 1995

Chapter 2: An Introduction to Makefiles

2 An Introduction to Makefiles

You need a file called a makefile to tell make what to do. Most often,
the makefile tells make how to compile and link a program.

In this chapter, we will discuss a simple makefile that describes how
to compile and link a text editor which consists of eight C source files
and three header files. The makefile can also tell make how to run
miscellaneous commands when explicitly asked (for example, to remove
certain files as a clean-up operation). To see a more complex example of
a makefile, see Appendix B “Complex Makefile,” page 143.

When make recompiles the editor, each changed C source file must be
recompiled. If a header file has changed, each C source file that includes
the header file must be recompiled to be safe. Each compilation produces
an object file corresponding to the source file. Finally, if any source file
has been recompiled, all the object files, whether newly made or saved
from previous compilations, must be linked together to produce the new
executable editor.

2.1 What a Rule Looks Like

A simple makefile consists of “rules” with the following shape:
target ... : dependencies ...

command
...

...

A target is usually the name of a file that is generated by a program;
examples of targets are executable or object files. A target can also be the
name of an action to carry out, such as ‘clean’ (see Section 4.4 “Phony
Targets,” page 24).

A dependency is a file that is used as input to create the target. A
target often depends on several files.

A command is an action that make carries out. A rule may have more
than one command, each on its own line. Please note: you need to
put a tab character at the beginning of every command line! This is an
obscurity that catches the unwary.

Usually a command is in a rule with dependencies and serves to
create a target file if any of the dependencies change. However, the rule
that specifies commands for the target need not have dependencies. For
example, the rule containing the delete command associated with the
target ‘clean’ does not have dependencies.

A rule, then, explains how and when to remake certain files which
are the targets of the particular rule. make carries out the commands on

c y g n u s s u p p o r t 3

GNU make

the dependencies to create or update the target. A rule can also explain
how and when to carry out an action. See Chapter 4 “Writing Rules,”
page 17.

A makefile may contain other text besides rules, but a simple makefile
need only contain rules. Rules may look somewhat more complicated
than shown in this template, but all fit the pattern more or less.

2.2 A Simple Makefile

Here is a straightforward makefile that describes the way an ex-
ecutable file called edit depends on eight object files which, in turn,
depend on eight C source and three header files.

In this example, all the C files include ‘defs.h’, but only those defin-
ing editing commands include ‘command.h’, and only low level files that
change the editor buffer include ‘buffer.h’.

edit : main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c
search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c
clean :

rm edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

We split each long line into two lines using backslash-newline; this is
like using one long line, but is easier to read.

To use this makefile to create the executable file called ‘edit’, type:

4 7 July 1995

Chapter 2: An Introduction to Makefiles

make

To use this makefile to delete the executable file and all the object
files from the directory, type:

make clean

In the example makefile, the targets include the executable file ‘edit’,
and the object files ‘main.o’ and ‘kbd.o’. The dependencies are files such
as ‘main.c’ and ‘defs.h’. In fact, each ‘.o’ file is both a target and a
dependency. Commands include ‘cc -c main.c’ and ‘cc -c kbd.c’.

When a target is a file, it needs to be recompiled or relinked if any of its
dependencies change. In addition, any dependencies that are themselves
automatically generated should be updated first. In this example, ‘edit’
depends on each of the eight object files; the object file ‘main.o’ depends
on the source file ‘main.c’ and on the header file ‘defs.h’.

A shell command follows each line that contains a target and depen-
dencies. These shell commands say how to update the target file. A tab
character must come at the beginning of every command line to distin-
guish commands lines from other lines in the makefile. (Bear in mind
that make does not know anything about how the commands work. It is
up to you to supply commands that will update the target file properly.
All make does is execute the commands in the rule you have specified
when the target file needs to be updated.)

The target ‘clean’ is not a file, but merely the name of an action.
Since you normally do not want to carry out the actions in this rule,
‘clean’ is not a dependency of any other rule. Consequently, make never
does anything with it unless you tell it specifically. Note that this rule
not only is not a dependency, it also does not have any dependencies, so
the only purpose of the rule is to run the specified commands. Targets
that do not refer to files but are just actions are called phony targets. See
Section 4.4 “Phony Targets,” page 24, for information about this kind of
target. See Section 5.4 “Errors in Commands,” page 40, to see how to
cause make to ignore errors from rm or any other command.

2.3 How make Processes a Makefile

By default, make starts with the first rule (not counting rules whose
target names start with ‘.’). This is called the default goal. (Goals
are the targets that make strives ultimately to update. See Section 9.2
“Arguments to Specify the Goals,” page 83.)

In the simple example of the previous section, the default goal is to
update the executable program ‘edit’; therefore, we put that rule first.

Thus, when you give the command:

c y g n u s s u p p o r t 5

GNU make

make

make reads the makefile in the current directory and begins by processing
the first rule. In the example, this rule is for relinking ‘edit’; but before
make can fully process this rule, it must process the rules for the files that
‘edit’ depends on, which in this case are the object files. Each of these
files is processed according to its own rule. These rules say to update
each ‘.o’ file by compiling its source file. The recompilation must be done
if the source file, or any of the header files named as dependencies, is
more recent than the object file, or if the object file does not exist.

The other rules are processed because their targets appear as depen-
dencies of the goal. If some other rule is not depended on by the goal (or
anything it depends on, etc.), that rule is not processed, unless you tell
make to do so (with a command such as make clean).

Before recompiling an object file, make considers updating its depen-
dencies, the source file and header files. This makefile does not specify
anything to be done for them—the ‘.c’ and ‘.h’ files are not the targets of
any rules—so make does nothing for these files. But make would update
automatically generated C programs, such as those made by Bison or
Yacc, by their own rules at this time.

After recompiling whichever object files need it, make decides whether
to relink ‘edit’. This must be done if the file ‘edit’ does not exist, or if any
of the object files are newer than it. If an object file was just recompiled,
it is now newer than ‘edit’, so ‘edit’ is relinked.

Thus, if we change the file ‘insert.c’ and run make, make will compile
that file to update ‘insert.o’, and then link ‘edit’. If we change the file
‘command.h’ and run make, make will recompile the object files ‘kbd.o’,
‘command.o’ and ‘files.o’ and then link the file ‘edit’.

2.4 Variables Make Makefiles Simpler

In our example, we had to list all the object files twice in the rule for
‘edit’ (repeated here):

edit : main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object file is added to the
system, we might add it to one list and forget the other. We can eliminate
the risk and simplify the makefile by using a variable. Variables allow
a text string to be defined once and substituted in multiple places later
(see Chapter 6 “How to Use Variables,” page 51).

6 7 July 1995

Chapter 2: An Introduction to Makefiles

It is standard practice for every makefile to have a variable named
objects, OBJECTS, objs, OBJS, obj, or OBJ which is a list of all object file
names. We would define such a variable objects with a line like this in
the makefile:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

Then, each place we want to put a list of the object file names, we can
substitute the variable’s value by writing ‘$(objects)’ (see Chapter 6
“How to Use Variables,” page 51).

Here is how the complete simple makefile looks when you use a vari-
able for the object files:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)
main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h
cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c
clean :

rm edit $(objects)

2.5 Letting make Deduce the Commands

It is not necessary to spell out the commands for compiling the indi-
vidual C source files, because make can figure them out: it has an implicit
rule for updating a ‘.o’ file from a correspondingly named ‘.c’ file using
a ‘cc -c’ command. For example, it will use the command ‘cc -c main.c
-o main.o’ to compile ‘main.c’ into ‘main.o’. We can therefore omit the

c y g n u s s u p p o r t 7

GNU make

commands from the rules for the object files. See Chapter 10 “Using
Implicit Rules,” page 95.

When a ‘.c’ file is used automatically in this way, it is also automat-
ically added to the list of dependencies. We can therefore omit the ‘.c’
files from the dependencies, provided we omit the commands.

Here is the entire example, with both of these changes, and a variable
objects as suggested above:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

main.o : defs.h

kbd.o : defs.h command.h
command.o : defs.h command.h

display.o : defs.h buffer.h

insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h command.h

utils.o : defs.h

.PHONY : clean

clean :

-rm edit $(objects)

This is how we would write the makefile in actual practice. (The com-
plications associated with ‘clean’ are described elsewhere. See Sec-
tion 4.4 “Phony Targets,” page 24, and Section 5.4 “Errors in Commands,”
page 40.)

Because implicit rules are so convenient, they are important. You
will see them used frequently.

2.6 Another Style of Makefile

When the objects of a makefile are created only by implicit rules, an
alternative style of makefile is possible. In this style of makefile, you
group entries by their dependencies instead of by their targets. Here is
what one looks like:

8 7 July 1995

Chapter 2: An Introduction to Makefiles

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

$(objects) : defs.h

kbd.o command.o files.o : command.h

display.o insert.o search.o files.o : buffer.h

Here ‘defs.h’ is given as a dependency of all the object files; ‘command.h’
and ‘buffer.h’ are dependencies of the specific object files listed for them.

Whether this is better is a matter of taste: it is more compact, but
some people dislike it because they find it clearer to put all the informa-
tion about each target in one place.

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write
rules for. Makefiles commonly tell how to do a few other things besides
compiling a program: for example, how to delete all the object files and
executables so that the directory is ‘clean’.

Here is how we could write a make rule for cleaning our example
editor:

clean:

rm edit $(objects)

In practice, we might want to write the rule in a somewhat more
complicated manner to handle unanticipated situations. We would do
this:

.PHONY : clean

clean :

-rm edit $(objects)

This prevents make from getting confused by an actual file called ‘clean’
and causes it to continue in spite of errors from rm. (See Section 4.4
“Phony Targets,” page 24, and Section 5.4 “Errors in Commands,”
page 40.)
A rule such as this should not be placed at the beginning of the makefile,
because we do not want it to run by default! Thus, in the example
makefile, we want the rule for edit, which recompiles the editor, to
remain the default goal.

Since clean is not a dependency of edit, this rule will not run at all
if we give the command ‘make’ with no arguments. In order to make

c y g n u s s u p p o r t 9

GNU make

the rule run, we have to type ‘make clean’. See Chapter 9 “How to Run
make,” page 83.

10 7 July 1995

Chapter 3: Writing Makefiles

3 Writing Makefiles

The information that tells make how to recompile a system comes from
reading a data base called the makefile.

3.1 What Makefiles Contain

Makefiles contain five kinds of things: explicit rules, implicit rules,
variable definitions, directives, and comments. Rules, variables, and
directives are described at length in later chapters.

� An explicit rule says when and how to remake one or more files,
called the rule’s targets. It lists the other files that the targets
depend on, and may also give commands to use to create or update
the targets. See Chapter 4 “Writing Rules,” page 17.

� An implicit rule says when and how to remake a class of files based
on their names. It describes how a target may depend on a file with
a name similar to the target and gives commands to create or update
such a target. See Chapter 10 “Using Implicit Rules,” page 95.

� A variable definition is a line that specifies a text string value for
a variable that can be substituted into the text later. The simple
makefile example shows a variable definition for objects as a list of
all object files (see Section 2.4 “Variables Make Makefiles Simpler,”
page 6).

� A directive is a command for make to do something special while
reading the makefile. These include:
� Reading another makefile (see Section 3.3 “Including Other

Makefiles,” page 12).
� Deciding (based on the values of variables) whether to use or

ignore a part of the makefile (see Chapter 7 “Conditional Parts
of Makefiles,” page 65).

� Defining a variable from a verbatim string containing multiple
lines (see Section 6.8 “Defining Variables Verbatim,” page 61).

� ‘#’ in a line of a makefile starts a comment. It and the rest of the
line are ignored, except that a trailing backslash not escaped by
another backslash will continue the comment across multiple lines.
Comments may appear on any of the lines in the makefile, except
within a define directive, and perhaps within commands (where the
shell decides what is a comment). A line containing just a comment
(with perhaps spaces before it) is effectively blank, and is ignored.

c y g n u s s u p p o r t 11

GNU make

3.2 What Name to Give Your Makefile

By default, when make looks for the makefile, it tries the following
names, in order: ‘GNUmakefile’, ‘makefile’ and ‘Makefile’.

Normally you should call your makefile either ‘makefile’ or
‘Makefile’. (We recommend ‘Makefile’ because it appears prominently
near the beginning of a directory listing, right near other important
files such as ‘README’.) The first name checked, ‘GNUmakefile’, is not
recommended for most makefiles. You should use this name if you have
a makefile that is specific to GNU make, and will not be understood by
other versions of make. Other make programs look for ‘makefile’ and
‘Makefile’, but not ‘GNUmakefile’.

If make finds none of these names, it does not use any makefile. Then
you must specify a goal with a command argument, and make will at-
tempt to figure out how to remake it using only its built-in implicit rules.
See Chapter 10 “Using Implicit Rules,” page 95.

If you want to use a nonstandard name for your makefile, you can
specify the makefile name with the ‘-f’ or ‘--file’ option. The ar-
guments ‘-f name’ or ‘--file=name’ tell make to read the file name as
the makefile. If you use more than one ‘-f’ or ‘--file’ option, you
can specify several makefiles. All the makefiles are effectively concate-
nated in the order specified. The default makefile names ‘GNUmakefile’,
‘makefile’ and ‘Makefile’ are not checked automatically if you specify
‘-f’ or ‘--file’.

3.3 Including Other Makefiles

The include directive tells make to suspend reading the current make-
file and read one or more other makefiles before continuing. The directive
is a line in the makefile that looks like this:

include filenames. ..

filenames can contain shell file name patterns.

Extra spaces are allowed and ignored at the beginning of the line, but
a tab is not allowed. (If the line begins with a tab, it will be considered
a command line.) Whitespace is required between include and the file
names, and between file names; extra whitespace is ignored there and
at the end of the directive. A comment starting with ‘#’ is allowed at
the end of the line. If the file names contain any variable or function
references, they are expanded. See Chapter 6 “How to Use Variables,”
page 51.

12 7 July 1995

Chapter 3: Writing Makefiles

For example, if you have three ‘.mk’ files, ‘a.mk’, ‘b.mk’, and ‘c.mk’,
and $(bar) expands to bish bash, then the following expression

include foo *.mk $(bar)

is equivalent to
include foo a.mk b.mk c.mk bish bash

When make processes an include directive, it suspends reading of the
containing makefile and reads from each listed file in turn. When that
is finished, make resumes reading the makefile in which the directive
appears.

One occasion for using include directives is when several programs,
handled by individual makefiles in various directories, need to use a
common set of variable definitions (see Section 6.5 “Setting Variables,”
page 58) or pattern rules (see Section 10.5 “Defining and Redefining
Pattern Rules,” page 104).

Another such occasion is when you want to generate dependencies
from source files automatically; the dependencies can be put in a file
that is included by the main makefile. This practice is generally cleaner
than that of somehow appending the dependencies to the end of the main
makefile as has been traditionally done with other versions of make. See
Section 4.12 “Automatic Dependencies,” page 33.

If the specified name does not start with a slash, and the file is not
found in the current directory, several other directories are searched.
First, any directories you have specified with the ‘-I’ or with the
‘--include-dir’ option are searched (see Section 9.7 “Summary of Op-
tions,” page 89). Then the following directories (if they exist) are
searched, in this order:

‘prefix/include’ (normally ‘/usr/local/include’)
‘/usr/gnu/include’,
‘/usr/local/include’, ‘/usr/include’.

If an included makefile cannot be found in any of these directories, a
warning message is generated, but it is not an immediately fatal error;
processing of the makefile containing the include continues. Once it
has finished reading makefiles, make will try to remake any that are
out of date or don’t exist. See Section 3.5 “How Makefiles Are Remade,”
page 14. Only after it has tried to find a way to remake a makefile and
failed, will make diagnose the missing makefile as a fatal error.

If you want make to simply ignore a makefile which does not exist and
cannot be remade, with no error message, use the -include directive
instead of include, like this:

-include filenames. ..

c y g n u s s u p p o r t 13

GNU make

This is acts like include in every way except that there is no error
(not even a warning) if any of the filenames do not exist.

3.4 The Variable MAKEFILES

If the environment variable MAKEFILES is defined, make considers its
value as a list of names (separated by whitespace) of additional makefiles
to be read before the others. This works much like the include directive:
various directories are searched for those files (see Section 3.3 “Including
Other Makefiles,” page 12). In addition, the default goal is never taken
from one of these makefiles and it is not an error if the files listed in
MAKEFILES are not found.

The main use of MAKEFILES is in communication between recursive
invocations of make (see Section 5.6 “Recursive Use of make,” page 41).
It usually is not desirable to set the environment variable before a top-
level invocation of make, because it is usually better not to mess with
a makefile from outside. However, if you are running make without a
specific makefile, a makefile in MAKEFILES can do useful things to help
the built-in implicit rules work better, such as defining search paths (see
Section 4.3 “Directory Search,” page 20).

Some users are tempted to set MAKEFILES in the environment au-
tomatically on login, and program makefiles to expect this to be done.
This is a very bad idea, because such makefiles will fail to work if run
by anyone else. It is much better to write explicit include directives in
the makefiles. See Section 3.3 “Including Other Makefiles,” page 12.

3.5 How Makefiles Are Remade

Sometimes makefiles can be remade from other files, such as RCS or
SCCS files. If a makefile can be remade from other files, you probably
want make to get an up-to-date version of the makefile to read in.

To this end, after reading in all makefiles, make will consider each as
a goal target and attempt to update it. If a makefile has a rule which
says how to update it (found either in that very makefile or in another
one) or if an implicit rule applies to it (see Chapter 10 “Using Implicit
Rules,” page 95), it will be updated if necessary. After all makefiles have
been checked, if any have actually been changed, make starts with a
clean slate and reads all the makefiles over again. (It will also attempt
to update each of them over again, but normally this will not change
them again, since they are already up to date.)

If the makefiles specify a double-colon rule to remake a file with
commands but no dependencies, that file will always be remade (see

14 7 July 1995

Chapter 3: Writing Makefiles

Section 4.11 “Double-Colon,” page 32). In the case of makefiles, a make-
file that has a double-colon rule with commands but no dependencies
will be remade every time make is run, and then again after make starts
over and reads the makefiles in again. This would cause an infinite loop:
make would constantly remake the makefile, and never do anything else.
So, to avoid this, make will not attempt to remake makefiles which are
specified as double-colon targets but have no dependencies.

If you do not specify any makefiles to be read with ‘-f’ or ‘--file’
options, make will try the default makefile names; see Section 3.2 “What
Name to Give Your Makefile,” page 12. Unlike makefiles explicitly re-
quested with ‘-f’ or ‘--file’ options, make is not certain that these make-
files should exist. However, if a default makefile does not exist but can
be created by running make rules, you probably want the rules to be run
so that the makefile can be used.

Therefore, if none of the default makefiles exists, make will try to
make each of them in the same order in which they are searched for
(see Section 3.2 “What Name to Give Your Makefile,” page 12) until it
succeeds in making one, or it runs out of names to try. Note that it is
not an error if make cannot find or make any makefile; a makefile is not
always necessary.

When you use the ‘-t’ or ‘--touch’ option (see Section 9.3 “Instead
of Executing the Commands,” page 85), you would not want to use an
out-of-date makefile to decide which targets to touch. So the ‘-t’ option
has no effect on updating makefiles; they are really updated even if ‘-t’
is specified. Likewise, ‘-q’ (or ‘--question’) and ‘-n’ (or ‘--just-print’)
do not prevent updating of makefiles, because an out-of-date makefile
would result in the wrong output for other targets. Thus, ‘make -f mfile
-n foo’ will update ‘mfile’, read it in, and then print the commands to
update ‘foo’ and its dependencies without running them. The commands
printed for ‘foo’ will be those specified in the updated contents of ‘mfile’.

However, on occasion you might actually wish to prevent updating of
even the makefiles. You can do this by specifying the makefiles as goals
in the command line as well as specifying them as makefiles. When the
makefile name is specified explicitly as a goal, the options ‘-t’ and so on
do apply to them.

Thus, ‘make -f mfile -n mfile foo’ would read the makefile ‘mfile’,
print the commands needed to update it without actually running them,
and then print the commands needed to update ‘foo’ without running
them. The commands for ‘foo’ will be those specified by the existing
contents of ‘mfile’.

c y g n u s s u p p o r t 15

GNU make

3.6 Overriding Part of Another Makefile

Sometimes it is useful to have a makefile that is mostly just like
another makefile. You can often use the ‘include’ directive to include
one in the other, and add more targets or variable definitions. However,
if the two makefiles give different commands for the same target, make
will not let you just do this. But there is another way.

In the containing makefile (the one that wants to include the other),
you can use a match-anything pattern rule to say that to remake any tar-
get that cannot be made from the information in the containing makefile,
make should look in another makefile. See Section 10.5 “Pattern Rules,”
page 104, for more information on pattern rules.

For example, if you have a makefile called ‘Makefile’ that says how
to make the target ‘foo’ (and other targets), you can write a makefile
called ‘GNUmakefile’ that contains:

foo:
frobnicate > foo

%: force
@$(MAKE) -f Makefile $@

force: ;

If you say ‘make foo’, make will find ‘GNUmakefile’, read it, and see
that to make ‘foo’, it needs to run the command ‘frobnicate > foo’. If
you say ‘make bar’, make will find no way to make ‘bar’ in ‘GNUmakefile’,
so it will use the commands from the pattern rule: ‘make -f Makefile
bar’. If ‘Makefile’ provides a rule for updating ‘bar’, make will apply the
rule. And likewise for any other target that ‘GNUmakefile’ does not say
how to make.

The way this works is that the pattern rule has a pattern of just
‘%’, so it matches any target whatever. The rule specifies a dependency
‘force’, to guarantee that the commands will be run even if the target file
already exists. We give ‘force’ target empty commands to prevent make
from searching for an implicit rule to build it—otherwise it would apply
the same match-anything rule to ‘force’ itself and create a dependency
loop!

16 7 July 1995

Chapter 4: Writing Rules

4 Writing Rules

A rule appears in the makefile and says when and how to remake cer-
tain files, called the rule’s targets (most often only one per rule). It lists
the other files that are the dependencies of the target, and commands to
use to create or update the target.

The order of rules is not significant, except for determining the default
goal: the target for make to consider, if you do not otherwise specify one.
The default goal is the target of the first rule in the first makefile. If
the first rule has multiple targets, only the first target is taken as the
default. There are two exceptions: a target starting with a period is
not a default unless it contains one or more slashes, ‘/’, as well; and, a
target that defines a pattern rule has no effect on the default goal. (See
Section 10.5 “Defining and Redefining Pattern Rules,” page 104.)

Therefore, we usually write the makefile so that the first rule is the
one for compiling the entire program or all the programs described by the
makefile (often with a target called ‘all’). See Section 9.2 “Arguments
to Specify the Goals,” page 83.

4.1 Rule Syntax

In general, a rule looks like this:
targets : dependencies

command
...

or like this:
targets : dependencies ; command

command
...

The targets are file names, separated by spaces. Wildcard characters
may be used (see Section 4.2 “Using Wildcard Characters in File Names,”
page 18) and a name of the form ‘a(m)’ represents member m in archive
file a (see Section 11.1 “Archive Members as Targets,” page 115). Usually
there is only one target per rule, but occasionally there is a reason to
have more (see Section 4.8 “Multiple Targets in a Rule,” page 28).

The command lines start with a tab character. The first command may
appear on the line after the dependencies, with a tab character, or may
appear on the same line, with a semicolon. Either way, the effect is the
same. See Chapter 5 “Writing the Commands in Rules,” page 37.

Because dollar signs are used to start variable references, if you really
want a dollar sign in a rule you must write two of them, ‘$$’ (see Chapter 6
“How to Use Variables,” page 51). You may split a long line by inserting a

c y g n u s s u p p o r t 17

GNU make

backslash followed by a newline, but this is not required, as make places
no limit on the length of a line in a makefile.

A rule tells make two things: when the targets are out of date, and
how to update them when necessary.

The criterion for being out of date is specified in terms of the depen-
dencies, which consist of file names separated by spaces. (Wildcards
and archive members (see Chapter 11 “Archives,” page 115) are allowed
here too.) A target is out of date if it does not exist or if it is older than
any of the dependencies (by comparison of last-modification times). The
idea is that the contents of the target file are computed based on infor-
mation in the dependencies, so if any of the dependencies changes, the
contents of the existing target file are no longer necessarily valid.

How to update is specified by commands. These are lines to be executed
by the shell (normally ‘sh’), but with some extra features (see Chapter 5
“Writing the Commands in Rules,” page 37).

4.2 Using Wildcard Characters in File Names

A single file name can specify many files using wildcard characters.
The wildcard characters in make are ‘*’, ‘?’ and ‘[. ..]’, the same as in
the Bourne shell. For example, ‘*.c’ specifies a list of all the files (in the
working directory) whose names end in ‘.c’.

The character ‘˜’ at the beginning of a file name also has special signif-
icance. If alone, or followed by a slash, it represents your home directory.
For example ‘˜/bin’ expands to ‘/home/you/bin’. If the ‘˜’ is followed by
a word, the string represents the home directory of the user named by
that word. For example ‘˜john/bin’ expands to ‘/home/john/bin’.

Wildcard expansion happens automatically in targets, in dependen-
cies, and in commands (where the shell does the expansion). In other
contexts, wildcard expansion happens only if you request it explicitly
with the wildcard function.

The special significance of a wildcard character can be turned off by
preceding it with a backslash. Thus, ‘foo*bar’ would refer to a specific
file whose name consists of ‘foo’, an asterisk, and ‘bar’.

4.2.1 Wildcard Examples

Wildcards can be used in the commands of a rule, where they are
expanded by the shell. For example, here is a rule to delete all the object
files:

clean:

rm -f *.o

18 7 July 1995

Chapter 4: Writing Rules

Wildcards are also useful in the dependencies of a rule. With the
following rule in the makefile, ‘make print’ will print all the ‘.c’ files
that have changed since the last time you printed them:

print: *.c
lpr -p $?
touch print

This rule uses ‘print’ as an empty target file; see Section 4.6 “Empty
Target Files to Record Events,” page 26. (The automatic variable ‘$?’
is used to print only those files that have changed; see Section 10.5.3
“Automatic Variables,” page 106.)

Wildcard expansion does not happen when you define a variable.
Thus, if you write this:

objects = *.o

then the value of the variable objects is the actual string ‘*.o’. However,
if you use the value of objects in a target, dependency or command,
wildcard expansion will take place at that time. To set objects to the
expansion, instead use:

objects := $(wildcard *.o)

See Section 4.2.3 “Wildcard Function,” page 20.

4.2.2 Pitfalls of Using Wildcards

Now here is an example of a naive way of using wildcard expansion,
that does not do what you would intend. Suppose you would like to
say that the executable file ‘foo’ is made from all the object files in the
directory, and you write this:

objects = *.o

foo : $(objects)
cc -o foo $(CFLAGS) $(objects)

The value of objects is the actual string ‘*.o’. Wildcard expansion
happens in the rule for ‘foo’, so that each existing ‘.o’ file becomes a
dependency of ‘foo’ and will be recompiled if necessary.

But what if you delete all the ‘.o’ files? When a wildcard matches
no files, it is left as it is, so then ‘foo’ will depend on the oddly-named
file ‘*.o’. Since no such file is likely to exist, make will give you an error
saying it cannot figure out how to make ‘*.o’. This is not what you want!

Actually it is possible to obtain the desired result with wildcard
expansion, but you need more sophisticated techniques, including the
wildcard function and string substitution. These are described in the
following section.

c y g n u s s u p p o r t 19

GNU make

4.2.3 The Function wildcard

Wildcard expansion happens automatically in rules. But wildcard
expansion does not normally take place when a variable is set, or inside
the arguments of a function. If you want to do wildcard expansion in
such places, you need to use the wildcard function, like this:

$(wildcard pattern. ..)

This string, used anywhere in a makefile, is replaced by a space-
separated list of names of existing files that match one of the given
file name patterns. If no existing file name matches a pattern, then that
pattern is omitted from the output of the wildcard function. Note that
this is different from how unmatched wildcards behave in rules, where
they are used verbatim rather than ignored (see Section 4.2.2 “Wildcard
Pitfall,” page 19).

One use of the wildcard function is to get a list of all the C source
files in a directory, like this:

$(wildcard *.c)

We can change the list of C source files into a list of object files by
replacing the ‘.o’ suffix with ‘.c’ in the result, like this:

$(patsubst %.c,%.o,$(wildcard *.c))

(Here we have used another function, patsubst. See Section 8.2 “Func-
tions for String Substitution and Analysis,” page 72.)

Thus, a makefile to compile all C source files in the directory and then
link them together could be written as follows:

objects := $(patsubst %.c,%.o,$(wildcard *.c))

foo : $(objects)
cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C programs,
so there is no need to write explicit rules for compiling the files. See
Section 6.2 “The Two Flavors of Variables,” page 52, for an explanation
of ‘:=’, which is a variant of ‘=’.)

4.3 Searching Directories for Dependencies

For large systems, it is often desirable to put sources in a separate di-
rectory from the binaries. The directory search features of make facilitate
this by searching several directories automatically to find a dependency.
When you redistribute the files among directories, you do not need to
change the individual rules, just the search paths.

20 7 July 1995

Chapter 4: Writing Rules

4.3.1 VPATH: Search Path for All Dependencies

The value of the make variable VPATH specifies a list of directories that
make should search. Most often, the directories are expected to contain
dependency files that are not in the current directory; however, VPATH
specifies a search list that make applies for all files, including files which
are targets of rules.

Thus, if a file that is listed as a target or dependency does not exist
in the current directory, make searches the directories listed in VPATH
for a file with that name. If a file is found in one of them, that file
becomes the dependency. Rules may then specify the names of source
files in the dependencies as if they all existed in the current directory. See
Section 4.3.3 “Writing Shell Commands with Directory Search,” page 23.

In the VPATH variable, directory names are separated by colons or
blanks. The order in which directories are listed is the order followed by
make in its search.

For example,
VPATH = src:../headers

specifies a path containing two directories, ‘src’ and ‘../headers’, which
make searches in that order.

With this value of VPATH, the following rule,
foo.o : foo.c

is interpreted as if it were written like this:
foo.o : src/foo.c

assuming the file ‘foo.c’ does not exist in the current directory but is
found in the directory ‘src’.

4.3.2 The vpath Directive

Similar to the VPATH variable but more selective is the vpath directive
(note lower case), which allows you to specify a search path for a par-
ticular class of file names, those that match a particular pattern. Thus
you can supply certain search directories for one class of file names and
other directories (or none) for other file names.

There are three forms of the vpath directive:

vpath pattern directories
Specify the search path directories for file names that
match pattern.
The search path, directories, is a list of directories to be
searched, separated by colons or blanks, just like the search
path used in the VPATH variable.

c y g n u s s u p p o r t 21

GNU make

vpath pattern
Clear out the search path associated with pattern.

vpath

Clear all search paths previously specified with vpath direc-
tives.

A vpath pattern is a string containing a ‘%’ character. The string
must match the file name of a dependency that is being searched for, the
‘%’ character matching any sequence of zero or more characters (as in
pattern rules; see Section 10.5 “Defining and Redefining Pattern Rules,”
page 104). For example, %.h matches files that end in .h. (If there is no
‘%’, the pattern must match the dependency exactly, which is not useful
very often.)

‘%’ characters in a vpath directive’s pattern can be quoted with preced-
ing backslashes (‘\’). Backslashes that would otherwise quote ‘%’ char-
acters can be quoted with more backslashes. Backslashes that quote ‘%’
characters or other backslashes are removed from the pattern before it
is compared to file names. Backslashes that are not in danger of quoting
‘%’ characters go unmolested.

When a dependency fails to exist in the current directory, if the pat-
tern in a vpath directive matches the name of the dependency file, then
the directories in that directive are searched just like (and before) the
directories in the VPATH variable.

For example,
vpath %.h ../headers

tells make to look for any dependency whose name ends in ‘.h’ in the
directory ‘../headers’ if the file is not found in the current directory.

If several vpath patterns match the dependency file’s name, thenmake
processes each matching vpath directive one by one, searching all the
directories mentioned in each directive. make handles multiple vpath
directives in the order in which they appear in the makefile; multiple
directives with the same pattern are independent of each other.

Thus,
vpath %.c foo

vpath % blish

vpath %.c bar

will look for a file ending in ‘.c’ in ‘foo’, then ‘blish’, then ‘bar’, while
vpath %.c foo:bar

vpath % blish

will look for a file ending in ‘.c’ in ‘foo’, then ‘bar’, then ‘blish’.

22 7 July 1995

Chapter 4: Writing Rules

4.3.3 Writing Shell Commands with Directory Search

When a dependency is found in another directory through directory
search, this cannot change the commands of the rule; they will execute
as written. Therefore, you must write the commands with care so that
they will look for the dependency in the directory where make finds it.

This is done with the automatic variables such as ‘$ˆ’ (see Sec-
tion 10.5.3 “Automatic Variables,” page 106). For instance, the value
of ‘$ˆ’ is a list of all the dependencies of the rule, including the names
of the directories in which they were found, and the value of ‘$@’ is the
target. Thus:

foo.o : foo.c
cc -c $(CFLAGS) $ˆ -o $@

(The variable CFLAGS exists so you can specify flags for C compilation
by implicit rules; we use it here for consistency so it will affect all C
compilations uniformly; see Section 10.3 “Variables Used by Implicit
Rules,” page 100.)

Often the dependencies include header files as well, which you do not
want to mention in the commands. The automatic variable ‘$<’ is just
the first dependency:

VPATH = src:../headers
foo.o : foo.c defs.h hack.h

cc -c $(CFLAGS) $< -o $@

4.3.4 Directory Search and Implicit Rules

The search through the directories specified in VPATH or with vpath
also happens during consideration of implicit rules (see Chapter 10 “Us-
ing Implicit Rules,” page 95).

For example, when a file ‘foo.o’ has no explicit rule, make considers
implicit rules, such as the built-in rule to compile ‘foo.c’ if that file
exists. If such a file is lacking in the current directory, the appropriate
directories are searched for it. If ‘foo.c’ exists (or is mentioned in the
makefile) in any of the directories, the implicit rule for C compilation is
applied.

The commands of implicit rules normally use automatic variables as
a matter of necessity; consequently they will use the file names found by
directory search with no extra effort.

4.3.5 Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the
linker. This special feature comes into play when you write a dependency

c y g n u s s u p p o r t 23

GNU make

whose name is of the form ‘-lname’. (You can tell something strange is
going on here because the dependency is normally the name of a file, and
the file name of the library looks like ‘libname.a’, not like ‘-lname’.)

When a dependency’s name has the form ‘-lname’, make handles it
specially by searching for the file ‘libname.a’ in the current directory,
in directories specified by matching vpath search paths and the VPATH
search path, and then in the directories ‘/lib’, ‘/usr/lib’, and ‘pre-
fix/lib’ (normally ‘/usr/local/lib’).

For example,
foo : foo.c -lcurses

cc $ˆ -o $@

would cause the command
cc foo.c /usr/lib/libcurses.a -o foo

to execute when ‘foo’ is older than ‘foo.c’ or ‘/usr/lib/libcurses.a’.

4.4 Phony Targets

A phony target is one that is not really the name of a file. It is just
a name for some commands to be executed when you make an explicit
request. There are two reasons to use a phony target: to avoid a conflict
with a file of the same name, and to improve performance.

If you write a rule whose commands will not create the target file, the
commands will be executed every time the target comes up for remaking.
Here is an example:

clean:

rm *.o temp

Because the rm command does not create a file named ‘clean’, probably
no such file will ever exist. Therefore, the rm command will be executed
every time you say ‘make clean’.

The phony target will cease to work if anything ever does create a
file named ‘clean’ in this directory. Since it has no dependencies, the
file ‘clean’ would inevitably be considered up to date, and its commands
would not be executed. To avoid this problem, you can explicitly declare
the target to be phony, using the special target .PHONY (see Section 4.7
“Special Built-in Target Names,” page 27) as follows:

.PHONY : clean

Once this is done, ‘make clean’ will run the commands regardless of
whether there is a file named ‘clean’.

Since it knows that phony targets do not name actual files that could
be remade from other files, make skips the implicit rule search for phony
targets (see Chapter 10 “Implicit Rules,” page 95). This is why declaring

24 7 July 1995

Chapter 4: Writing Rules

a target phony is good for performance, even if you are not worried about
the actual file existing.

Thus, you first write the line that states that clean is a phony target,
then you write the rule, like this:

.PHONY: clean

clean:

rm *.o temp

A phony target should not be a dependency of a real target file; if it is,
its commands are run every time make goes to update that file. As long as
a phony target is never a dependency of a real target, the phony target
commands will be executed only when the phony target is a specified
goal (see Section 9.2 “Arguments to Specify the Goals,” page 83).

Phony targets can have dependencies. When one directory contains
multiple programs, it is most convenient to describe all of the programs
in one makefile ‘./Makefile’. Since the target remade by default will be
the first one in the makefile, it is common to make this a phony target
named ‘all’ and give it, as dependencies, all the individual programs.
For example:

all : prog1 prog2 prog3
.PHONY : all

prog1 : prog1.o utils.o
cc -o prog1 prog1.o utils.o

prog2 : prog2.o
cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o
cc -o prog3 prog3.o sort.o utils.o

Now you can say just ‘make’ to remake all three programs, or specify as
arguments the ones to remake (as in ‘make prog1 prog3’).

When one phony target is a dependency of another, it serves as a
subroutine of the other. For example, here ‘make cleanall’ will delete
the object files, the difference files, and the file ‘program’:

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
rm program

cleanobj :
rm *.o

cleandiff :
rm *.diff

c y g n u s s u p p o r t 25

GNU make

4.5 Rules without Commands or Dependencies

If a rule has no dependencies or commands, and the target of the rule
is a nonexistent file, then make imagines this target to have been updated
whenever its rule is run. This implies that all targets depending on this
one will always have their commands run.

An example will illustrate this:
clean: FORCE

rm $(objects)
FORCE:

Here the target ‘FORCE’ satisfies the special conditions, so the target
‘clean’ that depends on it is forced to run its commands. There is nothing
special about the name ‘FORCE’, but that is one name commonly used this
way.

As you can see, using ‘FORCE’ this way has the same results as using
‘.PHONY: clean’.

Using ‘.PHONY’ is more explicit and more efficient. However, other
versions of make do not support ‘.PHONY’; thus ‘FORCE’ appears in many
makefiles. See Section 4.4 “Phony Targets,” page 24.

4.6 Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold
commands for an action that you request explicitly from time to time.
Unlike a phony target, this target file can really exist; but the file’s
contents do not matter, and usually are empty.

The purpose of the empty target file is to record, with its last-
modification time, when the rule’s commands were last executed. It
does so because one of the commands is a touch command to update the
target file.

The empty target file must have some dependencies. When you ask to
remake the empty target, the commands are executed if any dependency
is more recent than the target; in other words, if a dependency has
changed since the last time you remade the target. Here is an example:

print: foo.c bar.c
lpr -p $?
touch print

With this rule, ‘make print’ will execute the lpr command if either source
file has changed since the last ‘make print’. The automatic variable ‘$?’
is used to print only those files that have changed (see Section 10.5.3
“Automatic Variables,” page 106).

26 7 July 1995

Chapter 4: Writing Rules

4.7 Special Built-in Target Names

Certain names have special meanings if they appear as targets.

.PHONY

The dependencies of the special target .PHONY are consid-
ered to be phony targets. When it is time to consider such
a target, make will run its commands unconditionally, re-
gardless of whether a file with that name exists or what its
last-modification time is. See Section 4.4 “Phony Targets,”
page 24.

.SUFFIXES
The dependencies of the special target .SUFFIXES are the
list of suffixes to be used in checking for suffix rules. See
Section 10.7 “Old-Fashioned Suffix Rules,” page 111.

.DEFAULT

The commands specified for .DEFAULT are used for any tar-
get for which no rules are found (either explicit rules or im-
plicit rules). See Section 10.6 “Last Resort,” page 111. If
.DEFAULT commands are specified, every file mentioned as
a dependency, but not as a target in a rule, will have these
commands executed on its behalf. See Section 10.8 “Implicit
Rule Search Algorithm,” page 113.

.PRECIOUS
The targets which .PRECIOUS depends on are given the fol-
lowing special treatment: if make is killed or interrupted dur-
ing the execution of their commands, the target is not deleted.
See Section 5.5 “Interrupting or Killing make,” page 41. Also,
if the target is an intermediate file, it will not be deleted after
it is no longer needed, as is normally done. See Section 10.4
“Chains of Implicit Rules,” page 103.
You can also list the target pattern of an implicit rule (such
as ‘%.o’) as a dependency file of the special target .PRECIOUS
to preserve intermediate files created by rules whose target
patterns match that file’s name.

.IGNORE

If you specify dependencies for .IGNORE, thenmakewill ignore
errors in execution of the commands run for those particular
files. The commands for .IGNORE are not meaningful.
If mentioned as a target with no dependencies, .IGNORE says
to ignore errors in execution of commands for all files. This

c y g n u s s u p p o r t 27

GNU make

usage of ‘.IGNORE’ is supported only for historical compati-
bility. Since this affects every command in the makefile, it
is not very useful; we recommend you use the more selective
ways to ignore errors in specific commands. See Section 5.4
“Errors in Commands,” page 40.

.SILENT

If you specify dependencies for .SILENT, then make will not
the print commands to remake those particular files before
executing them. The commands for .SILENT are not mean-
ingful.
If mentioned as a target with no dependencies, .SILENT says
not to print any commands before executing them. This us-
age of ‘.SILENT’ is supported only for historical compatibility.
We recommend you use the more selective ways to silence
specific commands. See Section 5.1 “Command Echoing,”
page 37. If you want to silence all commands for a particular
run of make, use the ‘-s’ or ‘--silent’ option (see Section 9.7
“Options Summary,” page 89).

.EXPORT_ALL_VARIABLES
Simply by being mentioned as a target, this tells make to
export all variables to child processes by default. See Sec-
tion 5.6.2 “Communicating Variables to a Sub-make,” page 43.

Any defined implicit rule suffix also counts as a special target if it
appears as a target, and so does the concatenation of two suffixes, such
as ‘.c.o’. These targets are suffix rules, an obsolete way of defining
implicit rules (but a way still widely used). In principle, any target
name could be special in this way if you break it in two and add both
pieces to the suffix list. In practice, suffixes normally begin with ‘.’, so
these special target names also begin with ‘.’. See Section 10.7 “Old-
Fashioned Suffix Rules,” page 111.

4.8 Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules, each
with one target, and all identical aside from that. The same commands
apply to all the targets, but their effects may vary because you can
substitute the actual target name into the command using ‘$@’. The rule
contributes the same dependencies to all the targets also.

This is useful in two cases.
� You want just dependencies, no commands. For example:

kbd.o command.o files.o: command.h

28 7 July 1995

Chapter 4: Writing Rules

gives an additional dependency to each of the three object files men-
tioned.

� Similar commands work for all the targets. The commands do not
need to be absolutely identical, since the automatic variable ‘$@’
can be used to substitute the particular target to be remade into
the commands (see Section 10.5.3 “Automatic Variables,” page 106).
For example:

bigoutput littleoutput : text.g

generate text.g -$(subst output,,$@) > $@

is equivalent to
bigoutput : text.g

generate text.g -big > bigoutput
littleoutput : text.g

generate text.g -little > littleoutput

Here we assume the hypothetical program generate makes two
types of output, one if given ‘-big’ and one if given ‘-little’.
See Section 8.2 “Functions for String Substitution and Analysis,”
page 72, for an explanation of the subst function.

Suppose you would like to vary the dependencies according to the
target, much as the variable ‘$@’ allows you to vary the commands. You
cannot do this with multiple targets in an ordinary rule, but you can
do it with a static pattern rule. See Section 4.10 “Static Pattern Rules,”
page 30.

4.9 Multiple Rules for One Target

One file can be the target of several rules. All the dependencies
mentioned in all the rules are merged into one list of dependencies for
the target. If the target is older than any dependency from any rule, the
commands are executed.

There can only be one set of commands to be executed for a file. If
more than one rule gives commands for the same file, make uses the last
set given and prints an error message. (As a special case, if the file’s
name begins with a dot, no error message is printed. This odd behavior
is only for compatibility with other implementations of make.) There is
no reason to write your makefiles this way; that is why make gives you
an error message.

An extra rule with just dependencies can be used to give a few extra
dependencies to many files at once. For example, one usually has a
variable named objects containing a list of all the compiler output files
in the system being made. An easy way to say that all of them must be
recompiled if ‘config.h’ changes is to write the following:

c y g n u s s u p p o r t 29

GNU make

objects = foo.o bar.o
foo.o : defs.h
bar.o : defs.h test.h
$(objects) : config.h

This could be inserted or taken out without changing the rules that
really specify how to make the object files, making it a convenient form
to use if you wish to add the additional dependency intermittently.

Another wrinkle is that the additional dependencies could be specified
with a variable that you set with a command argument to make (see
Section 9.5 “Overriding Variables,” page 87). For example,

extradeps=

$(objects) : $(extradeps)

means that the command ‘make extradeps=foo.h’ will consider ‘foo.h’
as a dependency of each object file, but plain ‘make’ will not.

If none of the explicit rules for a target has commands, then make
searches for an applicable implicit rule to find some commands see Chap-
ter 10 “Using Implicit Rules,” page 95).

4.10 Static Pattern Rules

Static pattern rules are rules which specify multiple targets and con-
struct the dependency names for each target based on the target name.
They are more general than ordinary rules with multiple targets be-
cause the targets do not have to have identical dependencies. Their
dependencies must be analogous, but not necessarily identical.

4.10.1 Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:
targets ...: target-pattern: dep-patterns ...

commands
...

The targets list specifies the targets that the rule applies to. The targets
can contain wildcard characters, just like the targets of ordinary rules
(see Section 4.2 “Using Wildcard Characters in File Names,” page 18).

The target-pattern and dep-patterns say how to compute the de-
pendencies of each target. Each target is matched against the target-
pattern to extract a part of the target name, called the stem. This stem
is substituted into each of the dep-patterns to make the dependency
names (one from each dep-pattern).

Each pattern normally contains the character ‘%’ just once. When
the target-pattern matches a target, the ‘%’ can match any part of the

30 7 July 1995

Chapter 4: Writing Rules

target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target ‘foo.o’ matches the pattern ‘%.o’,
with ‘foo’ as the stem. The targets ‘foo.c’ and ‘foo.out’ do not match
that pattern.

The dependency names for each target are made by substituting the
stem for the ‘%’ in each dependency pattern. For example, if one de-
pendency pattern is ‘%.c’, then substitution of the stem ‘foo’ gives the
dependency name ‘foo.c’. It is legitimate to write a dependency pattern
that does not contain ‘%’; then this dependency is the same for all targets.

‘%’ characters in pattern rules can be quoted with preceding back-
slashes (‘\’). Backslashes that would otherwise quote ‘%’ characters can
be quoted with more backslashes. Backslashes that quote ‘%’ characters
or other backslashes are removed from the pattern before it is compared
to file names or has a stem substituted into it. Backslashes that are
not in danger of quoting ‘%’ characters go unmolested. For example,
the pattern ‘the\%weird\\%pattern\\’ has ‘the%weird\’ preceding the
operative ‘%’ character, and ‘pattern\\’ following it. The final two back-
slashes are left alone because they cannot affect any ‘%’ character.

Here is an example, which compiles each of ‘foo.o’ and ‘bar.o’ from
the corresponding ‘.c’ file:

objects = foo.o bar.o

$(objects): %.o: %.c

$(CC) -c $(CFLAGS) $< -o $@

Here ‘$<’ is the automatic variable that holds the name of the dependency
and ‘$@’ is the automatic variable that holds the name of the target; see
Section 10.5.3 “Automatic Variables,” page 106.

Each target specified must match the target pattern; a warning is
issued for each target that does not. If you have a list of files, only
some of which will match the pattern, you can use the filter function
to remove nonmatching file names (see Section 8.2 “Functions for String
Substitution and Analysis,” page 72):

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c
$(CC) -c $(CFLAGS) $< -o $@

$(filter %.elc,$(files)): %.elc: %.el
emacs -f batch-byte-compile $<

In this example the result of ‘$(filter %.o,$(files))’ is ‘bar.o
lose.o’, and the first static pattern rule causes each of these object
files to be updated by compiling the corresponding C source file. The
result of ‘$(filter %.elc,$(files))’ is ‘foo.elc’, so that file is made
from ‘foo.el’.

c y g n u s s u p p o r t 31

GNU make

Another example shows how to use $* in static pattern rules:
bigoutput littleoutput : %output : text.g

generate text.g -$* > $@

When the generate command is run, $* will expand to the stem, either
‘big’ or ‘little’.

4.10.2 Static Pattern Rules versus Implicit Rules

A static pattern rule has much in common with an implicit rule de-
fined as a pattern rule (see Section 10.5 “Defining and Redefining Pattern
Rules,” page 104). Both have a pattern for the target and patterns for
constructing the names of dependencies. The difference is in how make
decides when the rule applies.

An implicit rule can apply to any target that matches its pattern, but
it does apply only when the target has no commands otherwise specified,
and only when the dependencies can be found. If more than one implicit
rule appears applicable, only one applies; the choice depends on the
order of rules.

By contrast, a static pattern rule applies to the precise list of targets
that you specify in the rule. It cannot apply to any other target and it
invariably does apply to each of the targets specified. If two conflicting
rules apply, and both have commands, that’s an error.

The static pattern rule can be better than an implicit rule for these
reasons:
� You may wish to override the usual implicit rule for a few files

whose names cannot be categorized syntactically but can be given
in an explicit list.

� If you cannot be sure of the precise contents of the directories you
are using, you may not be sure which other irrelevant files might
lead make to use the wrong implicit rule. The choice might depend
on the order in which the implicit rule search is done. With static
pattern rules, there is no uncertainty: each rule applies to precisely
the targets specified.

4.11 Double-Colon Rules

Double-colon rules are rules written with ‘::’ instead of ‘:’ after the
target names. They are handled differently from ordinary rules when
the same target appears in more than one rule.

When a target appears in multiple rules, all the rules must be the
same type: all ordinary, or all double-colon. If they are double-colon, each
of them is independent of the others. Each double-colon rule’s commands

32 7 July 1995

Chapter 4: Writing Rules

are executed if the target is older than any dependencies of that rule.
This can result in executing none, any, or all of the double-colon rules.

Double-colon rules with the same target are in fact completely sepa-
rate from one another. Each double-colon rule is processed individually,
just as rules with different targets are processed.

The double-colon rules for a target are executed in the order they
appear in the makefile. However, the cases where double-colon rules
really make sense are those where the order of executing the commands
would not matter.

Double-colon rules are somewhat obscure and not often very useful;
they provide a mechanism for cases in which the method used to update
a target differs depending on which dependency files caused the update,
and such cases are rare.

Each double-colon rule should specify commands; if it does not, an
implicit rule will be used if one applies. See Chapter 10 “Using Implicit
Rules,” page 95.

4.12 Generating Dependencies Automatically

In the makefile for a program, many of the rules you need to write
often say only that some object file depends on some header file. For
example, if ‘main.c’ uses ‘defs.h’ via an #include, you would write:

main.o: defs.h

You need this rule so that make knows that it must remake ‘main.o’
whenever ‘defs.h’ changes. You can see that for a large program you
would have to write dozens of such rules in your makefile. And, you
must always be very careful to update the makefile every time you add
or remove an #include.

To avoid this hassle, most modern C compilers can write these rules
for you, by looking at the #include lines in the source files. Usually this
is done with the ‘-M’ option to the compiler. For example, the command:

cc -M main.c

generates the output:
main.o : main.c defs.h

Thus you no longer have to write all those rules yourself. The compiler
will do it for you.

Note that such a dependency constitutes mentioning ‘main.o’ in a
makefile, so it can never be considered an intermediate file by implicit
rule search. This means that make won’t ever remove the file after using
it; see Section 10.4 “Chains of Implicit Rules,” page 103.

c y g n u s s u p p o r t 33

GNU make

With old make programs, it was traditional practice to use this com-
piler feature to generate dependencies on demand with a command like
‘make depend’. That command would create a file ‘depend’ containing all
the automatically-generated dependencies; then the makefile could use
include to read them in (see Section 3.3 “Include,” page 12).

In GNU make, the feature of remaking makefiles makes this practice
obsolete—you need never tell make explicitly to regenerate the depen-
dencies, because it always regenerates any makefile that is out of date.
See Section 3.5 “Remaking Makefiles,” page 14.

The practice we recommend for automatic dependency generation
is to have one makefile corresponding to each source file. For each
source file ‘name.c’ there is a makefile ‘name.d’ which lists what files the
object file ‘name.o’ depends on. That way only the source files that have
changed need to be rescanned to produce the new dependencies.

Here is the pattern rule to generate a file of dependencies (i.e., a
makefile) called ‘name.d’ from a C source file called ‘name.c’:

%.d: %.c

$(SHELL) -ec ’$(CC) -M $(CPPFLAGS) $< \

| sed ’\’’s/$*\\.o[:]*/& $@/g’\’’ > $@’

See Section 10.5 “Pattern Rules,” page 104, for information on defining
pattern rules. The ‘-e’ flag to the shell makes it exit immediately if
the $(CC) command fails (exits with a nonzero status). Normally the
shell exits with the status of the last command in the pipeline (sed in
this case), so make would not notice a nonzero status from the compiler.

With the GNU C compiler, you may wish to use the ‘-MM’ flag instead
of ‘-M’. This omits dependencies on system header files. See section
“Options Controlling the Preprocessor” in Using GNU CC, for details.

The purpose of the sed command is to translate (for example):
main.o : main.c defs.h

into:
main.o main.d : main.c defs.h

This makes each ‘.d’ file depend on all the source and header files
that the corresponding ‘.o’ file depends on. make then knows it must
regenerate the dependencies whenever any of the source or header files
changes.

Once you’ve defined the rule to remake the ‘.d’ files, you then use the
include directive to read them all in. See Section 3.3 “Include,” page 12.
For example:

sources = foo.c bar.c

include $(sources:.c=.d)

34 7 July 1995

Chapter 4: Writing Rules

(This example uses a substitution variable reference to translate the list
of source files ‘foo.c bar.c’ into a list of dependency makefiles, ‘foo.d
bar.d’. See Section 6.3.1 “Substitution Refs,” page 55, for full informa-
tion on substitution references.) Since the ‘.d’ files are makefiles like
any others, make will remake them as necessary with no further work
from you. See Section 3.5 “Remaking Makefiles,” page 14.

c y g n u s s u p p o r t 35

GNU make

36 7 July 1995

Chapter 5: Writing the Commands in Rules

5 Writing the Commands in Rules

The commands of a rule consist of shell command lines to be executed
one by one. Each command line must start with a tab, except that the
first command line may be attached to the target-and-dependencies line
with a semicolon in between. Blank lines and lines of just comments
may appear among the command lines; they are ignored. (But beware,
an apparently “blank” line that begins with a tab is not blank! It is an
empty command; see Section 5.8 “Empty Commands,” page 48.)

Users use many different shell programs, but commands in make-
files are always interpreted by ‘/bin/sh’ unless the makefile specifies
otherwise. See Section 5.2 “Command Execution,” page 38.

The shell that is in use determines whether comments can be writ-
ten on command lines, and what syntax they use. When the shell is
‘/bin/sh’, a ‘#’ starts a comment that extends to the end of the line. The
‘#’ does not have to be at the beginning of a line. Text on a line before a
‘#’ is not part of the comment.

5.1 Command Echoing

Normally make prints each command line before it is executed. We
call this echoing because it gives the appearance that you are typing the
commands yourself.

When a line starts with ‘@’, the echoing of that line is suppressed. The
‘@’ is discarded before the command is passed to the shell. Typically you
would use this for a command whose only effect is to print something,
such as an echo command to indicate progress through the makefile:

@echo About to make distribution files

When make is given the flag ‘-n’ or ‘--just-print’, echoing is all that
happens, no execution. See Section 9.7 “Summary of Options,” page 89.
In this case and only this case, even the commands starting with ‘@’ are
printed. This flag is useful for finding out which commands make thinks
are necessary without actually doing them.

The ‘-s’ or ‘--silent’ flag to make prevents all echoing, as if all com-
mands started with ‘@’. A rule in the makefile for the special target
.SILENT without dependencies has the same effect (see Section 4.7 “Spe-
cial Built-in Target Names,” page 27). .SILENT is essentially obsolete
since ‘@’ is more flexible.

c y g n u s s u p p o r t 37

GNU make

5.2 Command Execution

When it is time to execute commands to update a target, they are
executed by making a new subshell for each line. (In practice, make may
take shortcuts that do not affect the results.)

Please note: this implies that shell commands such as cd that set
variables local to each process will not affect the following command
lines. If you want to use cd to affect the next command, put the two on
a single line with a semicolon between them. Then make will consider
them a single command and pass them, together, to a shell which will
execute them in sequence. For example:

foo : bar/lose
cd bar; gobble lose > ../foo

If you would like to split a single shell command into multiple lines
of text, you must use a backslash at the end of all but the last subline.
Such a sequence of lines is combined into a single line, by deleting the
backslash-newline sequences, before passing it to the shell. Thus, the
following is equivalent to the preceding example:

foo : bar/lose

cd bar; \
gobble lose > ../foo

The program used as the shell is taken from the variable SHELL. By
default, the program ‘/bin/sh’ is used.

Unlike most variables, the variable SHELL is never set from the en-
vironment. This is because the SHELL environment variable is used to
specify your personal choice of shell program for interactive use. It
would be very bad for personal choices like this to affect the functioning
of makefiles. See Section 6.9 “Variables from the Environment,” page 62.

5.3 Parallel Execution

GNU make knows how to execute several commands at once. Nor-
mally, make will execute only one command at a time, waiting for it to
finish before executing the next. However, the ‘-j’ or ‘--jobs’ option
tells make to execute many commands simultaneously.

If the ‘-j’ option is followed by an integer, this is the number of
commands to execute at once; this is called the number of job slots. If
there is nothing looking like an integer after the ‘-j’ option, there is no
limit on the number of job slots. The default number of job slots is one,
which means serial execution (one thing at a time).

One unpleasant consequence of running several commands simul-
taneously is that output from all of the commands comes when the

38 7 July 1995

Chapter 5: Writing the Commands in Rules

commands send it, so messages from different commands may be in-
terspersed.

Another problem is that two processes cannot both take input from
the same device; so to make sure that only one command tries to take
input from the terminal at once, make will invalidate the standard input
streams of all but one running command. This means that attempting
to read from standard input will usually be a fatal error (a ‘Broken pipe’
signal) for most child processes if there are several.

It is unpredictable which command will have a valid standard input
stream (which will come from the terminal, or wherever you redirect the
standard input of make). The first command run will always get it first,
and the first command started after that one finishes will get it next,
and so on.

We will change how this aspect of make works if we find a better
alternative. In the mean time, you should not rely on any command
using standard input at all if you are using the parallel execution feature;
but if you are not using this feature, then standard input works normally
in all commands.

If a command fails (is killed by a signal or exits with a nonzero status),
and errors are not ignored for that command (see Section 5.4 “Errors in
Commands,” page 40), the remaining command lines to remake the same
target will not be run. If a command fails and the ‘-k’ or ‘--keep-going’
option was not given (see Section 9.7 “Summary of Options,” page 89),
make aborts execution. If make terminates for any reason (including a
signal) with child processes running, it waits for them to finish before
actually exiting.

When the system is heavily loaded, you will probably want to run
fewer jobs than when it is lightly loaded. You can use the ‘-l’ option to
tell make to limit the number of jobs to run at once, based on the load
average. The ‘-l’ or ‘--max-load’ option is followed by a floating-point
number. For example,

-l 2.5

will not let make start more than one job if the load average is above 2.5.
The ‘-l’ option with no following number removes the load limit, if one
was given with a previous ‘-l’ option.

More precisely, when make goes to start up a job, and it already has
at least one job running, it checks the current load average; if it is not
lower than the limit given with ‘-l’, make waits until the load average
goes below that limit, or until all the other jobs finish.

By default, there is no load limit.

c y g n u s s u p p o r t 39

GNU make

5.4 Errors in Commands

After each shell command returns, make looks at its exit status. If the
command completed successfully, the next command line is executed in
a new shell; after the last command line is finished, the rule is finished.

If there is an error (the exit status is nonzero), make gives up on the
current rule, and perhaps on all rules.

Sometimes the failure of a certain command does not indicate a prob-
lem. For example, you may use the mkdir command to ensure that a
directory exists. If the directory already exists, mkdir will report an
error, but you probably want make to continue regardless.

To ignore errors in a command line, write a ‘-’ at the beginning of the
line’s text (after the initial tab). The ‘-’ is discarded before the command
is passed to the shell for execution.

For example,
clean:

-rm -f *.o

This causes rm to continue even if it is unable to remove a file.
When you run make with the ‘-i’ or ‘--ignore-errors’ flag, errors

are ignored in all commands of all rules. A rule in the makefile for the
special target .IGNORE has the same effect, if there are no dependencies.
These ways of ignoring errors are obsolete because ‘-’ is more flexible.

When errors are to be ignored, because of either a ‘-’ or the ‘-i’ flag,
make treats an error return just like success, except that it prints out
a message that tells you the status code the command exited with, and
says that the error has been ignored.

When an error happens that make has not been told to ignore, it
implies that the current target cannot be correctly remade, and neither
can any other that depends on it either directly or indirectly. No further
commands will be executed for these targets, since their preconditions
have not been achieved.

Normally make gives up immediately in this circumstance, returning
a nonzero status. However, if the ‘-k’ or ‘--keep-going’ flag is specified,
make continues to consider the other dependencies of the pending tar-
gets, remaking them if necessary, before it gives up and returns nonzero
status. For example, after an error in compiling one object file, ‘make -k’
will continue compiling other object files even though it already knows
that linking them will be impossible. See Section 9.7 “Summary of Op-
tions,” page 89.

The usual behavior assumes that your purpose is to get the specified
targets up to date; once make learns that this is impossible, it might
as well report the failure immediately. The ‘-k’ option says that the

40 7 July 1995

Chapter 5: Writing the Commands in Rules

real purpose is to test as many of the changes made in the program as
possible, perhaps to find several independent problems so that you can
correct them all before the next attempt to compile. This is why Emacs’
compile command passes the ‘-k’ flag by default.

Usually when a command fails, if it has changed the target file at all,
the file is corrupted and cannot be used—or at least it is not completely
updated. Yet the file’s timestamp says that it is now up to date, so the
next time make runs, it will not try to update that file. The situation is
just the same as when the command is killed by a signal; see Section 5.5
“Interrupts,” page 41. So generally the right thing to do is to delete the
target file if the command fails after beginning to change the file. make
will do this if .DELETE_ON_ERROR appears as a target. This is almost
always what you want make to do, but it is not historical practice; so for
compatibility, you must explicitly request it.

5.5 Interrupting or Killing make

If make gets a fatal signal while a command is executing, it may delete
the target file that the command was supposed to update. This is done
if the target file’s last-modification time has changed since make first
checked it.

The purpose of deleting the target is to make sure that it is remade
from scratch when make is next run. Why is this? Suppose you type
Ctrl-c while a compiler is running, and it has begun to write an object
file ‘foo.o’. The Ctrl-c kills the compiler, resulting in an incomplete file
whose last-modification time is newer than the source file ‘foo.c’. But
make also receives the Ctrl-c signal and deletes this incomplete file. If
make did not do this, the next invocation of make would think that ‘foo.o’
did not require updating—resulting in a strange error message from the
linker when it tries to link an object file half of which is missing.

You can prevent the deletion of a target file in this way by making the
special target .PRECIOUS depend on it. Before remaking a target, make
checks to see whether it appears on the dependencies of .PRECIOUS, and
thereby decides whether the target should be deleted if a signal happens.
Some reasons why you might do this are that the target is updated in
some atomic fashion, or exists only to record a modification-time (its
contents do not matter), or must exist at all times to prevent other sorts
of trouble.

5.6 Recursive Use of make

Recursive use of make means using make as a command in a makefile.
This technique is useful when you want separate makefiles for various

c y g n u s s u p p o r t 41

GNU make

subsystems that compose a larger system. For example, suppose you
have a subdirectory ‘subdir’ which has its own makefile, and you would
like the containing directory’s makefile to run make on the subdirectory.
You can do it by writing this:

subsystem:
cd subdir; $(MAKE)

or, equivalently, this (see Section 9.7 “Summary of Options,” page 89):
subsystem:

$(MAKE) -C subdir

You can write recursive make commands just by copying this example,
but there are many things to know about how they work and why, and
about how the sub-make relates to the top-level make.

5.6.1 How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not
the explicit command name ‘make’, as shown here:

subsystem:

cd subdir; $(MAKE)

The value of this variable is the file name with which make was in-
voked. If this file name was ‘/bin/make’, then the command executed is
‘cd subdir; /bin/make’. If you use a special version of make to run the
top-level makefile, the same special version will be executed for recursive
invocations.

As a special feature, using the variable MAKE in the commands of
a rule alters the effects of the ‘-t’ (‘--touch’), ‘-n’ (‘--just-print’), or
‘-q’ (‘--question’) option. Using the MAKE variable has the same effect
as using a ‘+’ character at the beginning of the command line. See
Section 9.3 “Instead of Executing the Commands,” page 85.

Consider the command ‘make -t’ in the above example. (The ‘-t’
option marks targets as up to date without actually running any com-
mands; see Section 9.3 “Instead of Execution,” page 85.) Following the
usual definition of ‘-t’, a ‘make -t’ command in the example would create
a file named ‘subsystem’ and do nothing else. What you really want it
to do is run ‘cd subdir; make -t’; but that would require executing the
command, and ‘-t’ says not to execute commands.

The special feature makes this do what you want: whenever a com-
mand line of a rule contains the variable MAKE, the flags ‘-t’, ‘-n’ and
‘-q’ do not apply to that line. Command lines containing MAKE are exe-
cuted normally despite the presence of a flag that causes most commands
not to be run. The usual MAKEFLAGS mechanism passes the flags to the
sub-make (see Section 5.6.3 “Communicating Options to a Sub-make,”

42 7 July 1995

Chapter 5: Writing the Commands in Rules

page 45), so your request to touch the files, or print the commands, is
propagated to the subsystem.

5.6.2 Communicating Variables to a Sub-make

Variable values of the top-level make can be passed to the sub-make
through the environment by explicit request. These variables are defined
in the sub-make as defaults, but do not override what is specified in the
makefile used by the sub-make makefile unless you use the ‘-e’ switch
(see Section 9.7 “Summary of Options,” page 89).

To pass down, or export, a variable, make adds the variable and its
value to the environment for running each command. The sub-make, in
turn, uses the environment to initialize its table of variable values. See
Section 6.9 “Variables from the Environment,” page 62.

Except by explicit request, make exports a variable only if it is either
defined in the environment initially or set on the command line, and if
its name consists only of letters, numbers, and underscores. Some shells
cannot cope with environment variable names consisting of characters
other than letters, numbers, and underscores.

The special variables SHELL and MAKEFLAGS are always exported (un-
less you unexport them). MAKEFILES is exported if you set it to anything.

make automatically passes down variable values that were defined on
the command line, by putting them in the MAKEFLAGS variable. See the
next section.

Variables are not normally passed down if they were created by
default by make (see Section 10.3 “Variables Used by Implicit Rules,”
page 100). The sub-make will define these for itself.

If you want to export specific variables to a sub-make, use the export
directive, like this:

export variable ...

If you want to prevent a variable from being exported, use the
unexport directive, like this:

unexport variable ...

As a convenience, you can define a variable and export it at the same
time by doing:

export variable = value

has the same result as:
variable = value
export variable

and
export variable := value

c y g n u s s u p p o r t 43

GNU make

has the same result as:
variable := value
export variable

Likewise,
export variable += value

is just like:
variable += value
export variable

See Section 6.6 “Appending More Text to Variables,” page 59.
You may notice that the export and unexport directives work in make

in the same way they work in the shell, sh.
If you want all variables to be exported by default, you can use export

by itself:
export

This tells make that variables which are not explicitly mentioned in an
export or unexport directive should be exported. Any variable given in
an unexport directive will still not be exported. If you use export by
itself to export variables by default, variables whose names contain char-
acters other than alphanumerics and underscores will not be exported
unless specifically mentioned in an export directive.

The behavior elicited by an export directive by itself was the default
in older versions of GNU make. If your makefiles depend on this behavior
and you want to be compatible with old versions of make, you can write a
rule for the special target .EXPORT_ALL_VARIABLES instead of using the
export directive. This will be ignored by old makes, while the export
directive will cause a syntax error.

Likewise, you can use unexport by itself to tell make not to export
variables by default. Since this is the default behavior, you would only
need to do this if export had been used by itself earlier (in an included
makefile, perhaps). You cannot use export and unexport by themselves
to have variables exported for some commands and not for others. The
last export or unexport directive that appears by itself determines the
behavior for the entire run of make.

As a special feature, the variable MAKELEVEL is changed when it is
passed down from level to level. This variable’s value is a string which
is the depth of the level as a decimal number. The value is ‘0’ for the
top-level make; ‘1’ for a sub-make, ‘2’ for a sub-sub-make, and so on. The
incrementation happens when make sets up the environment for a com-
mand.

The main use of MAKELEVEL is to test it in a conditional directive (see
Chapter 7 “Conditional Parts of Makefiles,” page 65); this way you can

44 7 July 1995

Chapter 5: Writing the Commands in Rules

write a makefile that behaves one way if run recursively and another
way if run directly by you.

You can use the variable MAKEFILES to cause all sub-make commands
to use additional makefiles. The value of MAKEFILES is a whitespace-
separated list of file names. This variable, if defined in the outer-level
makefile, is passed down through the environment; then it serves as
a list of extra makefiles for the sub-make to read before the usual or
specified ones. See Section 3.4 “The Variable MAKEFILES,” page 14.

5.6.3 Communicating Options to a Sub-make

Flags such as ‘-s’ and ‘-k’ are passed automatically to the sub-make
through the variable MAKEFLAGS. This variable is set up automatically
by make to contain the flag letters that make received. Thus, if you do
‘make -ks’ then MAKEFLAGS gets the value ‘ks’.

As a consequence, every sub-make gets a value for MAKEFLAGS in its
environment. In response, it takes the flags from that value and pro-
cesses them as if they had been given as arguments. See Section 9.7
“Summary of Options,” page 89.

Likewise variables defined on the command line are passed to the
sub-make through MAKEFLAGS. Words in the value of MAKEFLAGS that
contain ‘=’, make treats as variable definitions just as if they appeared on
the command line. See Section 9.5 “Overriding Variables,” page 87.

The options ‘-C’, ‘-f’, ‘-o’, and ‘-W’ are not put into MAKEFLAGS; these
options are not passed down.

The ‘-j’ option is a special case (see Section 5.3 “Parallel Execution,”
page 38). If you set it to some numeric value, ‘-j 1’ is always put into
MAKEFLAGS instead of the value you specified. This is because if the ‘-j’
option were passed down to sub-makes, you would get many more jobs
running in parallel than you asked for. If you give ‘-j’ with no numeric
argument, meaning to run as many jobs as possible in parallel, this is
passed down, since multiple infinities are no more than one.

If you do not want to pass the other flags down, you must change the
value of MAKEFLAGS, like this:

MAKEFLAGS=
subsystem:

cd subdir; $(MAKE)

or like this:
subsystem:

cd subdir; $(MAKE) MAKEFLAGS=

The command line variable definitions really appear in the variable
MAKEOVERRIDES, and MAKEFLAGS contains a reference to this variable. If
you do want to pass flags down normally, but don’t want to pass down

c y g n u s s u p p o r t 45

GNU make

the command line variable definitions, you can reset MAKEOVERRIDES to
empty, like this:

MAKEOVERRIDES =

This is not usually useful to do. However, some systems have
a small fixed limit on the size of the environment, and putting so much
information in into the value of MAKEFLAGS can exceed it. If you see the
error message ‘Arg list too long’, this may be the problem.
(For strict compliance with POSIX.2, changing MAKEOVERRIDES does not
affect MAKEFLAGS if the special target ‘.POSIX’ appears in the makefile.
You probably do not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It
has the same value as MAKEFLAGS except that it does not contain the
command line variable definitions, and it always begins with a hy-
phen unless it is empty (MAKEFLAGS begins with a hyphen only when
it begins with an option that has no single-letter version, such as
‘--warn-undefined-variables’). MFLAGS was traditionally used explic-
itly in the recursive make command, like this:

subsystem:
cd subdir; $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your
makefiles to be compatible with old make programs, use this technique;
it will work fine with more modern make versions too.

The MAKEFLAGS variable can also be useful if you want to have certain
options, such as ‘-k’ (see Section 9.7 “Summary of Options,” page 89),
set each time you run make. You simply put a value for MAKEFLAGS in
your environment. You can also set MAKEFLAGS in a makefile, to specify
additional flags that should also be in effect for that makefile. (Note
that you cannot use MFLAGS this way. That variable is set only for
compatibility; make does not interpret a value you set for it in any way.)

When make interprets the value of MAKEFLAGS (either from the envi-
ronment or from a makefile), it first prepends a hyphen if the value does
not already begin with one. Then it chops the value into words separated
by blanks, and parses these words as if they were options given on the
command line (except that ‘-C’, ‘-f’, ‘-h’, ‘-o’, ‘-W’, and their long-named
versions are ignored; and there is no error for an invalid option).

If you do put MAKEFLAGS in your environment, you should be sure not
to include any options that will drastically affect the actions of make and
undermine the purpose of makefiles and of make itself. For instance, the
‘-t’, ‘-n’, and ‘-q’ options, if put in one of these variables, could have
disastrous consequences and would certainly have at least surprising
and probably annoying effects.

46 7 July 1995

Chapter 5: Writing the Commands in Rules

5.6.4 The ‘--print-directory’ Option

If you use several levels of recursive make invocations, the ‘-w’ or
‘--print-directory’ option can make the output a lot easier to under-
stand by showing each directory as make starts processing it and as make
finishes processing it. For example, if ‘make -w’ is run in the directory
‘/u/gnu/make’, make will print a line of the form:

make: Entering directory ‘/u/gnu/make’.

before doing anything else, and a line of the form:
make: Leaving directory ‘/u/gnu/make’.

when processing is completed.
Normally, you do not need to specify this option because ‘make’ does

it for you: ‘-w’ is turned on automatically when you use the ‘-C’ option,
and in sub-makes. make will not automatically turn on ‘-w’ if you also
use ‘-s’, which says to be silent, or if you use ‘--no-print-directory’ to
explicitly disable it.

5.7 Defining Canned Command Sequences

When the same sequence of commands is useful in making various
targets, you can define it as a canned sequence with the define directive,
and refer to the canned sequence from the rules for those targets. The
canned sequence is actually a variable, so the name must not conflict
with other variable names.

Here is an example of defining a canned sequence of commands:
define run-yacc
yacc $(firstword $ˆ)
mv y.tab.c $@
endef

Here run-yacc is the name of the variable being defined; endef marks
the end of the definition; the lines in between are the commands. The
define directive does not expand variable references and function calls
in the canned sequence; the ‘$’ characters, parentheses, variable names,
and so on, all become part of the value of the variable you are defining.
See Section 6.8 “Defining Variables Verbatim,” page 61, for a complete
explanation of define.

The first command in this example runs Yacc on the first dependency
of whichever rule uses the canned sequence. The output file from Yacc
is always named ‘y.tab.c’. The second command moves the output to
the rule’s target file name.

To use the canned sequence, substitute the variable into the com-
mands of a rule. You can substitute it like any other variable (see
Section 6.1 “Basics of Variable References,” page 51). Because variables

c y g n u s s u p p o r t 47

GNU make

defined by define are recursively expanded variables, all the variable
references you wrote inside the define are expanded now. For example:

foo.c : foo.y
$(run-yacc)

‘foo.y’ will be substituted for the variable ‘$ˆ’ when it occurs in run-
yacc’s value, and ‘foo.c’ for ‘$@’.

This is a realistic example, but this particular one is not needed in
practice because make has an implicit rule to figure out these commands
based on the file names involved (see Chapter 10 “Using Implicit Rules,”
page 95).

In command execution, each line of a canned sequence is treated just
as if the line appeared on its own in the rule, preceded by a tab. In
particular, make invokes a separate subshell for each line. You can use
the special prefix characters that affect command lines (‘@’, ‘-’, and ‘+’) on
each line of a canned sequence. See Chapter 5 “Writing the Commands
in Rules,” page 37. For example, using this canned sequence:

define frobnicate
@echo "frobnicating target $@"
frob-step-1 $< -o $@-step-1
frob-step-2 $@-step-1 -o $@
endef

make will not echo the first line, the echo command. But it will echo the
following two command lines.

On the other hand, prefix characters on the command line that refers
to a canned sequence apply to every line in the sequence. So the rule:

frob.out: frob.in
@$(frobnicate)

does not echo any commands. (See Section 5.1 “Command Echoing,”
page 37, for a full explanation of ‘@’.)

5.8 Using Empty Commands

It is sometimes useful to define commands which do nothing. This is
done simply by giving a command that consists of nothing but whites-
pace. For example:

target: ;

defines an empty command string for ‘target’. You could also use a line
beginning with a tab character to define an empty command string, but
this would be confusing because such a line looks empty.

You may be wondering why you would want to define a command
string that does nothing. The only reason this is useful is to prevent
a target from getting implicit commands (from implicit rules or the

48 7 July 1995

Chapter 5: Writing the Commands in Rules

.DEFAULT special target; see Chapter 10 “Implicit Rules,” page 95 and
see Section 10.6 “Defining Last-Resort Default Rules,” page 111).

You may be inclined to define empty command strings for targets
that are not actual files, but only exist so that their dependencies can
be remade. However, this is not the best way to do that, because the
dependencies may not be remade properly if the target file actually does
exist. See Section 4.4 “Phony Targets,” page 24, for a better way to do
this.

c y g n u s s u p p o r t 49

GNU make

50 7 July 1995

Chapter 6: How to Use Variables

6 How to Use Variables

A variable is a name defined in a makefile to represent a string of
text, called the variable’s value. These values are substituted by explicit
request into targets, dependencies, commands, and other parts of the
makefile. (In some other versions of make, variables are called macros.)

Variables and functions in all parts of a makefile are expanded when
read, except for the shell commands in rules, the right-hand sides of
variable definitions using ‘=’, and the bodies of variable definitions using
the define directive.

Variables can represent lists of file names, options to pass to compil-
ers, programs to run, directories to look in for source files, directories to
write output in, or anything else you can imagine.

A variable name may be any sequence of characters not containing ‘:’,
‘#’, ‘=’, or leading or trailing whitespace. However, variable names con-
taining characters other than letters, numbers, and underscores should
be avoided, as they may be given special meanings in the future, and
with some shells they cannot be passed through the environment to a
sub-make (see Section 5.6.2 “Communicating Variables to a Sub-make,”
page 43).

Variable names are case-sensitive. The names ‘foo’, ‘FOO’, and ‘Foo’
all refer to different variables.

It is traditional to use upper case letters in variable names, but we
recommend using lower case letters for variable names that serve inter-
nal purposes in the makefile, and reserving upper case for parameters
that control implicit rules or for parameters that the user should override
with command options (see Section 9.5 “Overriding Variables,” page 87).

A few variables have names that are a single punctuation character or
just a few characters. These are the automatic variables, and they have
particular specialized uses. See Section 10.5.3 “Automatic Variables,”
page 106.

6.1 Basics of Variable References

To substitute a variable’s value, write a dollar sign followed by the
name of the variable in parentheses or braces: either ‘$(foo)’ or ‘${foo}’
is a valid reference to the variable foo. This special significance of ‘$’ is
why you must write ‘$$’ to have the effect of a single dollar sign in a file
name or command.

Variable references can be used in any context: targets, dependencies,
commands, most directives, and new variable values. Here is an example

c y g n u s s u p p o r t 51

GNU make

of a common case, where a variable holds the names of all the object files
in a program:

objects = program.o foo.o utils.o

program : $(objects)
cc -o program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the
rule

foo = c

prog.o : prog.$(foo)

(foo)(foo) -$(foo) prog.$(foo)

could be used to compile a C program ‘prog.c’. Since spaces before the
variable value are ignored in variable assignments, the value of foo is
precisely ‘c’. (Don’t actually write your makefiles this way!)

A dollar sign followed by a character other than a dollar sign, open-
parenthesis or open-brace treats that single character as the variable
name. Thus, you could reference the variable x with ‘$x’. However,
this practice is strongly discouraged, except in the case of the automatic
variables (see Section 10.5.3 “Automatic Variables,” page 106).

6.2 The Two Flavors of Variables

There are two ways that a variable in GNU make can have a value; we
call them the two flavors of variables. The two flavors are distinguished
in how they are defined and in what they do when expanded.

The first flavor of variable is a recursively expanded variable. Vari-
ables of this sort are defined by lines using ‘=’ (see Section 6.5 “Setting
Variables,” page 58) or by the define directive (see Section 6.8 “Defin-
ing Variables Verbatim,” page 61). The value you specify is installed
verbatim; if it contains references to other variables, these references
are expanded whenever this variable is substituted (in the course of ex-
panding some other string). When this happens, it is called recursive
expansion.

For example,
foo = $(bar)
bar = $(ugh)
ugh = Huh?

all:;echo $(foo)

will echo ‘Huh?’: ‘$(foo)’ expands to ‘$(bar)’ which expands to ‘$(ugh)’
which finally expands to ‘Huh?’.

52 7 July 1995

Chapter 6: How to Use Variables

This flavor of variable is the only sort supported by other versions of
make. It has its advantages and its disadvantages. An advantage (most
would say) is that:

CFLAGS = $(include_dirs) -O
include_dirs = -Ifoo -Ibar

will do what was intended: when ‘CFLAGS’ is expanded in a command,
it will expand to ‘-Ifoo -Ibar -O’. A major disadvantage is that you
cannot append something on the end of a variable, as in

CFLAGS = $(CFLAGS) -O

because it will cause an infinite loop in the variable expansion. (Actually
make detects the infinite loop and reports an error.)

Another disadvantage is that any functions (see Chapter 8 “Functions
for Transforming Text,” page 71) referenced in the definition will be exe-
cuted every time the variable is expanded. This makes make run slower;
worse, it causes the wildcard and shell functions to give unpredictable
results because you cannot easily control when they are called, or even
how many times.

To avoid all the problems and inconveniences of recursively expanded
variables, there is another flavor: simply expanded variables.

Simply expanded variables are defined by lines using ‘:=’ (see Sec-
tion 6.5 “Setting Variables,” page 58). The value of a simply expanded
variable is scanned once and for all, expanding any references to other
variables and functions, when the variable is defined. The actual value
of the simply expanded variable is the result of expanding the text that
you write. It does not contain any references to other variables; it con-
tains their values as of the time this variable was defined. Therefore,

x := foo
y := $(x) bar
x := later

is equivalent to
y := foo bar
x := later

When a simply expanded variable is referenced, its value is substi-
tuted verbatim.

Here is a somewhat more complicated example, illustrating the use
of ‘:=’ in conjunction with the shell function. (See Section 8.6 “The
shell Function,” page 80.) This example also shows use of the variable
MAKELEVEL, which is changed when it is passed down from level to level.
(See Section 5.6.2 “Communicating Variables to a Sub-make,” page 43,
for information about MAKELEVEL.)

c y g n u s s u p p o r t 53

GNU make

ifeq (0,${MAKELEVEL})

cur-dir := $(shell pwd)

whoami := $(shell whoami)

host-type := $(shell arch)
MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}

endif

An advantage of this use of ‘:=’ is that a typical ‘descend into a directory’
command then looks like this:

${subdirs}:

${MAKE} cur-dir=${cur-dir}/$@ -C $@ all

Simply expanded variables generally make complicated makefile pro-
gramming more predictable because they work like variables in most
programming languages. They allow you to redefine a variable using its
own value (or its value processed in some way by one of the expansion
functions) and to use the expansion functions much more efficiently (see
Chapter 8 “Functions for Transforming Text,” page 71).

You can also use them to introduce controlled leading whitespace into
variable values. Leading whitespace characters are discarded from your
input before substitution of variable references and function calls; this
means you can include leading spaces in a variable value by protecting
them with variable references, like this:

nullstring :=
space := $(nullstring) # end of the line

Here the value of the variable space is precisely one space. The comment
‘# end of the line’ is included here just for clarity. Since trailing space
characters are not stripped from variable values, just a space at the end
of the line would have the same effect (but be rather hard to read). If
you put whitespace at the end of a variable value, it is a good idea to
put a comment like that at the end of the line to make your intent clear.
Conversely, if you do not want any whitespace characters at the end of
your variable value, you must remember not to put a random comment
on the end of the line after some whitespace, such as this:

dir := /foo/bar # directory to put the frobs in

Here the value of the variable dir is ‘/foo/bar ’ (with four trailing
spaces), which was probably not the intention. (Imagine something
like ‘$(dir)/file’ with this definition!)

6.3 Advanced Features for Reference to Variables

This section describes some advanced features you can use to refer-
ence variables in more flexible ways.

54 7 July 1995

Chapter 6: How to Use Variables

6.3.1 Substitution References

A substitution reference substitutes the value of a variable with alter-
ations that you specify. It has the form ‘$(var:a=b)’ (or ‘${var:a=b}’)
and its meaning is to take the value of the variable var, replace every a
at the end of a word with b in that value, and substitute the resulting
string.

When we say “at the end of a word”, we mean that a must appear
either followed by whitespace or at the end of the value in order to be
replaced; other occurrences of a in the value are unaltered. For example:

foo := a.o b.o c.o
bar := $(foo:.o=.c)

sets ‘bar’ to ‘a.c b.c c.c’. See Section 6.5 “Setting Variables,” page 58.
A substitution reference is actually an abbreviation for use of the

patsubst expansion function (see Section 8.2 “Functions for String Sub-
stitution and Analysis,” page 72). We provide substitution references as
well as patsubst for compatibility with other implementations of make.

Another type of substitution reference lets you use the full power of
the patsubst function. It has the same form ‘$(var:a=b)’ described
above, except that now a must contain a single ‘%’ character. This case
is equivalent to ‘$(patsubst a,b,$(var))’. See Section 8.2 “Functions
for String Substitution and Analysis,” page 72, for a description of the
patsubst function.
For example:

foo := a.o b.o c.o

bar := $(foo:%.o=%.c)

sets ‘bar’ to ‘a.c b.c c.c’.

6.3.2 Computed Variable Names

Computed variable names are a complicated concept needed only for
sophisticated makefile programming. For most purposes you need not
consider them, except to know that making a variable with a dollar sign
in its name might have strange results. However, if you are the type
that wants to understand everything, or you are actually interested in
what they do, read on.

Variables may be referenced inside the name of a variable. This is
called a computed variable name or a nested variable reference. For
example,

x = y
y = z
a := $($(x))

c y g n u s s u p p o r t 55

GNU make

defines a as ‘z’: the ‘$(x)’ inside ‘$($(x))’ expands to ‘y’, so ‘$($(x))’
expands to ‘$(y)’ which in turn expands to ‘z’. Here the name of the
variable to reference is not stated explicitly; it is computed by expansion
of ‘$(x)’. The reference ‘$(x)’ here is nested within the outer variable
reference.

The previous example shows two levels of nesting, but any number of
levels is possible. For example, here are three levels:

x = y
y = z
z = u
a := $($($(x)))

Here the innermost ‘$(x)’ expands to ‘y’, so ‘$($(x))’ expands to ‘$(y)’
which in turn expands to ‘z’; now we have ‘$(z)’, which becomes ‘u’.

References to recursively-expanded variables within a variable name
are reexpanded in the usual fashion. For example:

x = $(y)

y = z

z = Hello

a := $($(x))

defines a as ‘Hello’: ‘$($(x))’ becomes ‘$($(y))’ which becomes ‘$(z)’
which becomes ‘Hello’.

Nested variable references can also contain modified references and
function invocations (see Chapter 8 “Functions for Transforming Text,”
page 71), just like any other reference. For example, using the subst
function (see Section 8.2 “Functions for String Substitution and Analy-
sis,” page 72):

x = variable1

variable2 := Hello

y = $(subst 1,2,$(x))

z = y
a := $($($(z)))

eventually defines a as ‘Hello’. It is doubtful that anyone would ever
want to write a nested reference as convoluted as this one, but it
works: ‘$($($(z)))’ expands to ‘$($(y))’ which becomes ‘$($(subst
1,2,$(x)))’. This gets the value ‘variable1’ from x and changes
it by substitution to ‘variable2’, so that the entire string becomes
‘$(variable2)’, a simple variable reference whose value is ‘Hello’.

A computed variable name need not consist entirely of a single vari-
able reference. It can contain several variable references, as well as
some invariant text. For example,

a_dirs := dira dirb
1_dirs := dir1 dir2

56 7 July 1995

Chapter 6: How to Use Variables

a_files := filea fileb

1_files := file1 file2

ifeq "$(use_a)" "yes"

a1 := a

else

a1 := 1
endif

ifeq "$(use_dirs)" "yes"
df := dirs

else

df := files

endif

dirs := $($(a1)_$(df))

will give dirs the same value as a_dirs, 1_dirs, a_files or 1_files
depending on the settings of use_a and use_dirs.

Computed variable names can also be used in substitution references:

a_objects := a.o b.o c.o

1_objects := 1.o 2.o 3.o

sources := $($(a1)_objects:.o=.c)

defines sources as either ‘a.c b.c c.c’ or ‘1.c 2.c 3.c’, depending on
the value of a1.

The only restriction on this sort of use of nested variable references
is that they cannot specify part of the name of a function to be called.
This is because the test for a recognized function name is done before
the expansion of nested references. For example,

ifdef do_sort

func := sort

else

func := strip
endif

bar := a d b g q c

foo := $($(func) $(bar))

attempts to give ‘foo’ the value of the variable ‘sort a d b g q c’ or ‘strip
a d b g q c’, rather than giving ‘a d b g q c’ as the argument to either the
sort or the strip function. This restriction could be removed in the
future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of a
variable assignment, or in a define directive, as in:

c y g n u s s u p p o r t 57

GNU make

dir = foo

$(dir)_sources := $(wildcard $(dir)/*.c)

define $(dir)_print

lpr $($(dir)_sources)
endef

This example defines the variables ‘dir’, ‘foo_sources’, and ‘foo_print’.
Note that nested variable references are quite different from recur-

sively expanded variables (see Section 6.2 “The Two Flavors of Vari-
ables,” page 52), though both are used together in complex ways when
doing makefile programming.

6.4 How Variables Get Their Values

Variables can get values in several different ways:
� You can specify an overriding value when you run make. See Sec-

tion 9.5 “Overriding Variables,” page 87.
� You can specify a value in the makefile, either with an assignment

(see Section 6.5 “Setting Variables,” page 58) or with a verbatim
definition (see Section 6.8 “Defining Variables Verbatim,” page 61).

� Variables in the environment become make variables. See Section 6.9
“Variables from the Environment,” page 62.

� Several automatic variables are given new values for each rule.
Each of these has a single conventional use. See Section 10.5.3
“Automatic Variables,” page 106.

� Several variables have constant initial values. See Section 10.3
“Variables Used by Implicit Rules,” page 100.

6.5 Setting Variables

To set a variable from the makefile, write a line starting with the
variable name followed by ‘=’ or ‘:=’. Whatever follows the ‘=’ or ‘:=’ on
the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

defines a variable named objects. Whitespace around the variable
name and immediately after the ‘=’ is ignored.

Variables defined with ‘=’ are recursively expanded variables. Vari-
ables defined with ‘:=’ are simply expanded variables; these definitions
can contain variable references which will be expanded before the defi-
nition is made. See Section 6.2 “The Two Flavors of Variables,” page 52.

58 7 July 1995

Chapter 6: How to Use Variables

The variable name may contain function and variable references,
which are expanded when the line is read to find the actual variable
name to use.

There is no limit on the length of the value of a variable except the
amount of swapping space on the computer. When a variable definition is
long, it is a good idea to break it into several lines by inserting backslash-
newline at convenient places in the definition. This will not affect the
functioning of make, but it will make the makefile easier to read.

Most variable names are considered to have the empty string as a
value if you have never set them. Several variables have built-in initial
values that are not empty, but you can set them in the usual ways (see
Section 10.3 “Variables Used by Implicit Rules,” page 100). Several
special variables are set automatically to a new value for each rule;
these are called the automatic variables (see Section 10.5.3 “Automatic
Variables,” page 106).

6.6 Appending More Text to Variables

Often it is useful to add more text to the value of a variable already
defined. You do this with a line containing ‘+=’, like this:

objects += another.o

This takes the value of the variable objects, and adds the text
‘another.o’ to it (preceded by a single space). Thus:

objects = main.o foo.o bar.o utils.o
objects += another.o

sets objects to ‘main.o foo.o bar.o utils.o another.o’.
Using ‘+=’ is similar to:
objects = main.o foo.o bar.o utils.o
objects := $(objects) another.o

but differs in ways that become important when you use more complex
values.

When the variable in question has not been defined before, ‘+=’ acts
just like normal ‘=’: it defines a recursively-expanded variable. However,
when there is a previous definition, exactly what ‘+=’ does depends on
what flavor of variable you defined originally. See Section 6.2 “The Two
Flavors of Variables,” page 52, for an explanation of the two flavors of
variables.

When you add to a variable’s value with ‘+=’, make acts essentially as
if you had included the extra text in the initial definition of the variable.
If you defined it first with ‘:=’, making it a simply-expanded variable,
‘+=’ adds to that simply-expanded definition, and expands the new text

c y g n u s s u p p o r t 59

GNU make

before appending it to the old value just as ‘:=’ does (see Section 6.5
“Setting Variables,” page 58, for a full explanation of ‘:=’). In fact,

variable := value
variable += more

is exactly equivalent to:
variable := value
variable := $(variable) more

On the other hand, when you use ‘+=’ with a variable that you defined
first to be recursively-expanded using plain ‘=’, make does something
a bit different. Recall that when you define a recursively-expanded
variable, make does not expand the value you set for variable and function
references immediately. Instead it stores the text verbatim, and saves
these variable and function references to be expanded later, when you
refer to the new variable (see Section 6.2 “The Two Flavors of Variables,”
page 52). When you use ‘+=’ on a recursively-expanded variable, it is
this unexpanded text to which make appends the new text you specify.

variable = value
variable += more

is roughly equivalent to:
temp = value

variable = $(temp) more

except that of course it never defines a variable called temp. The im-
portance of this comes when the variable’s old value contains variable
references. Take this common example:

CFLAGS = $(includes) -O
...
CFLAGS += -pg # enable profiling

The first line defines the CFLAGS variable with a reference to another
variable, includes. (CFLAGS is used by the rules for C compilation;
see Section 10.2 “Catalogue of Implicit Rules,” page 96.) Using ‘=’ for
the definition makes CFLAGS a recursively-expanded variable, meaning
‘$(includes) -O’ is not expanded when make processes the definition of
CFLAGS. Thus, includes need not be defined yet for its value to take
effect. It only has to be defined before any reference to CFLAGS. If we
tried to append to the value of CFLAGS without using ‘+=’, we might do it
like this:

CFLAGS := $(CFLAGS) -pg # enable profiling

This is pretty close, but not quite what we want. Using ‘:=’ redefines
CFLAGS as a simply-expanded variable; this means make expands the
text ‘$(CFLAGS) -pg’ before setting the variable. If includes is not yet
defined, we get ‘ -O -pg’, and a later definition of includes will have no
effect. Conversely, by using ‘+=’ we set CFLAGS to the unexpanded value
‘$(includes) -O -pg’. Thus we preserve the reference to includes, so if

60 7 July 1995

Chapter 6: How to Use Variables

that variable gets defined at any later point, a reference like ‘$(CFLAGS)’
still uses its value.

6.7 The override Directive

If a variable has been set with a command argument (see Section 9.5
“Overriding Variables,” page 87), then ordinary assignments in the
makefile are ignored. If you want to set the variable in the makefile even
though it was set with a command argument, you can use an override
directive, which is a line that looks like this:

override variable = value

or
override variable := value

To append more text to a variable defined on the command line, use:
override variable += more text

See Section 6.6 “Appending More Text to Variables,” page 59.
The override directive was not invented for escalation in the war

between makefiles and command arguments. It was invented so you can
alter and add to values that the user specifies with command arguments.

For example, suppose you always want the ‘-g’ switch when you run
the C compiler, but you would like to allow the user to specify the other
switches with a command argument just as usual. You could use this
override directive:

override CFLAGS += -g

You can also use override directives with define directives. This is
done as you might expect:

override define foo
bar
endef

See the next section for information about define.

6.8 Defining Variables Verbatim

Another way to set the value of a variable is to use the define di-
rective. This directive has an unusual syntax which allows newline
characters to be included in the value, which is convenient for defin-
ing canned sequences of commands (see Section 5.7 “Defining Canned
Command Sequences,” page 47).

The define directive is followed on the same line by the name of the
variable and nothing more. The value to give the variable appears on
the following lines. The end of the value is marked by a line containing

c y g n u s s u p p o r t 61

GNU make

just the word endef. Aside from this difference in syntax, define works
just like ‘=’: it creates a recursively-expanded variable (see Section 6.2
“The Two Flavors of Variables,” page 52). The variable name may contain
function and variable references, which are expanded when the directive
is read to find the actual variable name to use.

define two-lines
echo foo
echo $(bar)
endef

The value in an ordinary assignment cannot contain a newline; but
the newlines that separate the lines of the value in a define become
part of the variable’s value (except for the final newline which precedes
the endef and is not considered part of the value).

The previous example is functionally equivalent to this:
two-lines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two sep-
arate shell commands. However, note that using two separate lines
means make will invoke the shell twice, running an independent sub-
shell for each line. See Section 5.2 “Command Execution,” page 38.

If you want variable definitions made with define to take precedence
over command-line variable definitions, you can use the override direc-
tive together with define:

override define two-lines
foo
$(bar)
endef

See Section 6.7 “The override Directive,” page 61.

6.9 Variables from the Environment

Variables in make can come from the environment in which make is
run. Every environment variable that make sees when it starts up is
transformed into a make variable with the same name and value. But
an explicit assignment in the makefile, or with a command argument,
overrides the environment. (If the ‘-e’ flag is specified, then values from
the environment override assignments in the makefile. See Section 9.7
“Summary of Options,” page 89. But this is not recommended practice.)

Thus, by setting the variable CFLAGS in your environment, you can
cause all C compilations in most makefiles to use the compiler switches
you prefer. This is safe for variables with standard or conventional mean-
ings because you know that no makefile will use them for other things.
(But this is not totally reliable; some makefiles set CFLAGS explicitly and
therefore are not affected by the value in the environment.)

62 7 July 1995

Chapter 6: How to Use Variables

When make is invoked recursively, variables defined in the outer in-
vocation can be passed to inner invocations through the environment
(see Section 5.6 “Recursive Use of make,” page 41). By default, only vari-
ables that came from the environment or the command line are passed
to recursive invocations. You can use the export directive to pass other
variables. See Section 5.6.2 “Communicating Variables to a Sub-make,”
page 43, for full details.

Other use of variables from the environment is not recommended. It
is not wise for makefiles to depend for their functioning on environment
variables set up outside their control, since this would cause different
users to get different results from the same makefile. This is against the
whole purpose of most makefiles.

Such problems would be especially likely with the variable SHELL,
which is normally present in the environment to specify the user’s choice
of interactive shell. It would be very undesirable for this choice to affect
make. So make ignores the environment value of SHELL.

c y g n u s s u p p o r t 63

GNU make

64 7 July 1995

Chapter 7: Conditional Parts of Makefiles

7 Conditional Parts of Makefiles

A conditional causes part of a makefile to be obeyed or ignored de-
pending on the values of variables. Conditionals can compare the value
of one variable to another, or the value of a variable to a constant string.
Conditionals control what make actually “sees” in the makefile, so they
cannot be used to control shell commands at the time of execution.

7.1 Example of a Conditional

The following example of a conditional tells make to use one set of
libraries if the CC variable is ‘gcc’, and a different set of libraries other-
wise. It works by controlling which of two command lines will be used
as the command for a rule. The result is that ‘CC=gcc’ as an argument
to make changes not only which compiler is used but also which libraries
are linked.

libs_for_gcc = -lgnu
normal_libs =

foo: $(objects)
ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)
else

$(CC) -o foo $(objects) $(normal_libs)
endif

This conditional uses three directives: one ifeq, one else and one
endif.

The ifeq directive begins the conditional, and specifies the condition.
It contains two arguments, separated by a comma and surrounded by
parentheses. Variable substitution is performed on both arguments and
then they are compared. The lines of the makefile following the ifeq are
obeyed if the two arguments match; otherwise they are ignored.

The else directive causes the following lines to be obeyed if the previ-
ous conditional failed. In the example above, this means that the second
alternative linking command is used whenever the first alternative is
not used. It is optional to have an else in a conditional.

The endif directive ends the conditional. Every conditional must end
with an endif. Unconditional makefile text follows.

As this example illustrates, conditionals work at the textual level: the
lines of the conditional are treated as part of the makefile, or ignored,
according to the condition. This is why the larger syntactic units of
the makefile, such as rules, may cross the beginning or the end of the
conditional.

c y g n u s s u p p o r t 65

GNU make

When the variable CC has the value ‘gcc’, the above example has this
effect:

foo: $(objects)
$(CC) -o foo $(objects) $(libs_for_gcc)

When the variable CC has any other value, the effect is this:
foo: $(objects)

$(CC) -o foo $(objects) $(normal_libs)

Equivalent results can be obtained in another way by conditionalizing
a variable assignment and then using the variable unconditionally:

libs_for_gcc = -lgnu
normal_libs =

ifeq ($(CC),gcc)
libs=$(libs_for_gcc)

else
libs=$(normal_libs)

endif

foo: $(objects)
$(CC) -o foo $(objects) $(libs)

7.2 Syntax of Conditionals

The syntax of a simple conditional with no else is as follows:
conditional-directive
text-if-true
endif

The text-if-true may be any lines of text, to be considered as part of
the makefile if the condition is true. If the condition is false, no text is
used instead.

The syntax of a complex conditional is as follows:
conditional-directive
text-if-true
else
text-if-false
endif

If the condition is true, text-if-true is used; otherwise, text-if-false
is used instead. The text-if-false can be any number of lines of text.

The syntax of the conditional-directive is the same whether the
conditional is simple or complex. There are four different directives that
test different conditions. Here is a table of them:

66 7 July 1995

Chapter 7: Conditional Parts of Makefiles

ifeq (arg1, arg2)
ifeq ’arg1’ ’arg2’
ifeq "arg1" "arg2"
ifeq "arg1" ’arg2’
ifeq ’arg1’ "arg2"

Expand all variable references in arg1 and arg2 and compare
them. If they are identical, the text-if-true is effective;
otherwise, the text-if-false, if any, is effective.

Often you want to test if a variable has a non-empty value.
When the value results from complex expansions of variables
and functions, expansions you would consider empty may
actually contain whitespace characters and thus are not seen
as empty. However, you can use the strip function (see
Section 8.2 “Text Functions,” page 72) to avoid interpreting
whitespace as a non-empty value. For example:

ifeq ($(strip $(foo)),)

text-if-empty
endif

will evaluate text-if-empty even if the expansion of $(foo)
contains whitespace characters.

ifneq (arg1, arg2)
ifneq ’arg1’ ’arg2’
ifneq "arg1" "arg2"
ifneq "arg1" ’arg2’
ifneq ’arg1’ "arg2"

Expand all variable references in arg1 and arg2 and compare
them. If they are different, the text-if-true is effective;
otherwise, the text-if-false, if any, is effective.

ifdef variable-name
If the variable variable-name has a non-empty value, the
text-if-true is effective; otherwise, the text-if-false, if
any, is effective. Variables that have never been defined have
an empty value.

Note that ifdef only tests whether a variable has a value. It
does not expand the variable to see if that value is nonempty.
Consequently, tests using ifdef return true for all definitions
except those like foo =. To test for an empty value, use
ifeq ($(foo),). For example,

c y g n u s s u p p o r t 67

GNU make

bar =

foo = $(bar)

ifdef foo

frobozz = yes
else

frobozz = no

endif

sets ‘frobozz’ to ‘yes’, while:
foo =

ifdef foo

frobozz = yes
else

frobozz = no

endif

sets ‘frobozz’ to ‘no’.

ifndef variable-name
If the variable variable-name has an empty value, the text-
if-true is effective; otherwise, the text-if-false, if any, is
effective.

Extra spaces are allowed and ignored at the beginning of the condi-
tional directive line, but a tab is not allowed. (If the line begins with a
tab, it will be considered a command for a rule.) Aside from this, extra
spaces or tabs may be inserted with no effect anywhere except within
the directive name or within an argument. A comment starting with ‘#’
may appear at the end of the line.

The other two directives that play a part in a conditional are else
and endif. Each of these directives is written as one word, with no
arguments. Extra spaces are allowed and ignored at the beginning of
the line, and spaces or tabs at the end. A comment starting with ‘#’ may
appear at the end of the line.

Conditionals affect which lines of the makefile make uses. If the
condition is true, make reads the lines of the text-if-true as part of the
makefile; if the condition is false, make ignores those lines completely. It
follows that syntactic units of the makefile, such as rules, may safely be
split across the beginning or the end of the conditional.

make evaluates conditionals when it reads a makefile. Consequently,
you cannot use automatic variables in the tests of conditionals because
they are not defined until commands are run (see Section 10.5.3 “Auto-
matic Variables,” page 106).

To prevent intolerable confusion, it is not permitted to start a condi-
tional in one makefile and end it in another. However, you may write an

68 7 July 1995

Chapter 7: Conditional Parts of Makefiles

include directive within a conditional, provided you do not attempt to
terminate the conditional inside the included file.

7.3 Conditionals that Test Flags

You can write a conditional that tests make command flags such as
‘-t’ by using the variable MAKEFLAGS together with the findstring func-
tion (see Section 8.2 “Functions for String Substitution and Analysis,”
page 72). This is useful when touch is not enough to make a file appear
up to date.

The findstring function determines whether one string appears as
a substring of another. If you want to test for the ‘-t’ flag, use ‘t’ as the
first string and the value of MAKEFLAGS as the other.

For example, here is how to arrange to use ‘ranlib -t’ to finish mark-
ing an archive file up to date:

archive.a: ...
ifneq (,$(findstring t,$(MAKEFLAGS)))

+touch archive.a
+ranlib -t archive.a

else
ranlib archive.a

endif

The ‘+’ prefix marks those command lines as “recursive” so that they will
be executed despite use of the ‘-t’ flag. See Section 5.6 “Recursive Use
of make,” page 41.

c y g n u s s u p p o r t 69

GNU make

70 7 July 1995

Chapter 8: Functions for Transforming Text

8 Functions for Transforming Text

Functions allow you to do text processing in the makefile to compute
the files to operate on or the commands to use. You use a function in a
function call, where you give the name of the function and some text (the
arguments) for the function to operate on. The result of the function’s
processing is substituted into the makefile at the point of the call, just
as a variable might be substituted.

8.1 Function Call Syntax

A function call resembles a variable reference. It looks like this:
$(function arguments)

or like this:
${function arguments}

Here function is a function name; one of a short list of names that
are part of make. There is no provision for defining new functions.

The arguments are the arguments of the function. They are sep-
arated from the function name by one or more spaces or tabs, and if
there is more than one argument, then they are separated by commas.
Such whitespace and commas are not part of an argument’s value. The
delimiters which you use to surround the function call, whether paren-
theses or braces, can appear in an argument only in matching pairs; the
other kind of delimiters may appear singly. If the arguments themselves
contain other function calls or variable references, it is wisest to use the
same kind of delimiters for all the references; write ‘$(subst a,b,$(x))’,
not ‘$(subst a,b,${x})’. This is because it is clearer, and because only
one type of delimiter is matched to find the end of the reference.

The text written for each argument is processed by substitution of
variables and function calls to produce the argument value, which is the
text on which the function acts. The substitution is done in the order in
which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the
text of an argument as written; leading spaces cannot appear in the text
of the first argument as written. These characters can be put into the
argument value by variable substitution. First define variables comma
and space whose values are isolated comma and space characters, then
substitute these variables where such characters are wanted, like this:

c y g n u s s u p p o r t 71

GNU make

comma:= ,

empty:=

space:= $(empty) $(empty)

foo:= a b c
bar:= $(subst $(space),$(comma),$(foo))

bar is now ‘a,b,c’.

Here the subst function replaces each space with a comma, through the
value of foo, and substitutes the result.

8.2 Functions for String Substitution and
Analysis

Here are some functions that operate on strings:

$(subst from,to,text)
Performs a textual replacement on the text text: each oc-
currence of from is replaced by to. The result is substituted
for the function call. For example,

$(subst ee,EE,feet on the street)

substitutes the string ‘fEEt on the strEEt’.

$(patsubst pattern,replacement,text)
Finds whitespace-separated words in text that match pat-
tern and replaces them with replacement. Here pattern
may contain a ‘%’ which acts as a wildcard, matching any
number of any characters within a word. If replacement
also contains a ‘%’, the ‘%’ is replaced by the text that matched
the ‘%’ in pattern.
‘%’ characters in patsubst function invocations can be quoted
with preceding backslashes (‘\’). Backslashes that would
otherwise quote ‘%’ characters can be quoted with more back-
slashes. Backslashes that quote ‘%’ characters or other back-
slashes are removed from the pattern before it is compared
file names or has a stem substituted into it. Backslashes
that are not in danger of quoting ‘%’ characters go unmo-
lested. For example, the pattern ‘the\%weird\\%pattern\\’
has ‘the%weird\’ preceding the operative ‘%’ character, and
‘pattern\\’ following it. The final two backslashes are left
alone because they cannot affect any ‘%’ character.
Whitespace between words is folded into single space char-
acters; leading and trailing whitespace is discarded.
For example,

$(patsubst %.c,%.o,x.c.c bar.c)

72 7 July 1995

Chapter 8: Functions for Transforming Text

produces the value ‘x.c.o bar.o’.
Substitution references (see Section 6.3.1 “Substitution Ref-
erences,” page 55) are a simpler way to get the effect of the
patsubst function:

$(var:pattern=replacement)

is equivalent to
$(patsubst pattern,replacement,$(var))

The second shorthand simplifies one of the most common
uses of patsubst: replacing the suffix at the end of file names.

$(var:suffix=replacement)

is equivalent to
$(patsubst %suffix,%replacement,$(var))

For example, you might have a list of object files:
objects = foo.o bar.o baz.o

To get the list of corresponding source files, you could simply
write:

$(objects:.o=.c)

instead of using the general form:
$(patsubst %.o,%.c,$(objects))

$(strip string)
Removes leading and trailing whitespace from string and
replaces each internal sequence of one or more whitespace
characters with a single space. Thus, ‘$(strip a b c)’ re-
sults in ‘a b c’.
The function strip can be very useful when used in conjunc-
tion with conditionals. When comparing something with the
empty string ‘’ using ifeq or ifneq, you usually want a string
of just whitespace to match the empty string (see Chapter 7
“Conditionals,” page 65).
Thus, the following may fail to have the desired results:

.PHONY: all
ifneq "$(needs_made)" ""
all: $(needs_made)
else
all:;@echo ’Nothing to make!’
endif

Replacing the variable reference ‘$(needs_made)’ with the
function call ‘$(strip $(needs_made))’ in the ifneq direc-
tive would make it more robust.

$(findstring find,in)
Searches in for an occurrence of find. If it occurs, the value
is find; otherwise, the value is empty. You can use this

c y g n u s s u p p o r t 73

GNU make

function in a conditional to test for the presence of a specific
substring in a given string. Thus, the two examples,

$(findstring a,a b c)
$(findstring a,b c)

produce the values ‘a’ and ‘’ (the empty string), respectively.
See Section 7.3 “Testing Flags,” page 69, for a practical ap-
plication of findstring.

$(filter pattern...,text)
Removes all whitespace-separated words in text that do not
match any of the pattern words, returning only matching
words. The patterns are written using ‘%’, just like the pat-
terns used in the patsubst function above.
The filter function can be used to separate out different
types of strings (such as file names) in a variable. For exam-
ple:

sources := foo.c bar.c baz.s ugh.h
foo: $(sources)

cc $(filter %.c %.s,$(sources)) -o foo

says that ‘foo’ depends of ‘foo.c’, ‘bar.c’, ‘baz.s’ and ‘ugh.h’
but only ‘foo.c’, ‘bar.c’ and ‘baz.s’ should be specified in the
command to the compiler.

$(filter-out pattern.. .,text)
Removes all whitespace-separated words in text that do
match the pattern words, returning only the words that do
not match. This is the exact opposite of the filter function.
For example, given:

objects=main1.o foo.o main2.o bar.o

mains=main1.o main2.o

the following generates a list which contains all the object
files not in ‘mains’:

$(filter-out $(mains),$(objects))

$(sort list)
Sorts the words of list in lexical order, removing duplicate
words. The output is a list of words separated by single
spaces. Thus,

$(sort foo bar lose)

returns the value ‘bar foo lose’.
Incidentally, since sort removes duplicate words, you can
use it for this purpose even if you don’t care about the sort
order.

Here is a realistic example of the use of subst and patsubst. Suppose
that a makefile uses the VPATH variable to specify a list of directories that

74 7 July 1995

Chapter 8: Functions for Transforming Text

make should search for dependency files (see Section 4.3.1 “VPATH Search
Path for All Dependencies,” page 21). This example shows how to tell
the C compiler to search for header files in the same list of directories.

The value of VPATH is a list of directories separated by colons, such as
‘src:../headers’. First, the subst function is used to change the colons
to spaces:

$(subst :, ,$(VPATH))

This produces ‘src ../headers’. Then patsubst is used to turn each
directory name into a ‘-I’ flag. These can be added to the value of the
variable CFLAGS, which is passed automatically to the C compiler, like
this:

override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))

The effect is to append the text ‘-Isrc -I../headers’ to the previously
given value of CFLAGS. The override directive is used so that the new
value is assigned even if the previous value of CFLAGS was specified
with a command argument (see Section 6.7 “The override Directive,”
page 61).

8.3 Functions for File Names

Several of the built-in expansion functions relate specifically to taking
apart file names or lists of file names.

Each of the following functions performs a specific transformation on
a file name. The argument of the function is regarded as a series of file
names, separated by whitespace. (Leading and trailing whitespace is
ignored.) Each file name in the series is transformed in the same way
and the results are concatenated with single spaces between them.

$(dir names.. .)
Extracts the directory-part of each file name in names. The
directory-part of the file name is everything up through (and
including) the last slash in it. If the file name contains no
slash, the directory part is the string ‘./’. For example,

$(dir src/foo.c hacks)

produces the result ‘src/ ./’.

$(notdir names...)
Extracts all but the directory-part of each file name in names.
If the file name contains no slash, it is left unchanged. Oth-
erwise, everything through the last slash is removed from
it.
A file name that ends with a slash becomes an empty string.
This is unfortunate, because it means that the result does

c y g n u s s u p p o r t 75

GNU make

not always have the same number of whitespace-separated
file names as the argument had; but we do not see any other
valid alternative.
For example,

$(notdir src/foo.c hacks)

produces the result ‘foo.c hacks’.

$(suffix names...)
Extracts the suffix of each file name in names. If the file name
contains a period, the suffix is everything starting with the
last period. Otherwise, the suffix is the empty string. This
frequently means that the result will be empty when names
is not, and if names contains multiple file names, the result
may contain fewer file names.
For example,

$(suffix src/foo.c hacks)

produces the result ‘.c’.

$(basename names...)
Extracts all but the suffix of each file name in names. If
the file name contains a period, the basename is everything
starting up to (and not including) the last period. Otherwise,
the basename is the entire file name. For example,

$(basename src/foo.c hacks)

produces the result ‘src/foo hacks’.

$(addsuffix suffix,names...)
The argument names is regarded as a series of names, sep-
arated by whitespace; suffix is used as a unit. The value
of suffix is appended to the end of each individual name
and the resulting larger names are concatenated with single
spaces between them. For example,

$(addsuffix .c,foo bar)

produces the result ‘foo.c bar.c’.

$(addprefix prefix,names...)
The argument names is regarded as a series of names, sep-
arated by whitespace; prefix is used as a unit. The value
of prefix is prepended to the front of each individual name
and the resulting larger names are concatenated with single
spaces between them. For example,

$(addprefix src/,foo bar)

produces the result ‘src/foo src/bar’.

76 7 July 1995

Chapter 8: Functions for Transforming Text

$(join list1,list2)
Concatenates the two arguments word by word: the two first
words (one from each argument) concatenated form the first
word of the result, the two second words form the second
word of the result, and so on. So the nth word of the result
comes from the nth word of each argument. If one argument
has more words that the other, the extra words are copied
unchanged into the result.

For example, ‘$(join a b,.c .o)’ produces ‘a.c b.o’.

Whitespace between the words in the lists is not preserved;
it is replaced with a single space.

This function can merge the results of the dir and notdir
functions, to produce the original list of files which was given
to those two functions.

$(word n,text)
Returns the nth word of text. The legitimate values of n
start from 1. If n is bigger than the number of words in text,
the value is empty. For example,

$(word 2, foo bar baz)

returns ‘bar’.

$(words text)
Returns the number of words in text. Thus, the last word of
text is $(word $(words text),text).

$(firstword names...)
The argument names is regarded as a series of names, sep-
arated by whitespace. The value is the first name in the
series. The rest of the names are ignored.

For example,
$(firstword foo bar)

produces the result ‘foo’. Although $(firstword text) is the
same as $(word 1,text), the firstword function is retained
for its simplicity.

$(wildcard pattern)
The argument pattern is a file name pattern, typically con-
taining wildcard characters (as in shell file name patterns).
The result of wildcard is a space-separated list of the names
of existing files that match the pattern. See Section 4.2 “Us-
ing Wildcard Characters in File Names,” page 18.

c y g n u s s u p p o r t 77

GNU make

8.4 The foreach Function

The foreach function is very different from other functions. It causes
one piece of text to be used repeatedly, each time with a different sub-
stitution performed on it. It resembles the for command in the shell sh
and the foreach command in the C-shell csh.

The syntax of the foreach function is:
$(foreach var,list,text)

The first two arguments, var and list, are expanded before anything
else is done; note that the last argument, text, is not expanded at
the same time. Then for each word of the expanded value of list, the
variable named by the expanded value of var is set to that word, and
text is expanded. Presumably text contains references to that variable,
so its expansion will be different each time.

The result is that text is expanded as many times as there are
whitespace-separated words in list. The multiple expansions of text
are concatenated, with spaces between them, to make the result of
foreach.

This simple example sets the variable ‘files’ to the list of all files in
the directories in the list ‘dirs’:

dirs := a b c d
files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

Here text is ‘$(wildcard $(dir)/*)’. The first repetition finds the
value ‘a’ for dir, so it produces the same result as ‘$(wildcard a/*)’;
the second repetition produces the result of ‘$(wildcard b/*)’; and the
third, that of ‘$(wildcard c/*)’.

This example has the same result (except for setting ‘dirs’) as the
following example:

files := $(wildcard a/* b/* c/* d/*)

When text is complicated, you can improve readability by giving it a
name, with an additional variable:

find_files = $(wildcard $(dir)/*)
dirs := a b c d
files := $(foreach dir,$(dirs),$(find_files))

Here we use the variable find_files this way. We use plain ‘=’ to define
a recursively-expanding variable, so that its value contains an actual
function call to be reexpanded under the control of foreach; a simply-
expanded variable would not do, since wildcard would be called only
once at the time of defining find_files.

The foreach function has no permanent effect on the variable var;
its value and flavor after the foreach function call are the same as they
were beforehand. The other values which are taken from list are in

78 7 July 1995

Chapter 8: Functions for Transforming Text

effect only temporarily, during the execution of foreach. The variable
var is a simply-expanded variable during the execution of foreach. If
var was undefined before the foreach function call, it is undefined after
the call. See Section 6.2 “The Two Flavors of Variables,” page 52.

You must take care when using complex variable expressions that
result in variable names because many strange things are valid variable
names, but are probably not what you intended. For example,

files := $(foreach Esta escrito en espanol!,b c ch,$(find_files))

might be useful if the value of find_files references the variable whose
name is ‘Esta escrito en espanol!’ (es un nombre bastante largo, no?),
but it is more likely to be a mistake.

8.5 The origin Function

The origin function is unlike most other functions in that it does
not operate on the values of variables; it tells you something about a
variable. Specifically, it tells you where it came from.

The syntax of the origin function is:
$(origin variable)

Note that variable is the name of a variable to inquire about; not a
reference to that variable. Therefore you would not normally use a ‘$’ or
parentheses when writing it. (You can, however, use a variable reference
in the name if you want the name not to be a constant.)

The result of this function is a string telling you how the variable
variable was defined:

‘undefined’
if variable was never defined.

‘default’
if variable has a default definition, as is usual with CC and
so on. See Section 10.3 “Variables Used by Implicit Rules,”
page 100. Note that if you have redefined a default vari-
able, the origin function will return the origin of the later
definition.

‘environment’
if variable was defined as an environment variable and the
‘-e’ option is not turned on (see Section 9.7 “Summary of
Options,” page 89).

‘environment override’
if variable was defined as an environment variable and the
‘-e’ option is turned on (see Section 9.7 “Summary of Op-
tions,” page 89).

c y g n u s s u p p o r t 79

GNU make

‘file’
if variable was defined in a makefile.

‘command line’
if variable was defined on the command line.

‘override’
if variable was defined with an override directive in a
makefile (see Section 6.7 “The override Directive,” page 61).

‘automatic’
if variable is an automatic variable defined for the execution
of the commands for each rule (see Section 10.5.3 “Automatic
Variables,” page 106).

This information is primarily useful (other than for your curiosity) to
determine if you want to believe the value of a variable. For example,
suppose you have a makefile ‘foo’ that includes another makefile ‘bar’.
You want a variable bletch to be defined in ‘bar’ if you run the command
‘make -f bar’, even if the environment contains a definition of bletch.
However, if ‘foo’ defined bletch before including ‘bar’, you do not want
to override that definition. This could be done by using an override
directive in ‘foo’, giving that definition precedence over the later defini-
tion in ‘bar’; unfortunately, the override directive would also override
any command line definitions. So, ‘bar’ could include:

ifdef bletch

ifeq "$(origin bletch)" "environment"

bletch = barf, gag, etc.

endif

endif

If bletch has been defined from the environment, this will redefine it.
If you want to override a previous definition of bletch if it came from

the environment, even under ‘-e’, you could instead write:
ifneq "$(findstring environment,$(origin bletch))" ""

bletch = barf, gag, etc.

endif

Here the redefinition takes place if ‘$(origin bletch)’ returns either
‘environment’ or ‘environment override’. See Section 8.2 “Functions for
String Substitution and Analysis,” page 72.

8.6 The shell Function

The shell function is unlike any other function except the wildcard
function (see Section 4.2.3 “The Function wildcard,” page 20) in that it
communicates with the world outside of make.

80 7 July 1995

Chapter 8: Functions for Transforming Text

The shell function performs the same function that backquotes (‘‘’)
perform in most shells: it does command expansion. This means that
it takes an argument that is a shell command and returns the output
of the command. The only processing make does on the result, before
substituting it into the surrounding text, is to convert newlines to spaces.

The commands run by calls to the shell function are run when the
function calls are expanded. In most cases, this is when the makefile
is read in. The exception is that function calls in the commands of the
rules are expanded when the commands are run, and this applies to
shell function calls like all others.

Here are some examples of the use of the shell function:
contents := $(shell cat foo)

sets contents to the contents of the file ‘foo’, with a space (rather than
a newline) separating each line.

files := $(shell echo *.c)

sets files to the expansion of ‘*.c’. Unless make is using a very strange
shell, this has the same result as ‘$(wildcard *.c)’.

c y g n u s s u p p o r t 81

GNU make

82 7 July 1995

Chapter 9: How to Run make

9 How to Run make

A makefile that says how to recompile a program can be used in more
than one way. The simplest use is to recompile every file that is out
of date. Usually, makefiles are written so that if you run make with no
arguments, it does just that.

But you might want to update only some of the files; you might want
to use a different compiler or different compiler options; you might want
just to find out which files are out of date without changing them.

By giving arguments when you run make, you can do any of these
things and many others.

The exit status of make is always one of three values:

0 The exit status is zero if make is successful.

2 The exit status is two if make encounters any errors. It will
print messages describing the particular errors.

1 The exit status is one if you use the ‘-q’ flag and make de-
termines that some target is not already up to date. See
Section 9.3 “Instead of Executing the Commands,” page 85.

9.1 Arguments to Specify the Makefile

The way to specify the name of the makefile is with the ‘-f’ or ‘--file’
option (‘--makefile’ also works). For example, ‘-f altmake’ says to use
the file ‘altmake’ as the makefile.

If you use the ‘-f’ flag several times and follow each ‘-f’ with an
argument, all the specified files are used jointly as makefiles.

If you do not use the ‘-f’ or ‘--file’ flag, the default is to try
‘GNUmakefile’, ‘makefile’, and ‘Makefile’, in that order, and use the
first of these three which exists or can be made (see Chapter 3 “Writing
Makefiles,” page 11).

9.2 Arguments to Specify the Goals

The goals are the targets that make should strive ultimately to update.
Other targets are updated as well if they appear as dependencies of goals,
or dependencies of dependencies of goals, etc.

By default, the goal is the first target in the makefile (not counting tar-
gets that start with a period). Therefore, makefiles are usually written
so that the first target is for compiling the entire program or programs

c y g n u s s u p p o r t 83

GNU make

they describe. If the first rule in the makefile has several targets, only
the first target in the rule becomes the default goal, not the whole list.

You can specify a different goal or goals with arguments to make. Use
the name of the goal as an argument. If you specify several goals, make
processes each of them in turn, in the order you name them.

Any target in the makefile may be specified as a goal (unless it starts
with ‘-’ or contains an ‘=’, in which case it will be parsed as a switch or
variable definition, respectively). Even targets not in the makefile may
be specified, if make can find implicit rules that say how to make them.

One use of specifying a goal is if you want to compile only a part of
the program, or only one of several programs. Specify as a goal each file
that you wish to remake. For example, consider a directory containing
several programs, with a makefile that starts like this:

.PHONY: all
all: size nm ld ar as

If you are working on the program size, you might want to say
‘make size’ so that only the files of that program are recompiled.

Another use of specifying a goal is to make files that are not normally
made. For example, there may be a file of debugging output, or a version
of the program that is compiled specially for testing, which has a rule in
the makefile but is not a dependency of the default goal.

Another use of specifying a goal is to run the commands associated
with a phony target (see Section 4.4 “Phony Targets,” page 24) or empty
target (see Section 4.6 “Empty Target Files to Record Events,” page 26).
Many makefiles contain a phony target named ‘clean’ which deletes
everything except source files. Naturally, this is done only if you request
it explicitly with ‘make clean’. Following is a list of typical phony and
empty target names. See Section 14.3 “Standard Targets,” page 126,
for a detailed list of all the standard target names which GNU software
packages use.

‘all’ Make all the top-level targets the makefile knows about.

‘clean’ Delete all files that are normally created by running make.

‘mostlyclean’
Like ‘clean’, but may refrain from deleting a few files that
people normally don’t want to recompile. For example, the
‘mostlyclean’ target for GCC does not delete ‘libgcc.a’, be-
cause recompiling it is rarely necessary and takes a lot of
time.

84 7 July 1995

Chapter 9: How to Run make

‘distclean’
‘realclean’
‘clobber’ Any of these targets might be defined to delete more files than

‘clean’ does. For example, this would delete configuration
files or links that you would normally create as preparation
for compilation, even if the makefile itself cannot create these
files.

‘install’ Copy the executable file into a directory that users typically
search for commands; copy any auxiliary files that the exe-
cutable uses into the directories where it will look for them.

‘print’ Print listings of the source files that have changed.

‘tar’ Create a tar file of the source files.

‘shar’ Create a shell archive (shar file) of the source files.

‘dist’ Create a distribution file of the source files. This might be a
tar file, or a shar file, or a compressed version of one of the
above, or even more than one of the above.

‘TAGS’ Update a tags table for this program.

‘check’
‘test’ Perform self tests on the program this makefile builds.

9.3 Instead of Executing the Commands

The makefile tells make how to tell whether a target is up to date, and
how to update each target. But updating the targets is not always what
you want. Certain options specify other activities for make.

‘-n’
‘--just-print’
‘--dry-run’
‘--recon’

“No-op”. The activity is to print what commands would be
used to make the targets up to date, but not actually execute
them.

‘-t’
‘--touch’

“Touch”. The activity is to mark the targets as up to date
without actually changing them. In other words, make pre-
tends to compile the targets but does not really change their
contents.

c y g n u s s u p p o r t 85

GNU make

‘-q’
‘--question’

“Question”. The activity is to find out silently whether the
targets are up to date already; but execute no commands in
either case. In other words, neither compilation nor output
will occur.

‘-W file’
‘--what-if=file’
‘--assume-new=file’
‘--new-file=file’

“What if”. Each ‘-W’ flag is followed by a file name. The given
files’ modification times are recorded by make as being the
present time, although the actual modification times remain
the same. You can use the ‘-W’ flag in conjunction with the ‘-n’
flag to see what would happen if you were to modify specific
files.

With the ‘-n’ flag, make prints the commands that it would normally
execute but does not execute them.

With the ‘-t’ flag, make ignores the commands in the rules and uses
(in effect) the command touch for each target that needs to be remade.
The touch command is also printed, unless ‘-s’ or .SILENT is used. For
speed, make does not actually invoke the program touch. It does the
work directly.

With the ‘-q’ flag, make prints nothing and executes no commands,
but the exit status code it returns is zero if and only if the targets to be
considered are already up to date. If the exit status is one, then some
updating needs to be done. If make encounters an error, the exit status is
two, so you can distinguish an error from a target that is not up to date.

It is an error to use more than one of these three flags in the same
invocation of make.

The ‘-n’, ‘-t’, and ‘-q’ options do not affect command lines that begin
with ‘+’ characters or contain the strings ‘$(MAKE)’ or ‘${MAKE}’. Note
that only the line containing the ‘+’ character or the strings ‘$(MAKE)’
or ‘${MAKE}’ is run regardless of these options. Other lines in the same
rule are not run unless they too begin with ‘+’ or contain ‘$(MAKE)’ or
‘${MAKE}’ (See Section 5.6.1 “How the MAKE Variable Works,” page 42.)

The ‘-W’ flag provides two features:
� If you also use the ‘-n’ or ‘-q’ flag, you can see what make would do

if you were to modify some files.
� Without the ‘-n’ or ‘-q’ flag, when make is actually executing com-

mands, the ‘-W’ flag can direct make to act as if some files had been
modified, without actually modifying the files.

86 7 July 1995

Chapter 9: How to Run make

Note that the options ‘-p’ and ‘-v’ allow you to obtain other informa-
tion about make or about the makefiles in use (see Section 9.7 “Summary
of Options,” page 89).

9.4 Avoiding Recompilation of Some Files

Sometimes you may have changed a source file but you do not want to
recompile all the files that depend on it. For example, suppose you add
a macro or a declaration to a header file that many other files depend
on. Being conservative, make assumes that any change in the header
file requires recompilation of all dependent files, but you know that they
do not need to be recompiled and you would rather not waste the time
waiting for them to compile.

If you anticipate the problem before changing the header file, you
can use the ‘-t’ flag. This flag tells make not to run the commands
in the rules, but rather to mark the target up to date by changing its
last-modification date. You would follow this procedure:
1. Use the command ‘make’ to recompile the source files that really

need recompilation.
2. Make the changes in the header files.
3. Use the command ‘make -t’ to mark all the object files as up to date.

The next time you run make, the changes in the header files will not
cause any recompilation.

If you have already changed the header file at a time when some files
do need recompilation, it is too late to do this. Instead, you can use
the ‘-o file’ flag, which marks a specified file as “old” (see Section 9.7
“Summary of Options,” page 89). This means that the file itself will not
be remade, and nothing else will be remade on its account. Follow this
procedure:
1. Recompile the source files that need compilation for reasons inde-

pendent of the particular header file, with ‘make -o headerfile’. If
several header files are involved, use a separate ‘-o’ option for each
header file.

2. Touch all the object files with ‘make -t’.

9.5 Overriding Variables

An argument that contains ‘=’ specifies the value of a variable: ‘v=x’
sets the value of the variable v to x. If you specify a value in this way, all
ordinary assignments of the same variable in the makefile are ignored;
we say they have been overridden by the command line argument.

c y g n u s s u p p o r t 87

GNU make

The most common way to use this facility is to pass extra flags to
compilers. For example, in a properly written makefile, the variable
CFLAGS is included in each command that runs the C compiler, so a file
‘foo.c’ would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS affects each compilation that
occurs. The makefile probably specifies the usual value for CFLAGS, like
this:

CFLAGS=-g

Each time you run make, you can override this value if you wish. For
example, if you say ‘make CFLAGS=’-g -O’’, each C compilation will be
done with ‘cc -c -g -O’. (This illustrates how you can use quoting in
the shell to enclose spaces and other special characters in the value of a
variable when you override it.)

The variable CFLAGS is only one of many standard variables that exist
just so that you can change them this way. See Section 10.3 “Variables
Used by Implicit Rules,” page 100, for a complete list.

You can also program the makefile to look at additional variables of
your own, giving the user the ability to control other aspects of how the
makefile works by changing the variables.

When you override a variable with a command argument, you can
define either a recursively-expanded variable or a simply-expanded vari-
able. The examples shown above make a recursively-expanded variable;
to make a simply-expanded variable, write ‘:=’ instead of ‘=’. But, unless
you want to include a variable reference or function call in the value that
you specify, it makes no difference which kind of variable you create.

There is one way that the makefile can change a variable that you
have overridden. This is to use the override directive, which is a line
that looks like this: ‘override variable = value’ (see Section 6.7 “The
override Directive,” page 61).

9.6 Testing the Compilation of a Program

Normally, when an error happens in executing a shell command, make
gives up immediately, returning a nonzero status. No further commands
are executed for any target. The error implies that the goal cannot be
correctly remade, and make reports this as soon as it knows.

When you are compiling a program that you have just changed, this
is not what you want. Instead, you would rather that make try compiling
every file that can be tried, to show you as many compilation errors as
possible.

88 7 July 1995

Chapter 9: How to Run make

On these occasions, you should use the ‘-k’ or ‘--keep-going’ flag.
This tells make to continue to consider the other dependencies of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling one
object file, ‘make -k’ will continue compiling other object files even though
it already knows that linking them will be impossible. In addition to
continuing after failed shell commands, ‘make -k’ will continue as much
as possible after discovering that it does not know how to make a target
or dependency file. This will always cause an error message, but without
‘-k’, it is a fatal error (see Section 9.7 “Summary of Options,” page 89).

The usual behavior of make assumes that your purpose is to get the
goals up to date; once make learns that this is impossible, it might as well
report the failure immediately. The ‘-k’ flag says that the real purpose is
to test as much as possible of the changes made in the program, perhaps
to find several independent problems so that you can correct them all
before the next attempt to compile. This is why Emacs’ M-x compile
command passes the ‘-k’ flag by default.

9.7 Summary of Options

Here is a table of all the options make understands:

‘-b’
‘-m’ These options are ignored for compatibility with other ver-

sions of make.

‘-C dir’
‘--directory=dir’

Change to directory dir before reading the makefiles. If
multiple ‘-C’ options are specified, each is interpreted relative
to the previous one: ‘-C / -C etc’ is equivalent to ‘-C /etc’.
This is typically used with recursive invocations of make (see
Section 5.6 “Recursive Use of make,” page 41).

‘-d’
‘--debug’

Print debugging information in addition to normal process-
ing. The debugging information says which files are being
considered for remaking, which file-times are being com-
pared and with what results, which files actually need to
be remade, which implicit rules are considered and which
are applied—everything interesting about how make decides
what to do.

c y g n u s s u p p o r t 89

GNU make

‘-e’
‘--environment-overrides’

Give variables taken from the environment precedence over
variables from makefiles. See Section 6.9 “Variables from
the Environment,” page 62.

‘-f file’
‘--file=file’
‘--makefile=file’

Read the file named file as a makefile. See Chapter 3 “Writ-
ing Makefiles,” page 11.

‘-h’
‘--help’

Remind you of the options that make understands and then
exit.

‘-i’
‘--ignore-errors’

Ignore all errors in commands executed to remake files. See
Section 5.4 “Errors in Commands,” page 40.

‘-I dir’
‘--include-dir=dir’

Specifies a directory dir to search for included makefiles.
See Section 3.3 “Including Other Makefiles,” page 12. If
several ‘-I’ options are used to specify several directories,
the directories are searched in the order specified.

‘-j [jobs]’
‘--jobs=[jobs]’

Specifies the number of jobs (commands) to run simultane-
ously. With no argument, make runs as many jobs simulta-
neously as possible. If there is more than one ‘-j’ option,
the last one is effective. See Section 5.3 “Parallel Execution,”
page 38, for more information on how commands are run.

‘-k’
‘--keep-going’

Continue as much as possible after an error. While the target
that failed, and those that depend on it, cannot be remade,
the other dependencies of these targets can be processed all
the same. See Section 9.6 “Testing the Compilation of a
Program,” page 88.

90 7 July 1995

Chapter 9: How to Run make

‘-l [load]’
‘--load-average[=load]’
‘--max-load[=load]’

Specifies that no new jobs (commands) should be started if
there are other jobs running and the load average is at least
load (a floating-point number). With no argument, removes
a previous load limit. See Section 5.3 “Parallel Execution,”
page 38.

‘-n’
‘--just-print’
‘--dry-run’
‘--recon’

Print the commands that would be executed, but do not ex-
ecute them. See Section 9.3 “Instead of Executing the Com-
mands,” page 85.

‘-o file’
‘--old-file=file’
‘--assume-old=file’

Do not remake the file file even if it is older than its depen-
dencies, and do not remake anything on account of changes
in file. Essentially the file is treated as very old and its
rules are ignored. See Section 9.4 “Avoiding Recompilation
of Some Files,” page 87.

‘-p’
‘--print-data-base’

Print the data base (rules and variable values) that results
from reading the makefiles; then execute as usual or as other-
wise specified. This also prints the version information given
by the ‘-v’ switch (see below). To print the data base without
trying to remake any files, use ‘make -p -f /dev/null’.

‘-q’
‘--question’

“Question mode”. Do not run any commands, or print any-
thing; just return an exit status that is zero if the specified
targets are already up to date, one if any remaking is re-
quired, or two if an error is encountered. See Section 9.3
“Instead of Executing the Commands,” page 85.

‘-r’
‘--no-builtin-rules’

Eliminate use of the built-in implicit rules (see Chapter 10
“Using Implicit Rules,” page 95). You can still define your
own by writing pattern rules (see Section 10.5 “Defining and

c y g n u s s u p p o r t 91

GNU make

Redefining Pattern Rules,” page 104). The ‘-r’ option also
clears out the default list of suffixes for suffix rules (see Sec-
tion 10.7 “Old-Fashioned Suffix Rules,” page 111). But you
can still define your own suffixes with a rule for .SUFFIXES,
and then define your own suffix rules.

‘-s’
‘--silent’
‘--quiet’

Silent operation; do not print the commands as they are
executed. See Section 5.1 “Command Echoing,” page 37.

‘-S’
‘--no-keep-going’
‘--stop’

Cancel the effect of the ‘-k’ option. This is never necessary
except in a recursive make where ‘-k’ might be inherited from
the top-level make via MAKEFLAGS (see Section 5.6 “Recursive
Use of make,” page 41) or if you set ‘-k’ in MAKEFLAGS in your
environment.

‘-t’
‘--touch’

Touch files (mark them up to date without really changing
them) instead of running their commands. This is used to
pretend that the commands were done, in order to fool future
invocations of make. See Section 9.3 “Instead of Executing the
Commands,” page 85.

‘-v’
‘--version’

Print the version of the make program plus a copyright, a list
of authors, and a notice that there is no warranty; then exit.

‘-w’
‘--print-directory’

Print a message containing the working directory both be-
fore and after executing the makefile. This may be use-
ful for tracking down errors from complicated nests of re-
cursive make commands. See Section 5.6 “Recursive Use of
make,” page 41. (In practice, you rarely need to specify this
option since ‘make’ does it for you; see Section 5.6.4 “The
‘--print-directory’ Option,” page 47.)

‘--no-print-directory’
Disable printing of the working directory under -w. This
option is useful when -w is turned on automatically, but you

92 7 July 1995

Chapter 9: How to Run make

do not want to see the extra messages. See Section 5.6.4 “The
‘--print-directory’ Option,” page 47.

‘-W file’
‘--what-if=file’
‘--new-file=file’
‘--assume-new=file’

Pretend that the target file has just been modified. When
used with the ‘-n’ flag, this shows you what would happen
if you were to modify that file. Without ‘-n’, it is almost the
same as running a touch command on the given file before
running make, except that the modification time is changed
only in the imagination of make. See Section 9.3 “Instead of
Executing the Commands,” page 85.

‘--warn-undefined-variables’
Issue a warning message whenever make sees a reference to
an undefined variable. This can be helpful when you are
trying to debug makefiles which use variables in complex
ways.

c y g n u s s u p p o r t 93

GNU make

94 7 July 1995

Chapter 10: Using Implicit Rules

10 Using Implicit Rules

Certain standard ways of remaking target files are used very often.
For example, one customary way to make an object file is from a C source
file using the C compiler, cc.

Implicit rules tell make how to use customary techniques so that you
do not have to specify them in detail when you want to use them. For
example, there is an implicit rule for C compilation. File names deter-
mine which implicit rules are run. For example, C compilation typically
takes a ‘.c’ file and makes a ‘.o’ file. So make applies the implicit rule
for C compilation when it sees this combination of file name endings.

A chain of implicit rules can apply in sequence; for example, make will
remake a ‘.o’ file from a ‘.y’ file by way of a ‘.c’ file. See Section 10.4
“Chains of Implicit Rules,” page 103.

The built-in implicit rules use several variables in their commands
so that, by changing the values of the variables, you can change the way
the implicit rule works. For example, the variable CFLAGS controls the
flags given to the C compiler by the implicit rule for C compilation. See
Section 10.3 “Variables Used by Implicit Rules,” page 100.

You can define your own implicit rules by writing pattern rules. See
Section 10.5 “Defining and Redefining Pattern Rules,” page 104.

Suffix rules are a more limited way to define implicit rules. Pattern
rules are more general and clearer, but suffix rules are retained for
compatibility. See Section 10.7 “Old-Fashioned Suffix Rules,” page 111.

10.1 Using Implicit Rules

To allow make to find a customary method for updating a target file,
all you have to do is refrain from specifying commands yourself. Either
write a rule with no command lines, or don’t write a rule at all. Then
make will figure out which implicit rule to use based on which kind of
source file exists or can be made.

For example, suppose the makefile looks like this:
foo : foo.o bar.o

cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)

Because you mention ‘foo.o’ but do not give a rule for it, make will
automatically look for an implicit rule that tells how to update it. This
happens whether or not the file ‘foo.o’ currently exists.

If an implicit rule is found, it can supply both commands and one
or more dependencies (the source files). You would want to write a
rule for ‘foo.o’ with no command lines if you need to specify additional
dependencies, such as header files, that the implicit rule cannot supply.

c y g n u s s u p p o r t 95

GNU make

Each implicit rule has a target pattern and dependency patterns.
There may be many implicit rules with the same target pattern. For
example, numerous rules make ‘.o’ files: one, from a ‘.c’ file with the C
compiler; another, from a ‘.p’ file with the Pascal compiler; and so on.
The rule that actually applies is the one whose dependencies exist or
can be made. So, if you have a file ‘foo.c’, make will run the C compiler;
otherwise, if you have a file ‘foo.p’, make will run the Pascal compiler;
and so on.

Of course, when you write the makefile, you know which implicit rule
you want make to use, and you know it will choose that one because
you know which possible dependency files are supposed to exist. See
Section 10.2 “Catalogue of Implicit Rules,” page 96, for a catalogue of all
the predefined implicit rules.

Above, we said an implicit rule applies if the required dependencies
“exist or can be made”. A file “can be made” if it is mentioned explicitly
in the makefile as a target or a dependency, or if an implicit rule can
be recursively found for how to make it. When an implicit dependency
is the result of another implicit rule, we say that chaining is occurring.
See Section 10.4 “Chains of Implicit Rules,” page 103.

In general, make searches for an implicit rule for each target, and for
each double-colon rule, that has no commands. A file that is mentioned
only as a dependency is considered a target whose rule specifies nothing,
so implicit rule search happens for it. See Section 10.8 “Implicit Rule
Search Algorithm,” page 113, for the details of how the search is done.

Note that explicit dependencies do not influence implicit rule search.
For example, consider this explicit rule:

foo.o: foo.p

The dependency on ‘foo.p’ does not necessarily mean that make will
remake ‘foo.o’ according to the implicit rule to make an object file, a
‘.o’ file, from a Pascal source file, a ‘.p’ file. For example, if ‘foo.c’ also
exists, the implicit rule to make an object file from a C source file is used
instead, because it appears before the Pascal rule in the list of predefined
implicit rules (see Section 10.2 “Catalogue of Implicit Rules,” page 96).

If you do not want an implicit rule to be used for a target that has
no commands, you can give that target empty commands by writing a
semicolon (see Section 5.8 “Defining Empty Commands,” page 48).

10.2 Catalogue of Implicit Rules

Here is a catalogue of predefined implicit rules which are always
available unless the makefile explicitly overrides or cancels them.
See Section 10.5.6 “Canceling Implicit Rules,” page 110, for infor-

96 7 July 1995

Chapter 10: Using Implicit Rules

mation on canceling or overriding an implicit rule. The ‘-r’ or
‘--no-builtin-rules’ option cancels all predefined rules.

Not all of these rules will always be defined, even when the ‘-r’ option
is not given. Many of the predefined implicit rules are implemented in
make as suffix rules, so which ones will be defined depends on the suffix
list (the list of dependencies of the special target .SUFFIXES). The default
suffix list is: .out, .a, .ln, .o, .c, .cc, .C, .p, .f, .F, .r, .y, .l, .s, .S,
.mod, .sym, .def, .h, .info, .dvi, .tex, .texinfo, .texi, .txinfo, .w,
.ch .web, .sh, .elc, .el. All of the implicit rules described below whose
dependencies have one of these suffixes are actually suffix rules. If you
modify the suffix list, the only predefined suffix rules in effect will be
those named by one or two of the suffixes that are on the list you specify;
rules whose suffixes fail to be on the list are disabled. See Section 10.7
“Old-Fashioned Suffix Rules,” page 111, for full details on suffix rules.

Compiling C programs
‘n.o’ is made automatically from ‘n.c’ with a command of the
form ‘$(CC) -c $(CPPFLAGS) $(CFLAGS)’.

Compiling C++ programs
‘n.o’ is made automatically from ‘n.cc’ or ‘n.C’ with a com-
mand of the form ‘$(CXX) -c $(CPPFLAGS) $(CXXFLAGS)’. We
encourage you to use the suffix ‘.cc’ for C++ source files in-
stead of ‘.C’.

Compiling Pascal programs
‘n.o’ is made automatically from ‘n.p’ with the command
‘$(PC) -c $(PFLAGS)’.

Compiling Fortran and Ratfor programs
‘n.o’ is made automatically from ‘n.r’, ‘n.F’ or ‘n.f’ by run-
ning the Fortran compiler. The precise command used is as
follows:

‘.f’ ‘$(FC) -c $(FFLAGS)’.

‘.F’ ‘$(FC) -c $(FFLAGS) $(CPPFLAGS)’.

‘.r’ ‘$(FC) -c $(FFLAGS) $(RFLAGS)’.

Preprocessing Fortran and Ratfor programs
‘n.f’ is made automatically from ‘n.r’ or ‘n.F’. This rule runs
just the preprocessor to convert a Ratfor or preprocessable
Fortran program into a strict Fortran program. The precise
command used is as follows:

‘.F’ ‘$(FC) -F $(CPPFLAGS) $(FFLAGS)’.

‘.r’ ‘$(FC) -F $(FFLAGS) $(RFLAGS)’.

c y g n u s s u p p o r t 97

GNU make

Compiling Modula-2 programs
‘n.sym’ is made from ‘n.def’ with a command of the
form ‘$(M2C) $(M2FLAGS) $(DEFFLAGS)’. ‘n.o’ is made from
‘n.mod’; the form is: ‘$(M2C) $(M2FLAGS) $(MODFLAGS)’.

Assembling and preprocessing assembler programs
‘n.o’ is made automatically from ‘n.s’ by running the assem-
bler, as. The precise command is ‘$(AS) $(ASFLAGS)’.
‘n.s’ is made automatically from ‘n.S’ by running
the C preprocessor, cpp. The precise command is
‘$(CPP) $(CPPFLAGS)’.

Linking a single object file
‘n’ is made automatically from ‘n.o’ by running the linker
(usually called ld) via the C compiler. The precise command
used is ‘$(CC) $(LDFLAGS) n.o $(LOADLIBES)’.
This rule does the right thing for a simple program with only
one source file. It will also do the right thing if there are
multiple object files (presumably coming from various other
source files), one of which has a name matching that of the
executable file. Thus,

x: y.o z.o

when ‘x.c’, ‘y.c’ and ‘z.c’ all exist will execute:
cc -c x.c -o x.o

cc -c y.c -o y.o
cc -c z.c -o z.o

cc x.o y.o z.o -o x

rm -f x.o

rm -f y.o

rm -f z.o

In more complicated cases, such as when there is no object
file whose name derives from the executable file name, you
must write an explicit command for linking.

Each kind of file automatically made into ‘.o’ object files
will be automatically linked by using the compiler (‘$(CC)’,
‘$(FC)’ or ‘$(PC)’; the C compiler ‘$(CC)’ is used to assemble
‘.s’ files) without the ‘-c’ option. This could be done by using
the ‘.o’ object files as intermediates, but it is faster to do the
compiling and linking in one step, so that’s how it’s done.

Yacc for C programs
‘n.c’ is made automatically from ‘n.y’ by running Yacc with
the command ‘$(YACC) $(YFLAGS)’.

98 7 July 1995

Chapter 10: Using Implicit Rules

Lex for C programs
‘n.c’ is made automatically from ‘n.l’ by by running Lex.
The actual command is ‘$(LEX) $(LFLAGS)’.

Lex for Ratfor programs
‘n.r’ is made automatically from ‘n.l’ by by running Lex.
The actual command is ‘$(LEX) $(LFLAGS)’.
The convention of using the same suffix ‘.l’ for all Lex files re-
gardless of whether they produce C code or Ratfor code makes
it impossible for make to determine automatically which of
the two languages you are using in any particular case. If
make is called upon to remake an object file from a ‘.l’ file, it
must guess which compiler to use. It will guess the C com-
piler, because that is more common. If you are using Ratfor,
make sure make knows this by mentioning ‘n.r’ in the make-
file. Or, if you are using Ratfor exclusively, with no C files,
remove ‘.c’ from the list of implicit rule suffixes with:

.SUFFIXES:

.SUFFIXES: .o .r .f .l ...

Making Lint Libraries from C, Yacc, or Lex programs
‘n.ln’ is made from ‘n.c’ by running lint. The precise com-
mand is ‘$(LINT) $(LINTFLAGS) $(CPPFLAGS) -i’. The same
command is used on the C code produced from ‘n.y’ or ‘n.l’.

TEX and Web
‘n.dvi’ is made from ‘n.tex’ with the command ‘$(TEX)’.
‘n.tex’ is made from ‘n.web’ with ‘$(WEAVE)’, or from ‘n.w’
(and from ‘n.ch’ if it exists or can be made) with ‘$(CWEAVE)’.
‘n.p’ is made from ‘n.web’ with ‘$(TANGLE)’ and ‘n.c’ is made
from ‘n.w’ (and from ‘n.ch’ if it exists or can be made) with
‘$(CTANGLE)’.

Texinfo and Info
Use the command ‘$(TEXI2DVI) $(TEXI2DVI_FLAGS)’ to
make ‘n.dvi’ from either ‘n.texinfo’, ‘n.texi’, or ‘n.txinfo’.
Use the command ‘$(MAKEINFO) $(MAKEINFO_FLAGS)’ to
make ‘n.info’ from either ‘n.texinfo’, ‘n.texi’, or
‘n.txinfo’.

RCS Any file ‘n’ is extracted if necessary from an RCS file named
either ‘n,v’ or ‘RCS/n,v’. The precise command used is
‘$(CO) $(COFLAGS)’. ‘n’ will not be extracted from RCS if
it already exists, even if the RCS file is newer. The rules
for RCS are terminal (see Section 10.5.5 “Match-Anything
Pattern Rules,” page 109), so RCS files cannot be generated
from another source; they must actually exist.

c y g n u s s u p p o r t 99

GNU make

SCCS Any file ‘n’ is extracted if necessary from an SCCS file named
either ‘s.n’ or ‘SCCS/s.n’. The precise command used is
‘$(GET) $(GFLAGS)’. The rules for SCCS are terminal (see
Section 10.5.5 “Match-Anything Pattern Rules,” page 109),
so SCCS files cannot be generated from another source; they
must actually exist.
For the benefit of SCCS, a file ‘n’ is copied from ‘n.sh’ and
made executable (by everyone). This is for shell scripts that
are checked into SCCS. Since RCS preserves the execution
permission of a file, you do not need to use this feature with
RCS.
We recommend that you avoid using of SCCS. RCS is widely
held to be superior, and is also free. By choosing free software
in place of comparable (or inferior) proprietary software, you
support the free software movement.

Usually, you want to change only the variables listed in the table
above, which are documented in the following section.

However, the commands in built-in implicit rules actually use vari-
ables such as COMPILE.c, LINK.p, and PREPROCESS.S, whose values con-
tain the commands listed above.

make follows the convention that the rule to compile a ‘.x’ source file
uses the variable COMPILE.x. Similarly, the rule to produce an executable
from a ‘.x’ file uses LINK.x; and the rule to preprocess a ‘.x’ file uses
PREPROCESS.x.

Every rule that produces an object file uses the variable OUTPUT_
OPTION. make defines this variable either to contain ‘-o $@’, or to be
empty, depending on a compile-time option. You need the ‘-o’ option
to ensure that the output goes into the right file when the source file
is in a different directory, as when using VPATH (see Section 4.3 “Di-
rectory Search,” page 20). However, compilers on some systems do not
accept a ‘-o’ switch for object files. If you use such a system, and use
VPATH, some compilations will put their output in the wrong place. A
possible workaround for this problem is to give OUTPUT_OPTION the value
‘; mv $*.o $@’.

10.3 Variables Used by Implicit Rules

The commands in built-in implicit rules make liberal use of certain
predefined variables. You can alter these variables in the makefile, with
arguments to make, or in the environment to alter how the implicit rules
work without redefining the rules themselves.

100 7 July 1995

Chapter 10: Using Implicit Rules

For example, the command used to compile a C source file actually
says ‘$(CC) -c $(CFLAGS) $(CPPFLAGS)’. The default values of the vari-
ables used are ‘cc’ and nothing, resulting in the command ‘cc -c’. By
redefining ‘CC’ to ‘ncc’, you could cause ‘ncc’ to be used for all C compi-
lations performed by the implicit rule. By redefining ‘CFLAGS’ to be ‘-g’,
you could pass the ‘-g’ option to each compilation. All implicit rules that
do C compilation use ‘$(CC)’ to get the program name for the compiler
and all include ‘$(CFLAGS)’ among the arguments given to the compiler.

The variables used in implicit rules fall into two classes: those that
are names of programs (like CC) and those that contain arguments for
the programs (like CFLAGS). (The “name of a program” may also contain
some command arguments, but it must start with an actual executable
program name.) If a variable value contains more than one argument,
separate them with spaces.

Here is a table of variables used as names of programs in built-in
rules:

AR Archive-maintaining program; default ‘ar’.

AS Program for doing assembly; default ‘as’.

CC Program for compiling C programs; default ‘cc’.

CXX Program for compiling C++ programs; default ‘g++’.

CO Program for extracting a file from RCS; default ‘co’.

CPP Program for running the C preprocessor, with results to stan-
dard output; default ‘$(CC) -E’.

FC Program for compiling or preprocessing Fortran and Ratfor
programs; default ‘f77’.

GET Program for extracting a file from SCCS; default ‘get’.

LEX Program to use to turn Lex grammars into C programs or
Ratfor programs; default ‘lex’.

PC Program for compiling Pascal programs; default ‘pc’.

YACC Program to use to turn Yacc grammars into C programs;
default ‘yacc’.

YACCR Program to use to turn Yacc grammars into Ratfor programs;
default ‘yacc -r’.

MAKEINFO Program to convert a Texinfo source file into an Info file;
default ‘makeinfo’.

c y g n u s s u p p o r t 101

GNU make

TEX Program to make TEX dvi files from TEX source; default ‘tex’.

TEXI2DVI Program to make TEX dvi files from Texinfo source; default
‘texi2dvi’.

WEAVE Program to translate Web into TEX; default ‘weave’.

CWEAVE Program to translate C Web into TEX; default ‘cweave’.

TANGLE Program to translate Web into Pascal; default ‘tangle’.

CTANGLE Program to translate C Web into C; default ‘ctangle’.

RM Command to remove a file; default ‘rm -f’.

Here is a table of variables whose values are additional arguments
for the programs above. The default values for all of these is the empty
string, unless otherwise noted.

ARFLAGS Flags to give the archive-maintaining program; default ‘rv’.

ASFLAGS Extra flags to give to the assembler (when explicitly invoked
on a ‘.s’ or ‘.S’ file).

CFLAGS Extra flags to give to the C compiler.

CXXFLAGS Extra flags to give to the C++ compiler.

COFLAGS Extra flags to give to the RCS co program.

CPPFLAGS Extra flags to give to the C preprocessor and programs that
use it (the C and Fortran compilers).

FFLAGS Extra flags to give to the Fortran compiler.

GFLAGS Extra flags to give to the SCCS get program.

LDFLAGS Extra flags to give to compilers when they are supposed to
invoke the linker, ‘ld’.

LFLAGS Extra flags to give to Lex.

PFLAGS Extra flags to give to the Pascal compiler.

RFLAGS Extra flags to give to the Fortran compiler for Ratfor pro-
grams.

YFLAGS Extra flags to give to Yacc.

102 7 July 1995

Chapter 10: Using Implicit Rules

10.4 Chains of Implicit Rules

Sometimes a file can be made by a sequence of implicit rules. For
example, a file ‘n.o’ could be made from ‘n.y’ by running first Yacc and
then cc. Such a sequence is called a chain.

If the file ‘n.c’ exists, or is mentioned in the makefile, no special
searching is required: make finds that the object file can be made by C
compilation from ‘n.c’; later on, when considering how to make ‘n.c’,
the rule for running Yacc is used. Ultimately both ‘n.c’ and ‘n.o’ are
updated.

However, even if ‘n.c’ does not exist and is not mentioned, make knows
how to envision it as the missing link between ‘n.o’ and ‘n.y’! In this
case, ‘n.c’ is called an intermediate file. Once make has decided to use
the intermediate file, it is entered in the data base as if it had been
mentioned in the makefile, along with the implicit rule that says how to
create it.

Intermediate files are remade using their rules just like all other
files. The difference is that the intermediate file is deleted when make
is finished. Therefore, the intermediate file which did not exist before
make also does not exist after make. The deletion is reported to you by
printing a ‘rm -f’ command that shows what make is doing. (You can list
the target pattern of an implicit rule (such as ‘%.o’) as a dependency of
the special target .PRECIOUS to preserve intermediate files made by im-
plicit rules whose target patterns match that file’s name; see Section 5.5
“Interrupts,” page 41.)

A chain can involve more than two implicit rules. For example, it is
possible to make a file ‘foo’ from ‘RCS/foo.y,v’ by running RCS, Yacc
and cc. Then both ‘foo.y’ and ‘foo.c’ are intermediate files that are
deleted at the end.

No single implicit rule can appear more than once in a chain. This
means that makewill not even consider such a ridiculous thing as making
‘foo’ from ‘foo.o.o’ by running the linker twice. This constraint has the
added benefit of preventing any infinite loop in the search for an implicit
rule chain.

There are some special implicit rules to optimize certain cases that
would otherwise be handled by rule chains. For example, making ‘foo’
from ‘foo.c’ could be handled by compiling and linking with separate
chained rules, using ‘foo.o’ as an intermediate file. But what actually
happens is that a special rule for this case does the compilation and
linking with a single cc command. The optimized rule is used in prefer-
ence to the step-by-step chain because it comes earlier in the ordering of
rules.

c y g n u s s u p p o r t 103

GNU make

10.5 Defining and Redefining Pattern Rules

You define an implicit rule by writing a pattern rule. A pattern rule
looks like an ordinary rule, except that its target contains the character
‘%’ (exactly one of them). The target is considered a pattern for match-
ing file names; the ‘%’ can match any nonempty substring, while other
characters match only themselves. The dependencies likewise use ‘%’ to
show how their names relate to the target name.

Thus, a pattern rule ‘%.o : %.c’ says how to make any file ‘stem.o’
from another file ‘stem.c’.

Note that expansion using ‘%’ in pattern rules occurs after any vari-
able or function expansions, which take place when the makefile is read.
See Chapter 6 “How to Use Variables,” page 51, and Chapter 8 “Func-
tions for Transforming Text,” page 71.

10.5.1 Introduction to Pattern Rules

A pattern rule contains the character ‘%’ (exactly one of them) in the
target; otherwise, it looks exactly like an ordinary rule. The target is a
pattern for matching file names; the ‘%’ matches any nonempty substring,
while other characters match only themselves.

For example, ‘%.c’ as a pattern matches any file name that ends in
‘.c’. ‘s.%.c’ as a pattern matches any file name that starts with ‘s.’,
ends in ‘.c’ and is at least five characters long. (There must be at least
one character to match the ‘%’.) The substring that the ‘%’ matches is
called the stem.

‘%’ in a dependency of a pattern rule stands for the same stem that
was matched by the ‘%’ in the target. In order for the pattern rule to
apply, its target pattern must match the file name under consideration,
and its dependency patterns must name files that exist or can be made.
These files become dependencies of the target.

Thus, a rule of the form
%.o : %.c ; command. ..

specifies how to make a file ‘n.o’, with another file ‘n.c’ as its dependency,
provided that ‘n.c’ exists or can be made.

There may also be dependencies that do not use ‘%’; such a depen-
dency attaches to every file made by this pattern rule. These unvarying
dependencies are useful occasionally.

A pattern rule need not have any dependencies that contain ‘%’, or in
fact any dependencies at all. Such a rule is effectively a general wildcard.
It provides a way to make any file that matches the target pattern. See
Section 10.6 “Last Resort,” page 111.

104 7 July 1995

Chapter 10: Using Implicit Rules

Pattern rules may have more than one target. Unlike normal rules,
this does not act as many different rules with the same dependencies
and commands. If a pattern rule has multiple targets, make knows
that the rule’s commands are responsible for making all of the targets.
The commands are executed only once to make all the targets. When
searching for a pattern rule to match a target, the target patterns of a
rule other than the one that matches the target in need of a rule are
incidental: make worries only about giving commands and dependencies
to the file presently in question. However, when this file’s commands are
run, the other targets are marked as having been updated themselves.

The order in which pattern rules appear in the makefile is important
since this is the order in which they are considered. Of equally appli-
cable rules, only the first one found is used. The rules you write take
precedence over those that are built in. Note however, that a rule whose
dependencies actually exist or are mentioned always takes priority over
a rule with dependencies that must be made by chaining other implicit
rules.

10.5.2 Pattern Rule Examples

Here are some examples of pattern rules actually predefined in make.
First, the rule that compiles ‘.c’ files into ‘.o’ files:

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

defines a rule that can make any file ‘x.o’ from ‘x.c’. The command
uses the automatic variables ‘$@’ and ‘$<’ to substitute the names of the
target file and the source file in each case where the rule applies (see
Section 10.5.3 “Automatic Variables,” page 106).

Here is a second built-in rule:
% :: RCS/%,v

$(CO) $(COFLAGS) $<

defines a rule that can make any file ‘x’ whatsoever from a corresponding
file ‘x,v’ in the subdirectory ‘RCS’. Since the target is ‘%’, this rule will
apply to any file whatever, provided the appropriate dependency file
exists. The double colon makes the rule terminal, which means that its
dependency may not be an intermediate file (see Section 10.5.5 “Match-
Anything Pattern Rules,” page 109).

This pattern rule has two targets:
%.tab.c %.tab.h: %.y

bison -d $<

This tells make that the command ‘bison -d x.y’ will make both ‘x.tab.c’
and ‘x.tab.h’. If the file ‘foo’ depends on the files ‘parse.tab.o’ and

c y g n u s s u p p o r t 105

GNU make

‘scan.o’ and the file ‘scan.o’ depends on the file ‘parse.tab.h’, when
‘parse.y’ is changed, the command ‘bison -d parse.y’ will be executed
only once, and the dependencies of both ‘parse.tab.o’ and ‘scan.o’ will
be satisfied. (Presumably the file ‘parse.tab.o’ will be recompiled from
‘parse.tab.c’ and the file ‘scan.o’ from ‘scan.c’, while ‘foo’ is linked
from ‘parse.tab.o’, ‘scan.o’, and its other dependencies, and it will
execute happily ever after.)

10.5.3 Automatic Variables

Suppose you are writing a pattern rule to compile a ‘.c’ file into a ‘.o’
file: how do you write the ‘cc’ command so that it operates on the right
source file name? You cannot write the name in the command, because
the name is different each time the implicit rule is applied.

What you do is use a special feature of make, the automatic vari-
ables. These variables have values computed afresh for each rule that
is executed, based on the target and dependencies of the rule. In this
example, you would use ‘$@’ for the object file name and ‘$<’ for the source
file name.

Here is a table of automatic variables:

$@ The file name of the target of the rule. If the target is an
archive member, then ‘$@’ is the name of the archive file. In
a pattern rule that has multiple targets (see Section 10.5.1
“Introduction to Pattern Rules,” page 104), ‘$@’ is the name
of whichever target caused the rule’s commands to be run.

$% The target member name, when the target is an archive
member. See Chapter 11 “Archives,” page 115. For example,
if the target is ‘foo.a(bar.o)’ then ‘$%’ is ‘bar.o’ and ‘$@’
is ‘foo.a’. ‘$%’ is empty when the target is not an archive
member.

$< The name of the first dependency. If the target got its com-
mands from an implicit rule, this will be the first dependency
added by the implicit rule (see Chapter 10 “Implicit Rules,”
page 95).

$? The names of all the dependencies that are newer than the
target, with spaces between them. For dependencies which
are archive members, only the member named is used (see
Chapter 11 “Archives,” page 115).

$ˆ The names of all the dependencies, with spaces between
them. For dependencies which are archive members, only the
member named is used (see Chapter 11 “Archives,” page 115).

106 7 July 1995

Chapter 10: Using Implicit Rules

A target has only one dependency on each other file it de-
pends on, no matter how many times each file is listed as a
dependency. So if you list a dependency more than once for
a target, the value of $ˆ contains just one copy of the name.

$+ This is like ‘$ˆ’, but dependencies listed more than once are
duplicated in the order they were listed in the makefile. This
is primarily useful for use in linking commands where it is
meaningful to repeat library file names in a particular order.

$* The stem with which an implicit rule matches (see Sec-
tion 10.5.4 “How Patterns Match,” page 108). If the target
is ‘dir/a.foo.b’ and the target pattern is ‘a.%.b’ then the
stem is ‘dir/foo’. The stem is useful for constructing names
of related files.
In a static pattern rule, the stem is part of the file name that
matched the ‘%’ in the target pattern.
In an explicit rule, there is no stem; so ‘$*’ cannot be deter-
mined in that way. Instead, if the target name ends with
a recognized suffix (see Section 10.7 “Old-Fashioned Suffix
Rules,” page 111), ‘$*’ is set to the target name minus the
suffix. For example, if the target name is ‘foo.c’, then ‘$*’ is
set to ‘foo’, since ‘.c’ is a suffix. GNU make does this bizarre
thing only for compatibility with other implementations of
make. You should generally avoid using ‘$*’ except in implicit
rules or static pattern rules.
If the target name in an explicit rule does not end with a
recognized suffix, ‘$*’ is set to the empty string for that rule.

‘$?’ is useful even in explicit rules when you wish to operate on only
the dependencies that have changed. For example, suppose that an
archive named ‘lib’ is supposed to contain copies of several object files.
This rule copies just the changed object files into the archive:

lib: foo.o bar.o lose.o win.o

ar r lib $?

Of the variables listed above, four have values that are single file
names, and two have values that are lists of file names. These six have
variants that get just the file’s directory name or just the file name within
the directory. The variant variables’ names are formed by appending ‘D’
or ‘F’, respectively. These variants are semi-obsolete in GNU make since
the functions dir and notdir can be used to get a similar effect (see
Section 8.3 “Functions for File Names,” page 75). Note, however, that
the ‘F’ variants all omit the trailing slash which always appears in the
output of the dir function. Here is a table of the variants:

c y g n u s s u p p o r t 107

GNU make

‘$(@D)’ The directory part of the file name of the target, with the
trailing slash removed. If the value of ‘$@’ is ‘dir/foo.o’
then ‘$(@D)’ is ‘dir’. This value is ‘.’ if ‘$@’ does not contain
a slash.

‘$(@F)’ The file-within-directory part of the file name of the target. If
the value of ‘$@’ is ‘dir/foo.o’ then ‘$(@F)’ is ‘foo.o’. ‘$(@F)’
is equivalent to ‘$(notdir $@)’.

‘$(*D)’
‘$(*F)’ The directory part and the file-within-directory part of the

stem; ‘dir’ and ‘foo’ in this example.

‘$(%D)’
‘$(%F)’ The directory part and the file-within-directory part of the

target archive member name. This makes sense only for
archive member targets of the form ‘archive(member)’ and
is useful only when member may contain a directory name.
(See Section 11.1 “Archive Members as Targets,” page 115.)

‘$(<D)’
‘$(<F)’ The directory part and the file-within-directory part of the

first dependency.

‘$(ˆD)’
‘$(ˆF)’ Lists of the directory parts and the file-within-directory parts

of all dependencies.

‘$(?D)’
‘$(?F)’ Lists of the directory parts and the file-within-directory parts

of all dependencies that are newer than the target.

Note that we use a special stylistic convention when we talk about
these automatic variables; we write “the value of ‘$<’”, rather than
“the variable <” as we would write for ordinary variables such as objects
and CFLAGS. We think this convention looks more natural in this spe-
cial case. Please do not assume it has a deep significance; ‘$<’ refers to
the variable named < just as ‘$(CFLAGS)’ refers to the variable named
CFLAGS. You could just as well use ‘$(<)’ in place of ‘$<’.

10.5.4 How Patterns Match

A target pattern is composed of a ‘%’ between a prefix and a suffix,
either or both of which may be empty. The pattern matches a file name
only if the file name starts with the prefix and ends with the suffix,
without overlap. The text between the prefix and the suffix is called
the stem. Thus, when the pattern ‘%.o’ matches the file name ‘test.o’,
the stem is ‘test’. The pattern rule dependencies are turned into actual

108 7 July 1995

Chapter 10: Using Implicit Rules

file names by substituting the stem for the character ‘%’. Thus, if in the
same example one of the dependencies is written as ‘%.c’, it expands to
‘test.c’.

When the target pattern does not contain a slash (and it usually
does not), directory names in the file names are removed from the file
name before it is compared with the target prefix and suffix. After the
comparison of the file name to the target pattern, the directory names,
along with the slash that ends them, are added on to the dependency
file names generated from the pattern rule’s dependency patterns and
the file name. The directories are ignored only for the purpose of find-
ing an implicit rule to use, not in the application of that rule. Thus,
‘e%t’ matches the file name ‘src/eat’, with ‘src/a’ as the stem. When
dependencies are turned into file names, the directories from the stem
are added at the front, while the rest of the stem is substituted for the
‘%’. The stem ‘src/a’ with a dependency pattern ‘c%r’ gives the file name
‘src/car’.

10.5.5 Match-Anything Pattern Rules

When a pattern rule’s target is just ‘%’, it matches any file name
whatever. We call these rules match-anything rules. They are very
useful, but it can take a lot of time for make to think about them, because
it must consider every such rule for each file name listed either as a
target or as a dependency.

Suppose the makefile mentions ‘foo.c’. For this target, make would
have to consider making it by linking an object file ‘foo.c.o’, or by
C compilation-and-linking in one step from ‘foo.c.c’, or by Pascal
compilation-and-linking from ‘foo.c.p’, and many other possibilities.

We know these possibilities are ridiculous since ‘foo.c’ is a C source
file, not an executable. If make did consider these possibilities, it would
ultimately reject them, because files such as ‘foo.c.o’ and ‘foo.c.p’
would not exist. But these possibilities are so numerous that make would
run very slowly if it had to consider them.

To gain speed, we have put various constraints on the way make
considers match-anything rules. There are two different constraints
that can be applied, and each time you define a match-anything rule you
must choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by defining
it with a double colon. When a rule is terminal, it does not apply unless
its dependencies actually exist. Dependencies that could be made with
other implicit rules are not good enough. In other words, no further
chaining is allowed beyond a terminal rule.

c y g n u s s u p p o r t 109

GNU make

For example, the built-in implicit rules for extracting sources from
RCS and SCCS files are terminal; as a result, if the file ‘foo.c,v’ does not
exist, make will not even consider trying to make it as an intermediate
file from ‘foo.c,v.o’ or from ‘RCS/SCCS/s.foo.c,v’. RCS and SCCS
files are generally ultimate source files, which should not be remade
from any other files; therefore, make can save time by not looking for
ways to remake them.

If you do not mark the match-anything rule as terminal, then it is
nonterminal. A nonterminal match-anything rule cannot apply to a
file name that indicates a specific type of data. A file name indicates
a specific type of data if some non-match-anything implicit rule target
matches it.

For example, the file name ‘foo.c’ matches the target for the pattern
rule ‘%.c : %.y’ (the rule to run Yacc). Regardless of whether this rule
is actually applicable (which happens only if there is a file ‘foo.y’),
the fact that its target matches is enough to prevent consideration of
any nonterminal match-anything rules for the file ‘foo.c’. Thus, make
will not even consider trying to make ‘foo.c’ as an executable file from
‘foo.c.o’, ‘foo.c.c’, ‘foo.c.p’, etc.

The motivation for this constraint is that nonterminal match-
anything rules are used for making files containing specific types of
data (such as executable files) and a file name with a recognized suffix
indicates some other specific type of data (such as a C source file).

Special built-in dummy pattern rules are provided solely to recognize
certain file names so that nonterminal match-anything rules will not
be considered. These dummy rules have no dependencies and no com-
mands, and they are ignored for all other purposes. For example, the
built-in implicit rule

%.p :

exists to make sure that Pascal source files such as ‘foo.p’ match a spe-
cific target pattern and thereby prevent time from being wasted looking
for ‘foo.p.o’ or ‘foo.p.c’.

Dummy pattern rules such as the one for ‘%.p’ are made for every suf-
fix listed as valid for use in suffix rules (see Section 10.7 “Old-Fashioned
Suffix Rules,” page 111).

10.5.6 Canceling Implicit Rules

You can override a built-in implicit rule (or one you have defined
yourself) by defining a new pattern rule with the same target and de-
pendencies, but different commands. When the new rule is defined,
the built-in one is replaced. The new rule’s position in the sequence of
implicit rules is determined by where you write the new rule.

110 7 July 1995

Chapter 10: Using Implicit Rules

You can cancel a built-in implicit rule by defining a pattern rule with
the same target and dependencies, but no commands. For example, the
following would cancel the rule that runs the assembler:

%.o : %.s

10.6 Defining Last-Resort Default Rules

You can define a last-resort implicit rule by writing a terminal match-
anything pattern rule with no dependencies (see Section 10.5.5 “Match-
Anything Rules,” page 109). This is just like any other pattern rule; the
only thing special about it is that it will match any target. So such a
rule’s commands are used for all targets and dependencies that have no
commands of their own and for which no other implicit rule applies.

For example, when testing a makefile, you might not care if the source
files contain real data, only that they exist. Then you might do this:

%::
touch $@

to cause all the source files needed (as dependencies) to be created auto-
matically.

You can instead define commands to be used for targets for which
there are no rules at all, even ones which don’t specify commands. You do
this by writing a rule for the target .DEFAULT. Such a rule’s commands
are used for all dependencies which do not appear as targets in any
explicit rule, and for which no implicit rule applies. Naturally, there is
no .DEFAULT rule unless you write one.

If you use .DEFAULT with no commands or dependencies:
.DEFAULT:

the commands previously stored for .DEFAULT are cleared. Then make
acts as if you had never defined .DEFAULT at all.

If you do not want a target to get the commands from a match-
anything pattern rule or .DEFAULT, but you also do not want any com-
mands to be run for the target, you can give it empty commands (see
Section 5.8 “Defining Empty Commands,” page 48).

You can use a last-resort rule to override part of another makefile.
See Section 3.6 “Overriding Part of Another Makefile,” page 16.

10.7 Old-Fashioned Suffix Rules

Suffix rules are the old-fashioned way of defining implicit rules for
make. Suffix rules are obsolete because pattern rules are more general
and clearer. They are supported in GNU make for compatibility with old
makefiles. They come in two kinds: double-suffix and single-suffix.

c y g n u s s u p p o r t 111

GNU make

A double-suffix rule is defined by a pair of suffixes: the target suffix
and the source suffix. It matches any file whose name ends with the
target suffix. The corresponding implicit dependency is made by replac-
ing the target suffix with the source suffix in the file name. A two-suffix
rule whose target and source suffixes are ‘.o’ and ‘.c’ is equivalent to
the pattern rule ‘%.o : %.c’.

A single-suffix rule is defined by a single suffix, which is the source
suffix. It matches any file name, and the corresponding implicit depen-
dency name is made by appending the source suffix. A single-suffix rule
whose source suffix is ‘.c’ is equivalent to the pattern rule ‘% : %.c’.

Suffix rule definitions are recognized by comparing each rule’s target
against a defined list of known suffixes. When make sees a rule whose
target is a known suffix, this rule is considered a single-suffix rule. When
make sees a rule whose target is two known suffixes concatenated, this
rule is taken as a double-suffix rule.

For example, ‘.c’ and ‘.o’ are both on the default list of known suffixes.
Therefore, if you define a rule whose target is ‘.c.o’, make takes it to be
a double-suffix rule with source suffix ‘.c’ and target suffix ‘.o’. Here is
the old-fashioned way to define the rule for compiling a C source file:

.c.o:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

Suffix rules cannot have any dependencies of their own. If they have
any, they are treated as normal files with funny names, not as suffix
rules. Thus, the rule:

.c.o: foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

tells how to make the file ‘.c.o’ from the dependency file ‘foo.h’, and is
not at all like the pattern rule:

%.o: %.c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

which tells how to make ‘.o’ files from ‘.c’ files, and makes all ‘.o’ files
using this pattern rule also depend on ‘foo.h’.

Suffix rules with no commands are also meaningless. They do not
remove previous rules as do pattern rules with no commands (see Sec-
tion 10.5.6 “Canceling Implicit Rules,” page 110). They simply enter the
suffix or pair of suffixes concatenated as a target in the data base.

The known suffixes are simply the names of the dependencies of the
special target .SUFFIXES. You can add your own suffixes by writing a
rule for .SUFFIXES that adds more dependencies, as in:

.SUFFIXES: .hack .win

which adds ‘.hack’ and ‘.win’ to the end of the list of suffixes.

112 7 July 1995

Chapter 10: Using Implicit Rules

If you wish to eliminate the default known suffixes instead of just
adding to them, write a rule for .SUFFIXESwith no dependencies. By spe-
cial dispensation, this eliminates all existing dependencies of .SUFFIXES.
You can then write another rule to add the suffixes you want. For exam-
ple,

.SUFFIXES: # Delete the default suffixes

.SUFFIXES: .c .o .h # Define our suffix list

The ‘-r’ or ‘--no-builtin-rules’ flag causes the default list of suffixes
to be empty.

The variable SUFFIXES is defined to the default list of suffixes before
make reads any makefiles. You can change the list of suffixes with a rule
for the special target .SUFFIXES, but that does not alter this variable.

10.8 Implicit Rule Search Algorithm

Here is the procedure make uses for searching for an implicit rule
for a target t. This procedure is followed for each double-colon rule
with no commands, for each target of ordinary rules none of which have
commands, and for each dependency that is not the target of any rule.
It is also followed recursively for dependencies that come from implicit
rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix rules
are converted to equivalent pattern rules once the makefiles have been
read in.

For an archive member target of the form ‘archive(member)’, the
following algorithm is run twice, first using the entire target name t,
and second using ‘(member)’ as the target t if the first run found no rule.
1. Split t into a directory part, called d, and the rest, called n. For

example, if t is ‘src/foo.o’, then d is ‘src/’ and n is ‘foo.o’.
2. Make a list of all the pattern rules one of whose targets matches t

or n. If the target pattern contains a slash, it is matched against t;
otherwise, against n.

3. If any rule in that list is not a match-anything rule, then remove all
nonterminal match-anything rules from the list.

4. Remove from the list all rules with no commands.
5. For each pattern rule in the list:

a. Find the stem s, which is the nonempty part of t or n matched
by the ‘%’ in the target pattern.

b. Compute the dependency names by substituting s for ‘%’; if the
target pattern does not contain a slash, append d to the front of
each dependency name.

c y g n u s s u p p o r t 113

GNU make

c. Test whether all the dependencies exist or ought to exist. (If
a file name is mentioned in the makefile as a target or as an
explicit dependency, then we say it ought to exist.)
If all dependencies exist or ought to exist, or there are no de-
pendencies, then this rule applies.

6. If no pattern rule has been found so far, try harder. For each pattern
rule in the list:
a. If the rule is terminal, ignore it and go on to the next rule.
b. Compute the dependency names as before.
c. Test whether all the dependencies exist or ought to exist.
d. For each dependency that does not exist, follow this algorithm

recursively to see if the dependency can be made by an implicit
rule.

e. If all dependencies exist, ought to exist, or can be made by
implicit rules, then this rule applies.

7. If no implicit rule applies, the rule for .DEFAULT, if any, applies. In
that case, give t the same commands that .DEFAULT has. Otherwise,
there are no commands for t.

Once a rule that applies has been found, for each target pattern of
the rule other than the one that matched t or n, the ‘%’ in the pattern is
replaced with s and the resultant file name is stored until the commands
to remake the target file t are executed. After these commands are
executed, each of these stored file names are entered into the data base
and marked as having been updated and having the same update status
as the file t.

When the commands of a pattern rule are executed for t, the auto-
matic variables are set corresponding to the target and dependencies.
See Section 10.5.3 “Automatic Variables,” page 106.

114 7 July 1995

Chapter 11: Using make to Update Archive Files

11 Using make to Update Archive Files
Archive files are files containing named subfiles called members; they

are maintained with the program ar and their main use is as subroutine
libraries for linking.

11.1 Archive Members as Targets

An individual member of an archive file can be used as a target or
dependency in make. You specify the member named member in archive
file archive as follows:

archive(member)

This construct is available only in targets and dependencies, not in com-
mands! Most programs that you might use in commands do not support
this syntax and cannot act directly on archive members. Only ar and
other programs specifically designed to operate on archives can do so.
Therefore, valid commands to update an archive member target proba-
bly must use ar. For example, this rule says to create a member ‘hack.o’
in archive ‘foolib’ by copying the file ‘hack.o’:

foolib(hack.o) : hack.o
ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this
way and there is an implicit rule to do it for you. Note: The ‘c’ flag to ar
is required if the archive file does not already exist.

To specify several members in the same archive, you can write all the
member names together between the parentheses. For example:

foolib(hack.o kludge.o)

is equivalent to:
foolib(hack.o) foolib(kludge.o)

You can also use shell-style wildcards in an archive member ref-
erence. See Section 4.2 “Using Wildcard Characters in File Names,”
page 18. For example, ‘foolib(*.o)’ expands to all existing members of
the ‘foolib’ archive whose names end in ‘.o’; perhaps ‘foolib(hack.o)
foolib(kludge.o)’.

11.2 Implicit Rule for Archive Member Targets

Recall that a target that looks like ‘a(m)’ stands for the member
named m in the archive file a.

When make looks for an implicit rule for such a target, as a special
feature it considers implicit rules that match ‘(m)’, as well as those that
match the actual target ‘a(m)’.

c y g n u s s u p p o r t 115

GNU make

This causes one special rule whose target is ‘(%)’ to match. This
rule updates the target ‘a(m)’ by copying the file m into the archive.
For example, it will update the archive member target ‘foo.a(bar.o)’
by copying the file ‘bar.o’ into the archive ‘foo.a’ as a member named
‘bar.o’.

When this rule is chained with others, the result is very powerful.
Thus, ‘make "foo.a(bar.o)"’ (the quotes are needed to protect the ‘(’
and ‘)’ from being interpreted specially by the shell) in the presence of
a file ‘bar.c’ is enough to cause the following commands to be run, even
without a makefile:

cc -c bar.c -o bar.o
ar r foo.a bar.o
rm -f bar.o

Here make has envisioned the file ‘bar.o’ as an intermediate file. See
Section 10.4 “Chains of Implicit Rules,” page 103.

Implicit rules such as this one are written using the automatic vari-
able ‘$%’. See Section 10.5.3 “Automatic Variables,” page 106.

An archive member name in an archive cannot contain a directory
name, but it may be useful in a makefile to pretend that it does. If you
write an archive member target ‘foo.a(dir/file.o)’, make will perform
automatic updating with this command:

ar r foo.a dir/file.o

which has the effect of copying the file ‘dir/file.o’ into a member named
‘file.o’. In connection with such usage, the automatic variables %D and
%F may be useful.

11.2.1 Updating Archive Symbol Directories

An archive file that is used as a library usually contains a special
member named ‘__.SYMDEF’ that contains a directory of the external
symbol names defined by all the other members. After you update any
other members, you need to update ‘__.SYMDEF’ so that it will summa-
rize the other members properly. This is done by running the ranlib
program:

ranlib archivefile

Normally you would put this command in the rule for the archive file,
and make all the members of the archive file dependencies of that rule.
For example,

libfoo.a: libfoo.a(x.o) libfoo.a(y.o) ...
ranlib libfoo.a

The effect of this is to update archive members ‘x.o’, ‘y.o’, etc., and then
update the symbol directory member ‘__.SYMDEF’ by running ranlib.
The rules for updating the members are not shown here; most likely

116 7 July 1995

Chapter 11: Using make to Update Archive Files

you can omit them and use the implicit rule which copies files into the
archive, as described in the preceding section.

This is not necessary when using the GNU ar program, which updates
the ‘__.SYMDEF’ member automatically.

11.3 Dangers When Using Archives

It is important to be careful when using parallel execution (the -j
switch; see Section 5.3 “Parallel Execution,” page 38) and archives. If
multiple ar commands run at the same time on the same archive file,
they will not know about each other and can corrupt the file.

Possibly a future version of make will provide a mechanism to circum-
vent this problem by serializing all commands that operate on the same
archive file. But for the time being, you must either write your makefiles
to avoid this problem in some other way, or not use -j.

11.4 Suffix Rules for Archive Files

You can write a special kind of suffix rule for dealing with archive
files. See Section 10.7 “Suffix Rules,” page 111, for a full explanation of
suffix rules. Archive suffix rules are obsolete in GNU make, because pat-
tern rules for archives are a more general mechanism (see Section 11.2
“Archive Update,” page 115). But they are retained for compatibility
with other makes.

To write a suffix rule for archives, you simply write a suffix rule using
the target suffix ‘.a’ (the usual suffix for archive files). For example,
here is the old-fashioned suffix rule to update a library archive from C
source files:

.c.a:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o

$(AR) r $@ $*.o

$(RM) $*.o

This works just as if you had written the pattern rule:
(%.o): %.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o

$(AR) r $@ $*.o

$(RM) $*.o

In fact, this is just what make does when it sees a suffix rule with
‘.a’ as the target suffix. Any double-suffix rule ‘.x.a’ is converted to a
pattern rule with the target pattern ‘(%.o)’ and a dependency pattern
of ‘%.x’.

c y g n u s s u p p o r t 117

GNU make

Since you might want to use ‘.a’ as the suffix for some other kind of
file, make also converts archive suffix rules to pattern rules in the normal
way (see Section 10.7 “Suffix Rules,” page 111). Thus a double-suffix rule
‘.x.a’ produces two pattern rules: ‘(%.o): %.x’ and ‘%.a: %.x’.

118 7 July 1995

Chapter 12: Features of GNU make

12 Features of GNU make

Here is a summary of the features of GNU make, for comparison with
and credit to other versions of make. We consider the features of make
in 4.2 BSD systems as a baseline. If you are concerned with writing
portable makefiles, you should use only the features of make not listed
here or in Chapter 13 “Missing,” page 123.

Many features come from the version of make in System V.
� The VPATH variable and its special meaning. See Section 4.3 “Search-

ing Directories for Dependencies,” page 20. This feature exists in
System V make, but is undocumented. It is documented in 4.3 BSD
make (which says it mimics System V’s VPATH feature).

� Included makefiles. See Section 3.3 “Including Other Makefiles,”
page 12. Allowing multiple files to be included with a single directive
is a GNU extension.

� Variables are read from and communicated via the environment.
See Section 6.9 “Variables from the Environment,” page 62.

� Options passed through the variable MAKEFLAGS to recursive invo-
cations of make. See Section 5.6.3 “Communicating Options to a
Sub-make,” page 45.

� The automatic variable $% is set to the member name in an archive
reference. See Section 10.5.3 “Automatic Variables,” page 106.

� The automatic variables $@, $*, $<, $%, and $? have corresponding
forms like $(@F) and $(@D). We have generalized this to $ˆ as
an obvious extension. See Section 10.5.3 “Automatic Variables,”
page 106.

� Substitution variable references. See Section 6.1 “Basics of Variable
References,” page 51.

� The command-line options ‘-b’ and ‘-m’, accepted and ignored. In
System V make, these options actually do something.

� Execution of recursive commands to run make via the variable MAKE
even if ‘-n’, ‘-q’ or ‘-t’ is specified. See Section 5.6 “Recursive Use of
make,” page 41.

� Support for suffix ‘.a’ in suffix rules. See Section 11.4 “Archive Suffix
Rules,” page 117. This feature is obsolete in GNU make, because the
general feature of rule chaining (see Section 10.4 “Chains of Implicit
Rules,” page 103) allows one pattern rule for installing members
in an archive (see Section 11.2 “Archive Update,” page 115) to be
sufficient.

� The arrangement of lines and backslash-newline combinations in
commands is retained when the commands are printed, so they

c y g n u s s u p p o r t 119

GNU make

appear as they do in the makefile, except for the stripping of initial
whitespace.

The following features were inspired by various other versions of
make. In some cases it is unclear exactly which versions inspired which
others.
� Pattern rules using ‘%’. This has been implemented in several ver-

sions of make. We’re not sure who invented it first, but it’s been
spread around a bit. See Section 10.5 “Defining and Redefining
Pattern Rules,” page 104.

� Rule chaining and implicit intermediate files. This was imple-
mented by Stu Feldman in his version of make for AT&T Eighth
Edition Research Unix, and later by Andrew Hume of AT&T Bell
Labs in his mk program (where he terms it “transitive closure”). We
do not really know if we got this from either of them or thought it
up ourselves at the same time. See Section 10.4 “Chains of Implicit
Rules,” page 103.

� The automatic variable $ˆ containing a list of all dependencies of the
current target. We did not invent this, but we have no idea who did.
See Section 10.5.3 “Automatic Variables,” page 106. The automatic
variable $+ is a simple extension of $ˆ.

� The “what if” flag (‘-W’ in GNU make) was (as far as we know) in-
vented by Andrew Hume in mk. See Section 9.3 “Instead of Executing
the Commands,” page 85.

� The concept of doing several things at once (parallelism) exists in
many incarnations of make and similar programs, though not in
the System V or BSD implementations. See Section 5.2 “Command
Execution,” page 38.

� Modified variable references using pattern substitution come from
SunOS 4. See Section 6.1 “Basics of Variable References,” page 51.
This functionality was provided in GNU make by the patsubst func-
tion before the alternate syntax was implemented for compatibility
with SunOS 4. It is not altogether clear who inspired whom, since
GNU make had patsubst before SunOS 4 was released.

� The special significance of ‘+’ characters preceding command lines
(see Section 9.3 “Instead of Executing the Commands,” page 85) is
mandated by IEEE Standard 1003.2-1992 (POSIX.2).

� The ‘+=’ syntax to append to the value of a variable comes from
SunOS 4 make. See Section 6.6 “Appending More Text to Variables,”
page 59.

� The syntax ‘archive(mem1 mem2...)’ to list multiple members in
a single archive file comes from SunOS 4 make. See Section 11.1
“Archive Members,” page 115.

120 7 July 1995

Chapter 12: Features of GNU make

� The -include directive to include makefiles with no error for a
nonexistent file comes from SunOS 4 make. (But note that SunOS
4 make does not allow multiple makefiles to be specified in one -
include directive.)

The remaining features are inventions new in GNU make:
� Use the ‘-v’ or ‘--version’ option to print version and copyright

information.
� Use the ‘-h’ or ‘--help’ option to summarize the options to make.
� Simply-expanded variables. See Section 6.2 “The Two Flavors of

Variables,” page 52.
� Pass command-line variable assignments automatically through the

variable MAKE to recursive make invocations. See Section 5.6 “Recur-
sive Use of make,” page 41.

� Use the ‘-C’ or ‘--directory’ command option to change directory.
See Section 9.7 “Summary of Options,” page 89.

� Make verbatim variable definitions with define. See Section 6.8
“Defining Variables Verbatim,” page 61.

� Declare phony targets with the special target .PHONY.
Andrew Hume of AT&T Bell Labs implemented a similar feature
with a different syntax in his mk program. This seems to be a case
of parallel discovery. See Section 4.4 “Phony Targets,” page 24.

� Manipulate text by calling functions. See Chapter 8 “Functions for
Transforming Text,” page 71.

� Use the ‘-o’ or ‘--old-file’ option to pretend a file’s modification-
time is old. See Section 9.4 “Avoiding Recompilation of Some Files,”
page 87.

� Conditional execution.
This feature has been implemented numerous times in various ver-
sions of make; it seems a natural extension derived from the features
of the C preprocessor and similar macro languages and is not a rev-
olutionary concept. See Chapter 7 “Conditional Parts of Makefiles,”
page 65.

� Specify a search path for included makefiles. See Section 3.3 “In-
cluding Other Makefiles,” page 12.

� Specify extra makefiles to read with an environment variable. See
Section 3.4 “The Variable MAKEFILES,” page 14.

� Strip leading sequences of ‘./’ from file names, so that ‘./file’ and
‘file’ are considered to be the same file.

� Use a special search method for library dependencies written in
the form ‘-lname’. See Section 4.3.5 “Directory Search for Link
Libraries,” page 23.

c y g n u s s u p p o r t 121

GNU make

� Allow suffixes for suffix rules (see Section 10.7 “Old-Fashioned Suffix
Rules,” page 111) to contain any characters. In other versions of
make, they must begin with ‘.’ and not contain any ‘/’ characters.

� Keep track of the current level of make recursion using the variable
MAKELEVEL. See Section 5.6 “Recursive Use of make,” page 41.

� Specify static pattern rules. See Section 4.10 “Static Pattern Rules,”
page 30.

� Provide selective vpath search. See Section 4.3 “Searching Directo-
ries for Dependencies,” page 20.

� Provide computed variable references. See Section 6.1 “Basics of
Variable References,” page 51.

� Update makefiles. See Section 3.5 “How Makefiles Are Remade,”
page 14. System V make has a very, very limited form of this func-
tionality in that it will check out SCCS files for makefiles.

� Various new built-in implicit rules. See Section 10.2 “Catalogue of
Implicit Rules,” page 96.

� The built-in variable ‘MAKE_VERSION’ gives the version number of
make.

122 7 July 1995

Chapter 13: Incompatibilities and Missing Features

13 Incompatibilities and Missing
Features

The make programs in various other systems support a few features
that are not implemented in GNU make. The POSIX.2 standard (IEEE
Standard 1003.2-1992) which specifies make does not require any of these
features.
� A target of the form ‘file((entry))’ stands for a member of archive

file file. The member is chosen, not by name, but by being an object
file which defines the linker symbol entry.
This feature was not put into GNU make because of the nonmodular-
ity of putting knowledge into make of the internal format of archive
file symbol tables. See Section 11.2.1 “Updating Archive Symbol
Directories,” page 116.

� Suffixes (used in suffix rules) that end with the character ‘˜’ have a
special meaning to System V make; they refer to the SCCS file that
corresponds to the file one would get without the ‘˜’. For example,
the suffix rule ‘.c˜.o’ would make the file ‘n.o’ from the SCCS file
‘s.n.c’. For complete coverage, a whole series of such suffix rules is
required. See Section 10.7 “Old-Fashioned Suffix Rules,” page 111.
In GNU make, this entire series of cases is handled by two pattern
rules for extraction from SCCS, in combination with the general
feature of rule chaining. See Section 10.4 “Chains of Implicit Rules,”
page 103.

� In System V make, the string ‘$$@’ has the strange meaning that, in
the dependencies of a rule with multiple targets, it stands for the
particular target that is being processed.
This is not defined in GNU make because ‘$$’ should always stand
for an ordinary ‘$’.
It is possible to get this functionality through the use of static pat-
tern rules (see Section 4.10 “Static Pattern Rules,” page 30). The
System V make rule:

$(targets): $$@.o lib.a

can be replaced with the GNU make static pattern rule:
$(targets): %: %.o lib.a

� In System V and 4.3 BSD make, files found by VPATH search (see
Section 4.3 “Searching Directories for Dependencies,” page 20) have
their names changed inside command strings. We feel it is much
cleaner to always use automatic variables and thus make this fea-
ture obsolete.

� In some Unix makes, the automatic variable $* appearing in the de-
pendencies of a rule has the amazingly strange “feature” of expand-

c y g n u s s u p p o r t 123

GNU make

ing to the full name of the target of that rule. We cannot imagine
what went on in the minds of Unix make developers to do this; it is
utterly inconsistent with the normal definition of $*.

� In some Unix makes, implicit rule search (see Chapter 10 “Using
Implicit Rules,” page 95) is apparently done for all targets, not just
those without commands. This means you can do:

foo.o:

cc -c foo.c

and Unix make will intuit that ‘foo.o’ depends on ‘foo.c’.
We feel that such usage is broken. The dependency properties of
make are well-defined (for GNU make, at least), and doing such a
thing simply does not fit the model.

� GNU make does not include any built-in implicit rules for compiling
or preprocessing EFL programs. If we hear of anyone who is using
EFL, we will gladly add them.

� It appears that in SVR4 make, a suffix rule can be specified with
no commands, and it is treated as if it had empty commands (see
Section 5.8 “Empty Commands,” page 48). For example:

.c.a:

will override the built-in ‘.c.a’ suffix rule.
We feel that it is cleaner for a rule without commands to always
simply add to the dependency list for the target. The above example
can be easily rewritten to get the desired behavior in GNU make:

.c.a: ;

� Some versions of make invoke the shell with the ‘-e’ flag, except
under ‘-k’ (see Section 9.6 “Testing the Compilation of a Program,”
page 88). The ‘-e’ flag tells the shell to exit as soon as any program
it runs returns a nonzero status. We feel it is cleaner to write each
shell command line to stand on its own and not require this special
treatment.

124 7 July 1995

Chapter 14: Makefile Conventions

14 Makefile Conventions

This chapter describes conventions for writing the Makefiles for GNU
programs.

14.1 General Conventions for Makefiles

Every Makefile should contain this line:
SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited
from the environment. (This is never a problem with GNU make.)

Different make programs have incompatible suffix lists and implicit
rules, and this sometimes creates confusion or misbehavior. So it is a
good idea to set the suffix list explicitly using only the suffixes you need
in the particular Makefile, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The first line clears out the suffix list, the second introduces all suffixes
which may be subject to implicit rules in this Makefile.

Don’t assume that ‘.’ is in the path for command execution. When
you need to run programs that are a part of your package during the
make, please make sure that it uses ‘./’ if the program is built as part of
the make or ‘$(srcdir)/’ if the file is an unchanging part of the source
code. Without one of these prefixes, the current search path is used.

The distinction between ‘./’ and ‘$(srcdir)/’ is important when us-
ing the ‘--srcdir’ option to ‘configure’. A rule of the form:

foo.1 : foo.man sedscript
sed -e sedscript foo.man > foo.1

will fail when the current directory is not the source directory, because
‘foo.man’ and ‘sedscript’ are not in the current directory.

When using GNU make, relying on ‘VPATH’ to find the source file will
work in the case where there is a single dependency file, since the
‘make’ automatic variable ‘$<’ will represent the source file wherever
it is. (Many versions of make set ‘$<’ only in implicit rules.) A makefile
target like

foo.o : bar.c
$(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as
foo.o : bar.c

$(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow ‘VPATH’ to work correctly. When the target has multiple
dependencies, using an explicit ‘$(srcdir)’ is the easiest way to make

c y g n u s s u p p o r t 125

GNU make

the rule work well. For example, the target above for ‘foo.1’ is best
written as:

foo.1 : foo.man sedscript
sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

14.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as
configure) to run in sh, not in csh. Don’t use any special features
of ksh or bash.

The configure script and the Makefile rules for building and instal-
lation should not use any utilities directly except these:

cat cmp cp echo egrep expr grep
ln mkdir mv pwd rm rmdir sed test touch

Stick to the generally supported options for these programs. For
example, don’t use ‘mkdir -p’, convenient as it may be, because most
systems don’t support it.

The Makefile rules for building and installation can also use compilers
and related programs, but should do so via make variables so that the
user can substitute alternatives. Here are some of the programs we
mean:

ar bison cc flex install ld lex
make makeinfo ranlib texi2dvi yacc

Use the following make variables:
$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LEX)
$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib, you should make sure nothing bad happens if
the system does not have ranlib. Arrange to ignore an error from that
command, and print a message before the command to tell the user that
failure of the ranlib command does not mean a problem.

If you use symbolic links, you should implement a fallback for systems
that don’t have symbolic links.

It is ok to use other utilities in Makefile portions (or scripts) intended
only for particular systems where you know those utilities to exist.

14.3 Standard Targets for Users

All GNU programs should have the following targets in their Make-
files:

‘all’ Compile the entire program. This should be the default tar-
get. This target need not rebuild any documentation files;

126 7 July 1995

Chapter 14: Makefile Conventions

Info files should normally be included in the distribution,
and DVI files should be made only when explicitly asked for.

‘install’ Compile the program and copy the executables, libraries, and
so on to the file names where they should reside for actual
use. If there is a simple test to verify that a program is
properly installed, this target should run that test.

If possible, write the install target rule so that it does not
modify anything in the directory where the program was
built, provided ‘make all’ has just been done. This is con-
venient for building the program under one user name and
installing it under another.

The commands should create all the directories in which
files are to be installed, if they don’t already exist. This
includes the directories specified as the values of the vari-
ables prefix and exec_prefix, as well as all subdirecto-
ries that are needed. One way to do this is by means of an
installdirs target as described below.

Use ‘-’ before any command for installing a man page, so
that make will ignore any errors. This is in case there are
systems that don’t have the Unix man page documentation
system installed.

The way to install Info files is to copy them into ‘$(infodir)’
with $(INSTALL_DATA) (see Section 14.4 “Command Vari-
ables,” page 130), and then run the install-info program
if it is present. install-info is a script that edits the Info
‘dir’ file to add or update the menu entry for the given Info
file; it will be part of the Texinfo package. Here is a sample
rule to install an Info file:

$(infodir)/foo.info: foo.info
There may be a newer info file in . than in srcdir.

-if test -f foo.info; then d=.; \
else d=$(srcdir); fi; \
$(INSTALL_DATA) $$d/foo.info $@; \

Run install-info only if it exists.
Use ‘if’ instead of just prepending ‘-’ to the
line so we notice real errors from install-info.
We use ‘$(SHELL) -c’ because some shells do not
fail gracefully when there is an unknown command.

if $(SHELL) -c ’install-info --version’ \
>/dev/null 2>&1; then \
install-info --infodir=$(infodir) $$d/foo.info; \

else true; fi

c y g n u s s u p p o r t 127

GNU make

‘uninstall’
Delete all the installed files that the ‘install’ target would
create (but not the noninstalled files such as ‘make all’ would
create).
This rule should not modify the directories where compilation
is done, only the directories where files are installed.

‘clean’
Delete all files from the current directory that are normally
created by building the program. Don’t delete the files that
record the configuration. Also preserve files that could be
made by building, but normally aren’t because the distribu-
tion comes with them.
Delete ‘.dvi’ files here if they are not part of the distribution.

‘distclean’
Delete all files from the current directory that are created by
configuring or building the program. If you have unpacked
the source and built the program without creating any other
files, ‘make distclean’ should leave only the files that were
in the distribution.

‘mostlyclean’
Like ‘clean’, but may refrain from deleting a few files that
people normally don’t want to recompile. For example, the
‘mostlyclean’ target for GCC does not delete ‘libgcc.a’, be-
cause recompiling it is rarely necessary and takes a lot of
time.

‘maintainer-clean’
Delete almost everything from the current directory that can
be reconstructed with this Makefile. This typically includes
everything deleted by distclean, plus more: C source files
produced by Bison, tags tables, Info files, and so on.
The reason we say “almost everything” is that ‘make
maintainer-clean’ should not delete ‘configure’ even if
‘configure’ can be remade using a rule in the Makefile. More
generally, ‘make maintainer-clean’ should not delete any-
thing that needs to exist in order to run ‘configure’ and
then begin to build the program. This is the only exception;
maintainer-clean should delete everything else that can be
rebuilt.
The ‘maintainer-clean’ is intended to be used by a main-
tainer of the package, not by ordinary users. You may
need special tools to reconstruct some of the files that ‘make
maintainer-clean’ deletes. Since these files are normally

128 7 July 1995

Chapter 14: Makefile Conventions

included in the distribution, we don’t take care to make them
easy to reconstruct. If you find you need to unpack the full
distribution again, don’t blame us.
To help make users aware of this, the commands for
maintainer-clean should start with these two:

@echo "This command is intended for maintainers \
to use;"

@echo "it deletes files that may require special \
tools to rebuild."

‘TAGS’ Update a tags table for this program.

‘info’ Generate any Info files needed. The best way to write the
rules is as follows:

info: foo.info

foo.info: foo.texi chap1.texi chap2.texi
$(MAKEINFO) $(srcdir)/foo.texi

You must define the variable MAKEINFO in the Makefile. It
should run the makeinfo program, which is part of the Tex-
info distribution.

‘dvi’ Generate DVI files for all TeXinfo documentation. For exam-
ple:

dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi
$(TEXI2DVI) $(srcdir)/foo.texi

You must define the variable TEXI2DVI in the Makefile. It
should run the program texi2dvi, which is part of the Tex-
info distribution. Alternatively, write just the dependencies,
and allow GNU Make to provide the command.

‘dist’ Create a distribution tar file for this program. The tar file
should be set up so that the file names in the tar file start
with a subdirectory name which is the name of the package
it is a distribution for. This name can include the version
number.
For example, the distribution tar file of GCC version 1.40
unpacks into a subdirectory named ‘gcc-1.40’.
The easiest way to do this is to create a subdirectory appro-
priately named, use ln or cp to install the proper files in it,
and then tar that subdirectory.
The dist target should explicitly depend on all non-source
files that are in the distribution, to make sure they are up
to date in the distribution. See section “Making Releases” in
GNU Coding Standards.

c y g n u s s u p p o r t 129

GNU make

‘check’ Perform self-tests (if any). The user must build the program
before running the tests, but need not install the program;
you should write the self-tests so that they work when the
program is built but not installed.

The following targets are suggested as conventional names, for pro-
grams in which they are useful.

installcheck
Perform installation tests (if any). The user must build and
install the program before running the tests. You should not
assume that ‘$(bindir)’ is in the search path.

installdirs
It’s useful to add a target named ‘installdirs’ to create
the directories where files are installed, and their parent
directories. There is a script called ‘mkinstalldirs’ which
is convenient for this; find it in the Texinfo package.You can
use a rule like this:

Make sure all installation directories
(e.g. $(bindir)) actually exist by
making them if necessary.
installdirs: mkinstalldirs

$(srcdir)/mkinstalldirs $(bindir) $(datadir) \
$(libdir) $(infodir) \
$(mandir)

This rule should not modify the directories where compila-
tion is done. It should do nothing but create installation
directories.

14.4 Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands,
options, and so on.

In particular, you should run most utility programs via variables.
Thus, if you use Bison, have a variable named BISONwhose default value
is set with ‘BISON = bison’, and refer to it with $(BISON) whenever you
need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not
be referred to through variables in this way, since users don’t need to
replace them with other programs.

Each program-name variable should come with an options variable
that is used to supply options to the program. Append ‘FLAGS’ to the
program-name variable name to get the options variable name—for ex-
ample, BISONFLAGS. (The name CFLAGS is an exception to this rule, but

130 7 July 1995

Chapter 14: Makefile Conventions

we keep it because it is standard.) Use CPPFLAGS in any compilation com-
mand that runs the preprocessor, and use LDFLAGS in any compilation
command that does linking as well as in any direct use of ld.

If there are C compiler options that must be used for proper compila-
tion of certain files, do not include them in CFLAGS. Users expect to be
able to specify CFLAGS freely themselves. Instead, arrange to pass the
necessary options to the C compiler independently of CFLAGS, by writing
them explicitly in the compilation commands or by defining an implicit
rule, like this:

CFLAGS = -g
ALL_CFLAGS = -I. $(CFLAGS)
.c.o:

$(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘-g’ option in CFLAGS, because that is not required
for proper compilation. You can consider it a default that is only rec-
ommended. If the package is set up so that it is compiled with GCC by
default, then you might as well include ‘-O’ in the default value of CFLAGS
as well.

Put CFLAGS last in the compilation command, after other variables
containing compiler options, so the user can use CFLAGS to override the
others.

Every Makefile should define the variable INSTALL, which is the basic
command for installing a file into the system.

Every Makefile should also define the variables INSTALL_PROGRAMand
INSTALL_DATA. (The default for each of these should be $(INSTALL).)
Then it should use those variables as the commands for actual instal-
lation, for executables and nonexecutables respectively. Use these vari-
ables as follows:

$(INSTALL_PROGRAM) foo $(bindir)/foo
$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

Always use a file name, not a directory name, as the second argument
of the installation commands. Use a separate command for each file to
be installed.

14.5 Variables for Installation Directories

Installation directories should always be named by variables, so it is
easy to install in a nonstandard place. The standard names for these
variables are described below. They are based on a standard filesystem
layout; variants of it are used in SVR4, 4.4BSD, Linux, Ultrix v4, and
other modern operating systems.

c y g n u s s u p p o r t 131

GNU make

These two variables set the root for the installation. All the other
installation directories should be subdirectories of one of these two, and
nothing should be directly installed into these two directories.

‘prefix’ A prefix used in constructing the default values of the vari-
ables listed below. The default value of prefix should be
‘/usr/local’ When building the complete GNU system, the
prefix will be empty and ‘/usr’ will be a symbolic link to ‘/’.

‘exec_prefix’
A prefix used in constructing the default values of some of
the variables listed below. The default value of exec_prefix
should be $(prefix).
Generally, $(exec_prefix) is used for directories that con-
tain machine-specific files (such as executables and subrou-
tine libraries), while $(prefix) is used directly for other
directories.

Executable programs are installed in one of the following directories.

‘bindir’ The directory for installing executable programs that users
can run. This should normally be ‘/usr/local/bin’, but
write it as ‘$(exec_prefix)/bin’.

‘sbindir’ The directory for installing executable programs that can be
run from the shell, but are only generally useful to system
administrators. This should normally be ‘/usr/local/sbin’,
but write it as ‘$(exec_prefix)/sbin’.

‘libexecdir’
The directory for installing executable programs to be run
by other programs rather than by users. This directory
should normally be ‘/usr/local/libexec’, but write it as
‘$(exec_prefix)/libexec’.

Data files used by the program during its execution are divided into
categories in two ways.
� Some files are normally modified by programs; others are never

normally modified (though users may edit some of these).
� Some files are architecture-independent and can be shared by all

machines at a site; some are architecture-dependent and can be
shared only by machines of the same kind and operating system;
others may never be shared between two machines.

This makes for six different possibilities. However, we want to dis-
courage the use of architecture-dependent files, aside from of object files
and libraries. It is much cleaner to make other data files architecture-
independent, and it is generally not hard.

132 7 July 1995

Chapter 14: Makefile Conventions

Therefore, here are the variables makefiles should use to specify di-
rectories:

‘datadir’ The directory for installing read-only architecture indepen-
dent data files. This should normally be ‘/usr/local/share’,
but write it as ‘$(prefix)/share’. As a special exception, see
‘$(infodir)’ and ‘$(includedir)’ below.

‘sysconfdir’
The directory for installing read-only data files that pertain
to a single machine–that is to say, files for configuring a host.
Mailer and network configuration files, ‘/etc/passwd’, and
so forth belong here. All the files in this directory should be
ordinary ASCII text files. This directory should normally be
‘/usr/local/etc’, but write it as ‘$(prefix)/etc’.
Do not install executables in this directory (they probably
belong in ‘$(libexecdir)’ or ‘$(sbindir))’. Also do not in-
stall files that are modified in the normal course of their
use (programs whose purpose is to change the configura-
tion of the system excluded). Those probably belong in
‘$(localstatedir)’.

‘sharedstatedir’
The directory for installing architecture-independent data
files which the programs modify while they run. This
should normally be ‘/usr/local/com’, but write it as
‘$(prefix)/com’.

‘localstatedir’
The directory for installing data files which the programs
modify while they run, and that pertain to one specific ma-
chine. Users should never need to modify files in this di-
rectory to configure the package’s operation; put such con-
figuration information in separate files that go in ‘datadir’
or ‘$(sysconfdir)’. ‘$(localstatedir)’ should normally be
‘/usr/local/var’, but write it as ‘$(prefix)/var’.

‘libdir’ The directory for object files and libraries of object
code. Do not install executables here, they probably be-
long in ‘$(libexecdir)’ instead. The value of libdir
should normally be ‘/usr/local/lib’, but write it as
‘$(exec_prefix)/lib’.

‘infodir’ The directory for installing the Info files for this package.
By default, it should be ‘/usr/local/info’, but it should be
written as ‘$(prefix)/info’.

c y g n u s s u p p o r t 133

GNU make

‘includedir’
The directory for installing header files to be included by
user programs with the C ‘#include’ preprocessor directive.
This should normally be ‘/usr/local/include’, but write it
as ‘$(prefix)/include’.
Most compilers other than GCC do not look for header files
in ‘/usr/local/include’. So installing the header files this
way is only useful with GCC. Sometimes this is not a prob-
lem because some libraries are only really intended to work
with GCC. But some libraries are intended to work with
other compilers. They should install their header files in
two places, one specified by includedir and one specified by
oldincludedir.

‘oldincludedir’
The directory for installing ‘#include’ header files for use
with compilers other than GCC. This should normally be
‘/usr/include’.
The Makefile commands should check whether the value of
oldincludedir is empty. If it is, they should not try to use
it; they should cancel the second installation of the header
files.
A package should not replace an existing header in this direc-
tory unless the header came from the same package. Thus,
if your Foo package provides a header file ‘foo.h’, then it
should install the header file in the oldincludedir directory
if either (1) there is no ‘foo.h’ there or (2) the ‘foo.h’ that
exists came from the Foo package.
To tell whether ‘foo.h’ came from the Foo package, put a
magic string in the file—part of a comment—and grep for
that string.

Unix-style man pages are installed in one of the following:

‘mandir’ The directory for installing the man pages (if any) for this
package. It should include the suffix for the proper sec-
tion of the manual—usually ‘1’ for a utility. It will nor-
mally be ‘/usr/local/man/man1’, but you should write it as
‘$(prefix)/man/man1’.

‘man1dir’ The directory for installing section 1 man pages.

‘man2dir’ The directory for installing section 2 man pages.

‘. ..’ Use these names instead of ‘mandir’ if the package needs to
install man pages in more than one section of the manual.

134 7 July 1995

Chapter 14: Makefile Conventions

Don’t make the primary documentation for any GNU
software be a man page. Write a manual in Texinfo
instead. Man pages are just for the sake of people
running GNU software on Unix, which is a secondary
application only.

‘manext’ The file name extension for the installed man page. This
should contain a period followed by the appropriate digit; it
should normally be ‘.1’.

‘man1ext’ The file name extension for installed section 1 man pages.

‘man2ext’ The file name extension for installed section 2 man pages.

‘. ..’ Use these names instead of ‘manext’ if the package needs to
install man pages in more than one section of the manual.

And finally, you should set the following variable:

‘srcdir’ The directory for the sources being compiled. The value of
this variable is normally inserted by the configure shell
script.

For example:
Common prefix for installation directories.
NOTE: This directory must exist when you start the install.
prefix = /usr/local
exec_prefix = $(prefix)
Where to put the executable for the command ‘gcc’.
bindir = $(exec_prefix)/bin
Where to put the directories used by the compiler.
libexecdir = $(exec_prefix)/libexec
Where to put the Info files.
infodir = $(prefix)/info

If your program installs a large number of files into one of the stan-
dard user-specified directories, it might be useful to group them into a
subdirectory particular to that program. If you do this, you should write
the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value
of any of the variables listed above. The idea of having a uniform set of
variable names for installation directories is to enable the user to specify
the exact same values for several different GNU packages. In order for
this to be useful, all the packages must be designed so that they will
work sensibly when the user does so.

c y g n u s s u p p o r t 135

GNU make

136 7 July 1995

Appendix A: Quick Reference

Appendix A Quick Reference

This appendix summarizes the directives, text manipulation func-
tions, and special variables which GNU make understands. See Sec-
tion 4.7 “Special Targets,” page 27, Section 10.2 “Catalogue of Implicit
Rules,” page 96, and Section 9.7 “Summary of Options,” page 89, for
other summaries.

Here is a summary of the directives GNU make recognizes:

define variable
endef

Define a multi-line, recursively-expanded variable.
See Section 5.7 “Sequences,” page 47.

ifdef variable
ifndef variable
ifeq (a,b)
ifeq "a" "b"
ifeq ’a’ ’b’
ifneq (a,b)
ifneq "a" "b"
ifneq ’a’ ’b’
else
endif

Conditionally evaluate part of the makefile.
See Chapter 7 “Conditionals,” page 65.

include file
Include another makefile.
See Section 3.3 “Including Other Makefiles,” page 12.

override variable = value
override variable := value
override variable += value
override define variable
endef

Define a variable, overriding any previous definition, even
one from the command line.
See Section 6.7 “The override Directive,” page 61.

export

Tell make to export all variables to child processes by default.
See Section 5.6.2 “Communicating Variables to a Sub-make,”
page 43.

c y g n u s s u p p o r t 137

GNU make

export variable
export variable = value
export variable := value
export variable += value
unexport variable

Tell make whether or not to export a particular variable to
child processes.
See Section 5.6.2 “Communicating Variables to a Sub-make,”
page 43.

vpath pattern path
Specify a search path for files matching a ‘%’ pattern.
See Section 4.3.2 “The vpath Directive,” page 21.

vpath pattern
Remove all search paths previously specified for pattern.

vpath Remove all search paths previously specified in any vpath
directive.

Here is a summary of the text manipulation functions (see Chapter 8
“Functions,” page 71):

$(subst from,to,text)
Replace from with to in text.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(patsubst pattern,replacement,text)
Replace words matching pattern with replacement in text.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(strip string)
Remove excess whitespace characters from string.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(findstring find,text)
Locate find in text.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(filter pattern...,text)
Select words in text that match one of the pattern words.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(filter-out pattern.. .,text)
Select words in text that do not match any of the pattern
words.

138 7 July 1995

Appendix A: Quick Reference

See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(sort list)
Sort the words in list lexicographically, removing dupli-
cates.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 72.

$(dir names.. .)
Extract the directory part of each file name.
See Section 8.3 “Functions for File Names,” page 75.

$(notdir names...)
Extract the non-directory part of each file name.
See Section 8.3 “Functions for File Names,” page 75.

$(suffix names...)
Extract the suffix (the last ‘.’ and following characters) of
each file name.
See Section 8.3 “Functions for File Names,” page 75.

$(basename names...)
Extract the base name (name without suffix) of each file
name.
See Section 8.3 “Functions for File Names,” page 75.

$(addsuffix suffix,names...)
Append suffix to each word in names.
See Section 8.3 “Functions for File Names,” page 75.

$(addprefix prefix,names...)
Prepend prefix to each word in names.
See Section 8.3 “Functions for File Names,” page 75.

$(join list1,list2)
Join two parallel lists of words.
See Section 8.3 “Functions for File Names,” page 75.

$(word n,text)
Extract the nth word (one-origin) of text.
See Section 8.3 “Functions for File Names,” page 75.

$(words text)
Count the number of words in text.
See Section 8.3 “Functions for File Names,” page 75.

$(firstword names...)
Extract the first word of names.
See Section 8.3 “Functions for File Names,” page 75.

c y g n u s s u p p o r t 139

GNU make

$(wildcard pattern...)
Find file names matching a shell file name pattern (not a ‘%’
pattern).
See Section 4.2.3 “The Function wildcard,” page 20.

$(shell command)
Execute a shell command and return its output.
See Section 8.6 “The shell Function,” page 80.

$(origin variable)
Return a string describing how the make variable variable
was defined.
See Section 8.5 “The origin Function,” page 79.

$(foreach var,words,text)
Evaluate text with var bound to each word in words, and
concatenate the results.
See Section 8.4 “The foreach Function,” page 78.

Here is a summary of the automatic variables. See Section 10.5.3
“Automatic Variables,” page 106, for full information.

$@ The file name of the target.

$% The target member name, when the target is an archive
member.

$< The name of the first dependency.

$? The names of all the dependencies that are newer than the
target, with spaces between them. For dependencies which
are archive members, only the member named is used (see
Chapter 11 “Archives,” page 115).

$ˆ
$+ The names of all the dependencies, with spaces between

them. For dependencies which are archive members, only the
member named is used (see Chapter 11 “Archives,” page 115).
The value of $ˆ omits duplicate dependencies, while $+ re-
tains them and preserves their order.

$* The stem with which an implicit rule matches (see Sec-
tion 10.5.4 “How Patterns Match,” page 108).

$(@D)
$(@F) The directory part and the file-within-directory part of $@.

$(*D)
$(*F) The directory part and the file-within-directory part of $*.

$(%D)
$(%F) The directory part and the file-within-directory part of $%.

140 7 July 1995

Appendix A: Quick Reference

$(<D)
$(<F) The directory part and the file-within-directory part of $<.

$(ˆD)
$(ˆF) The directory part and the file-within-directory part of $ˆ.

$(+D)
$(+F) The directory part and the file-within-directory part of $+.

$(?D)
$(?F) The directory part and the file-within-directory part of $?.

These variables are used specially by GNU make:

MAKEFILES
Makefiles to be read on every invocation of make.
See Section 3.4 “The Variable MAKEFILES,” page 14.

VPATH

Directory search path for files not found in the current direc-
tory.
See Section 4.3.1 “VPATH Search Path for All Dependencies,”
page 21.

SHELL

The name of the system default command interpreter, usu-
ally ‘/bin/sh’. You can set SHELL in the makefile to change
the shell used to run commands. See Section 5.2 “Command
Execution,” page 38.

MAKE

The name with which make was invoked. Using this variable
in commands has special meaning. See Section 5.6.1 “How
the MAKE Variable Works,” page 42.

MAKELEVEL
The number of levels of recursion (sub-makes).
See Section 5.6.2 “Variables/Recursion,” page 43.

MAKEFLAGS
The flags given to make. You can set this in the environment
or a makefile to set flags.
See Section 5.6.3 “Communicating Options to a Sub-make,”
page 45.

SUFFIXES

The default list of suffixes before make reads any makefiles.

c y g n u s s u p p o r t 141

GNU make

142 7 July 1995

Appendix B: Complex Makefile Example

Appendix B Complex Makefile Example

Here is the makefile for the GNU tar program. This is a moderately
complex makefile.

Because it is the first target, the default goal is ‘all’. An interesting
feature of this makefile is that ‘testpad.h’ is a source file automatically
created by the testpad program, itself compiled from ‘testpad.c’.

If you type ‘make’ or ‘make all’, then make creates the ‘tar’ executable,
the ‘rmt’ daemon that provides remote tape access, and the ‘tar.info’
Info file.

If you type ‘make install’, then make not only creates ‘tar’, ‘rmt’, and
‘tar.info’, but also installs them.

If you type ‘make clean’, then make removes the ‘.o’ files, and the ‘tar’,
‘rmt’, ‘testpad’, ‘testpad.h’, and ‘core’ files.

If you type ‘make distclean’, then make not only removes the
same files as does ‘make clean’ but also the ‘TAGS’, ‘Makefile’, and
‘config.status’ files. (Although it is not evident, this makefile (and
‘config.status’) is generated by the user with the configure program,
which is provided in the tar distribution, but is not shown here.)

If you type ‘make realclean’, then make removes the same files as
does ‘make distclean’ and also removes the Info files generated from
‘tar.texinfo’.

In addition, there are targets shar and dist that create distribution
kits.

Generated automatically from Makefile.in by configure.

Un*x Makefile for GNU tar program.

Copyright (C) 1991 Free Software Foundation, Inc.

This program is free software; you can redistribute

it and/or modify it under the terms of the GNU

General Public License ...
...

...

SHELL = /bin/sh

Start of system configuration section.

srcdir = .

c y g n u s s u p p o r t 143

GNU make

If you use gcc, you should either run the

fixincludes script that comes with it or else use

gcc with the -traditional option. Otherwise ioctl

calls will be compiled incorrectly on some systems.
CC = gcc -O

YACC = bison -y

INSTALL = /usr/local/bin/install -c

INSTALLDATA = /usr/local/bin/install -c -m 644

Things you might add to DEFS:
-DSTDC_HEADERS If you have ANSI C headers and
libraries.
-DPOSIX If you have POSIX.1 headers and
libraries.
-DBSD42 If you have sys/dir.h (unless
you use -DPOSIX), sys/file.h,
and st_blocks in ‘struct stat’.
-DUSG If you have System V/ANSI C
string and memory functions
and headers, sys/sysmacros.h,
fcntl.h, getcwd, no valloc,
and ndir.h (unless
you use -DDIRENT).
-DNO_MEMORY_H If USG or STDC_HEADERS but do not
include memory.h.
-DDIRENT If USG and you have dirent.h
instead of ndir.h.
-DSIGTYPE=int If your signal handlers
return int, not void.
-DNO_MTIO If you lack sys/mtio.h
(magtape ioctls).
-DNO_REMOTE If you do not have a remote shell
or rexec.
-DUSE_REXEC To use rexec for remote tape
operations instead of
forking rsh or remsh.
-DVPRINTF_MISSING If you lack vprintf function
(but have _doprnt).
-DDOPRNT_MISSING If you lack _doprnt function.
Also need to define
-DVPRINTF_MISSING.
-DFTIME_MISSING If you lack ftime system call.
-DSTRSTR_MISSING If you lack strstr function.
-DVALLOC_MISSING If you lack valloc function.
-DMKDIR_MISSING If you lack mkdir and
rmdir system calls.
-DRENAME_MISSING If you lack rename system call.
-DFTRUNCATE_MISSING If you lack ftruncate
system call.
-DV7 On Version 7 Unix (not
tested in a long time).
-DEMUL_OPEN3 If you lack a 3-argument version

144 7 July 1995

Appendix B: Complex Makefile Example

of open, and want to emulate it
with system calls you do have.
-DNO_OPEN3 If you lack the 3-argument open
and want to disable the tar -k
option instead of emulating open.
-DXENIX If you have sys/inode.h
and need it 94 to be included.

DEFS = -DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \
-DVPRINTF_MISSING -DBSD42

Set this to rtapelib.o unless you defined NO_REMOTE,
in which case make it empty.
RTAPELIB = rtapelib.o
LIBS =
DEF_AR_FILE = /dev/rmt8
DEFBLOCKING = 20

CDEBUG = -g

CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \
-DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \

-DDEFBLOCKING=$(DEFBLOCKING)

LDFLAGS = -g

prefix = /usr/local

Prefix for each installed program,

normally empty or ‘g’.

binprefix =

The directory to install tar in.

bindir = $(prefix)/bin

The directory to install the info files in.

infodir = $(prefix)/info

End of system configuration section.

SRC1 = tar.c create.c extract.c buffer.c \
getoldopt.c update.c gnu.c mangle.c

SRC2 = version.c list.c names.c diffarch.c \
port.c wildmat.c getopt.c

SRC3 = getopt1.c regex.c getdate.y
SRCS = $(SRC1) $(SRC2) $(SRC3)
OBJ1 = tar.o create.o extract.o buffer.o \

getoldopt.o update.o gnu.o mangle.o
OBJ2 = version.o list.o names.o diffarch.o \

port.o wildmat.o getopt.o
OBJ3 = getopt1.o regex.o getdate.o $(RTAPELIB)
OBJS = $(OBJ1) $(OBJ2) $(OBJ3)

c y g n u s s u p p o r t 145

GNU make

AUX = README COPYING ChangeLog Makefile.in \

makefile.pc configure configure.in \

tar.texinfo tar.info* texinfo.tex \

tar.h port.h open3.h getopt.h regex.h \
rmt.h rmt.c rtapelib.c alloca.c \

msd_dir.h msd_dir.c tcexparg.c \

level-0 level-1 backup-specs testpad.c

all: tar rmt tar.info

tar: $(OBJS)

$(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rmt: rmt.c

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ rmt.c

tar.info: tar.texinfo

makeinfo tar.texinfo

install: all

$(INSTALL) tar $(bindir)/$(binprefix)tar

-test ! -f rmt || $(INSTALL) rmt /etc/rmt

$(INSTALLDATA) $(srcdir)/tar.info* $(infodir)

$(OBJS): tar.h port.h testpad.h

regex.o buffer.o tar.o: regex.h
getdate.y has 8 shift/reduce conflicts.

testpad.h: testpad
./testpad

testpad: testpad.o

$(CC) -o $@ testpad.o

TAGS: $(SRCS)

etags $(SRCS)

clean:

rm -f *.o tar rmt testpad testpad.h core

distclean: clean

rm -f TAGS Makefile config.status

realclean: distclean

rm -f tar.info*

shar: $(SRCS) $(AUX)

shar $(SRCS) $(AUX) | compress \
> tar-‘sed -e ’/version_string/!d’ \

-e ’s/[ˆ0-9.]*\([0-9.]*\).*/\1/’ \

-e q

version.c‘.shar.Z

146 7 July 1995

Appendix B: Complex Makefile Example

dist: $(SRCS) $(AUX)

echo tar-‘sed \

-e ’/version_string/!d’ \

-e ’s/[ˆ0-9.]*\([0-9.]*\).*/\1/’ \
-e q

version.c‘ > .fname

-rm -rf ‘cat .fname‘

mkdir ‘cat .fname‘

ln $(SRCS) $(AUX) ‘cat .fname‘
-rm -rf ‘cat .fname‘ .fname

tar chZf ‘cat .fname‘.tar.Z ‘cat .fname‘

tar.zoo: $(SRCS) $(AUX)

-rm -rf tmp.dir

-mkdir tmp.dir

-rm tar.zoo

for X in $(SRCS) $(AUX) ; do \

echo $$X ; \
sed ’s/$$/ˆM/’ $$X \

> tmp.dir/$$X ; done

cd tmp.dir ; zoo aM ../tar.zoo *

-rm -rf tmp.dir

c y g n u s s u p p o r t 147

GNU make

148 7 July 1995

Index of Concepts

Index of Concepts

#
(comments), in commands 37
(comments), in makefile 11
#include . 33

$
$, in function call . 71
$, in rules . 17
$, in variable name 55
$, in variable reference 51

%
%, in pattern rules 104
%, quoting in patsubst 72
%, quoting in static pattern. 31
%, quoting in vpath 22
%, quoting with \ (backslash) . . 22, 31, 72

*
* (wildcard character). 18

,
,v (RCS file extension) 99

-
- (in commands) . 40
-, and define . 48
--assume-new 86, 93
--assume-new, and recursion 45
--assume-old 87, 91
--assume-old, and recursion 45
--debug . 89
--directory . 42, 89
--directory, and

--print-directory 47
--directory, and recursion 45
--dry-run . 37, 85, 91
--environment-overrides. 90
--file . 12, 83, 90
--file, and recursion 45
--help . 90

--ignore-errors 40, 90
--include-dir 13, 90
--jobs. 38, 90
--jobs, and recursion 45
--just-print 37, 85, 91
--keep-going 40, 88, 90
--load-average 39, 90
--makefile 12, 83, 90
--max-load . 39, 90
--new-file . 86, 93
--new-file, and recursion. 45
--no-builtin-rules 91
--no-keep-going 92
--no-print-directory 47, 92
--old-file . 87, 91
--old-file, and recursion. 45
--print-data-base. 91
--print-directory. 92
--print-directory, and

--directory . 47
--print-directory, and recursion

. 47
--print-directory, disabling 47
--question . 85, 91
--quiet . 37, 92
--recon . 37, 85, 91
--silent . 37, 92
--stop . 92
--touch . 85, 92
--touch, and recursion. 42
--version . 92
--warn-undefined-variables. 93
--what-if . 86, 93
-b . 89
-C . 42, 89
-C, and -w . 47
-C, and recursion . 45
-d . 89
-e . 90
-e (shell flag) . 34
-f . 12, 83, 90
-f, and recursion . 45
-h . 90

c y g n u s s u p p o r t 149

GNU make

-i . 40, 90
-I . 13, 90
-j . 38, 90
-j, and archive update 117
-j, and recursion . 45
-k . 40, 88, 90
-l . 90
-l (library search) . 23
-l (load average) . 39
-m . 89
-M (to compiler) . 33
-MM (to GNU compiler) 34
-n . 37, 85, 91
-o . 87, 91
-o, and recursion . 45
-p . 91
-q . 85, 91
-r . 91
-s . 37, 92
-S . 92
-t . 85, 92
-t, and recursion . 42
-v . 92
-w . 92
-W . 86, 93
-w, and -C . 47
-w, and recursion . 47
-W, and recursion . 45
-w, disabling . 47

.

.a (archives) . 117

.c . 97

.C . 97

.cc . 97

.ch . 99

.d . 34

.def . 97

.dvi . 99

.f . 97

.F . 97

.info. 99

.l . 98

.ln . 99

.mod . 97

.o . 97, 98

.p . 97

.PRECIOUS intermediate files 103

.r . 97

.s . 98

.S . 98

.sh . 100

.sym . 97

.tex . 99

.texi. 99

.texinfo . 99

.txinfo . 99

.w . 99

.web . 99

.y . 98

:
:: rules (double-colon) 32
:=. 53, 58

=
= . 52, 58

?
? (wildcard character). 18

[
[: : :] (wildcard characters) 18

.SYMDEF . 116

@
@ (in commands) . 37
@, and define . 48

˜
˜ (tilde) . 18

+
+, and define . 48
+=. 59

\
\ (backslash), for continuation lines 4
\ (backslash), in commands 38
\ (backslash), to quote % 22, 31, 72

150 7 July 1995

Index of Concepts

A
all (standard target) 84
appending to variables 59
ar . 101
archive . 115
archive member targets 115
archive symbol directory updating . . . 116
archive, and -j . 117
archive, and parallel execution 117
archive, suffix rule for 117
Arg list too long . 46
arguments of functions 71
as . 98, 101
assembly, rule to compile 98
automatic generation of dependencies

. 13, 33
automatic variables 106

B
backquotes . 80
backslash (\), for continuation lines 4
backslash (\), in commands 38
backslash (\), to quote % 22, 31, 72
basename . 76
broken pipe . 39
bugs, reporting . 2
built-in special targets 27

C
C, rule to compile . 97
C++, rule to compile 97
cc . 97, 101
cd (shell command) 38, 42
chains of rules . 103
check (standard target) 85
clean (standard target) 84
clean target . 5, 9
cleaning up. 9
clobber (standard target) 84
co . 99, 101
combining rules by dependency 8
command line variable definitions, and

recursion . 45
command line variables 87
commands . 17
commands, backslash (\) in 38
commands, comments in 37

commands, echoing 37
commands, empty . 48
commands, errors in 40
commands, execution 38
commands, execution in parallel 38
commands, expansion 80
commands, how to write 37
commands, instead of executing 85
commands, introduction to 3
commands, quoting newlines in 38
commands, sequences of 47
comments, in commands 37
comments, in makefile 11
compatibility . 119
compatibility in exporting 44
compilation, testing 88
computed variable name 55
conditionals . 65
continuation lines . 4
conventions for makefiles 125
ctangle . 99, 102
cweave . 99, 102

D
deducing commands (implicit rules) 7
default goal . 5, 17
default makefile name 12
default rules, last-resort 111
defining variables verbatim 61
deletion of target files 41
dependencies. 18
dependencies, automatic generation of

. 13, 33
dependencies, introduction to 3
dependencies, list of all 107
dependencies, list of changed 106
dependencies, varying (static pattern)

. 30
dependency . 17
dependency pattern, implicit 104
dependency pattern, static (not implicit)

. 31
directive . 11
directories, printing them 47
directories, updating archive symbol

. 116
directory part . 75

c y g n u s s u p p o r t 151

GNU make

directory search (VPATH) 20
directory search (VPATH), and implicit

rules . 23
directory search (VPATH), and link

libraries . 23
directory search (VPATH), and shell

commands . 23
dist (standard target) 85
distclean (standard target) 84
dollar sign ($), in function call 71
dollar sign ($), in rules 17
dollar sign ($), in variable name 55
dollar sign ($), in variable reference . . 51
double-colon rules . 32
duplicate words, removing 74

E
E2BIG . 46
echoing of commands 37
editor . 3
Emacs (M-x compile) 41
empty commands . 48
empty targets . 26
environment . 62
environment, and recursion 43
environment, SHELL in 38
errors (in commands) 40
errors with wildcards 19
execution, in parallel. 38
execution, instead of 85
execution, of commands 38
exit status (errors) . 40
explicit rule, definition of 11
exporting variables 43

F
f77 . 97, 101
features of GNU make 119
features, missing . 123
file name functions . 75
file name of makefile 12
file name of makefile, how to specify . . 12
file name prefix, adding 76
file name suffix . 76
file name suffix, adding 76
file name with wildcards 18
file name, basename of 76

file name, directory part 75
file name, nondirectory part 75
files, assuming new 86
files, assuming old . 87
files, avoiding recompilation of 87
files, intermediate 103
filtering out words . 74
filtering words . 74
finding strings . 73
flags . 89
flags for compilers 100
flavors of variables . 52
FORCE. 26
force targets . 26
Fortran, rule to compile 97
functions . 71
functions, for file names. 75
functions, for text . 72
functions, syntax of 71

G
g++ . 97, 101
gcc . 97
generating dependencies automatically

. 13, 33
get . 99, 101
globbing (wildcards) 18
goal . 5
goal, default . 5, 17
goal, how to specify 83

H
home directory . 18

I
IEEE Standard 1003.2 1
implicit rule. 95
implicit rule, and directory search 23
implicit rule, and VPATH 23
implicit rule, definition of 11
implicit rule, how to use 95
implicit rule, introduction to 7
implicit rule, predefined 96
implicit rule, search algorithm 113
including (MAKEFILES variable) 14
including other makefiles 12
incompatibilities . 123

152 7 July 1995

Index of Concepts

Info, rule to format . 99
install (standard target) 85
intermediate files . 103
intermediate files, preserving 103
interrupt . 41

J
job slots . 38
job slots, and recursion 45
jobs, limiting based on load 39
joining lists of words 76

K
killing (interruption) 41

L
last-resort default rules 111
ld . 98
lex . 98, 101
Lex, rule to run . 98
libraries for linking, directory search

. 23
library archive, suffix rule for 117
limiting jobs based on load 39
link libraries, and directory search. . . . 23
linking, predefined rule for. 98
lint . 99
lint, rule to run . 99
list of all dependencies 107
list of changed dependencies 106
load average . 39
loops in variable expansion 53
lpr (shell command) 19, 26

M
m2c . 97
macro . 51
make depend . 33
makefile . 3
makefile name . 12
makefile name, how to specify 12
makefile rule parts . 3
makefile, and MAKEFILES variable 14
makefile, conventions for 125
makefile, how make processes 5
makefile, how to write 11
makefile, including. 12

makefile, overriding. 16
makefile, remaking of 14
makefile, simple . 4
makeinfo . 99, 101
match-anything rule 109
match-anything rule, used to override

. 16
missing features . 123
mistakes with wildcards 19
modified variable reference 55
Modula-2, rule to compile 97
mostlyclean (standard target) 84
multiple rules for one target 29
multiple rules for one target (::) 32
multiple targets . 28
multiple targets, in pattern rule 105

N
name of makefile . 12
name of makefile, how to specify 12
nested variable reference 55
newline, quoting, in commands 38
newline, quoting, in makefile 4
nondirectory part . 75

O
obj . 6
OBJ . 6
objects . 6
OBJECTS . 6
objs . 6
OBJS . 6
old-fashioned suffix rules 111
options . 89
options, and recursion 45
options, setting from environment 46
options, setting in makefiles 46
order of pattern rules 105
origin of variable . 79
overriding makefiles 16
overriding variables with arguments . . 87
overriding with override 61

P
parallel execution . 38
parallel execution, and archive update

. 117

c y g n u s s u p p o r t 153

GNU make

parts of makefile rule 3
Pascal, rule to compile 97
pattern rule. 104
pattern rules, order of 105
pattern rules, static (not implicit) 30
pattern rules, static, syntax of 30
pc . 97, 101
phony targets . 24
pitfalls of wildcards 19
portability . 119
POSIX . 1
POSIX.2 . 46
precious targets . 27
prefix, adding . 76
preserving intermediate files 103
preserving with .PRECIOUS 27, 103
print (standard target) 85
print target . 19, 26
printing directories 47
printing of commands 37
problems and bugs, reporting 2
problems with wildcards 19
processing a makefile 5

Q
question mode . 85
quoting %, in patsubst 72
quoting %, in static pattern. 31
quoting %, in vpath 22
quoting newline, in commands 38
quoting newline, in makefile 4

R
Ratfor, rule to compile 97
RCS, rule to extract from 99
README . 12
realclean (standard target) 84
recompilation . 3
recompilation, avoiding 87
recording events with empty targets . . 26
recursion . 41
recursion, and -C . 45
recursion, and -f . 45
recursion, and -j . 45
recursion, and -o . 45
recursion, and -t . 42
recursion, and -w . 47

recursion, and -W . 45
recursion, and command line variable

definitions . 45
recursion, and environment 43
recursion, and MAKE variable 42
recursion, and MAKEFILES variable . . . 14
recursion, and options 45
recursion, and printing directories 47
recursion, and variables 43
recursion, level of . 44
recursive variable expansion 51, 52
recursively expanded variables 52
reference to variables 51, 54
relinking . 6
remaking makefiles 14
removal of target files 41
removing duplicate words 74
removing, to clean up 9
reporting bugs . 2
rm . 102
rm (shell command) 5, 18, 24, 40
rule commands . 37
rule dependencies . 18
rule syntax . 17
rule targets . 17
rule, and $. 17
rule, double-colon (::) 32
rule, explicit, definition of 11
rule, how to write . 17
rule, implicit . 95
rule, implicit, and directory search 23
rule, implicit, and VPATH. 23
rule, implicit, chains of 103
rule, implicit, definition of 11
rule, implicit, how to use 95
rule, implicit, introduction to 7
rule, implicit, predefined 96
rule, introduction to . 3
rule, multiple for one target 29
rule, no commands or dependencies . . . 26
rule, pattern . 104
rule, static pattern . 30
rule, static pattern versus implicit 32
rule, with multiple targets 28

S
s. (SCCS file prefix) 99
SCCS, rule to extract from 99

154 7 July 1995

Index of Concepts

search algorithm, implicit rule 113
search path for dependencies (VPATH)

. 20
search path for dependencies (VPATH),

and implicit rules 23
search path for dependencies (VPATH),

and link libraries 23
searching for strings 73
sed (shell command) 34
selecting words . 77
sequences of commands 47
setting options from environment 46
setting options in makefiles 46
setting variables . 58
several rules for one target 29
several targets in a rule 28
shar (standard target) 85
shell command . 5
shell command, and directory search . . 23
shell command, execution 38
shell command, function for 80
shell file name pattern (in include) . . 12
shell wildcards (in include) 12
signal . 41
silent operation . 37
simple makefile . 4
simple variable expansion 51
simplifying with variables. 6
simply expanded variables 53
sorting words . 74
spaces, in variable values 54
spaces, stripping . 73
special targets . 27
specifying makefile name 12
standard input . 39
standards conformance 1
standards for makefiles 125
static pattern rule . 30
static pattern rule, syntax of 30
static pattern rule, versus implicit 32
stem . 30, 108
stem, variable for . 107
strings, searching for 73
stripping whitespace 73
sub-make. 43
subdirectories, recursion for 41
substitution variable reference 55
suffix rule. 111

suffix rule, for archive 117
suffix, adding . 76
suffix, function to find 76
suffix, substituting in variables 55
switches . 89
symbol directories, updating archive

. 116
syntax of rules . 17

T
tab character (in commands) 17
tabs in rules . 3
TAGS (standard target) 85
tangle . 99, 102
tar (standard target) 85
target . 17
target pattern, implicit 104
target pattern, static (not implicit) 30
target, deleting on error. 41
target, deleting on interrupt 41
target, multiple in pattern rule 105
target, multiple rules for one. 29
target, touching . 85
targets . 17
targets without a file 24
targets, built-in special 27
targets, empty . 26
targets, force . 26
targets, introduction to 3
targets, multiple . 28
targets, phony . 24
terminal rule . 109
test (standard target) 85
testing compilation 88
tex . 99, 102
TEX, rule to run . 99
texi2dvi . 99, 102
Texinfo, rule to format 99
tilde (˜) . 18
touch (shell command) 19, 26
touching files . 85

U
undefined variables, warning message

. 93
updating archive symbol directories

. 116

c y g n u s s u p p o r t 155

GNU make

updating makefiles 14

V
value . 51
value, how a variable gets it 58
variable . 51
variable definition . 11
variables . 6
variables, ‘$’ in name 55
variables, and implicit rule 106
variables, appending to 59
variables, automatic 106
variables, command line 87
variables, command line, and recursion

. 45
variables, computed names 55
variables, defining verbatim 61
variables, environment 43, 62
variables, exporting 43
variables, flavors . 52
variables, how they get their values. . . 58
variables, how to reference 51
variables, loops in expansion 53
variables, modified reference 55
variables, nested references 55
variables, origin of . 79
variables, overriding 61
variables, overriding with arguments

. 87
variables, recursively expanded 52
variables, setting . 58
variables, simply expanded 53
variables, spaces in values 54
variables, substituting suffix in 55

variables, substitution reference 55
variables, warning for undefined 93
varying dependencies 30
verbatim variable definition 61
vpath . 20
VPATH, and implicit rules 23
VPATH, and link libraries 23

W
weave . 99, 102
Web, rule to run . 99
what if . 86
whitespace, in variable values 54
whitespace, stripping 73
wildcard . 18
wildcard pitfalls . 19
wildcard, function . 77
wildcard, in archive member 115
wildcard, in include 12
words, extracting first 77
words, filtering . 74
words, filtering out . 74
words, finding number 77
words, iterating over 78
words, joining lists . 76
words, removing duplicates 74
words, selecting . 77
writing rule commands 37
writing rules . 17

Y
yacc . 47, 98, 101
Yacc, rule to run . 98

156 7 July 1995

Index of Functions, Variables, & Directives

Index of Functions, Variables, &
Directives

$
$% . 106
$(%D) . 108
$(%F) . 108
$(*D) . 108
$(*F) . 108
$(?D) . 108
$(?F) . 108
$(@D) . 108
$(@F) . 108
$(ˆD) . 108
$(ˆF) . 108
$(<D) . 108
$(<F) . 108
$* . 107
$*, and static pattern 32
$? . 106
$@ . 106
$+ . 107
$ˆ . 106
$< . 106

%
% (automatic variable) 106
%D (automatic variable) 108
%F (automatic variable) 108

*
* (automatic variable) 107
* (automatic variable), unsupported

bizarre usage . 124
*D (automatic variable) 108
*F (automatic variable) 108

.

.DEFAULT . 27, 111

.DEFAULT, and empty commands 48

.DELETE ON ERROR 41

.EXPORT ALL VARIABLES 28, 44

.IGNORE . 27, 40

.PHONY. 24, 27

.POSIX . 46

.PRECIOUS . 27, 41

.SILENT . 28, 37

.SUFFIXES . 27, 112

/
/usr/gnu/include 13
/usr/include . 13
/usr/local/include 13

?
? (automatic variable) 106
?D (automatic variable) 108
?F (automatic variable) 108

@
@ (automatic variable) 106
@D (automatic variable) 108
@F (automatic variable) 108

+
+ (automatic variable) 107

ˆ
ˆ (automatic variable) 106
ˆD (automatic variable) 108
ˆF (automatic variable) 108

<
< (automatic variable) 106
<D (automatic variable) 108
<F (automatic variable) 108

A
addprefix . 76
addsuffix . 76
AR . 101
ARFLAGS . 102
AS . 101
ASFLAGS . 102

c y g n u s s u p p o r t 157

GNU make

B
basename . 76

C
CC . 101
CFLAGS . 102
CO . 101
COFLAGS . 102
CPP . 101
CPPFLAGS . 102
CTANGLE . 102
CWEAVE . 102
CXX . 101
CXXFLAGS . 102

D
define . 61
dir . 75

E
else . 66
endef. 61
endif. 66
export . 43

F
FC . 101
FFLAGS . 102
filter . 74
filter-out . 74
findstring . 73
firstword . 77
foreach . 78

G
GET . 101
GFLAGS . 102
GNUmakefile. 12

I
ifdef. 66
ifeq . 66
ifndef . 66
ifneq. 66
include . 12

J
join . 76

L
LDFLAGS . 102
LEX . 101
LFLAGS . 102

M
MAKE . 42, 53
makefile . 12
Makefile . 12
MAKEFILES . 14, 45
MAKEFLAGS . 45
MAKEINFO . 101
MAKELEVEL . 44, 53
MAKEOVERRIDES . 45
MFLAGS . 46

N
notdir . 75

O
origin . 79
OUTPUT OPTION . 100
override . 61

P
patsubst . 55, 72
PC . 101
PFLAGS . 102

R
RFLAGS . 102
RM . 102

S
shell. 80
SHELL. 38
SHELL (command execution) 38
sort . 74
strip. 73
subst . 29, 72
suffix . 76
SUFFIXES . 113

158 7 July 1995

Index of Functions, Variables, & Directives

T
TANGLE . 102
TEX . 101
TEXI2DVI . 102

U
unexport . 43

V
vpath . 20, 21
VPATH . 20, 21

W
WEAVE . 102
wildcard . 20, 77
word . 77
words. 77

Y
YACC . 101
YACCR . 101
YFLAGS . 102

c y g n u s s u p p o r t 159

GNU make

160 7 July 1995

Developing With DOS
Development with the Cygnus Developer’s Kit

In a DOS-hosted environment
September 1994

Cygnus Support

Copyright c 1994, 1995 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

i

Table of Contents

MS-DOS Host Notes for the Cygnus Developer’s
Kit . 1

1 Running the Programs . 1
1.1 Environment variables . 1
1.2 The SHARE program . 2
1.3 Typical initialization files . 3
1.4 GO32, the 32-bit launcher . 4
1.5 Remote debugging using asynctsr . 4
1.6 Bug report form . 5

2 Warnings for dos Developer’s Kits 5
2.1 Memory requirements for ms-dos . 5
2.2 C++ compiler . 6
2.3 Disk cache . 6
2.4 Expanding environment space . 6
2.5 Debugging AMD 29K programs . 6
2.6 DEL does not work in Info . 7
2.7 Includes with conflicting filenames . 7

3 Hints and Common Problems 8

4 Technical info about the release 9

c y g n u s s u p p o r t

ii

c y g n u s s u p p o r t

Chapter 1: Running the Programs 1

MS-DOS Host Notes for the Cygnus
Developer’s Kit

This note is a summary of the Cygnus Developer’s Kit features specific
to developing code with dos. The dos environment has a number of
idiosyncrasies: we have attempted to share our expertise in development
in this environment.
If you discover other useful information for inclusion in this note, please
forward it to progressive@cygnus.com.
Installation procedures and specific warnings for this release are covered
in the Installation notes.

1 Running the Programs

Before you run the cross compiler, you must set some environment vari-
ables and you must run the ms-dos program ‘SHARE.EXE’.

1.1 Environment variables

To run the compiler you first have to set some environment variables so
that the tools can find each other. The environment variables need to
refer to the directory where you installed your Developer’s Kit.
A script which does this job, called ‘SETENV.BAT’, is automatically created
when the install program is run. ‘SETENV.BAT’ is placed at the top level
of the install directory.
These variables need to be reset each time your current session ends.
You may wish to edit your ‘AUTOEXEC.BAT’ file to include the contents of
‘SETENV.BAT’, or you may want to run the script from the ‘AUTOEXEC.BAT’
file.
To set up the enviroment variables automatically when your session
begins, add the following line to your ‘AUTOEXEC.BAT’ file (assuming the
tools were installed into ‘C:\CYGNUS’)
� �

CALL C:\CYGNUS\SETENV.BAT

 	

c y g n u s s u p p o r t

Chapter 1: Running the Programs 2

Or you can put this into your ‘AUTOEXEC.BAT’:
� �

set LIBRARY_PATH=C:\CYGNUS\LIB
set C_INCLUDE_PATH=C:\CYGNUS\INCLUDE
set INFOPATH=C:\CYGNUS\INFO
set GO32=EMU C:\CYGNUS\BIN\EMU387

 	

1.2 The SHARE program

To use the cross-development tools in your Developer’s Kit, you must
first load the ms-dos system program SHARE.EXE. Doing this in
‘AUTOEXEC.BAT’ is generally a good idea. Consult the ms-dos manual for
more information on SHARE.EXE, or type ‘HELP SHARE’ at the command
prompt (ms-dos 5.0 or later only).
On an ms-dos system with many programs loaded, you may find that
adding SHARE consumes more lower memory area than is convenient.
Consider running ‘LOADHIGH SHARE’ (on ms-dos 5.0 or later only). Con-
sult the ms-dos manual for more information about LOADHIGH, or type
‘HELP LOADHIGH’ at the command prompt. On ms-dos 6.2 or later, the
MEMMAKER command can help you maximize real-mode memory usage.
Run MEMMAKER after adding SHARE.EXE to ‘AUTOEXEC.BAT’ to help sort
out what programs to load where. Consult the ms-dos manual for more
information on MEMMAKER, or type ‘MEMMAKER /?’ at the command prompt.

Warning: If your system runs a third-party dos extender (such
as qemm or 386max), please use the commands and memory
load configuration tools provided by your memory manager, in
place of LOADHIGH or MEMMAKER. Consult the manuals that come
with your dos extender for further information.

c y g n u s s u p p o r t

Chapter 1: Running the Programs 3

1.3 Typical initialization files

These are typical initialization files for use with the Cygnus Developer’s
Kit:
CONFIG.SYS:
� �

REM 486/DX50 VL-bus
DEVICE=C:\DOS\SMARTDRV.EXE /double_buffer
DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE RAM X=CC00-CFFF
REM EMM386 line excludes RAM area used by this specific network card.
BUFFERS=15,0
REM MEMmaker chose this setting for BUFFERS.
FILES=100
DOS=UMB
REM MEMMAKER under DOS 6.2 splits the HIGH, UMB commands.
LASTDRIVE=E
REM or whatever is your last drive.
FCBS=16,8
DEVICEHIGH /L:2,12048 =C:\DOS\SETVER.EXE
DOS=HIGH
REM MEMMAKER under DOS 6.2 splits the HIGH, UMB commands.
SHELL=C:\DOS\COMMAND.COM C:\DOS\ /E:1024 /p
REM The /E option leaves enough env space for Cygnus SETENV actions.
DEVICEHIGH /L:1,9072 =C:\DOS\ANSI.SYS

 	

AUTOEXEC.BAT:
� �

@ECHO OFF
LH /L:0;2,45488 /S C:\DOS\SMARTDRV.EXE
PATH C:\DOS;C:\WINDOWS;C:\BAT;C:\NET;C:\bin;C:\gnu;c:\utils
C:\DOS\MOUSE.COM
LH /L:2,13984 SHARE
PROMPT pg
SET TMP=C:\TEMP
REM Cygnus tools and other programs use TMP
SET TEMP=C:\TEMP
REM DOS and other programs use TEMP
SET LOGNAME=jax
REM RCS uses LOGNAME
LH /L:1,6384 C:\DOS\DOSKEY /INSERT
REM I love command line recall!
REM This might be a place to run C:\CYGNUS\SETENV.BAT

 	

c y g n u s s u p p o r t

Chapter 1: Running the Programs 4

1.4 GO32, the 32-bit launcher

GO32 is the protected-mode 32-bit application launcher used by the tools
in the Cygnus Developer’s Kit. It works best on many ms-dos machines
if you use HIMEM.SYS and EMM386.EXE. If you use MEMMAKER, be sure
to tell it you have programs which need expanded memory (GO32 uses
expanded memory).
GO32 can also run Cygnus programs under versions of Windows, Win-
dows for Workgroups, Windows NT, OS/2 and Desqview. Special versions
of GO32 may be necessary for all but ms-dos; if you need one of these spe-
cial versions, please send a problem report with a problem category of

>Category: dos

and a synopsis of
>Synopsis: Need go32 support

1.5 Remote debugging using asynctsr

If you use a dos host, gdb depends on an auxiliary terminate-and-stay-
resident program called asynctsr to communicate with the development
board through a PC serial port. You must also use thedos mode command
to set up the serial port on the dos side.
The following sample session illustrates the steps needed to start a pro-
gram under gdb control on a Hitachi sh chip, using a dos host. The
example uses a sample sh program called ‘t.x’. The procedure is similar
for other chips. In general, you must run asynctsr and then mode before
gdb.
First hook up your development board. In this example, we use a board
attached to serial port COM2; if you use a different serial port, substitute
its name in the argument of the mode command. When you call asynctsr,
the auxiliary communications program used by the degugger, you give it
just the numeric part of the serial port’s name; for example, ‘asyncstr 2’
below runs asyncstr on COM2.

C:\SH\TEST> asynctsr 2

C:\SH\TEST> mode com2:9600,n,8,1,p

Resident portion of MODE loaded

COM2: 9600, n, 8, 1, p

Warning: We have noticed a bug in pc-nfs that conflicts with
asynctsr. If you also run pc-nfs on your dos host, you may
need to disable it, or even boot without it, to use asynctsr to
control your development board.

c y g n u s s u p p o r t

Chapter 2: Warnings for dos Developer’s Kits 5

For more information on remote debugging, see section “The GDB remote
serial protocol” in Debugging with GDB.

1.6 Bug report form

The Cygnus bug-report template accompanies this release in the file
‘C:\instdir\SEND_PR.TXT’. Customize the Cygnus bug-report form by
filling in your customer ID:
1. Find your customer ID in the cover letter that came with this release;

or call the Cygnus hotline +1 415 903 1401 to ask what it is.
2. Run your favorite editor on ‘C:\instdir\LIB\SEND_PR.TXT’
3. Search for the text ‘>Customer-Id: unknown’
4. Replace the string ‘unknown’ with your customer ID.

Copy this file into an email message and send it to bugs@cygnus.com or
print it out and fax it to Cygnus Support.

2 Warnings for dosDeveloper’s Kits

See section “Limitations and Warnings” in Release Notes, for special
considerations that apply to the Developer’s Kit on any host. There are
also a few special considerations forms-dos hosts only, which we describe
here.

2.1 Memory requirements for ms-dos

The toolkit uses up to 128Mb of extended memory if present, and up to
128Mb of disk space can be used for swapping. Disk caching programs
speed compilation greatly.
We do not recommend using the cross-development kit with less than
four (4) megabytes of ram.
We provide a ms-dos extender with the cross-development kit for ms-dos
which does swapping to disk when ms-dos runs out of memory. To avoid
excessive swapping you must have at least two (2) megabytes of ram to
run g++ on a pc with ms-dos.
If you’ve got more than two megabytes, the extra memory can be used
as a disk cache to significantly improve performance.

c y g n u s s u p p o r t

Chapter 2: Warnings for dos Developer’s Kits 6

2.2 C++ compiler

There is no specific script which runs the C++ compiler. To use g++,
simply rungccwith the ‘-lgxx’ option. ‘xx’ is used because the character
+ is not a valid character for ms-dos filenames.

2.3 Disk cache

While not strictly necessary to run the cross-compiler, using a good disk
cache speeds up the compiler noticeably. SMARTdrive, for example, is a
cache program that comes with ms-dos from version 5 onwards; refer to
your ms-dos manual for details on how to use it.

2.4 Expanding environment space

If your environment is short on space for setting environment variables,
you can expand it by editing the file ‘CONFIG.SYS’. Edit the line

SHELL=C:\COMMAND.COM /P /E:envsiz

to reflect the new environment space size. envsiz stands for the envi-
ronment size, in bytes.

2.5 Debugging AMD 29K programs

To develop software for the amd 29k, you can use either the montip
program to communicate with a board over a serial line, or the program
isstip as a simulator. isstip and montip are both available from amd

at no charge. They are not included with this release.
To use the simulator, simply set the environment variable UDICONF to
the full path of the file ‘udiconfs.txt’, as in the example

set UDICONF drive:instdir\AMD\BIN\UDICONFS.TXT

For instance, if you installed the Developer’s Kit in ‘C:\CYGNUS’, indicate
the full path as:

‘C:\CYGNUS\AMD\BIN\UDICONFS.TXT’

Then place the simulator in resident memory with the command:
isstip isstip.exe

isstip takes information from the configuration file ‘udiconfs.txt’,
which contains the following entries:

c y g n u s s u p p o r t

Chapter 2: Warnings for dos Developer’s Kits 7

name command + options
iss isstip.exe -r osboot

‘osboot’ is a file that is loaded into the isstip program. ‘osboot’, in this
case, simulates roms, provides an interface for input and output, etc.

Warning: once the isstip program is started, running the com-
piler hangs the machine. This is because isstipuses a different
and incompatible dos extender from the compiler, and thus the
programs cannot coexist.

If you wish to use gdb with the target board, first change your working
directory to the directory containing ‘MONTIP.EXE’ and type

montip montip.exe

before invoking gdb. See section “Getting In and Out of gdb” in Debug-
ging with gdb, arguments to gdb.
Again, isstip and montip are both available from amd at no charge.
They are not included with this release.

2.6 DEL does not work in Info

gnu Info, the online documentation browser, is available with this re-
lease on our ms-dos hosts.
Unfortunately, the dos version of Info, INFO.EXE, does not recognize the
DEL key. This key is normally used for paging backwards within a node
in Info. As a workaround, you can page backwards in Info by typing
ESC v.

2.7 Includes with conflicting filenames

Note: the following information only matters when you want
to read the Developer’s Kit source code. You do not need to
alter your programming style in any way. The C preprocessor
handles this mapping automatically, based on the specifications
in the file ‘header.gcc’.

In the include directories of a standard gnu compiler system there are
sometimes files whose names are too long to represent underms-dos and
its related operating environments. There are also pairs of files where
the only difference between the names is whether some characters are
upper-case. For example, one of the standard C header files is called
‘string.h’, and one of the libg++ header files is called ‘String.h’.
We handled this in your Cygnus toolkit by moving uppercase-distinct
and too-long filenames to legal ms-dos filenames in a subdirectory called

c y g n u s s u p p o r t

Chapter 3: Hints and Common Problems 8

‘upcase’. Here are three examples of how we rename files to avoid con-
flicts in thems-dos file system. These files are all from the ‘include.cxx’
subdirectory:

filename conflict file renamed
--------- -------- ------------
./iostreamP.h ./iostream.h ./upcase/iostream.h
./Complex.h ./complex.h ./upcase/Complex.h
./Regex.h ./regex.h ./upcase/Regex.h

Any include directory may contain an ‘upcase’ subdirectory. The header
files in it would be in the parent directory on a Unix system. Again,
you do not need to alter your programming style in any way; the com-
piler remaps the locations of these files, so that ‘#include <iostream.h>’
works correctly even though it resides physically in a subdirectory of
‘include.cxx’.

3 Hints and Common Problems

This section is part of a faq (frequently asked questions) list which
was developed by Steve Chamberlain (sac@cygnus.com) to help with
common dos tool-chain problems. Please send comments or suggestions
for further FAQ’s to him.
Q: How do I pass a command line of greater than 127 characters to any
of the tools?
A: DOS doesn’t allow long command lines. But you can put your com-
mand line into a file (called a response file) and reference the file on the
command line with a @ sign. Then the tool will read the file as if you
typed it onto the command line. For example:
gcc @foo

reads the contents of the file ‘foo’ as if they were on the command line.
Q: Can I use the tools on a 286?
A: No.
Q: Can I run it under Microsoft Windows?
A: Yes. In fact, it works a bit faster under MS-Windows.
Q: Why do some birds fly south for the winter?
A: It’s too far to walk.
Q: Why does a tool say “Error: not enough memory to run go32!”.
A: This often happens when trying to run make, but it can happen to any
of the tools if you don’t have enough memory. make calls gcc, gcc calls
cc1 or the assembler, and so on. Each invocation uses more memory.
You can avoid this problem by not using make, or stripping out unused

c y g n u s s u p p o r t

Chapter 4: Technical info about the release 9

TSRs from your ‘AUTOEXEC.BAT’ or ‘CONFIG.SYS’ file so that there is more
spare memory in the bottom 640K. Try running ‘MEMMAKER’.
Use ‘MEM’ to see how much conventional memory you have free. You’ll
need around 500K to allow make to run properly.
Q: How do I get the online help?
A: If your INFOPATH is set correctly then all you need do is type:

info

If you don’t have INFOPATH set, you’ll get an error like this:
info.exe: dir: file not found

You’ll then need to specify the path on the command line like this:
info -d c:/cygnus/info

4 Technical info about the release

The binaries in this release were compiled on a Unix workstation
with gcc generating 32-bit 386 code. The code is run with a DOS
extender ‘go32.exe’ which uses the flat memory model available in
the 386. Source for this extender is available on the net. Contact
info@cygnus.com if you have problems obtaining it.
The files are stored on the floppies using Microsoft’s ‘COMPRESS’ program.
You can install files without using the install program by just copying
them into the right place on your hard drive and running ‘EXPAND’. Since
the files are stored on the floppy using their full name (and not the
marked as compressed by using Microsoft’s ‘.XX_ ’ naming convention)
you’ll have to use a temporary file.

copy b:\bin\cc1.exe c:\foo\bin
expand c:\foo\bin\cc1.exe c:\foo\bin\tmp
rename c:\foo\bin\tmp c:\foo\bin\cc1.exe

c y g n u s s u p p o r t

Programming Embedded Systems
With the Cygnus Developer’s Kit

Cygnus Support

Copyright c 1993, 1994, 1995 Cygnus Support
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Table of Contents

1 Hitachi SH Development . 1
1.1 What to Call the Tools . 1
1.2 Compiling for the Hitachi sh . 1
1.3 Using C++ for the Hitachi SH . 2
1.4 Register handling . 3
1.5 Debugging code for the Hitachi sh . 3

1.5.1 Connecting to Hitachi boards 4
1.5.2 Using the E7000 in-circuit emulator 5

1.6 Hitachi sh documentation . 6

2 IDT MIPS Development . 7
2.1 What to Call the Tools . 7
2.2 Bootstrapping the Tools for IDT/MIPS Development 7
2.3 Compiler options for MIPS . 10

2.3.1 GCC options for code generation 10
2.3.2 GCC options for floating point 11
2.3.3 Floating point subroutines . 12
2.3.4 Linking with the GOFAST library 13
2.3.5 Full compatibility with the GOFAST library . . . 14
2.3.6 GCC options to avoid for IDT R3000 boards . . . 14

2.4 Predefined preprocessor macros . 16
2.5 Assembling MIPS R3000 code . 16

2.5.1 Assembler options . 16
2.5.2 ECOFF object code . 17
2.5.3 Directives for debugging information 17

2.6 Remote IDT/MIPS Debugging . 18
2.7 Configuring GNU source for IDT/MIPS 19
2.8 IDT/MIPS documentation . 20
2.9 Some General Information . 20

2.9.1 Assembly with C preprocessing 20
2.9.2 Useful listings from GNU as or GCC 20
2.9.3 An extra initialization function 22

2.10 What to Call the Tools . 22
2.11 Compiling for LynxOS . 23

2.11.1 Compiler options for LynxOS 23
2.11.2 Default options for your environment 24
2.11.3 Predefined preprocessor macros 25

2.12 LynxOS Debugging with GDB . 25
2.12.1 Multithread debugging on LynxOS 25

2.12.1.1 Switching and inquiring on threads
. 26

c y g n u s s u p p o r t i

Programming Embedded Systems

2.12.1.2 Breakpoint features for LynxOS
threads . 27

2.12.1.3 Watchpoint limitations for LynxOS
threads . 28

2.12.2 Cross debugging with gdbserver 28
2.13 LynxOS Subroutine Libraries . 30
2.14 Object formats supported . 31
2.15 Configuring GNU source for LynxOS 31
2.16 LynxOS Documentation . 32

3 NLM Development . 33
3.1 What to Call the Tools . 33
3.2 Compiling for NetWare . 33
3.3 Compiler and Linker Options for NetWare 34
3.4 Making an NLM . 34

3.4.1 Differences from DOS development tools 35
3.4.2 What goes in the file.def header 36

3.5 NetWare Debugging with GDB . 40
3.6 Subroutine Libraries . 41
3.7 Predefined Preprocessor Macros . 41
3.8 Configuring GNU source for NetWare 42
3.9 NetWare Development Documentation 42

4 Fujitsu SPARClite Development 43
4.1 What to Call the Tools . 43
4.2 Compiling for the SPARClite . 43

4.2.1 Setting up GCC for the SPARClite 44
4.2.2 SPARC options for architecture and code

generation . 45
4.2.3 Compiler command-line options for floating point

. 46
4.2.4 Floating point subroutines . 47
4.2.5 SPARC options for unfinished features 47

4.3 Assembling SPARClite code . 47
4.4 Remote SPARClite Debugging with GDB 47
4.5 SPARClite documentation . 48

ii 7 July 1995

Chapter 1: Hitachi SH Development

1 Hitachi SH Development

1.1 What to Call the Tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The names are constructed by using as a prefix the ‘--target’ argument
to configure. For example, the compiler (called simply gcc in native
configurations) is called by the name for Hitachi sh cross-development,
sh-hms-gcc. Likewise, the sh-configured gdb is called by the name
sh-hms-gdb.
For dos-hosted toolchains, the tools are simply called by their standard
names, e.g., gcc, gdb, etc.

1.2 Compiling for the Hitachi sh

Once the toolchain is configured to generate code for the sh, you can
control variances in code generation directly from the command line.
Note: Much of the sh code is experimental, and may change in the future.

General Options

-msh1 Generate code for the sh-1 chip. This is the default behavior
for the sh configuration.

-msh2 Generate code for the sh-2 chip.

There is also an option ‘-msh3’ which will generate code for the sh-3 chip
when the details are made available. This option currently yields the
same results as ‘-msh2’.

c y g n u s s u p p o r t 1

Programming Embedded Systems

Experimental Features

-mfastcode
Generate fast code, rather than small code.

-msmallcode
Generate small code, rather than fast code.

-mnosave Use a different calling convention. The registers ‘R8’, ‘R9’,
‘R10’, and ‘R11’ are all call-used with this setting (see Sec-
tion 1.4 “Register handling,” page 3).

-mhitachi
Use Hitachi’s calling convention rather than that for gcc.
The registers ‘MACH’ and ‘MACL’ are saved with this setting
(see Section 1.4 “Register handling,” page 3).

-mbsr Use bsr calls to code backward-referenced within the func-
tion. Note: This may fail if the target is too far away.

-mshortaddr
Assume that all static data fits into 16 bits, and keep pointers
to them in word-length rather than long-length pointers.

-mbigtable
Generate jump tables for switch statements using four-byte
offsets rather than the standard two-byte offset. This op-
tion is necessary when the code within a switch statement is
larger that 32k. If the option is needed and not supplied, the
assembler will generate errors.

1.3 Using C++ for the Hitachi SH

This special release includes support for the C++ language. This support
may in certain circumstances add up to 5K to the size of your executables
The new C++ support involves new startup code that runs C++ initial-
izers before ‘main()’ is invoked. If you have a replacement for the file
‘crt0.o’ (or if you call ‘main()’ yourself) you must call ‘_main()’ before
calling ‘main()’.
You may need to run these C++ initializers even if you do not write in
C++ yourself. This could happen, for instance, if you are linking against
a third-party library which itself was written in C++. You may not be
able to tell that it was written in C++ because you are calling it with C
entry points prototyped in a C header file. Without these initializers,
functions written in C++ may malfunction.

2 7 July 1995

Chapter 1: Hitachi SH Development

If you are not using any third-party libraries, or are otherwise certain
that you will not require any C++ constructors you may suppress them
by adding the following definition to your program:

int __main() {}

1.4 Register handling

The first four words of arguments are passed in registers ‘R4’ through
‘R7’. All remaining arguments are pushed onto the stack, last to first,
so that the lowest numbered argument not passed in a register is at the
lowest address in the stack. The registers are always filled, so a double
word argument starting in ‘R7’ would have the most significant word in
‘R7’ and the least significant word on the stack.
When a function is compiled with the default options, it must return
with registers ‘R8’ through ‘R15’ unchanged. Registers ‘R0’ through ‘R7’,
‘T’, ‘MACH’ and ‘MACL’ are volatile.
The ‘-mhitachi’ switch makes the ‘MACH’ and ‘MACL’ registers caller-
saved, which is compatible with the Hitachi tool chain at the expense of
performance.
The ‘-mnosave’ switch makes registers ‘R0’ through ‘R11’ volatile, which
can often improve performance.
Note that functions compiled with different calling conventions cannot
be run together without some care.

1.5 Debugging code for the Hitachi sh

gdb needs to know these things to talk to your Hitachi sh:
1. that you want to use ‘target remote’, the remote debugging in-

terface for the Hitachi sh microprocessors, or ‘target e7000’, the
in-circuit emulator for the Hitachi sh and the Hitachi 300H.

2. what serial device connects your host to your Hitachi board (the first
serial device available on your host is the default).

3. if you are using a Unix host, what speed to use over the serial device.

c y g n u s s u p p o r t 3

Programming Embedded Systems

1.5.1 Connecting to Hitachi boards

You can use the gdb remote serial protocol to communicate with a Hi-
tachi sh board. You must first link your programs with the “stub” mod-
ule ‘src/gdb/config/sh/stub.c’. This module manages the commu-
nication with gdb. See section “The GDB remote serial protocol” in
Debugging with GDB, for more details.
Use the special gdb command ‘device port’ if you need to explicitly set
the serial device. The default port is the first available port on your host.
This is only necessary on Unix hosts, where it is typically something like
‘/dev/ttya’.
gdb has another special command to set the communications speed:
‘speed bps’. This command also is only used from Unix hosts; on dos

hosts, set the line speed as usual from outside gdb with the dos mode
command (for instance, ‘mode com2:9600,n,8,1,p’ for a 9600 bps con-
nection).
The ‘device’ and ‘speed’ commands are available only when you use a
Unix host to debug your Hitachi microprocessor programs. You must
also use the dos mode command to set up the serial port on the dos side.
The following sample session illustrates the steps needed to start a pro-
gram under gdb control on an sh, using a dos host. The example uses
a sample sh program called ‘t.x’. The procedure is the same for other
Hitachi chips in the series.
First hook up your development board. In this example, we use a board
attached to serial port COM2; if you use a different serial port, substitute
its name in the argument of the mode command.

C:\SH\TEST> mode com2:9600,n,8,1,p

Resident portion of MODE loaded

COM2: 9600, n, 8, 1, p

Now that serial communications are set up, and the development board
is connected, you can start up gdb. Call gdb with the name of your
program as the argument. gdb prompts you, as usual, with the prompt
‘(gdb)’. Use two special commands to begin your debugging session:
‘target hms’ to specify cross-debugging to the Hitachi board, and the
load command to download your program to the board. load displays
the names of the program’s sections, and a ‘*’ for each 2K of data down-
loaded. (If you want to refresh gdb data on symbols or on the executable
file without downloading, use the gdb commands file or symbol-file.
These commands, and load itself, are described in section “Commands
to specify files” in Debugging with GDB.)

4 7 July 1995

Chapter 1: Hitachi SH Development

C:\SH\TEST> gdb t.x
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB 4.13-94q4, Copyright 1994 Free Software Foundation, Inc...
(gdb) target remote
Connected to remote SH HMS system.
(gdb) load t.x
.text : 0x8000 .. 0xabde ***********
.data : 0xabde .. 0xad30 *
.stack : 0xf000 .. 0xf014 *

At this point, you’re ready to run or debug your program. From here
on, you can use all the usual gdb commands. The break command
sets breakpoints; the run command starts your program; print or x
display data; the continue command resumes execution after stopping
at a breakpoint. You can use the help command at any time to find out
more about gdb commands.
Remember, however, that operating system facilities aren’t available on
your development board; for example, if your program hangs, you can’t
send an interrupt—but you can press the reset switch!
Use the reset button on the development board:
� to interrupt your program (don’t use Ctrl-C on the dos host—it has

no way to pass an interrupt signal to the development board); and
� to return to the gdb command prompt after your program finishes

normally. The communications protocol provides no other way for
gdb to detect program completion.

In either case, gdb sees the effect of a reset on the development board
as a “normal exit” of your program.

1.5.2 Using the E7000 in-circuit emulator

You can use the E7000 in-circuit emulator to develop code for either the
Hitachi sh or the H8/300H. Use one of these forms of the ‘target e7000’
command to connect gdb to your E7000:

target e7000 port speed
Use this form if your E7000 is connected to a serial port.
The port argument identifies what serial port to use (for
example, ‘com2’). The third argument is the line speed in bits
per second (for example, ‘9600’).

target e7000 hostname
If your E7000 is installed as a host on a tcp/ip network, you
can just specify its hostname; gdb uses telnet to connect.

c y g n u s s u p p o r t 5

Programming Embedded Systems

The monitor command set makes it difficult to load large ammounts of
data over the network without using ftp. We recommend you try not
to issue load commands when communicating over Ethernet; use the
ftpload command instead.

1.6 Hitachi sh documentation

The following manuals provide extensive documentation on the sh. They
are produced by and available from Hitachi Microsystems; contact your
friendly Field Application Engineer for details.

SH Microcomputer User’s Manual
Semiconductor Design & Development Center, 1992

Hitachi SH2 Programming Manual
Semiconductor and Integrated Circuit Division, 1994

6 7 July 1995

Chapter 2: IDT MIPS Development

2 IDT MIPS Development

2.1 What to Call the Tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The names are constructed by using, as a prefix, the name of the con-
figured target (i.e., the string specified with ‘--target’ to configure).
For example, the compiler (called simply gcc in native configurations) is
called by one of these names:

mips-idt-ecoff-gcc
If configured for big-endian byte ordering.

mipsel-idt-ecoff-gcc
If configured for little endian byte ordering.

2.2 Bootstrapping the Tools for IDT/MIPS
Development

Before you can use the Cygnus Developer’s Kit to build your programs
for idt boards, you need a C library and C run-time initialization code.
Unless you already have suitable libraries of your own, you must inte-
grate the Cygnus C libraries with low-level code supplied by idt. This
low-level code initializes the C run-time environment, and describes the
hardware interface to the Cygnus C libraries.
To begin with, make sure you have the following C and assembly source
files from idt:
C source files:

drv_8254.c sys.c

idt_int_hand.c syscalls.c

idtfpip.c timer_int_hand.c

sbrk.c

C header files:
dpac.h idtio.h

excepthdr.h idtmon.h
fpip.h iregdef.h

i8254.h saunder.h

idt_entrypt.h setjmp.h

idtcpu.h

c y g n u s s u p p o r t 7

Programming Embedded Systems

Assembler files:
idt_csu.S lnkexit.S

idt_except.S lnkhelp.S

idtfpreg.S lnkinstal.S

idtmem.S lnkio.S

idttlb.S lnkioctl.S

idtwbf.S lnkjmp.S
lnkatb.S lnkmem.S

lnkcach.S lnknimp.S

lnkchar.S lnkprint.S

lnkcio.S lnksbrk.S

lnkcli.S lnkstr.S

Then follow these steps to integrate the low-level idt code with your
Cygnus Developer’s Kit:
1. idt supplies the C run-time initialization code in the file ‘idt_csu.S’.

Since gnu cc expects to find the initialization module under the
name crt0.o, rename the source file to match:
� �

$ mv idt_csu.S crt0.S

 	

2. Edit the contents of ‘crt0.S’. A few more instructions are needed to
ensure correct initialization, and to ensure that your programs exit
cleanly. At the end of the file (after a comment including the text
‘END I/O initialization’), look for these lines:
� �

jal main

ENDFRAME(start)

 	

Insert ‘move ra,zero’ before ‘jal main’ to mark the top of the stack
for the debugger, and add two lines after the call to main to call the
exit routine (before the ‘ENDFRAME(start)’), so that the end of the
file looks like this:
� �

move ra,zero
jal main

move a0,v0
jal exit

ENDFRAME(start)

 	

3. Edit ‘syscalls.c’, the interface to the low-level routines required by
the C library, to remove the leading underbar from two identifiers:

8 7 July 1995

Chapter 2: IDT MIPS Development

a. Rename _kill to kill;
b. Rename _getpid to getpid.

4. Edit ‘lnksbrk.S’ to remove the definition of _init_sbrk; this defini-
tion is not needed, since it is available in ‘sbrk.c’. Delete the lines
marked with ‘-’ at the left margin below:
� �

.text

-FRAME(_init_sbrk,sp,0,ra)
- j ra
-ENDFRAME(_init_sbrk)
-
-
-
FRAME(_init_file,sp,0,ra)

j ra
ENDFRAME(_init_file)

 	

5. Use your Cygnus Developer’s Kit to assemble the ‘.S’ files, like this
(use the compiler driver gcc to permit C preprocessing).
For concreteness, these example commands assume the mips (big-
endian) variant of the configuration; if you ordered tools configured
for little-endian object code, type ‘mipsel’ wherever the examples
show ‘mips’.
� �

$ mips-idt-ecoff-gcc -g -c *.S

 	

6. Compile the ‘.c’ files.
One particular C source file, ‘drv_8254.c’ requires two special pre-
processor symbol definitions: ‘-DCLANGUAGE -DTADD=0xBF800000’.
Be careful to type the constant value for ‘TADD’ accurately; the correct
value is essential to allow the idt board to communicate over its
serial port.
The two special preprocessor definitions make no difference to the
other C source files, so you can compile them all with one call to the
compiler, like this:
� �

$ mips-idt-ecoff-gcc -g -O \
-DCLANGUAGE -DTADD=0xBF800000 -c *.c

 	

(The example is split across two lines simply due to formatting con-
straints; you can type it on a single line instead of two lines linked
by a ‘\’, of course.)

c y g n u s s u p p o r t 9

Programming Embedded Systems

7. Add the new object files to the C library archive, ‘libc.a’, from
your Cygnus Developer’s Kit. Assuming you installed the Kit in
‘/usr/cygnus/’ as we recommend:
� �

$ mips-idt-ecoff-ar rvs /usr/cygnus/progressive-94q1/\
H-host/mips-idt-ecoff/lib/libc.a *.o

 	

As before, you can omit the ‘\’ and type a single line. ‘H-host’
stands for the string that identifies your host configuration; for ex-
ample, on a sparc computer running SunOS 4.1.3, you’d actually
type ‘H-sparc-sun-sunos4.1.3’.

2.3 Compiler options for MIPS

When you rungcc, you can use command-line options to choose machine-
specific details. For information on all the gcc command-line options,
see section “GNU CC Command Options” in Using GNU CC.

2.3.1 GCC options for code generation

-mcpu=r3000
-mcpu=cputype

Since the idt boards are based on themips r3000, the default
for this particular configuration is ‘-mcpu=r3000’.
In the general case, use this option on any mips platform
to assume the defaults for the machine type cputype when
scheduling instructions. The default cputype on other mips
configurations is ‘default’, which picks the longest cycle
times for any of the machines, in order that the code run at
reasonable rates on any mips cpu. Other choices for cputype
are ‘r2000’, ‘r3000’, ‘r4000’, and ‘r6000’. While picking a
specific cputype will schedule things appropriately for that
particular chip, the compiler will not generate any code that
does not meet level 1 of the mips ISA (instruction set archi-
tecture) unless you use the ‘-mips2’ or ‘-mips3’ switch.

-mgpopt
-mno-gpopt

With ‘-mgpopt’, write all of the data declarations before the
instructions in the text section. This allows the mips assem-
bler to generate one word memory references instead of using
two words for short global or static data items. This is on by
default when you compile with optimization.

10 7 July 1995

Chapter 2: IDT MIPS Development

-mstats
-mno-stats

With ‘-mstats’, for each non-inline function processed, emit
one line to the standard error file to print statistics about the
program (number of registers saved, stack size, etc.).

-mmemcpy
-mno-memcpy

With ‘-mmemcpy’, make all block moves call memcpy (a C li-
brary string function) instead of possibly generating inline
code.

-mlong-calls
-mno-long-calls

Do all calls with the JALR instruction, which requires loading
up a function’s address into a register before the call. You
need this switch if you call functions outside of the current
512 megabyte segment (unless you use function pointers for
the call).

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and
load them up, rather than putting the references in the text
section.

-G num Put global and static items less than or equal to num bytes
into the small data or bss sections instead of the normal data
or bss section. This allows the assembler to emit one word
memory reference instructions based on the global pointer
(gp or $28), instead of the normal two words used. By default,
num is 8. When you specify another value, gcc also passes
the ‘-G num’ switch to the assembler and linker.

2.3.2 GCC options for floating point

These options select software or hardware floating point.

-msoft-float
Generate output containing library calls for floating point.
The ‘mips-idt-ecoff’ configuration of ‘libgcc’ (an auxiliary
library distributed with the compiler) include a collection of
subroutines to implement these library calls.
In particular, this gcc configuration generates subroutine
calls compatible with the US Software “gofast r3000” float-
ing point library, giving you the opportunity to use either the

c y g n u s s u p p o r t 11

Programming Embedded Systems

‘libgcc’ implementation or the US Software version. idt in-
cludes the gofast library in their idt c 5.0 package; you can
also order libraries separately from idt as the “idt kit”. See
Section 2.3.4 “Linking with the gofast library,” page 13, for
examples of how to use gcc to link with the gofast library.
To use the ‘libgcc’ version, you need nothing special; gcc
links with ‘libgcc’ automatically after all other object files
and libraries.
Because the calling convention on mips architectures de-
pends on whether or not hardware floating-point is installed,
‘-msoft-float’ has one further effect: gcc looks for sub-
routine libraries in a subdirectory ‘soft-float’, for any li-
brary directory in your search path. (Note: This does not
apply to directories specified using the ‘-l’ option.) With the
Cygnus Developer’s Kit, you can select the standard libraries
as usual with ‘-lc’ or ‘-lm’, because the ‘soft-float’ versions
are installed in the default library search paths.

Warning: Treat ‘-msoft-float’ as an “all or noth-
ing” proposition. If you compile any module of a
program with ‘-msoft-float’, it’s safest to compile
all modules of the program that way—and it’s es-
sential to use this option when you link.

-mhard-float
Generate output containing floating point instructions, and
use the corresponding mips calling convention. This is the
default.

2.3.3 Floating point subroutines

Two kinds of floating point subroutines are useful with gcc:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.
When you indicate that no hardware floating point is available (with
the gcc option ‘-msoft-float’, gcc generates calls compatible with
the gofast library, proprietary licensed software available from US
Software. If you do not have this library, you can still use software
floating point; ‘libgcc’, the auxiliary library distributed with gcc,
includes compatible—though slower—subroutines.

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

12 7 July 1995

Chapter 2: IDT MIPS Development

2.3.4 Linking with the GOFAST library

The gofast library is available with two interfaces; gcc ‘-msoft-float’
output places all arguments in registers, which (for subroutines using
double arguments) is compatible with the interface identified as “Inter-
face 1: all arguments in registers” in the gofast documentation. For
full compatibility with all gofast subroutines, you need to make a slight
modification to some of the subroutines in the gofast library. See Sec-
tion 2.3.5 “Full compatibility with the GOFAST library,” page 14, for
details.
If you purchase and install the gofast library, you can link your code to
that library in a number of different ways, depending on where and how
you install the library.
To focus on the issue of linking, the following examples assume
you’ve already built object modules with appropriate options (including
‘-msoft-float’).
This is the simplest case; it assumes that you’ve installed the gofast

library as the file ‘fp.a’ in the same directory where you do development,
as shown in the gofast documentation:
� �

$ mips-idt-ecoff-gcc -o prog prog.o ... -lc fp.a

 	

In a shared development environment, this example may be more
realistic; it assumes you’ve installed the gofast library as ‘uss-
dir/libgofast.a’, where ussdir is any convenient directory on your
development system.
� �

$ mips-idt-ecoff-gcc -o program program.o ... -lc -Lussdir -lgofast

 	

Finally, you can eliminate the need for a ‘-L’ option with a little more
setup, using an environment variable like this (the example assumes
you use a command shell compatible with the Bourne shell):
� �

$ LIBRARY_PATH=ussdir; export LIBRARY_PATH

$ mips-idt-ecoff-gcc -o program program.o ... -lc -lgofast

 	

As for the previous example, the gofast library here is installed in ‘uss-
dir/libgofast.a’. The environment variable LIBRARY_PATH instructs
gcc to look for the library in ussdir. (The syntax shown here for setting
the environment variable is the Unix Bourne Shell syntax; adjust as
needed for your system.)

c y g n u s s u p p o r t 13

Programming Embedded Systems

Notice that all the variations on linking with the gofast library ex-
plicitly include ‘-lc’ before the gofast library. ‘-lc’ is the standard C
subroutine library; normally, you don’t have to specify this, since linking
with that library is automatic.
When you link with an alternate software floating-point library, however,
the order of linking is important. In this situation, specify ‘-lc’ to the
left of the gofast library, to ensure that standard library subroutines
also use the gofast floating-point code.

2.3.5 Full compatibility with the GOFAST library

The gcc calling convention for functions whose first and second argu-
ments have type float is not completely compatible with the definitions
of those functions in the gofast library, as shipped.
These functions are affected:

fpcmp fpadd fpsub fpmul fpdiv fpfmod
fpacos fpasin fpatan fpatan2 fppow

Since the gofast library is normally shipped with source, you can make
these functions compatible with the gcc convention by adding this in-
struction to the beginning of each affected function, then rebuilding the
library:

move $5,$6

2.3.6 GCC options to avoid for IDT R3000 boards

These options are meant for other forms of the mips architecture:

-mabicalls
-mno-abicalls

Emit (or do not emit) the assembler directives ‘.abicalls’,
‘.cpload’, and ‘.cprestore’ that some System V.4 ports use
for position independent code.

-mips2 Issue instructions from level 2 of themips ISA (branch likely,
square root instructions).

-mmips-as
Generate code for the mips assembler. This is the default
for many other mips platforms, but it requires an auxiliary
program mips-tfile to encapsulate debugging information.
mips-tfile is not included in your Cygnus Developer’s Kit,
since it is not required for the gnu assembler.

14 7 July 1995

Chapter 2: IDT MIPS Development

-mrnames
-mno-rnames

Generate code using the mips software names for the regis-
ters, instead of the hardware names (for example, a0 instead
of $4). The converse ‘-mno-rnames’ switch is the default.

Warning: The gnu assembler will not build code
generated with the ‘-mrnames’ switch.

These options are harmless—but unnecessary—on the r3000:

-mfp32 Assume that there are 32 32-bit floating point registers. This
is the default.

-mgas Generate code for the gnu assembler. This is the default
when gcc is correctly configured for this platform, using the
‘-with-gnu-as’ configuration parameter.

-mno-mips-tfile
The ‘-mno-mips-tfile’ option prevents postprocessing the
object file with the mips-tfile program, after the mips as-
sembler has generated it to add debug support. The gnu

assembler does not require mips-tfile in any case.
mips-tfile is not included in your Cygnus Developer’s Kit.

-nocpp Tell the mips assembler to avoid running the C preprocessor
over user assembler files (with a ‘.s’ suffix) when assembling
them. The gnu assembler never runs the C preprocessor in
any case.
See Section 2.9.1 “Assembly with C preprocessing,” page 20,
for information about how to use assembly code that requires
C-style preprocessing.

Avoid these options—although they appear in the configuration files,
their implementation is not yet complete.

-mfp64
-mint64
-mips3
-mlong64
-mlonglong128

c y g n u s s u p p o r t 15

Programming Embedded Systems

2.4 Predefined preprocessor macros

gcc defines the following preprocessor macros for the IDT/MIPS config-
urations:

Any mips architecture:
mips, _mips, __mips__, ___mips__, __mips, ___mips.

mips architecture with big-endian numeric representation:
MIPSEB, _MIPSEB, __MIPSEB__, ___MIPSEB__, __MIPSEB,
___MIPSEB.

mips architecture with little-endian numeric representation:
MIPSEL, _MIPSEL, __MIPSEL__, ___MIPSEL__, __MIPSEL,
___MIPSEL.

r3000 mips processor:
R3000, _R3000, __R3000__, ___R3000__, __R3000, ___R3000.

2.5 Assembling MIPS R3000 code

You should use gnu as to assemble gcc output. To ensure this, gcc
should be configured using the ‘--with-gnu-as’ switch (as it is in Cygnus
distributions; see Section 2.7 “Configuring GNU source for IDT/MIPS,”
page 19). Alternatively, you can invoke gcc with the -mgas option.
gnu as for mips architectures supports the mips r2000 and r3000 pro-
cessors.

2.5.1 Assembler options

The mips configurations of gnu as support three special options, and
accept one other for command-line compatibility. See section “Command-
Line Options” in Using as, for information on the command-line options
available with all configurations of the gnu assembler.

-G num This option sets the largest size of an object that will be
referenced implicitly with the gp register. It is only accepted
for targets that use ecoff format. The default value is 8.

-EB
-EL Any mips configuration of as can select big-endian or little-

endian output at run time (unlike the othergnu development
tools, which must be configured for one or the other). Use
‘-EB’ to select big-endian output, and ‘-EL’ for little-endian.

16 7 July 1995

Chapter 2: IDT MIPS Development

-nocpp This option is ignored. It is accepted for command-line com-
patibility with other assemblers, which use it to turn off
C style preprocessing. With gnu as, there is no need for
‘-nocpp’, because the gnu assembler itself never runs the
C preprocessor. (If you have assembly code that requires
C-style preprocessing, see Section 2.9.1 “Assembly with C
preprocessing,” page 20.)

2.5.2 ECOFF object code

Assembling for a mips ecoff target supports some additional sections
besides the usual .text, .data and .bss. The additional sections are
.rdata, used for readonly data, .sdata, used for small data, and .sbss,
used for small common objects.
When assembling for ecoff, the assembler uses the $gp ($28) register to
form the address of a “small object”. Any object in the .sdata or .sbss
sections is considered “small” in this sense. For external objects, or for
objects in the .bss section, you can use the gcc ‘-G’ option to control the
size of objects addressed via $gp; the default value is 8, meaning that a
reference to any object eight bytes or smaller will use $gp. Passing ‘-G 0’
to as prevents it from using the $gp register on the basis of object size
(but the assembler uses $gp for objects in .sdata or sbss in any case).
The size of an object in the .bss section is set by the .comm or .lcomm
directive that defines it. The size of an external object may be set with
the .extern directive. For example, ‘.extern sym,4’ declares that the
object at sym is 4 bytes in length, whie leaving sym otherwise undefined.
Using small ecoff objects requires linker support, and assumes that the
$gp register has been correctly initialized (normally done automatically
by the startup code). mips ecoff assembly code must not modify the $gp
register.

2.5.3 Directives for debugging information

mips ecoff as supports several directives used for generating debugging
information which are not support by traditionalmips assemblers. These
are .def, .endef, .dim, .file, .scl, .size, .tag, .type, .val, .stabd,
.stabn, and .stabs. The debugging information generated by the three
.stab directives can only be read by gdb, not by traditional mips de-
buggers (this enhancement is required to fully support C++ debugging).
These directives are primarily used by compilers, not assembly language
programmers! See section “Assembler Directives” in Using as, for full
information on all gnu as directives.

c y g n u s s u p p o r t 17

Programming Embedded Systems

2.6 Remote IDT/MIPS Debugging

mips-idt-ecoff-gdb uses the mips remote serial protocol to connect
your development host machine to the target board. On the target board
itself, the idt program IDT/sim implements the same protocol. (IDT/sim
runs automatically whenever the board is powered up.)
Use these gdb commands to specify the connection to your target board:

target mips port
To run a program on the board, start up gdbwith the name of
your program as the argument. To connect to the board, use
the command ‘target mips port’, where port is the name of
the serial port connected to the board. If the program has not
already been downloaded to the board, you may use the load
command to download it. You can then use all the usual gdb
commands.
For example, this sequence connects to the target board
through a serial port, and loads and runs a program called
prog through the debugger:
� �

host$ mips-idt-ecoff-gdb prog
GDB is free software and ...
(gdb) target mips /dev/ttyb
(gdb) load
(gdb) run

 	

target mips hostname:portnumber
If your gdb is configured to run from a SunOS or SGI host,
you can specify a TCP connection instead of a serial port,
using the syntax hostname:portnumber (assuming your IDT
board is connected so that this makes sense; for instance, to
a serial line managed by a terminal concentrator).

gdb also supports these special commands for idt/mips targets:

set mipsfpu off
If your target board does not support the mips floating point
coprocessor, you should use the command ‘set mipsfpu off’
(you may wish to put this in your ‘.gdbinit’ file). This tells
gdb how to find the return value of functions which return
floating point values. It also allows gdb to avoid saving the
floating point registers when calling functions on the board.

18 7 July 1995

Chapter 2: IDT MIPS Development

set remotedebug n
You can see some debugging information about communica-
tions with the board by setting the remotedebug variable. If
you set it to 1 using ‘set remotedebug 1’ every packet will
be displayed. If you set it to 2 every character will be dis-
played. You can check the current value at any time with the
command ‘show remotedebug’.

2.7 Configuring GNU source for IDT/MIPS

Your Cygnus Developer’s Kit includes precompiled, ready-to-run bina-
ries, with all defaults configured for idt mips boards.
However, you may have occasion to reconfigure or rebuild the source;
after all, improving your tools is one of your privileges as a free software
user!
The script configure is used to specify many prearranged kinds of vari-
ations in the source. See section “What configure does” in Cygnus
configure, for an overview of the source configuration process.
In particular, to configure for themips environment, you should use these
configure options:
� Specify ‘--target=mips-idt-ecoff’ to generate or manage code for
idt/mips boards, with big-endian numeric representation.

� Specify ‘--target=mipsel-idt-ecoff’ to generate or manage code
for idt/mips boards, with little-endian numeric representation.

� Be sure to specify ‘--with-gnu-as’. This avoids an incompatibility
between the gnu compiler and the mips assembler. The mips as-
sembler does not understand debugging directives. If you configure
gcc without this option, the compiler requires a special program,
mips-tfile, to generate these debugging directives. gnu as parses
the debugging directives directly, and does not require mips-tfile.

� You may also wish to use ‘--with-gnu-ld’, which will improve ef-
ficiency, or ‘--with-stabs’, which will generate better debugging
information. Note that only gdb can read this form of debugging
information.

c y g n u s s u p p o r t 19

Programming Embedded Systems

2.8 IDT/MIPS documentation

For information about the mips instruction set, see MIPS RISC Archi-
tecture, by Kane and Heindrich (Prentice-Hall).
For information about idt’s IDT/sim board monitor program, see
IDT/sim 4.0 Reference Manual (IDT#703-00146-001/A).
For information about US Software’s floating point library, see U S Soft-
ware GOFAST R3000 Floating Point Library (United States Software
Corporation).

2.9 Some General Information

The following sections give pointers to additional information of interest
to idt/mips board users.

2.9.1 Assembly with C preprocessing

There are two convenient options to assemble hand-written files that re-
quire C-style preprocessing. Both options depend on using the compiler
driver program, gcc, instead of calling the assembler directly.
1. Name the source file using the extension ‘.S’ (capitalized) rather

than ‘.s’. gcc recognizes files with this extension as assembly lan-
guage requiring C-style preprocessing.

2. Specify the “source language” explicitly for this situation, using the
gcc option ‘-xassembler-with-cpp’.

2.9.2 Useful listings from GNU as or GCC

If you invoke as via the gnu C compiler (version 2), you can use the ‘-Wa’
option to pass arguments through to the assembler. One common use
of this option is to exploit the assembler’s listing features. Assembler
arguments you specify with gcc -Wa must be separated from each other
(and the ‘-Wa’) by commas. For example, the ‘-alh’ assembler option in
the following commandline:
� �

$ mips-idt-ecoff-gcc -c -g -O -Wa,-alh,-L file.c

 	

requests a listing with high-level language and assembly language in-
terspersed.
The example also illustrates two other convenient options to specify for
assembler listings:

20 7 July 1995

Chapter 2: IDT MIPS Development

1. The compiler debugging option ‘-g’ is essential to see interspersed
high-level source statements, since without debugging information
the assembler cannot tie most of the generated code to lines of the
original source file.

2. The additional assembler option ‘-L’ preserves local labels, which
may make the listing output more intelligible to humans.

These are the options to enable listing output from the assembler. By
itself, ‘-a’ requests listings of high-level language source, assembly lan-
guage, and symbols.
You can use other letters to select specific options for the list: ‘-ah’
requests a high-level language listing, ‘-al’ requests an output-program
assembly listing, and ‘-as’ requests a symbol table listing. High-level
listings require that a compiler debugging option like ‘-g’ be used, and
that assembly listings (‘-al’) be requested also.
You can use the ‘-ad’ option to omit debugging directives from the listing.
When you specify one of these options, you can further control listing
output and its appearance using these listing-control assembler direc-
tives:

.nolist Turn off listings from this point on.

.list Turn listings back on from here.

.psize linecount , columnwidth
Describe the page size for your output. (Default 60, 200.) The
assembler generates form feeds after printing each group of
linecount lines. To avoid these automatic form feeds, specify
0 as the linecount.

.eject Skip to a new page (issue a form feed).

.title Use heading as the title (second line, immediately after the
source file name and pagenumber).

.sbttl Use subheading as the subtitle (third line, immediately after
the title line) when generating assembly listings.

If you do not request listing output with one of the ‘-a’ options, these
listing-control directives have no effect. You can also use the ‘-an’ option
to turn off all forms processing.
The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.

c y g n u s s u p p o r t 21

Programming Embedded Systems

2.9.3 An extra initialization function

When you compile C or C++ programs with gnu C, the compiler quietly
inserts a call at the beginning of main to a gcc support subroutine called
__main. Normally this is invisible—but you may run into it if you want to
avoid linking to the standard libraries, by specifying the compiler option
‘-nostdlib’. Include ‘-lgcc’ at the end of your compiler command line
to resolve this reference. This links with the compiler support library
‘libgcc.a’, but putting it at the end of your command line ensures that
you have a chance to link first with any special libraries of your own.
__main is the initialization routine for C++ constructors. Because gnu C
is designed to interoperate with gnu C++, even C programs must have
this call: otherwise C++ object files linked with a C main might fail.

2.10 What to Call the Tools

Aside from considerations of cpu architecture, there are two forms of
the Cygnus Developer’s Kit tools for LynxOS systems. You can run
the development tools native, that is directly on a Lynx system; or you
can run them as cross-development tools, using another system as the
development host while generating or managing code for the Lynx target.
Cross-development tools in the Cygnus Developer’s Kit are normally in-
stalled with names that reflect the target machine, so that you can install
more than one set of tools in the same binary directory. Native tools,
on the other hand, are called by simple names like gcc (the compiler) or
gdb (the debugger).

Native development

On native configurations, you still need to be careful that your execu-
tion path is set up to get the right versions of the development tools.
For example, LynxOS itself is distributed with ‘/bin/gcc’ installed—
but that’s a very old release (version 1) of GNU CC. The tools from
the Cygnus Developer’s Kit are normally installed so that you can find
them in ‘/usr/progressive/bin’. (See the Cygnus Installation Notes
for LynxOS 2.2, for details on how to set up the Cygnus Developer’s
Kit installation, and suggestions to keep execution paths simple.) For
example, you should get output like this from the system utility which:
� �

$ which gcc
/usr/progressive/bin/gcc

 	

22 7 July 1995

Chapter 2: IDT MIPS Development

You can also run GNU CC with the ‘-v’ option to make sure you’re
running a version 2 compiler.

Cross development

The tool names for cross-development are constructed by using, as a
prefix, the name of the configured target (i.e., the string specified with
‘--target’ to the configure script). For example, the cross-compiler for
LynxOS is called:

i386-lynx-gcc
If configured to generate code for Intel 386 architectures.

m68k-lynx-gcc
If configured to generate code for Motorola 680x0 architec-
tures.

sparc-lynx-gcc
If configured to generate code for sparc architectures.

2.11 Compiling for LynxOS

The gnu compiler has a variety of options to cover many needs. This
note discusses the options specifically intended for use with LynxOS. For
information on all the gcc command-line options, see section “GNU CC
Command Options” in Using GNU CC.

2.11.1 Compiler options for LynxOS

When you run gcc, you can use these command-line options to choose
some details specific to LynxOS. There are also compiler options specific
to the machine architecture; see section “M680x0 Options” in Using GNU
CC, and section “Intel 386 Options” in Using GNU CC.

-mposix Use the Posix-compatible version of the Lynx C library, and
define the preprocessor macro _POSIX_SOURCE. (This is sim-
ilar to the effect of ‘-X’ with version 1 of gcc as distributed
with LynxOS.)

-msystem-v
Use this option for backward compatibility: it selects header
files and libraries compatible with Unix System V release
3, and marks the output files with a “magic number” that
identifies them as System V compatible. (This is similar to
the effect of ‘-V’ with version 1 of gcc as distributed with
LynxOS.)

c y g n u s s u p p o r t 23

Programming Embedded Systems

Warning: if you use this option, you may not use ‘-mthreads’,
‘-p’, or ‘-pg’. If you specify ‘-mposix’ together with
‘-msystem-v’, ‘-mposix’ is ignored.

-mthreads
Use alternate versions of system libraries that support multi-
thread programming, and define the preprocessor macro
_MULTITHREADED. (This is similar to the effect of ‘-m’ with
version 1 of gcc as distributed with LynxOS.)

In the older version of gcc distributed with LynxOS, there was also a
‘-k’ option to specify coff object format. No option is needed for this
purpose with the Cygnus Developer’s Kit version of the compiler, since
the output format is always coff.

2.11.2 Default options for your environment

If you always invoke gcc with a particular combination of op-
tions, you can collect these options in the environment variable
GCC_DEFAULT_OPTIONS instead of listing them on the command line each
time.1

Warning: The compiler developers at Cygnus recommend you avoid this
environment variable, since it adds one more layer of complexity to using
the compiler. In particular, its use may lead to these problems:
1. The relative order of these options must be fixed, and will always be

wrong for some purposes. With the current implementation, options
from GCC_DEFAULT_OPTIONSare always first on the command line (so
that you can override them). This means that you cannot usefully
include library options (such as ‘-lm’), since you need to put them at
the end of the command line.

2. If you set the environment variable and forget about it, the com-
piler’s behavior may be mysterious.

3. Bugreports may take longer to resolve, since the environment vari-
able setting is one more important datum that may be accidentally
omitted from bug reports.

1 The Cygnus tools do not recognize these environment variables used
by older ports of the gnu tools to LynxOS: COFFLD, SYSVCC, POSIXCC.

24 7 July 1995

Chapter 2: IDT MIPS Development

2.11.3 Predefined preprocessor macros

gcc defines the following preprocessor macros for LynxOS configura-
tions:

Any LynxOS system:
unix, __unix__, __unix, Lynx, __Lynx__, __Lynx, IBITS32,
__IBITS32__, __IBITS32

Motorola 680x0 systems:
mc68000, M68K, __mc68000__, __M68K__, __mc68000, __M68K

Intel 80x86 systems:
i386, I386, __i386__, __I386__, __i386, __I386,

SPARC systems:
sparc, __sparc__, __sparc

2.12 LynxOS Debugging with GDB

Two aspects of using thegnu debugger can differ significantly on LynxOS
from many other systems. First, you can debug multithread programs;
second, you may want to use thegdbserver program for cross-debugging.

2.12.1 Multithread debugging on LynxOS

gdb provides these facilities for debugging multi-thread programs:
� automatic notification of new threads
� ‘thread threadno’, a command to switch among threads
� ‘info threads’, a command to inquire about existing threads
� thread-specific breakpoints

The gdb thread debugging facility allows you to observe all threads
while your program runs—but whenever gdb takes control, one thread
in particular is always the focus of debugging. This thread is called the
current thread. Debugging commands show program information from
the perspective of the current thread.
Whenever gdb detects a new thread in your program, it displays the
LynxOS identification for it with a message like this:

[New process 35 thread 27]

c y g n u s s u p p o r t 25

Programming Embedded Systems

2.12.1.1 Switching and inquiring on threads

For debugging purposes, gdb associates its own thread number—always
a single integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program.
gdb displays for each thread (in this order):
1. the thread number assigned by gdb

2. the system’s thread identifier
3. the current stack frame summary for that thread

An asterisk ‘*’ to the left of the gdb thread number indicates
the current thread.
For example,
� �

(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
at threadtest.c:68

 	

thread threadno
Make thread number threadno the current thread. The
command argument threadno is the internal gdb thread
number, as shown in the first field of the ‘info threads’ dis-
play. gdb responds by displaying the system identifier of the
thread you selected, and its current stack frame summary:
� �

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

 	

Whenever gdb stops your program, due to a breakpoint or a signal, it
automatically selects the thread where that breakpoint or signal hap-
pened. gdb alerts you to the context switch with a message of the form
‘[Switching to process n thread m]’ to identify the thread.

26 7 July 1995

Chapter 2: IDT MIPS Development

2.12.1.2 Breakpoint features for LynxOS threads

You can choose whether to set breakpoints on all threads, or on a partic-
ular thread of your program.

break linespec thread threadno
break linespec thread threadno if . ..

Use the qualifier ‘thread threadno’ with a breakpoint com-
mand to specify that you only want gdb to stop the program
when a particular thread reaches this breakpoint. threadno
is one of gdb’s numeric thread identifiers, shown in the first
column of the ‘info threads’ display.
If you do not specify ‘thread threadno’ when you set a break-
point, the breakpoint applies to all threads of your program.
You can use the thread qualifier on conditional breakpoints
as well; in this case, place ‘thread threadno’ before the
breakpoint condition, like this:
� �

(gdb) break frik.c:13 thread 28 if bartab > lim

 	

Whenever your program stops under gdb for any reason, all threads of
execution stop, not just the current thread. This allows you to examine
the overall state of the program, and to switch between threads, without
worrying that things may change underfoot.
Conversely, whenever you restart the program, all threads start execut-
ing. This is true even when single-stepping with commands like step or
next.
In particular, gdb cannot single-step all threads in lockstep. Since
thread scheduling is up to LynxOS, rather than controlled by gdb, other
threads may execute more than one statement while the current thread
completes a single step. Moreover, in general other threads stop in the
middle of a statement, rather than at a clean statement boundary, when
the program stops.
You might even find your program stopped in another thread after con-
tinuing or even single-stepping. This happens whenever some other
thread runs into a breakpoint, a signal, or an exception before the first
thread completes whatever you requested.

c y g n u s s u p p o r t 27

Programming Embedded Systems

2.12.1.3 Watchpoint limitations for LynxOS threads

Warning: in multi-thread programs, watchpoints have only limited use-
fulness. With the current watchpoint implementation, gdb can only
watch the value of an expression in a single thread. If you are confident
that the expression can only change due to the current thread’s activity
(and if you are also confident that the same thread will remain current),
then you can use watchpoints as usual. However, gdb may not notice
when a non-current thread’s activity changes the expression.

2.12.2 Cross debugging with gdbserver

When a LynxOS system is configured for production real-time use, the
tradeoffs required may make it more convenient to do as much de-
velopment work as possible on another system, for example by cross-
compiling. You can make a similar choice with the gnu debugger, using
an auxiliary program called gdbserver.
gdbserver is a control program for Unix-like systems, which allows
you to connect your LynxOS program with a gdb that runs on another
machine. On the remote machine, you use the gdb command target
remote to connect to the LynxOS system.2

gdb and gdbserver communicate via either a serial line or a tcp con-
nection, using the standard gdb remote serial protocol.

On the LynxOS (target) machine,
you need to have a copy of the program you want to debug.
gdbserver does not need your program’s symbol table, so you
can strip the program if necessary to save space. gdb on the
host system does all the symbol handling.
To use the server, you must tell it how to communicate with
gdb; the name of your program; and the arguments for your
program. The syntax is:

target> gdbserver comm program [args ...]

comm is either a device name (to use a serial line) or a tcp

hostname and portnumber. For example, to debug Emacs
with the argument ‘foo.txt’ and communicate with gdb over
the serial port ‘/dev/com1’:

2 target remote is otherwise used to debug bare-board systems, in
which case it requires linking in special stub subroutines with your
programs; with gdbserver, no such special stubs are needed.

28 7 July 1995

Chapter 2: IDT MIPS Development

target> gdbserver /dev/com1 emacs foo.txt

gdbserver waits passively for the host gdb to communicate
with it.
To use a tcp connection instead of a serial line:

target> gdbserver host:2345 emacs foo.txt

The only difference from the first example is the first ar-
gument, specifying that you are communicating with the
host gdb via tcp. The ‘host:2345’ argument means that
gdbserver is to expect a tcp connection from machine ‘host’
to local tcp port 2345. (Currently, the ‘host’ part is ignored.)
You can choose any number you want for the port number as
long as it does not conflict with any tcp ports already in use
on the target system (for example, 23 is reserved for telnet.
If you choose a port number that conflicts with another ser-
vice, gdbserver prints an error message and exits). You must
use the same port number with the host gdb target remote
command.

On the host,
you need an unstripped copy of your program, since gdb

needs symbols and debugging information. Start up gdb as
usual, using the name of the local copy of your program as the
first argument. (You may also need the ‘--baud’ option if the
serial line is running at anything other than 9600 bps.) After
that, use target remote to establish communications with
gdbserver. Its argument is either a device name (usually
a serial device, like ‘/dev/ttyb’), or a tcp port descriptor in
the form host:port. For example:

(gdb) target remote /dev/ttyb

communicates with the server via serial line ‘/dev/ttyb’, and
(gdb) target remote the-target:2345

communicates via a tcp connection to port 2345 on host
‘the-target’. For tcp connections, you must start up
gdbserver prior to using the target remote command. Oth-
erwise you may get an error whose text depends on the host
system, but which usually looks something like ‘Connection
refused’.

c y g n u s s u p p o r t 29

Programming Embedded Systems

2.13 LynxOS Subroutine Libraries

One of the major effects of the compiler command-line options ‘-mposix’,
‘-msystem-v’, and ‘-mthreads’ is to choose versions of the C subroutine
libraries.
The compiler links by default with the standard Cygnus C subroutine
library. See The Cygnus C Support Library for details on that library.
Since LynxOS is a complete system, however, you have no need to define
“stub” routines (see section “System Calls” in The Cygnus C Support
Library); LynxOS provides the necessary system calls.
Your Cygnus Developer’s Kit also includes a mathematical subroutine
library. See The Cygnus C Math Library for more information.
If you specify ‘-msystem-v’, the compiler does not use the Cygnus li-
braries; instead, your code links with the LynxOS System V.3 compati-
bility library.
If you specify ‘-mposix’, you get both Posix-compatible subroutine li-
braries from LynxOS, and the standard Cygnus libraries. The Posix
compatibility library overrides the Cygnus library for any subroutines
present in both.

Warning: None of these libraries are called ‘libc.a’, but
LynxOS does ship with an older library (still present for com-
patibility) with that name. This means that if you specify ‘-lc’
explicitly, you should specify it last on the compiler’s command
line. You may not need ‘-lc’ at all, but some LynxOS releases
include additional subroutines for special purposes in this li-
brary.

In most situations, you should use one of the ‘-m’ options rather than
specifying the libraries directly with ‘-l’. However, if you must insert
your own library to override some of the system or Cygnus libraries, you
may have to specify the equivalent series of ‘-l’ commands explicitly.
Here are the equivalences:

default For consistency with the libraries used by default (with no
‘-m’ options), specify these libraries. The ‘stdc’ and ‘stdm’
libraries are the Cygnus C library and the Cygnus mathe-
matical subroutine library, respectively.

-llynx -lstdc -lstdm -lstub

-mposix If you want the Posix compliant library, use a library list
like this to allow the ‘posix1’ library to override parts of the
Cygnus libraries:

-llynx -lposix1 -lstdc -lstdm -lstub

30 7 July 1995

Chapter 2: IDT MIPS Development

-msystem-v
For the System V release 3 compatible library, use ‘-lc_v’.

-mthreads
This option does not imply additional libraries; instead, it
uses an alternate library search path to find different ver-
sions of the same libraries.

2.14 Object formats supported

The gnu compiler and assembler produce coff format object code for
the standard Lynx configurations. However, since older LynxOS tools
generated a.out object code, the linker, debugger, and binary utilities
are still able to read a.out object code format. This allows you to use
and manage older libraries and object modules, and even to debug older
complete programs, regardless of the change in object code format.

2.15 Configuring GNU source for LynxOS

Your Cygnus Developer’s Kit includes precompiled, ready-to-run bina-
ries, with all defaults configured for your LynxOS system.
However, you may have occasion to reconfigure or rebuild the source.
For example, you may want to rebuild after receiving a bugfix in source-
patch form.
You can use the script configure to specify many prearranged kinds
of variations in the source. See section “Rebuilding From Source” in
Release Notes, for a discussion of the source configuration process.
To configure for the LynxOS environment, you should use one of these
configure options:

--target=i386-lynx
To build code for LynxOS on Intel 386-based systems.

--target=m68k-lynx
To build code for LynxOS on MVME147 or MVME167 boards.

--target=sparc-lynx
To build code for LynxOS on sparc-based systems.

Warning: The Free Software Foundation’s Internet distributions of gcc
support another Lynx configuration, because the gcc distribution is
available independently of the other gnu tools. If you configure and
rebuild gcc alone, also specify these options to configure:

c y g n u s s u p p o r t 31

Programming Embedded Systems

--with-gnu-as
Allow gcc to generate code suitable for the current gnu as-
sembler, rather than restricting its output to the assembler
found on LynxOS by default.

--with-gnu-ld
Allow gcc to use the current gnu linker, rather than the
linker found on LynxOS by default.

If you reconfigure and rebuild the entire tool chain as distributed by
Cygnus, rather than gcc alone, these two options are applied to the
compiler configuration automatically.

2.16 LynxOS Documentation

For general information about programming in LynxOS, see the LynxOS
Application Writer’s Guide.
For compatibility information about the alternative subroutine libraries
on your LynxOS system, see the “Unix Compatibility” chapter in LynxOS
User’s Manual: Volume 2, Supplementary Guides & Documents.
Both documents are available from Lynx Real-Time Systems Inc., 16780
Lark Ave., Los Gatos, California 95030.

32 7 July 1995

Chapter 3: NLM Development

3 NLM Development

3.1 What to Call the Tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target configuration, so that you
can install more than one set of tools in the same binary directory. These
names are constructed by using, as a prefix, the name of the configured
target. For example:

i386-netware-gcc
The C compiler, gnu CC.

i386-netware-ld
The gnu linker.

i386-netware-nlmconv
Object format converter; used for the last step in building an
NLM.

3.2 Compiling for NetWare

Follow these steps to build an NLM:
1. Compile your source files with the ‘-c’ option, to build individual

object files.
2. Link all your object files with ‘prelude.o’ (a Novell run-time initial-

ization file), using the ‘-r’ linker option to produce a single relocat-
able object file.

3. Convert the object file to NLM format, as specified by your header
definition file.

For example, these three steps build an NLM called ‘hi.nlm’ from a C
source file ‘hi.c’, the Novell-supplied ‘prelude.o’, and an NLM header
file ‘hi.def’.
� �

$ i386-netware-gcc -c hi.c
The ‘-c’ option specifies ‘.o’ output files.

$ i386-netware-gcc -r -o hi.O prelude.o hi.o
Use ‘-r’ for relocatable output, ‘-o’ to name the
output file.

$ i386-netware-nlmconv -T hi.def hi.O hi.nlm
Use ‘-T’ to indicate Novell header definition file;
remaining arguments are input file, NLM output file.

 	

c y g n u s s u p p o r t 33

Programming Embedded Systems

3.3 Compiler and Linker Options for NetWare

The gnu compiler has a variety of options to cover many needs. The Net-
Ware development environment is based on the Unix System V release
4 environment, and the same command-line options are available as for
SVr4. For information on all the gcc command-line options, see section
“GNU CC Command Options” in Using GNU CC.
gnu cc also has specific options for each hardware architecture. See
section “Intel 386 Options” in Using GNU CC, for example.
The essential gnu linker options for NLM development are those shown
in the example: ‘-r’ to make a single relocatable output file, and ‘-o
outfile’ to name the output file.
You can use the gnu cc command-line option ‘-Wl’ to combine the com-
pilation and link into a single call to i386-netware-gcc:

-Wl,option
Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas.

For example, you can build the ‘hi.O’ intermediate file of the previous
example with a single call to gnu cc like this. You still need to call
i386-netware-nlmconv:
� �

$ i386-netware-gcc -Wl,-r,-o,hi.O prelude.o hi.c
$ i386-netware-nlmconv -T hi.def hi.O hi.nlm

 	

3.4 Making an NLM

Once you’ve linked a relocatable object file, use the utility i386-
netware-nlmconv to turn it into an NLM. This utility is very similar to
Novell’s NLMLINK program (which is used for building NLMs from a DOS
development environment). Similarly, the header file ‘filename.def’
that you must supply uses the same syntax as the header file for NLMLINK,
and it recognizes most of the same directives.
Here are the main options and arguments for nlmconv.

nlmconv [-T headerfile | --header-file=headerfile]
[infile] [outfile]

See section “nlmconv” in The GNU Binary Utilities, for information on a
few additional, rarely used, options.

-T headerfile
--header-file=headerfile

Reads headerfile for NLM header information.

34 7 July 1995

Chapter 3: NLM Development

infile Name of the single, relocatable, object file to be converted to
an NLM.

outfile Name for the Netware Loadable Module produced by
nlmconv.

3.4.1 Differences from DOS development tools

If you have been using NLMLINK to develop NLM code, bear these differ-
ences in mind when you use nlmconv:

Input and output files on command-line
You can name one input file, and the output file (in that
order), on the nlmconv command line instead of in the
‘filename.def’ file. (You can also use the OUTPUT and INPUT
directives in the definitions file, just as with NLMLINK. The
INPUT directive allows you to list more than one input file,
and lets nlmconv call the linker for you.)

Option for header file.
Specify the header file on the command line with the option
‘-T filename.def’, not as ‘@filename.def’.

Linker a separate program.
nlmconv calls the linker if necessary, but it is not itself a
linker. This has no direct impact, but it does mean that
nlmconv ignores some definition-file directives that would be
meaningful only to a linker.

Some directives not supported.
Because of the foregoing differences, nlmconv ignores
these directives (which are accepted by NLMLINK) in the
‘filename.def’ file. To make it easier for you to use the
same header file, nlmconv generates an NLM even if it
prints a warning for one of these directives:

MAP CODESTART
FULLMAP VERBOSE

These unsupported directives are all concerned with display-
ing a link map. If you use the gnu linker explicitly to make
a single nlmconv input file, you can use the ‘-M’ linker op-
tion to display the link map on standard output, or the ‘-Map
mapfile’ linker option to write the link map in a file of your
choice. See section “Command Line Options” in Using ld: the
GNU linker, for more details.
For example, you can use the gnu linker like this to build
a single relocatable object file, and display a link map on
standard output:

c y g n u s s u p p o r t 35

Programming Embedded Systems

� �

$ i386-netware-ld -M -r -o single.o prelude.o objfiles. ..

 	

3.4.2 What goes in the file.def header

You can place comments anywhere in your NLM header file: comments
start with the character ‘#’ and end at the next new line. An ‘@’ introduces
an include file (its contents are used as if they were in the current file).
Otherwise, each line of a file.def header file begins with one of the
directives summarized below; the rest of the line contains optional argu-
ments, separated by spaces, tabs, or commas (spaces, tabs and commas
are interchangeable). You may type these directives in either upper or
lower case. See the “Linkers” chapter of NetWare NLM Development and
Tools Overview, for more details on these directives.
If you need more than one line for an argument list, type one or more
blanks or tabs at the beginning of the continuation lines.

CHECK ckproc
Run the check procedure ckproc on attempts to unload your
NLM; return 0 to indicate unloading is safe, any nonzero
value otherwise. There is only one check procedure per NLM;
if you specify CHECK more than once, only the last specifica-
tion takes effect.
nlmconv issues a warning if the check procedure you specify
is not in the object code.

COPYRIGHT "msg"
Display the copyright notice msg on the console screen when
your NLM loads.

CUSTOM filename
Copy arbitrary data from file filename into your out-
put NLM. Your code can reach this data through the
customDataOffset and customDataSize fields of the NLM
header.
You may use CUSTOM at most once in the NLM header defini-
tion file.

DATE mth dy year
Force a particular date into the version header of your NLM
(otherwise nlmconv uses the current date). Note the argu-
ment order: mth is the month, dy the day, year the year.
Specify all fields as numbers, and specify the year as an ab-
solute date—for example ‘1993’, not ‘93’.

36 7 July 1995

Chapter 3: NLM Development

DEBUG Generate debugging information in the format used by the
NetWare internal debugger.

DESCRIPTION "txt"
A name for your NLM, displayed on the console whenever it
is loaded, and in response to some other console commands.

EXIT exproc
Run the exit procedure exproc to clean up any resources your
NLM allocated before unloading. This procedure runs after
everything else in your NLM; in particular, it runs after any
C++ destructors, and after any procedures you register with
the atexit library routine. There is only one exit procedure
per NLM; if you specify EXIT more than once, only the last
specification takes effect.
The default exit procedure is _Stop, defined in Novell’s
‘prelude.o’ file.

EXPORT sym1 sym2 .. .
EXPORT . .. (prefix) sym1 sym2 . ..

Export a list of symbols (separated by spaces, tabs, or com-
mas) for use by other NLMs. Recall that you can continue the
argument list on successive lines if you need to, by starting
the continuation lines with blanks or tabs.
You can insert ‘(prefix)’ (a string in parentheses) anywhere
in the list; any symbols listed after a ‘(prefix)’ will be ex-
ported with the prefix string (followed by the character ‘@’)
at the beginning of the symbol name. Use a ‘(prefix)’ string
unique to your NLM to distinguish your symbols from those
of other NLMs.
An empty prefix string ‘()’ is valid and useful: use it to cancel
the effect of an earlier prefix specification. No ‘@’ is inserted
when the prefix is an empty string.
You can use EXPORT repeatedly in your header file. Each
instance adds more symbols to the export list. Prefixes only
apply to the EXPORT statement where they appear, however;
you must repeat the ‘(prefix)’ declaration in each EXPORT
directive where you want to use the same symbol prefix.

FLAG_ON bits
Turn on the NLM header flags corresponding to the base-
two representation of the number bits. You can construct a
value for bits by adding any combination of the following:

1 Same effect as REENTRANT directive.

2 Same effect as MULTIPLE.

c y g n u s s u p p o r t 37

Programming Embedded Systems

4 Same effect as SYNCHRONIZE.

8 Same effect as PSEUDOPREEMPTION.

16 Same effect as OS_DOMAIN.

FLAG_OFF bits
Turn off the NLM header flags corresponding to the base-two
representation of the number bits. See FLAG_ON to construct
a value for bits.

HELP fname
Use file fname for any help text supplied by this NLM. You
can use this indirection to support multiple languages; you
should take care to switch the help file in parallel with the
message file.

IMPORT sym1 sym2 .. .
IMPORT . .. (prefix) sym1 sym2 . ..

The converse of EXPORT; symbols your NLM needs that are
exported by other NLMs. The rules for the list of symbols,
and for use of ‘(prefix)’, are the same as for EXPORT.

INPUT objfile . ..
You can specify one or more input files using this directive
from your header definitions file. nlmconv calls the gnu

linker to make a single relocatable file for conversion, if you
specify more than one objfile.
Warning: it is an error to specify an input file on the com-
mand line if your header file also contains the INPUT direc-
tive.

MESSAGES fname
Use file fname for any messages issued by this NLM. You
can use this indirection to support multiple languages; take
care to switch the message file in parallel with the help file.
Novell provides tools to generate message files.

MODULE nlm1 nlm2 .. .
Specify NLMs that must load before yours. You can separate
the arguments with spaces, tabs, or commas. Recall that you
can continue the argument list on successive lines if you need
to, by starting the continuation lines with blanks or tabs.

MULTIPLE Include this directive to indicate your NLM may be loaded
more than once.

OUTPUT filename
You can specify a default name for the output NLM using
this directive. If you also specify an output filename on the
nlmconv command line, this directive is ignored.

38 7 July 1995

Chapter 3: NLM Development

OS_DOMAIN
Include this directive to indicate your NLM is to run in the OS
domain—that is, with direct access to all NetWare operating
system facilities, and without memory protection.

PSEUDOPREEMPTION
Include this directive to make NetWare force your NLM to
relinquish control periodically, even if your NLM makes no
other arrangement to relinquish control.

REENTRANT
If you include this directive, when someone reloads your
NLM after it is already loaded, the new thread of control
uses the NLM that is already in memory.

SCREENNAME "nm"
The string nm is a title for your NLM’s console display.

SHARELIB libname
Load libname as a shared NLM.

STACK sz
STACKSIZE sz

Two equivalent directives to set the stack size to sz, for pro-
cesses in your NLM.

START stproc
Run the start procedure stproc to initialize your NLM.
The default start procedure is _Prelude, defined in Novell’s
‘prelude.o’. There is only one start procedure per NLM; if
you specify START more than once, only the last specification
takes effect.
The start procedure runs before any C++ constructors.

SYNCHRONIZE
Include this directive to indicate that the NetWare OS may
not load any further NLMs until your NLM calls the system
routine SynchronizeStart.

THREADNAME "txt"
Use txt as a prefix to identify threads that belong to this
NLM.

TYPE num A number, describing the NLM “module type”. Any value for
num is accepted, but these are the predefined meanings:
0. Any NLM (this is the default if you do not use TYPE)
1. LAN driver
2. Disk driver

c y g n u s s u p p o r t 39

Programming Embedded Systems

3. Name-space support module
4. Utility NLM
5. Mirrored Server Link
6. OS NLM
7. Paged high OS NLM
8. Host Adapter Module
9. Custom Device Module

VERSION maj min

VERSION maj min rev
Specify a version number (displayed at the NetWare console
on load) for this NLM. maj min and rev are, respectively, the
major version number, minor version number, and revision
level; you can specify a revision level or not, as you choose.
There are no constraints on major version number, but the
minor revision number must be betwen 0 and 99, and the
revision (if you specify it at all) must be between 1 and 26.

XDCDATA fname
Copy the contents of file fname into your NLM, for use with
remote procedure call (RPC) extensions to NetWare.

3.5 NetWare Debugging with GDB

To debug an NLM under gdb, run the NLM under the control of the
utility NLM GDBSERVE.NLM, and use the gdb target remote command.1
Bear in mind that—as for all other NLM development activity—you
should not use a production NetWare system for this purpose. In partic-
ular, since NetWare uses cooperative multitasking, everything on your
NetWare server will come to a halt whenever you stop inside the NLM
you are debugging.
gdb and GDBSERVE communicate via a serial line. (GDBSERVE is an NLM
version of the gdbserver program; see section “Using the gdbserver
program” in Debugging with GDB, for general information.)

On the NetWare server (the debugging target),
you need to have a copy of the program you want to debug,
in NLM format (the output of nlmconv).
To use GDBSERVE, you must tell it how to communicate with
gdb; the name of your program; and the arguments for your
program. The syntax is:

1 target remote is otherwise used to debug bare-board systems, in
which case it requires linking in special stub subroutines; with
GDBSERVE, no such special stubs are needed.

40 7 July 1995

Chapter 3: NLM Development

server: LOAD GDBSERVE [NODE=node] [PORT=port]
[BAUD=baud] program [args ...]

node and port are both numbers: the board and port number
respectively, for the serial line attached to the machine where
you want to run gdb. For example, to debug an NLM called
HI.NLM with the argument ‘foo.txt’ and communicate with
gdb over serial port number 2 on board 1:
� �

server: LOAD GDBSERVE NODE=1 PORT=2 HI foo.txt

 	

GDBSERVE waits passively for the host gdb to communicate
with it.

On the host,
you need the relocatable, unstripped copy of your program
that you used as the argument to nlmconv; that is, the
original linker output file, not the NLM format object file.
gdb reads symbols and debugging information from this file.
Start up gdb as usual, using the name of the local copy of
your program as the first argument. (You may also need
the ‘--baud’ option if the serial line is running at anything
other than 9600 bps.) After that, use target remote to es-
tablish communications with GDBSERVE. Its argument is a
serial device name (usually something like ‘/dev/ttyb’). For
example:
� �

$ i386-netware-gdb hi.O
GDB is free software. ..
(gdb) target remote /dev/ttyb

 	

communicates with the server via serial line ‘/dev/ttyb’.

3.6 Subroutine Libraries

You must load Novell’s C library ‘CLIB.NLM’ to provide the standard C
subroutine libraries for your programs. In future releases, the Cygnus
C subroutine libraries may be available as an alternative, pending dis-
cussions between Cygnus and Novell on low-level interfaces.

3.7 Predefined Preprocessor Macros

gcc defines these preprocessor macros for NetWare:
__netware__
i386

c y g n u s s u p p o r t 41

Programming Embedded Systems

3.8 Configuring GNU source for NetWare

Your Cygnus Developer’s Kit includes precompiled, ready-to-run bina-
ries, with all defaults configured for your development system.
However, you may have occasion to reconfigure or rebuild the source.
For example, you may want to rebuild after receiving a bugfix in source-
patch form.
You can use the script configure to specify many prearranged kinds
of variations in the source. See section “Rebuilding From Source” in
Release Notes, for a discussion of the source configuration process.
To get the configuration supported by Cygnus for NetWare development,
use this configure option:

--target=i386-netware

3.9 NetWare Development Documentation

For general information about programming for NetWare, see NetWare
NLM Development and Tools Overview (Novell Part # 100–001872–001).
This document is available from Novell, Inc.; 122 East 1700
South; Provo, Utah; 84606 U.S.A. You can also telephone Novell at
+1 800 netware.

42 7 July 1995

Chapter 4: Fujitsu SPARClite Development

4 Fujitsu SPARClite Development

The Cygnus Developer’s Kit supports the SPARClite family as a variant
of the support for SPARC. For the compiler in particular, special config-
uration options allow you to use special software floating-point code (for
the Fujitsu MB86930 chip), as well as defaulting command-line options
to use special SPARClite features.

4.1 What to Call the Tools

Cross-development tools in the Cygnus Developer’s Kit are normally
installed with names that reflect the target machine, so that you can
install more than one set of tools in the same binary directory.
The names are constructed by using as a prefix the ‘--target’ argument
to configure. For example, the compiler (called simply gcc in native
configurations) is called by one of these names for SPARClite cross-
development, depending on which configuration you have installed:
Available as preconfigured binaries from Cygnus:

sparclitefrwcompat-aout-gcc
sparclitefrwcompat-coff-gcc

Alternatives you can build from source:
sparclite-aout-gcc
sparclite-coff-gcc
sparclitefrw-aout-gcc
sparclitefrw-coff-gcc

See Section 4.2.1 “Setting up GCC for the SPARClite,” page 44, for ex-
planations of the alternative SPARClite configurations.

4.2 Compiling for the SPARClite

When you configure GCC itself, you can control what register manage-
ment strategies to use on the SPARClite, and what kind of software
floating-point entry points to generate if hardware floating-point is not
available.
When you run GCC, you can use command-line options to choose whether
to take advantage of the extra SPARClite machine instructions, and
whether to generate code for hardware or software floating point.

c y g n u s s u p p o r t 43

Programming Embedded Systems

4.2.1 Setting up GCC for the SPARClite

There are three variants of the SPARClite as a CPU name in GCC
configurations, reflecting different register management strategies:

--target=sparclite-*
Generate SPARClite code (including use of additional in-
structions), but use normal SPARC register management.

--target=sparclitefrw-*
Generate code only for the flat register model on the
SPARClite; for example, the compiler does not use save and
restore.
Code generated with GCC configured for sparclitefrw tar-
gets will not link with code from the compiler configured for
normal register management.

--target=sparclitefrwcompat-*
Generate code for the flat register model, but in a way that
is compatible with normal register management.
Code generated for the sparclitefrwcompat targets is
slightly less efficient than code for the sparclitefrw targets.
Three corresponding pseudo-CPU names are available for
SPARC chips without the addititional SPARClite instruc-
tions: ‘--target=sparc-*’, ‘--target=sparcfrw-*’, and
‘--target=sparcfrwcompat-*’.

When you run configure, you should also specify the object code format
you need:

--target=sparclitefrw-aout

--target=sparclitefrwcompat-aout
For a.out object code.

--target=sparclitefrw-coff

--target=sparclitefrwcompat-coff
For coff object code.

44 7 July 1995

Chapter 4: Fujitsu SPARClite Development

4.2.2 SPARC options for architecture and code generation

Some special compiler command-line options are available for
SPARClite; in addition, the machine-dependent options already present
for SPARC in general continue to be available. Both kinds of options are
described in section “SPARC Options” in Using GNU CC.

-msparclite
The SPARC configurations of GCC generate code for the com-
mon subset of the instruction set: the v7 variant of the
SPARC architecture.
‘-msparclite’ (which is on automatically for any of the
SPARClite configurations) gives you SPARClite code. This
adds the integer multiply (smul and umul, just as in SPARC
v8), integer divide-step (divscc), and scan (scan) instruc-
tions which exist in SPARClite but not in SPARC v7.
Using ‘-msparclite’ when you run the compiler does not,
however, give you floating point code that uses the entry
points for US Software’s ‘goFast’ library. The software
floating-point entry points depend on how you configure the
compiler; with the normal SPARC configuration, GCC gener-
ates code that uses the conventional GCC soft-floating-point
library entry points. To get the US Software entry points,
you must configure the compiler for SPARClite as described
above.

-mv8 ‘-mv8’ gives you SPARC v8 code. The only difference from
v7 code is that the compiler emits the integer multiply (smul
and umul) and integer divide (sdiv and udiv) instructions
which exist in SPARC v8 but not in SPARC v7.

-mf930 Generate code specifically intended for the Fujitsu MB86930,
a SPARClite chip without an FPU. This option is equivalent
to the combination ‘-msparclite -mno-fpu’.
‘-mf930’ is the default when the compiler is configured specif-
ically for SPARClite.

-mf934 Generate code specifically for the Fujitsu MB86934, a
SPARClite chip with an FPU. This option is equivalent to
‘-msparclite’.

The following command line options are available for both SPARClite
and other SPARC configurations of the compiler. See section “SPARC
Options” in Using GNU CC.

c y g n u s s u p p o r t 45

Programming Embedded Systems

-mno-epilogue
-mepilogue

With ‘-mepilogue’ (the default), the compiler always emits
code for function exit at the end of each function. Any func-
tion exit in the middle of the function (such as a return state-
ment in C) will generate a jump to the exit code at the end of
the function.
With ‘-mno-epilogue’, the compiler tries to emit exit code
inline at every function exit.
The Cygnus Support compiler specialists recommend avoid-
ing ‘-mno-epilogue’.

4.2.3 Compiler command-line options for floating point

When you run the compiler, you can specify whether to compile for hard-
ware or software floating point configurations with these GCC command-
line options:

-mfpu
-mhard-float

Generate output containing floating point instructions. This
is the default.

-msoft-float
-mno-fpu Generate output containing library calls for floating point.

The SPARC configurations of ‘libgcc’ include a collection of
subroutines to implement these library calls.
In particular, the SPARClite GCC configurations generate
subroutine calls compatible with the US Software ‘goFast.a’
floating point library, giving you the opportunity to use either
the ‘libgcc’ implementation or the US Software version.
To use the US Software library, simply include ‘-lgoFast’ on
the GCC command line.
To use the ‘libgcc’ version, you need nothing special; GCC
links with ‘libgcc’ automatically after all other object files
and libraries.

46 7 July 1995

Chapter 4: Fujitsu SPARClite Development

4.2.4 Floating point subroutines

Two kinds of floating point subroutines are useful with GCC:
1. Software implementations of the basic functions (floating-point mul-

tiply, divide, add, subtract), for use when there is no hardware
floating-point support.
When you indicate that no hardware floating point is available
(with either of the GCC options ‘-msoft-float’ or ‘-mno-fpu’), the
SPARClite configurations of GCC generate calls compatible with the
‘goFast’ library, proprietary licensed software available from U.S.
Software. If you do not have this library, you can still use software
floating point; ‘libgcc’, the auxiliary library distributed with GCC,
includes compatible—though slower—subroutines.

2. General-purpose mathematical subroutines.
The Developer’s Kit from Cygnus Support includes an implementa-
tion of the standard C mathematical subroutine library. See section
“Mathematical Functions” in The Cygnus C Math Library.

4.2.5 SPARC options for unfinished features

Avoid these options—although they appear in the SPARC configuration
files, their implementation is not yet complete.

-mfrw
-mno-frw

4.3 Assembling SPARClite code

The GNU assembler, configured for SPARC, recognizes the additional
SPARClite machine instructions that GCC can generate.
You can specify the flag ‘-Asparclite’ to the GNU assembler (config-
ured for SPARC) to explicitly select this particular SPARC architecture.
In any case, however, the SPARC assembler automatically selects the
SPARClite architecture whenever it encounters one of the SPARClite-
only instructions (divscc or scan).

4.4 Remote SPARClite Debugging with GDB

You can use the GDB remote serial protocol to communicate with a
SPARClite board. You must first link your programs with the “stub”
module ‘sparc-stub.c’; this module manages the communication with
GDB. See section “The GDB remote serial protocol” in Debugging with
GDB, for more details.

c y g n u s s u p p o r t 47

Programming Embedded Systems

4.5 SPARClite documentation

See SPARClite User’s Manual (Fujitsu Microelectronics, Inc. Semicon-
ductor Division, 1993) for full documentation of the SPARClite family,
architecture, and instruction set.

48 7 July 1995

	Cygnus Developer's Kit
	Introduction
	Cygnus Support Developer’s Kit
	Manuals
	Using Online Documentation
	Your Support Contract
	Reporting Trouble
	Free Software
	About Cygnus Support
	Cygnus Support and the FSF

	Release Notes
	Table of Contents
	Overview
	New in this release
	Limitations and Warnings
	Issues from previous releases
	Notes on rebuilding from source
	Problems fixed in this release
	Appendix A Graphical User Interface for GDB
	Appendix B Specifying Names for Hosts and Targets

	Installation Notes
	Installing in brief for Unix systems
	Installing in brief for ms-dos systems
	Developer’s Kit installation on Unix
	Developer’s Kit installation on ms-dos
	Appendix A Platform names
	Appendix B Cross-development environment

	GNU GENERALPUBLIC LICENSE

	 Developer's Kit Support
	GNU Online Documentation
	Table of Contents
	GNU Online Documentation
	1 Reading GNU Online Documentation
	2 Making Info Files from Texinfo Files
	Index

	Rebuilding From Source
	Table of Contents
	1 Configuration
	2 Compilation
	3 Installation
	4 Examples and suggestions

	Comparing and Merging Files
	Table of Contents
	Overview
	1 What Comparison Means
	2 diff Output Formats
	3 Comparing Directories
	4 Making diff Output Prettier
	5 diff Performance Tradeoffs
	6 Comparing Three Files
	7 Merging From a Common Ancestor
	8 Interactive Merging with sdiff
	9 Merging with patch
	10 Tips for Making Patch Distributions
	11 Invoking cmp
	12 Invoking diff
	13 Invoking diff3
	14 Invoking patch
	15 Invoking sdiff
	16 Incomplete Lines
	17 Future Projects
	Concept Index

	Using GNU CC
	Table of Contents
	GNU GENERALPUBLIC LICENSE
	Contributors to GNUCC
	1 Funding Free Software
	2 Protect Your Freedom—Fight “Look And Feel”
	3 Compile C, C++, or Objective C
	4 GNUCC Command Options
	5 Installing GNU CC
	6 Extensions to the C Language Family
	7 Extensions to the C++ Language
	8 gcov: a Test Coverage Program
	9 Known Causes of Trouble with GNUCC
	10 Reporting Bugs
	11 How To Get Help with GNUCC
	12 Using GNU CC on VMS
	Index

	Debugging with GDB
	Table of Contents
	Summary of GDB
	1 A Sample GDB Session
	2 Getting In and Out of GDB
	3 GDB Commands
	4 Running Programs Under GDB
	5 Stopping and Continuing
	6 Examining the Stack
	7 Examining Source Files
	8 Examining Data
	9 Using GDB with Different Languages112
	10 Examining the Symbol Table
	11 Altering Execution
	12 GDB Files
	13 Specifying a Debugging Target156
	14 Controlling GDB
	15 Canned Sequences of Commands
	16 Using GDB under GNU Emacs
	17 Reporting Bugs in GDB
	Appendix A Command Line Editing
	Appendix B Using History Interactively
	Appendix C Formatting Documentation
	Appendix D Installing GDB
	Index

	 Support Libraries
	The GNU C++ Iostream Library
	Table of Contents
	1 Introduction
	2 Operators and Default Streams
	3 Stream Classes
	4 Classes for Files and Strings
	5 Using the streambuf Layer
	6 C Input and Output
	Index

	The Cygnus C Support Library
	Table of Contents
	1 Standard Utility Functions (‘stdlib.h’)
	2 Character Type Macros and Functions
	3 Input and Output
	4 Strings and Memory
	5 Signal Handling
	6 Time Functions
	7 Locale
	8 Reentrancy
	9 System Calls
	10 Variable Argument Lists
	Index

	The Cygnus C Math Library
	Table of Contents
	1 Mathematical Functions
	2 Reentrancy Properties of libm
	Index

	Binary Utilities
	The C Preprocessor
	Table of Contents
	1 The C Preprocessor
	Concept Index
	Index of Directives, Macros and Options

	Using as
	Table of Contents
	1 Overview
	2 Command-Line Options
	3 Syntax
	4 Sections and Relocation
	5 Symbols
	6 Expressions
	7 Assembler Directives
	8 Machine Dependent Features
	9 Acknowledgements
	Index

	GASP, an assembly preprocessor
	Table of Contents
	1 What is GASP?
	2 Command Line Options
	3 Preprocessor Commands
	Index

	Using ld
	Table of Contents
	1 Overview
	2 Invocation
	3 Command Language
	4 Machine Dependent Features
	5 BFD
	Appendix A MRI Compatible Script Files
	Index

	The GNU Binary Utilities
	Table of Contents
	Introduction
	1 ar
	2 ld
	3 nm
	4 objcopy
	5 objdump
	6 ranlib
	7 size
	8 strings
	9 strip
	10 c++filt
	11 nlmconv
	12 Selecting the target system
	Index

	GNU Make
	Table of Contents
	1 Overview of make
	2 An Introduction to Makefiles
	3 Writing Makefiles
	4 Writing Rules
	5 Writing the Commands in Rules
	6 How to Use Variables
	7 Conditional Parts of Makefiles
	8 Functions for Transforming Text
	9 How to Run make
	10 Using Implicit Rules
	11 Using make to Update Archive Files
	12 Features of GNU make
	13 Incompatibilities and Missing Features
	14 Makefile Conventions
	Appendix A Quick Reference
	Appendix B Complex Makefile Example
	Index of Concepts
	Index of Functions, Variables, & Directives

	Embedded Systems Programming
	Developing With DOS
	Table of Contents
	1 Running the Programs
	2 Warnings for dos Developer’s Kits
	3 Hints and Common Problems
	4 Technical info about the release

	Programming Embedded Systems
	Table of Contents
	1 Hitachi SH Development
	2 IDT MIPS Development
	3 NLM Development
	4 Fujitsu SPARClite Development

