d

The Official Magazine of
the Vic Sega Users Group

Uol. 4 No. S

- SEGA SC-3000

ITNKEY$ <

FIello and welcome to another SEGA ADDICT. In this issue
vou will find another of Gwen Woods delightful musical, graphics
programs. If you enjoyed Gwen’s version of ’At the Ballet’ then
you’ll love her three 'Russian Dancer’s’!! Also inside you will
find an article from the ever-present Julius Guest. Julius takes
the mystery out of a neat little program called "ADDRESS.BAS"
which is supplied with your origional Disk BASIC. For those
of you who may be interested about what is inside your Sega’s
black plastic case, take a squizz at this month’s WORKSHOP
for an anatomical view of your beloved computer,

Disks containing all of the programs that have apvpeared
within the pages of SEGA ADDICT (right back to Vvcdl. 1, No. 1)
are now available at the regular V.S.U.G. monthly meetings,
These disks may be copiea at the meetings for a small charge
(you will need to bring along 2 blank disks). This service will
sae you the effort of entering and debugging the fantastic
li~tings that are found inside your favorite mag. There is also
a version of modified Disk BASIC (containing all of the extra
control codes and SMART-KEY) available at the meetings,

PROGRAMS PROGRAMS PROGRAMS PROGRAMS PROGRAMS
DON’T FORGET...We need your programs to publish!

(NOTE: All programs are accepted in good faith and

should be accredited with the original authors name)

Happy Programming...
Michael Nanscawen (Editor)
Garry Jenkinson (Vice Pres.)

please send all programs
and articles to:-
SEGA ADDICT
P.0. Box 102
Doveton
Vic. 3177

- e

oty A, W

SYNTAX:

...Towing the LINE...

@r
..making a BeeLINE for home...

Many of you will think that I have gone somewhat potty
(who needs to think it, many already know??...ED) or that I
have a page or two missing from my instruction manual once you
realise that this issue’s treatise for SYNTAX is a discourse
upon the BASIC instruction ~ LINE ~ and it’s counterpart ~
BLINE! What happened to HCOPY and CURSOR (and why is
BLINE being discussed in ’L’ instead of ’B’??...ED)? Answers
te all of ‘these questions (and more) will be revealed (get out
your magnifying glasses...ED) in the words which follow....

....Covering one’s tracks....

Firstly, nothing has happened to either of those BASIC instructions
mentioned above. That is, unless you happen to be using the
alternative to Disk BASIC ver. 1.0p, GBASIC and IIIA or IIIB Cartridge
BASIC (none of which support HCOPY in a format for dumping
SCREEN 2) and as for the other neglected instruction, CURSOR,
sufficient words have been expended within these pages upon
that subject, leaving little or no more to add!! So there!!!
Whether you like it or not, LINE is the thesis for this issue (the
Jjudge’s decision is final and no further correspondance will
be entered into!! Mind you, we don’t mind some mail on occasions...ED)!!

....Twelve to the inch....

"T"he BASIC instruction ~ LINE ~ is perhaps the simplest
of the numerous statements which can be understood and
utilised by the BASIC programmer (although it is not without
it’s pitfalls). Let us peruse the contents of program #1 and

then examine

10
20
30
40
50
60
70
80
S0
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

..ewWherein you
SYNTAX requi
However, befor
this program,

it’s relevence to this chapter of SYNTAX...

REM * PROGRAM #1 x
SCREEN 2,2:CLS
COLOR 1,15,(0,0)-(255,191),15
COLOR ,5,(56,50)-(135,110)
COLOR ,4,(80,80)-(95,110)
COLOR ,7,(64,70)-(79,96)
COLOR ,7,(112,70)-(127,96)
LINE (56,50)-(135,50)
LINE (135,50)-(135,110)
LINE (135,110)-(56,110)
LINE (56,110)-(56,50)
LINE (82,82)-(93,108),10,B
LINE (85,85)-(90,90),,B
LINE (85,90)-(95,105),,B "
LINE (64,70)-(79,96),1,B
BTINE "(112,70)-(127,96) ;B
LINE (72,70)-(72,96) .
LINE (120,70)-(120,96)
LINE (64,78)-(79,78)
LINE (112,78)-(127,78)
EENE -« 1284i1:00) 4+ (135,301 ;63 BE
LINE (48,64)-(96,20),12
LINE -(128,50)
GOTO 240

will find that I have made use of every possible
rement compatible with the LINE statement.
e I take you on an unexpurgated romp through
I believe you are entitled to be informed as to

what these requirements are and how they can be used (so
that, at least, you cannot accuse me of misleading you)

It is with

...Co—ordinating your Plan....

the utmost conviction that I realise that many

of you have observed from the contents of PROGRAM #1, that
there is an enormous similarity between the SYNTAX for COLOR
(which was the subject of discussion in the previous volume of
this tome) and what is required for the needs of the small
but significant topic currently under scrutiny!! In fact,
PROGRAM #1 is as much a ’'tour de force’ for COLOR as it is
for LINE. All of this notwithstanding, let’'s see what is needed
to keep the ’old’ Syntax error (or worse still) Statement
parameter error messages at bay.

Firstly, though YOU should not need reminding, the
program must be ’writing’ to SCREEN 2. It may seem absurd to
emphasise this small detail but many ‘is the time I have
attempted to COLOR an area in the background of the wrong screen,
only to incur the ire of BASIC. As some of you may have
gathered from the subheading of this section, the most
important craving of this instruction is no more than the
co-ordinates of the points which constitute the starting and ending
points of the LINE to be drawn. Naturally, by this stage of
your development, I would expect you to realise that these
co-ordinates are specified as ’x co-ordinate, y co-ordinate’
within the ever present (as nearly so as ’comma’) brackets
in the following format....

LINE (Xx,y)-(xx,yY)

....where ’x’ and 'y’ are the starting co-ordinates and ’xx’
and ’yy’ are the ending co-ordinates of the line being drawn.
Before I expound upon the optional aspects of this instruction,
it is imperitive that these co-ordinates lie within the confines
of the limits of your SEGA’s SCREEN 2. Should you have
forgotten (heaven forbid...ED), the ’x co-ordinate’ must reside
betwixt 0 and 255 and the 'y co-ordinate’ must not extend
below 0 nor be greater than 191, irrespective of the point of
the line which is being defined. Should you be remiss with
your values in this area, you will find yourself at the mercy of
the (aforementioned) Statement parameter error message, where
upon you are left to your own devices to alleviate the problem
(Oh, the ignominity of it all...ED).

Now that we have established where our line is and where
it’s going, we can take a more lesuirely glance at the various
options which now become available to the programmer. Taking
into account the eternally present delimeter (your friend and
mine, com,ma), the next most important decision the programmer
must make is what value to put into the next parameter for
this statement. This is, of course, (as if we didn’t already
know...ED) the desired ’writing’ colour for the LINE being
drawn! As I indicated in last issue’s ramblings, this wvalue
must lie within the range 0 through 15 (where each wvalue
correxponds to the code of the intended colour), lest you be thwarted
by that confounded ’Statement parameter error’ yet again!!!

eeeeChoc—a—BlocC....

T he next of the optional variations which can be applied
to this statement is perhaps the most versatile. In actual fact,
many of you will notice that it bears a striking resemblence to
the last of the parameter selections which accompany the
CIRCLE statement. Dare I say, that it would not surprise thdse
of you so observant, that this option performs much the same
function!! However, where that parameter might be considered
a ’Boundary’ or ’Boundary Fill’ option, terms appropriate for their
function with CIRCLE, the nomenclature 'Box’ and ’Box Fill’,
when they are applied to LINE, allow the programmer a subtle
distinction between the purpose of what is otherwise a
potentially confusing similarity. Whether you make this
differentiation or not, the addition of the character B’ after the
COLOR specification (not forgetting the comma ~ would any
of us do that...ED?) will cause your BASIC to reproduce a
BOX upon the SCREEN, where the top left hand corner
corresponds with the starting x and y co-ordinates and the
bottom right hand corner is the same as the co-ordinates
supplied for the ending x and y points. Attachment of the
'Fill’ specification (in the required form ~ BF ~ allows the
programmer the facility to ’block-fill’ the area created by the
Box upon which I have just deliberated. All of this aforementioned
activity will take place at none other than the specified COLOR.

For example, if your LINE is drawn in cyan (COLOR CODE 7),
then the BOX will be outlined in that hue and, without exception,
’BF’ will fill that box with the same colour. This leads me to dispel
the idea that it is absolutely pertinent for the BASIC programmer
to provide the COLOR specification (to the LINE instruction)
upon each and every occasion upon which it is used. If you desire
to draw a following LINE of your program in the same colour
as that allocated to the previous LINE, it is not necessary to
‘repeatedly tell your SEGA to do so! One of the most pleasing capabililties
of our SEGA’s interpreter is it’s ability to remember any
specified ’writing’ colour (those amongst you who follow
WORKSHOP as well as SYNTAXwill appreciate how this capability
is effected) and once the SEGA’s interpreter has committed
this to memory, the BASIC programmer need not specify a
further COLOR value, unless it be that of another desired
pigment. This facility applies irrespective of the BASIC statement
under scrutiny (as long as it is one of those that requires
this parameter specfication). The ommission of this secification
(when it is not needed) is accomplished by the simple expedient
(in ALL cases), of the programmer failing to provide an
appropriate value where it is required (as I have done in
line 230 of PROGRAM #1).

Of course, it goes without saying (not where you’re
concerned...ED), that the ’'presentation’ of the co-ordinates,
as indicated so far, presupposes that YOUR line ’runs’ from
left to right and from top to bottom! What I have thus far
failed to make public (and I think the writers of our illustrious
instruction manuals also fail to stress) is that the SEGA’s
BASIC interpreter is clever enough to realise that the
co-ordinates which you have supplied (should you actually
supply them back-to-front) are ’topsy turvy’ and will thus
carry out your wishes regardless, without so much as turning
a hair. If you haven’t tried it yet, enter this direct input statement....

SCREEN 2,2 :CLS:LINEs (:255%h94)=i(105108

«..and after the ’flash’ to SCREEN 2 that you see, if you press
[CTRL] + [0O] or [SHIFT] + [BREAK], you will observe that

there has appeared upon the graphic screen, a line that ’runs’
from the top right hand corner to the bottom left hand corner.
Isn’t it a clever little SEGA (well, shuuut my mouuuth and
caaall me Cyril...ED)?7?722111!

.o From hither and Yon....

I.est you should think that I have fully extolled the
complete virtues of the story of LINE, you will be reminded
by a quick perusal of PROGRAM #1 to dash any misconceptions
upon those lines (pun intended!!) There is more to this
otherwise humble instruction than meets the eye (though
everything it does you see eventually)!!

As if the facility to make a BOX from any set of given
points (or to fill that box, should it be so desired) does not sufficiently
mitigate the complexities of the use of the BASIC instruction currently
under discourse, for even the most unknowledgable BASIC
exponent, the writers of our own dialect of this formidable
computer language managed to find a few more tricks up their
sleeves! What do you my disciples (that’s not the sort of
’faith’ I had in mind when I asked you to take over from
Ron...ED) make of the contents of PROGRAM #1’s line 230?

The discourse thus far would have you believe that the
SEGA’s BASIC interpreter will always warrant the starting
point and ending point of any LINE which it is instructed to
draw. Fortunately, for numerous reasons, not the least of
which is the inherent lazy (read "how can I make it easier
for me do this") attitude of HOMO SAPIENS, the necessary
room was found within the memory space occupied by BASIC to
allow the programmer the small, but very significant facilty
to specify the point to which he/she would desire to dispatch
the next LINE, without the need to nominate the originating
point of that LINE. This is the explanation of the seemingly
incomplete instruction in line 230!

Unfortunately, there are a number of situations (outside of
the LINE statement) that will affect the outcome (or is that
‘income’) of this abbreviated version of LINE. These are the
yvet to be discussed (in this article) BLINE and the ("I'll leave

them for another issue!") instructions, PRESET and PSET. How
all of this gibberish makes the task of the BASIC programmer
simpler is extremely easy to explain. When the originating
point of the specified LINE is omitted (as is the case in line 230),
the SEGA’s interpreter will automatically assume that the new
line to be drawn will START from the finishing point of the
previous LINE’s parameters. This neat little trick can also be
accomplished even if the previously specified LINE isn’t (what
nonesense is this...ED?)!!

«..Writing with invisible Ink....

I wonder how many of my devoted votaries understood
the programming implications behind the concept of BCIRCLE,
about which I articulated in SEGA ADDICT last issue (Vol. 4,
No. 3)?? Those of you who have grasped this (not very
complicated) abstraction, will be pleased to discover that the same
capability can be applied to SEGA’s LINE instruction. In simpler
layman’s terms, the specification of BLINE (followed by the
Same necessary parameters [with certain restrictions], used
in the identical manner) will cause the LINE that you nominate
NOT to be drawn. That is, it appears in the colour of the
background ’behind’ where it should be drawn. As is the case
with BCIRCLE, BLINE can be used to expose an area within
an already ’block-filled’ section of the screen. "Why would I want
to do this?", I hear you all asking. Well may you ask if you had
not encountered something similiar to the following code within
a Programe....

LINE (50,50)%(1205:1000 1% BE:
COLOR15:CURSOR 70,60:PRINT
"hello”

«.and if you fully grasped the ’simple complexities’ of the
workings of the SEGA’s Video Display Processor (as I expounded
them in the last issue), you will realise that the results of
such code will not be those that are desired. The reason is
because the PRINT statement is attempting to turn ’ON’ the

bits of the VDP pattern data to write the message to the
screen upon an area of (VDP) memory which has already had all
of it’s ’foreground’ bits SET by the LINE statement. LINE
literally draws a line onto the screen (all the pixels that from
the LINE are 'ON’). When ’'BF’ is specified, all of the pixels
within the enclosed Box are also switched active. Thus, although
a different COLOR has been set for the message to be displayed,
there has appeared on the screen an unintelligable mess where
the word ’hello’ should appear.

There is a way to rid ourselves of this mess (have you
tried sweeping it under the carpet...ED?)! It is problems of
just this sort where our newly found friend BLINE shows it’s
true colours. Well, when I say ’true colours’, this is not
strictly possible!! You see, because we are in fact NOT drawing
a line, there is no need to specify a colour parameter for
that purpose. Actually, any colour specified to the BLINE
instruction will be ignored by the BASIC interpreter. That is,
until you attempt to draw a subsequent LINE without specifying
it’s colour. If the colour code specified to the 27,69
BLINE instruction differs from that which was initialised by
the previous LINE, the BASIC interpreter will ignore YOUR
intention and reproduce the LINE in the colour specified by BLINE.
Getting back to the point in question, what actually happens (with
BLINE) is that the VDP is instructed to turn ’'OFF’ each of
the pixels that constitute the make-up of the specified BLINE
and consequently, the colour of the BACKGROUND is what is
seen as the colour of the line presented to the observer!' So
how is it that we can correct the problem created by the above code??

To start with, it becomes necessary to create an area
behind the message so that the pixels of the ’foreground’ are
turned OFF, thus allowing PRINT to do it’s thing as intended.
Let’s make a program of our little snippet of code and see
what magic can be wrought....

10 REM * PROGRAM #2 X

20 SCREEN 2,2:CLS:COLOR ,1,15,
(0,0)-(255,191),15

30 LINE (50,50)-(120,100),,BF

40 COLOR 15:CURSOR 70,60:PRINT
"hello”
50 END

So, the first thing to do is to add the instruction to clear
the area behind the message. To do this, we can introduce
the additional line....

35 BLINE (70,60)-(100,68)

«..and after the program is reRUN, all of our problems should
be solved!! Well, those who have done so will find that, in
fact, this addition seems to have created more problems than it
has solved. What happened to the message??? It certainly
seems to have dissappeared, doesn’t it??? Actually, it is still
there, as a very careful study of the program will show that
it must be. It is not visible because the program is trying
_to PRINT "hello" in white ink on white paper!!! There are now
a couple of paths along which we can travel to reach our
desired goal. The first of these thoroughfares will prompt us
to change the writing colour of the message. This is all good
and well, but what dilemma does this create if our original
purpose was to display the word ’hello’ in white within a
black block (that’s what I thought you were doing...ED)?
Clearly, this solution is at odds with our purpose and it is
il advised to take this route. If you actually do change the writing
colour of the message (by altering the value to the COLOR
statement in line 40), you will observe that the message is
still there, as I have intimated!!! However, our desire is to
have our message PRINTed white (upon a black background, what’s
more). How is this conundrum assuaged? To solve our problem,
we must once more revert to the contents of SYNTAX Vol. 4, No.
3, where my comments about the execution of the COLOR
statement will come to our rescue (like a ‘white’ Knight on a ’white’
Charger, eh???...ED).

Remembering that COLOR’s purpose in life is to provide
the specified area with the specified 'BACKGROUND’ colour,
by providing that colour to the OFF bits of the VDP colour

11

pattern data, our suffering can be abated somewhat with this
simple addition to line 35....

35 BLINE (70,60)-(100,68):COLOR
,1,(64,60)-(104,68),15

....Reaching the end of the LINE....

Sorry about the above reference to my usual mode
d’employ, but I couldn’t resist the temptation (I've always
been a sucker for a good ’double en’tendre)!! There isn’t a
great deal more that I can add to the rubbish (I'm glad YOU said
that...ED) that you have had to wade through thus far but
one small detail causes me some concern and I can’t think of
any better place than now, to bring it up (you’ve been at
the Port again, haven’t you???...ED)!

Some of you (the more observant perhaps) MUST have
noticed that the co-ordinate values that I provided for the
COLOR instructions in program #1 are located at the required
multiples of 8 which I had stressed should be done with this
statement in the aforementioned episode of this tome. This
has caused the values that must be thus supplied to the LINE
statements which follow it to appear to be somewhat haphazard.
This apparent irrationality is necessary to reduce to a minimum
the occurance of the most common programming error attempted
by the BASIC programmer. This is the same mistake that I
have already discussed (in the above mentioned episode of
this series), whereby the programmer tries to tell the SEGA’s
interpreter to demand more than TWO colours within any ONE
byte of the SEGA’s VDP’s colour pattern data. It is simply
IMPOSSIBLE to have any more than two colours here, the
LOGIC of BINARY should be sufficient to prove otherwise.

After all of this rambling, I don’t think that there is very
much more that I can add to this recitation, besides which,
ABC FM (the radio station which provides the ’muzak’ [sorry!!]
that keeps my thought processes perpetually coherent [so
that’s your problem...ED!']) is about to offer Alfred Brendel’s
rendition of Beethoven’s "Waldstein" Piano Sonata and one
must get one’s priorities right. See you in the next issue...

HEER'S GROUF INC.

CLUR HOTES Foar VICTOmial BEag

FOLTDEITHG BU DR8P0 COURSES TN BaST6 AND MACTHTIHE
CODE CONDULTED OVER THE FASY FRW MONTHS &1 TRE

FRAMESTOR CHRISTIAN SUHDOL MCGRE DATES HAVE REERY
SET THE NEXY DATEE ARE;MOY 11TH & DELC 1ATH

SHOULD THERE SE MY YTHTERESTED PEOPLE WHD WRULD
LIKE T ATTEHD THESE COURSES FLEASE CONTALT

STEWARY CROWTHER PH:78% 7328 A/HOURS
ne
GARY JAENETHS
IS EEREETERESEREEEEE RS RS
CHANGE ©F MEETIMG DATES H¥ ¢ iR
NOVEMEER &1 DUE T0 THE MELEQORNE CUP
TO NOYEMEER 13TH 7.30 F.M.
PR EER R R AR R BB RE R AR RN R b

PH:302 7150

EACE COPIES OF MAGAZIMEE ARE STILL AVAJLAERLE
£ SHOULD You RE®UIRE THEM FLEARSE CONTALT DEEEIE
CROWYHER OGN 783 7328 AFTVER HOURS

THE MAGAIIMNES FLEASE CONTALT riT”rF "U RT DR

PEDORLE TN LAZY TO TYPE THE PROGHAMNS FROM ALL
Sl
GARY TC DRGAMIZE TARPE VERRIGHM OR DIS

THE COST DF THTS SERVICE 1§ $13 (EROUP DISK)
£y 1 OYQURT BYSK)

THIG COST IS FOR EACH MAGAIINE YEAR

A CASSETTE GERVICE CAM BE FROVIDED
FLEAEE CHEDE FRIOKR TO ARRAMGING THIS

12

>S>>>>>>>>>>>>>>>>> > >

TOPrP THFE TOPS -

I.ook, up in the sky! Is it an ORGROID? Is it EXERION??
Maybe it’s just SUPERMOUSE!!! Whatever it is, we want to see
your best efforts at getting the best out of these (and other)
GAMES. Any better effort will be acceptable, but those verified

by a PHOTOGRAPH *¥¥, will

SCORE**

surpass all others.
NAME**

BASEBALL

BOMB JACK
BORDERLINE
CHAMPION BOXING
CHAMPION GOLF
CHAMPION TENNIS
CHOPLIFTER
CONGO BONGO
DEMON GOBBLER
DRAGON WANG
EXERION

GIRL’S GARDEN
G.P. WORLD
HANG-ON II
HUSTLE CHUMY
HYPER SPORTS
LODE RUNNER
MONACO G.P.
NINJA PRINCESS
N-SUB

ORGUSS

PACAR

PITFALL II

POP FLAMER
SAFARI HUNTING
SAFARI RACE
SEGA FLIPPER
SEGA GALAGA
SINBAD MYSTERY
STAR JACKER
VERMIN INVADER
VORTEX BLASTER
YAMATO

67
150,150
429,610
K.O0./Level 5
-11

6-0
180,500
235,360
53,550
796,000
3,263,300
51,130
1,008,560
2,269,500
117,500
961,520
1,059,300
999,999
249,750
119,264
535,000
201,342
300,000

937,360
69,230
74,720
1,450,500
172,390
269,350
239,443
26,150
395,290
220,000

Danielle Anderson
Meaghan Jenkinson
Amanda Lawford k%%
Jason Puschenjak

M. Meehan k%%
Jason Anderson

Marcus Thompson

Sean Jenkinson £ 23
Neuzat Ismaili
Stephen Emmett *Kk o
Malcom Chin

Carly Pickett

Stephen Emmett kkk o
Stewart Crowther
Jarron Hall k%X
Jason Anderson
Richard Bolt

Adam Bolt

Craig Flowers kkk
Dean Lyons
Michael Van Den Heuvel

Shane Gardner *%%
Stephen Emmett *kk
Sean Jenkinson *kk

Malcolm Chin

Jason Anderson

Jane Anderson

Neuzat Ismaili

Craig Flowers *kxk
Richard Bolt

Brett McCallum kkk
Danielle Anderson
Nelson Chin

David Skene *kk

<K<K K<L <LK <K<K <K<K <LK KC<LCKC LK

UTrrTrn177TY -

....Spreading it around....

S nivel!! Snivel!! Cough!! Wheeze!! Oh, dear!! It seems that
your favourite editorial team has come down with a case of
that dreaded Mutatis mutandis we mentioned in UTILITY in
the last issue. Being as we’re such generous souls, we have,
in our infinite wisdom, decided not to be selfish about it and
will share some of it with the rest of our loyal followers. That
is, all of those who do not own an assembler (we already
know that those who do are suffering along with us ~ time
to get out your hankies...ED). Enough of this (Aaaah...Chhoooo!!)
nonsense. What we really mean is that we have been able to find
the time to develop the necessary BASIC code required to
allow those who utilise Disk BASIC or IIIB Cartridge BASIC
to execute the SCREEN 2 SWAP Assembly Listing which appeared
in the last issue! A

The instructions as published for the use of that program
- also apply to users of IIIB BASIC, disregarding all references
to SAVEM and LOADM, which cartridge BASIC does not support.
Once this program has been LOADed into memory and RUN,
the BASIC code can be NEWed. After this has been accomplished,
the program which is to provide the first of your screens
can then be LOADed,RUN and then NEWed (why do I have this
feeling of Deja Vu...ED?). WITHOUT getting your grubby little
mitts anywhere within the vicinity of the [RESET] key, the
machine code program should now be CALLed using ~ CALL
&HCFD4. This will cause the screen that you now see to be
transfered from VRAM into RAM. If you have accomplished
this correctly, it is now a simple matter to repeat the proceedure
with the program that you have to draw your second screen.
Once this has been executed, it is simply a matter of CALLing
the imbedded machine code yet again (or as many times as
you like) so as to vary your SCREEN 2 display!!

By the way (snivel...cough..splutter), there is no known
MEDICAL cure for Mutatis mutandis (wheeze), we can only
recommend the therapy obtained from spending many enjoyable
hours tied to your SEGA computer (sniff...sniff)!!!

14

provide the first of your screens can then be LOADed,RUN
and then NEWed (why do I have this feeling of Deja Vu...ED?).
WITHOUT getting your grubby little mitts anywhere within
the vicinity of the [RESET] key, the machine code program
should now be CALLed using ~ CALL &HCFD4. This will cause
the screen that you now see to be transfered from VRAM into
RAM. If you have accomplished this correctly, it is now a
simple matter to repeat the proceedure with the program that
you have to draw your second screen. Once this has been
executed, it is simply a matter of CALLing the imbedded
machine code yet again (or as many times as you like) so as to
vary your SCREEN 2 display!!!

By the way (snivel...cough..splutter), there is no known
MEDICAL cure for Mutatis mutandis (wheeze), we can only
recommend the therapy obtained from spending many enjoyable
hours tied to your SEGA computer (sniff...sniff)!!

10 REM *x Screen 2 Swap XX

20 REM *x *xk
30 REM *% Disk basic ONLY *x
40 REM *x XK

50 LIMIT &HCFD4

60 C=0:A=&HCFD4

70 FOR B=1 TO 44:READ D$:D=VAL("&H"+D$
):C=C+D

80 POKE A,D:A=A+1:NEXT

90 IF C <> 5511 THEN BEEP 2:PRINT "BAD

DATA! 1" -STOP

100 END

110 REM ** Machine Code Data %x
120 REM =~ —=—————mmo

130 DATA F3,21,00,00,11,00,D0,01
140 DATA 00,18,CB,AC,CD,FO,CF,CB
150 DATA EC,CD,FO,CF,23,08B,78,B1
160 DATA 20,FO,FB,C9,CD,28,65,DB
170 DATA BE,08,1A,CD,3A,65,D3,BE
180 DATA 08,12,13,C9

190 REM *x kK
200 REM ** CHECK ALL DATA VERY XX
210 REM *x CAREFULLY kK

10 REM %Xk Screen 2 Swap XXk

20 REM XX *xX
30 REM ** TIIIB basic ONLY *kx
40 REM *x *%

50 POKE &H995C,&HD4:POKE &H995D,&HCF
60 C=0:A=&HCFD4

70 FOR B=1 TO 44:READ D$:D=VAL("&H"+D$
):C=C+D

80 POKE A,D:A=A+1:NEXT

90 IF C <> 5569 THEN BEEP 2:PRINT "BAD

DATA! 11" :STOP

100 END

110 REM ** Machine Code Data xXxx
120" REM W |7 o Dl L RN T L e Sy

130 DATA F3,21,00,00,11,00,D0,01
140 DATA 00,18,CB,AC,CD,FO,CF,CB
150 DATA EC,CD,FO,CF,23,0B,78,B1
160 DATA 20,F0,FB,C9,CD,CB,2B,DB
" 170 DATA BE,08,1A,CD, 44 ,2C,D3,BE
180 DATA 08,12,13,C9

. 190 REM *x *xk
200 REM *%* CHECK ALL DATA VERY XXk
210 REM *x CAREFULLY *Xk

10 REM ** Screen 2 Swap Demo XX
20 REM
30 SCREEN 2,2:CLS
40 FOR T=0 TO 20
50 CIRCLE (INT(RND(1)*255),INT(RND(1)x*
191)),INT(RND(l)*lOO),INT(RND(I)*14)+1
60 NEXT :BLINE(SB,BO)—(198,112),l,BF
70 CURSOR 62,86:PRINTCHR$(17):"This is

the"”
80 CURSOR 68,98:PRINT"1st screen”
90 CALL &HCFD4

100 CLS:FOR T=0 TO 20
110 LINE (INT(RND(I)*255),INT(RND(l)*l
91))—(INT(RND(1)*255),INT(RND(l)*191))
,INT(RND(l)*l4)+1,B
120 NEXT :BLINE(SB,BO)—(198,112),1,BF
130 CURSOR 62,86:PRINTCHR$(17);"This Al
s the”

140 CURSOR 68,98:PRINT"2nd screen"
150 FOR D=0TO 1000:NEXT
160 CALL &HCFD4:BEEP:GOTO 150

16

KEYBOARD MAESTRO:>

.+« «CONTinuing the RUN...

T his issue, we continue the series that has kept you all
in suspense waiting for the next instalment, by providing you
with the facility to start and stop a program or to re-start
one at your merest whim, by means of a simple two-handed
keypress (though for the more dexterous amongst you, one
hand can suffice for at least one of these).

The subject of this issue’s KEYBOARD MAESTRO are the
alterations that are required to convert your standard (or
otherwise modified) BASIC Disk to allow you to invoke an
immediate CONTinue of the the current program flow or to
produce an instantaneous reRUN of the resident listing, ad
Ilibitum. What we have acheived for our avid addicts is yet
another time (read 'labour’) saving alteration for your SEGA BASIC Disk!!

No doubt, many of you will realise that what we have to offer
is already available within BASIC ver. 1.0p!'! What we have
that is different is that the first of the alterations can now
be made available to the BASIC programmer as a simple [CTRL]
+ [C] keypress. This will save the programmer from the tedious
task of having to enter C - O - N - T, at any time it is
desired to CONTinue the program flow after the [BREAK] key has
been activated. There are, no doubt, a few of our avid readers
who have realised that [CTRL] + [C] is already installed within
SEGA BASIC as the internal Control Code to invoke the
equivalent of the [BREAK] keypress!! This facility (our [CTRL]
+ [C]) is, however, not normally available to the programmer as
an executable Control Code within a program.

The other alteration that we have to offer is nothing more
than the facility to RUN a program with a mere dual keypress
~ [CTRL] + [¥] ~ to invoke the execution of a program. "But we
already have this ability built-in!!', you are heard to exclaim!
So it is!!"! But the difference between our modification and
standard BASIC is that [CTRL] + [¥] will only execute a
program that has already been installed into memory (it MUST

17

be LOADed beforehand). Or, the equivalent CHR$(25) can be
PRINTed within a program to cause a re-start of that program!

As is the case with all previous KEYBOARD MAESTRO's,
all due course must be taken with the entering of the following
program, the DATA must be thoroughly checked (the King’s
Gambit is best for this...ED) before the program is executed. You
should have your BASIC disk inserted in the Disk Drive (with
the ’Write Protection Tab’ enabled), and after 27,69
RUNning our program, you will find that these alterations will
produce the effects, that we have found indispensable, will
occur. Here is the program...

10 REM CTRL+(¥)=CHR$(25)=RUN

20 REM
30 REM CTRL+(C)=CHR$(1) =CONT

40 REM

50 REM Disk BASIC ONLY!!!

60 REM

70 CLS:PRINT "Standby...":PRINT :C=0
80 READ D$:L=LEN(D$):IF D$="%" THEN 12
0

90 IF L=4 THEN AD=VAL("&H"+D$):C=C+AD:
GOTO 80

100 IF L=2 THEN DT=VAL{"&H"+D$):POKE A
D,DT:AD=AD+1:C=C+DT:GOTDO 80

110 PRINT "BAD DATA!!!!1":BEEP 2:STOP
120 IF C<>87307 THEN 110

130 DSKI$ 0,1;A%$.0,15

140 IF A$<>"SYS: disk BASIC" THEN PRIN
T "This is NOT a BASIC system disk!!":
BEEP 2:STOP

150 CALL &HFOOO

160 REM

170 DATA 5157,E0,05,5187,D3,05

180 DATA 5C85,01,5CAC,19,F000

190 DATA cD,19,37,11,00,51,01,06

200 DATA 02,CD,85,36,11,00,5C,01

210 DATA 06,0D,CD,85,36,CD,3E,38

220 DATA C9,%

230 REM

240 REM Please check all data

250 REM very carefully!!!

18

10 REM kR ¥kokokokok sk kkkk kK

20 REM * RUSSIAN DANCE x

30 REM * BY LS

40 REM X Gwen.Wood 1989 x

50 REM KKK AKK¥K ¥ k4K kKKK

60 SCREEN 2,2:COLOR 1,15,,6:CLS

70 PRINT CHR$(17):CURSOR 55,50:PRINT

RUSSIAN DANCE" :PRINT CHR$(16):CURSOR 1

00,160:PRINT "By Gwen WooD. 1989"

80 FOR A=1 TO 600:NEXT A

90 CLS:SCREEN 1,2:COLOR 1,10:CLS:PRINT
"TUNING UP"

100 SCREEN 2,1

110 V=INT(RND(1)*10)+1

120 C=523:D=587:E=659:F=698:A=440:P=50
:T=100:5=25

130 SOUND 1,C,V:FOR N=1 TO P:NEXT
140 SOUND 1,A,V:FOR N=1 TO P:NEXT
150 SOUND 1,D,¥V:FOR N=1 TO T:NEXT
160 SOUND 1,A,V:FOR N=1 TO T:NEXT
170 SOUND O

180 COLOR ,15,(0,0)-(255,120),6

190 COLOR 14

200 FOR Y=0 TO 160 STEP 6

210 CURSOR O,Y:PRINT "[I[I[]
[JC][":REM 32 SP

ACES

220 NEXT Y

230 COLOR ,14,(0,121)-(255,165),6

240 COLOR ,14,(0,167)-(255,191),6

250 SOUND 1,C,V:FOR N=1 TO P:NEXT

260 SOUND 1,A,V:FOR N=1 TO P:NEXT

270 SOUND 1,D,V:FOR N=1 TO T:NEXT

280 SOUND 1,A,V:FOR N=1 TO T:NEXT

290 SOUND O

300 COLOR 14

310 FOR Y=0 TO 115 STEP 6

320 CURSOR 35,Y:PRINT “{3{3 {30333 {}(

YO L 20 L

330 NEXT Y

340 SOUND 1,C,V:FOR N=1 TO T:NEXT

350 SOUND 1,F,V:FOR N=1 TO T:NEXT

360 SOUND 1,E,V:FOR N=1 TO P:NEXT

370
380
390
400
410
420
430
440
450
460
470
480
430
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780

SOUND 1,F,V:FOR N=1 TO S:NEXT
SOUND 1,E,V:FOR N=1 TO S:NEXT
SOUND 1,D,V:FOR N=1 TO T:NEXT
SOUND O

COLOR ,9,(0,0)-(30,155),¢6
COLOR ,9,(225,0)-(255,155);6
SOUND 1,C,V:FOR N=1 TO P:NEXT
SOUND 1,A,V:FOR N=1 TO P:NEXT
SOUND 1,D,V:FOR N=1 TO T:NEXT
SOUND 1,A,V:FOR N=1 TO T:NEXT

REM ARMS UP LEFT
PATTERNS#0, "7FDFDDEAC8SES627F "
PATTERNS#1,"7D3D1DOFOS0OFOFOF "
PATTERNS#2, "COCOC0O80800000CO"
PATTERNS#3, "FOF8FCBC3C9EB683 "
REM LEG TO LEFT

PATTERNS#4, "0003071F3F3F3CBY"
PATTERNS#5, "B040000000000000"
PATTERNS#6, " 7CFCFEFFFF9FOFOF"
PATTERNS#7, "OFOEOEOE04060000"
REM LEG STRAIGHT

PATTERNS#8, "OF1F1D1D1D183D3D"
PATTERNS#9, "3818300000000000"

PATTERNS#10, "80COCOCOCOCOEQEQ"
PATTERNS#11, "EOC0600000000000 "

REM LEGS BENT

PATTERNS#12, "0O70F1F3F3E381CLE"
PATTERNS#13, "OE060C0000000000 "
PATTERNS#14, "COEOFOF8F83870F0"
PATTERNS#15, "EOC0600000000000 "

REM ARMS ON HIPS

PATTERNS#16, "1F1F1DOA0OBOS021F "
PATTERNS#17, "3D6D6D7F350FOFOF
PATTERNS#18, "COCOC0O80800000CO"
PATTERNS#19, "EOEOBOF060808080"

REM LEG TO RIGHT

PATTERNS#20, "3E3F7FFFFFF9FOFO"
PATTERNS#21,"7070702060000000"
PATTERNS#22, "OOCOEOF8FCFC3F1D"
PATTERNS#23, "0702000000000)00 "

REM ARMS UP

PATTERNS#24, "7FDFDDEAC8BES&27F "

PATTERNS#25, "7D3D1DOFO50FOFOF "
PATTERNS#26, "D8D8CCICICIC3BFO”

790
800

810 PATTERNS#27,"FOEOC08000808080"
820 REM LEGS APART IN AIR

830 PATTERNS#28, "O7060E1E3E7CFCF8"
840 PATTERNS#29, "F86060C000000000"
850 PATTERNS#30, "COCOEOFOF87C7E3E"
860 PATTERNS#31, " 3EOCOC0600000000"
870 REM ARM UP RIGHT

880 PATTERNS#32,"0303030101000001"
890 PATTERNS#33,"070F1F1D787161C1"
900 PATTERNS#34,"FEFBBBB753A746FE"
910 PATTERNS#35, "BEBCB8FOAOFOFOFO"
920 MAG 3

330 SCREEN 2,2

940 G=196:A=220:B=247:C=262:D=294:E=33
0:F=370:G1=392:A1=440:B1=494:C1=523:C2
=554:D1=587:E1=659:F1=740:G2=784:A2=88
0:B2=988

950 S=S:N=N:P=8:H=24

960 FOR X=1 TO 3
970 S=P:N=-G2:G0OSUB 1750:G0OSUB 1770
980 S=H:N=G2:G0OSUB 1750:G0OSUB 2090
990 S=H:N=F1:GOSUB 1750

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170

O I T I T |

L L o I Y I I Y O T Y Y|

1]
I"OII'D'UT)TJ'UII'O'OWDWD'D’D'U

(ORORORONONORORORGRONOEONONONGRORORY)

1

:N=G2:G0SUB
=G2:GOSuUB
=E1:GOSUB
=D1:G0OSUB
=C1:G0SuUB
=E1:G0OSUB
=D1:G0OSUB
=D1:G0SuUB
=C2:G0SuUB
=D1:GOSUB
=D1:GOSuUB
=B1:GOSUB
-A1:G0OSUB
=G1:G0OSUB
=B1:GOSUB
=D1:GOSUB
-“Al:G0OSUB
=A1:GOSUB

1750:GOSUB
1750:GOSUB
1750:G0OSUB
1750:G0OSUB
1750:GOSUB
1750:GOSUB
1750:G0OSUB
1750:G0OSUB
1750

1750:G0OSUB
1750:G0OSUB
1750:GOSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750

1750:G0SUB
1750:GOSUB

1770
2010
2010
1850
2010
2010
1330
1770

2090
1770
2010
1850
2010
1850

2010
1850

1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520

1530

1540
1550
1560
1570
1580
1590

D1:GOSUB
G1l:GOSuUB
G1:GOSUB
D1:G0OSUB

:GOSUB

:GOSuUB
1:G0SuUB
1:G0SuUB
1:G0SsuB
1:G0SuB
1:G0SuB
1:G0OSUB
1:G0SuB
1:G0SuUB
Al :GOSUB
1:G0SuB
1:G0OSuUB
1:G0OSsuB
G2 :GOSUB
1:G0OSsuB
G2:GOSUB
2:G0suUB
1:G0S8UB
1:G0SuB
1:G0OSUB
1:G0SuUB
D1:GOSUB
2:G0OSuUB
1:G0SuUB
1:G0OSUB

) OWOD>DDUOTM™M

D

D

F

F

E

B1l:GOSUB

Al :GOSUB
1:G0OSUB
1:G0OSUB
1:G0OSUB

D1:G0OSUB
1:G0OSUB

D1:GOSUB

F :GOSUB

D1 :GOSUB

Al :GOSUB

D1:GOSUB

G
D
D
G
A

G
E
E
C
D
D
G

L T I I I O B B T I I e I e I T I O O O O A N O A W B |

'U'U'U'UU'U'U'D?'O'U'D'U'D'U’O'O'UT)T!"D'U'O'D'U'U'O'U'UTJUUIIUII"OII"UI

LI T T O O I N A O I I I O e I e O I O O O T O 1 O A Y O T |

GRONGRONORONORONOEORORONORONORORONONORONORONONCRORONORONGONORORONONONORONONONORONON)]

o

wa ©s wag

1750

1750:G0OSUB
1750:G0OSUB
1750

17506:G0OSUB
1750:G0OSUB
1750

1750:G0SUB
1750:G0OSUB
1750

1750:G0OSUB
1750:GOSUB
1750:GOSUB
1750:G0OSUB
1750:G0SUB
1750:G0OSUB
1750:G0OSUB
1750:GOSUB
1750:G0SUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0SUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:GOSUB
1750:GOSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:cG0SUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:G0OSUB
1750:GOSUB

2010
1850

2090
2090

2010
2010

2010
1770
2090
1770
2010
1230
1330
2010
1850
1850
2010
1770
2090
1770
2090
1930
15770
1930
1770
2010
1850
2010
1850
2010
1850
2010
1930
2010
1930
2010
1930
1770

1600 S=P:N=B1:GOSUB 1750:GOSUB 2010
1610 S=P:N=D1:GOSUB 1750:G0OSUB 1770
1620 S=P:N=G1:GOSUB 1750:GOSUB 2010
1630 S=P:N=D1:GOSUB 1750:G0OSUB 1770
1640 S=P:N=A1:GOSUB 1750:GOSUB 2010
1650 S=P:N=D1:GOSUB 1750:GOSUB 1770
1660 S=P:N=E1:GOSUB 1750:GOSUB 2010
1670 S=P:N=F1:GOSUB 1750:GOSUB 1770
1680 NEXT X:FOR Z=1 TO 500:NEXT Z
1690 LINE (0,0)-(255,120),6,BF

1700 SPRITE 2,(10,120),24,6:SPRITE 4, (

230,120),24,

O0:SPRITE 6 (230 120),24,0:

SPRITE 3,(230,120),24 .0
1710 LINE (0,121)-(255, 155),6,BF
1720 BLINE (100,100)—(150,120),o,BF:co

LOR 1
1730 CURSOR

105,106:PRINT "THE END"

1740 FOR Z=1 TO 1000:NEXT Z:GOTO 10
17501 FOR T=10"T0 2 STEP =S:SOUND,1,N, T
:NEXT :RETURN

1760 REM STRAIGHT LEGS

1770 SPRITE
1780 SPRITE
1790 SPRITE
1800 SPRITE
1810 SPRITE
1820 SPRITE

2,10:8S0UND O

1830 RETURN
1840 REM
1850 SPRITE
1860 SPRITE
1870 SPRITE
1880 SPRITE
1890 SPRITE
12900 SPRITE

0,10:S0UND O

1910 RETURN

1,(50,100),24,6
2,(50,132),8,1
5,(188,100),24,6
6,(188,132),8,1
2,(120,90) ,24 .6
4,(120,122),8,1:S0UND 1,26

LEG TO RIGHT

1,(54,100),32,6

28(50,132) ,4¢1
5,(192,100),32,6
6,(188,132),4,1
3,(124,90),32,6
4,(120,122),4,1:S0OUND 1,44

1920 REM LEG TO LEFT

1930 SPRITE 1,(46,100),0,6
1940 SPRITE 2,(50,132),20,1
1950 SPRITE 5,(184,100),0,6

1960
1970
1980

SPRITE
SPRITE
SPRITE

96,10:S0OUND

1930
2000
2010
2020
2030
2040
2050
2060

RETURN

\

6,(188,132),20,1
3,(116,90),0,6
4,

0

REM BENT KNEES

SPRITE
SPRITE

SPRITE 5,(188,105),16,6

SPRITE
SPRITE
SPRITE

UND O

2070
2080
2090
2100
2110
2120
2130
2140
2150

RETURN

1,(50;105) 3166
2,050,132)12 1

6,(188,132),12,1
3,(120,95),16,6

4,(120,122),12,1:BEEP 1:S0

REM LEGS APART IN AIR

SPRITE
SPRITE
SPRITE
SPRITE
SPRITE
SPRITE
RETURN

1,(50,75),24,6
2,(50,107),28,1
5,(188,75),24,6
6,(188,107),28,1
3,(120,65),24,6
4,(120,97),28,1

(120,122),20,1:S0UND 1,1

o =
x
x
»
L
&
&5

T
1

A A n o A R A 8 0 A A R & A 8 & A 0 A A

X
=
> o

o

[T

4

3

AL

AR A R 8 A 4 B

LA_f A n n n_n o8 a B _a A 0 8 8 &

AR a_a g 8 9§ A _a n A A 08 4 8 8 8 R 5 B 8 A 0 A _a B

ADDRESS BOOK:

....Notes on the Address Book Program....
by

. .Julius Guest....

"This month’s contribution from our irrepressible subscriber
is a set of instructions that are intended to accompany the program..

"ADDRESS .BAS"

.which Disk drive users will find was provided FREE with
the purchase of your original Disk BASIC disk. As Juliug explains....

~aa A

For once there is no need to copy a very useful utility
program, as you already have it on your DISK BASIC! but as
so often happens with these programs, although the program is
o.k., it’s English is poor. The major advantage of this address
book against all the others I know is it’s large ang expansible
memory with it’s great ease for modifying any of the given addresses.

There is no need to do an alphabetic sort before entering
your names. All addresses come in parcels of ten, numbered
from 0 across to 9. Before you enter any of your addresses
RUN your program and take option 3. Type in V. This establishes
your disk address file. It is best to allot an entire disk side
for this purpose. You’re now ready to enter your names, RUN
your program and select option 1. Suppose your first nameé
starts with an S. So type in S for your initial, And as it is
your first S entry, type in 0 (to be followed by 1, 2 etc. for
later names which start with S). Of course, you might easily have

29

more than 10 names starting with an S. If so, create a new
file and call it S1. This makes room for ten more S names.
Now, after you have supplied all your 4 bits of info. for each
name, you have three available options.

1. If you wish to enter another name type in N with a <CR>.
2. If you wish to modify the above info. type in B with a <CR>.

3. If you wish to enter this name in your disk file type in
M with <CR> but make quite sure your correct disk file is in the disk slot!

Finally, when searching for a name which is already on your
disk file you proceed as follows:

1. Select option 2 on your menu.
2. Type in the initial letter of your name with a <CR>.

3. Now, examine each name within your parcel of ten names.

If this happens to be the name you seek that’s lucky. If not
see next step.

4. You can move from one name to another one within the
same parcel by typing in turn: N,<CR>N,<CR> and type in the
next block number.

5. Once you have found your correct name you may, if you wish,
also get a printout on your printer on typing Y with a <CR>.

A A

....and with this new-found knowledge, it is hoped that those
concerned may now be able to make use of what might otherwise
have been an apparently unpromising program!!!

o

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

27

REM"EASWIN.BAS"

REM

REM **X* A blue brooch xxxk
REM

REM J.Guest.
REM
REM This design takes about two

REM hours and 23 minutes to run,
REM but it is worth waiting for.

SCREEN 2,2:COLOR 1,15,,15:CLS
POSITION(128,95),0,1
CIRCLE(0,0),95,10,1
CIRCLE(0,0),91,10,1
PAINT(93,0),10

FOR T=0 TO 6.28 STEP 0.01
X=69.640%COS(T)+4.353*%C0OS(16*T)
Y=69.640*%SIN(T)-4.353%SIN(16*T)
PSET(X,Y),4

NEXT T

CIRCLE(0,0),15,4,1

FOR T=0 TO 5.92 STEP 0.3696
FOR K=1 TO -1 STEP -2

FOR 5=0.8 TO 6.28 STEP 0.02
X=22_2*%(2%C0S(S)+C0S(2*S))
Y=22.2*%Kx(2%¥SIN(S)-SIN(2%S))
X=X*SIN(S)*SIN(5.5%S)
A=X*COS(T)-Y*SIN(T)
B=X*SIN(T)+Y*COS(T)

IF A*A+B*B<225 THEN 310
PSET(A,B), 4

NEXT S:NEXT K:NEXT T
BEEP2:BEEP2:REM That’s it!
GOTO 330

10 REM TONE GUESS

20 REM ADAPTED & ENHANCED FROM A TI 99
/4A PROGRAM BY R.BRIFFA & N.JUHASZ

30 SCREEN1,1:CLS

40 A =INT(RND(1)*2882)+117

50 HG=3000:LG=117

60 CURSOR2,19:PRINT"HIGH" :CURSOR28,19:
PRINT"LOW"

70 CURSOR2,1:PRINT"HERE’S THE TONE!
80 SOUND1, A,15

90 FOR S=1 TO 100

100 NEXT S

110 SOUND ©

120 CURSOR2,4:PRINT "GUESS PLEASE

":CU
RSOR 15,4:INPUT GUESS
130 IF GUESS<1170RGUESS>3000THEN120
140 IF GUESS =A THEN 310
150 IF GUESS >A THEN 210
160 CURSOR2,8:PRINT "TOO LOW!
170 IF GUESS > LG THEN 190
180 GOTO 250
190 CURSOR 27 ,21:PRINTGUESS:LG=GUESS
200 GOTO 250
210 CURSORZ,8:PRINT"TOO HIGH!'"
220 IF GUESS < HG THEN 240
230 GOTO 250
240 CURSOR 2,21:PRINTGUESS:HG=GUESS
250 SOUND 1,GUESS, 15
260 PRINT
270 FOR B =1 TO 50
280 NEXT B
290 SOUND ©
300 GOTO 70
310 SCREEN 2,2:CLS:PRINTCHR${(17):CURSO
R 40,60:PRINT"YOU GUESSED IT!!"
320 FOR PLAY =1 TO 100
330 SOUND 1,A,15
340 NEXT PLAY
350 SOUND O
360 CLS:GO0TO 30

29

10

20

30

40

50

60

70

80

r:

S0

100
110
120
130
140
150
nn
160
170
180
190
200
210
220
230
240
250
260
270
280
o
290
300
310
320
330
S*B
340
owe
350
360
370
380
390
400
410

REM"CDOGN .BAS"

REM Decomposition of a given

REM integer into its prime factors
REM

REM J.Guest

REM

CLS:DIM B{500)

CURSOR 9,10:INPUT"Enter given numbe
"N ,

CLS

K=1:F=1

K=K+1:IF K>1+INT{(N/2) THEN 150
A=N-KXINT(N/K)

IF A=O THEN B(F)=K:F=F+1

GOTO 110

IF F=1 THEN CURSOR 4,13:PRINT"Give
umber is a prime!":CURSOR 0,22:END

FOR Z=1 TO F-1
FOR S=Z+1 TO F-1

IF B(Z)=1 THEN 230
P=B(Z):Q=B(S)

GosuB 370

IF GCD<>1 THEN B(S)=1
NEXT S

NEXT Z

C=0:K=0

C=C+1:IF C>F-1 THEN 280

IF B(C)=1 THEN 250
K=K+1:B(X)=B(C):GOTO 250
CURSOR 7,0:PRINT"Decomposition of

FOR I=1 TO K

P=0

S=B(I):M=B(I)

P=P+1

IF N-B(I)XINT(N/B(I))=0 THEN B(I)=
(1):G0TO0 320

CURSOR 6,2%I+2: PRINT M;"” to the p
r of";pP-1

NEXT I

CURSOR 0,22:END

IF Q=0 THEN GCD=P:GOTO 410
T=ABS(P-Q)

P=Q:Q=T

GOTO 370

RETURN

ERRATUM:

«ss.1t doesn’t happen very often...
or
.Who invented printers anyway??...

Tt truly is a rare occurance (you’re missing out too,
eh??...ED)!'! In fact, I can’t think of any other occasion since
the current editorial committee (Mike and I) has been behind
the reins of your favourite mag., where we decided to
deliberately throw a ’curved ball’ in your direction, just to
see how many of you are as observant as you tell us you
are. If you failed to find the inaccuracy that is of concern
at this time, even though you may have entered and RUN
this program then you should be ashamed (what did you use
instead of the proper characters?)!!

It is with much pleasure that we commend the Sachs
'family’ for being the first to brave our stature (your pedestal,
NOT ours) and actually tell us of their discovery (there you are
Hannah and Arnold ~ we do keep our promises...ED). It seems
that the author of the program 'GOLD HUNT’, which appeared
in Vol. 3, No. 5, made use of some of the SEGA’s internal
GRAPHIC’S characters as part of the screen display for the
program. Where the problem arises is in the way that the
printer treated these characters where they appeared within the
SEGA’sPRINTstatements. Because the printer’s character set
did not know what the SEGA’s codes were, it went ahead and
provided it’s own 'squiggles’ in lieu thereof. This caused a
major catastrophe in line 350 of the aforementioned program!!
That line is reproduced below complete with the correct
character code number values for the SEGA’s BASIC interpreter!!
In order to correct the problem, simply LOAD the program,
re-enter line 350 and then SAVE the program anew and it
should RUN as it was intended. Oh, by the way, this may not
be the last time we bowl a ’googly’ at you, so keep your wits
about you!! Who wrote this program anyway??? (I did!! What of it???...ED)

350 SCREEN 2,2:FOR JJ=1 TO 7:CURSOR 44
+(E*6),168-(D*8):PRINT CHR$(255):IF MK
1 THEN CURSOR 44+(Z%*6),168-(Y*8):PRINT
CHR$(247)

WORKSHORF -

«...The flavour really hits you....
er
....ask any gobbledock....

Up to this point in this series of articles, ardent followers
should have a solid base of knowledge about what can and
can’t be done with your SEGA. This issue is going to 'lift the
lid’ of your computer and provide you all with a general
overview of the internal arrangement of all of those multi-legged
beasties and other bits (and bytes) to be found lurking therein.

We will be discussing the various chips (programmers
slang for 'Silicon Chip’), which is itself a graphic description
of what is technically an IC or Integrated Circuit. The
Integrated Circuit is an extremely complex electrical cireuit
that has been miniaturised so as to to fit onto a small sliver of
silicon, hence that description. So intricate is the circuitry
inside such a device, that were the equivalent circuit constructed
using standard individual electronic components, your SEGA
would be larger than your house!!!! Fortunately, an intricate knowledge
of such devices is not essential to learn how to Program your
SEGA, but knowing how they are interconnected and how they
operate together (or otherwise) will make such an informed
programmer more capable than an otherwise uninformed one
(and we all want to be the best, don’t we??...ED), All of this acumen
can be imparted without resorting to excessive technical jargon
and without YOU having to go anywhere near a Soldering
Iron (thank heaven for that...ED)!!!

Although there are a variety of ICs within the confines
of your SEGA’s plastic case, many of these are provided to
perform specific functions and are thus not accessible to a
programmer. These chips are considered ’invisible’ (for
programming purposes), thus, a description of their operation
will only confuse the issue, therefore most of these have been

omitted from this discourse (this series is intended to encourage
you to be more proficient at your programming, not to turn
you all into electronics wizards!!).

.. Uggh, my brain hurts!!l....

T he most important chip for the programmer in any
computer system is the C.P.U. (the Central Processing Unit). In
the case of the SEGA, this is the Z80A (pronounced ~ ’zed
eighty ay’) or IC D780C-1 (should you ever need to purchase
one) which is an 8 bit microprocessor functionally identical
to the earlier Z80, the only difference being the 'CLOCK
SPEED’. Where the Z80 was designed to operate at 2 MHz
(Megahertz), the later model Z80A, processes at the rate of
3.58 MHz. and will thus always win any race between these
two (and many other computers to boot)! The CLOCK signal
supplied to the Z80A is derived from a CERAMIC OSCILLATOR and
is extremely accurate. Each CLOCK CYCLE lasts for 279.329
Nanoseconds (one Nanosecond is 107-6 seconds or 1/100000th of
a second). This signal controls the processing rate of the
C.P.U., essentially determining the actual speed at which
instructions are executed. The Z80A has been designed to
execute over 700 different instruction codes, any one of which
can be up to five bytes long. Naturally, a single byte instruction
will execute many times faster than a five byte one!! Most
books and manuals covering this IC give clock times for each
instruction which apply to the Z80 running at 2 MHz. These
times must be divided by 1.79 to suit the faster Z80A.

As far as chips go, the Z80A is a relatively large device
having 40 pins (the little metal legs that sprout from it’s
sides) with which it is attached to the outside world. The
number of pins on an integrated circuit is normally indicative
of the complexity of the IC and the Z80A is no exception!!
Contained within the confines of the Z80A’s black exterior are
various registers and busses (can I get one to take me
home...ED?) which we intend to describe more fully in our
next article. Within the electronics that comprise the SEGA
computing system, the Z80A is known as IC1 It is the brains

N

of the microcomputer and is responsible for controlling all of
the other devices within the system, according to the instructions
contained within any program supplied to it. It is THE BOSS!!!
It performs this feat by using IC2 (the 'GATE ARRAY’) which interfaces
the Z80A with the other peripheral chips in the system. This chip
has 28 pins and is essentially ’invisible’ to the programmer.

«ecoc RAMming it home....

Contrary to what many of you may think, your SEGA
computer has virtually NO memory in it, even though the
salesman said that it had 48 K of memory when you bought
it!! It is IC3, a 24 pin, 2KBytes RAM chip which is the sole
onboard memory within the SC-3000. This 2K is only selected and
used by Game Cartridges and My-cards to provide an area
for the game’s System RAM. It is memory addressed at
&HCOOO™&HCTFF and is inaccessable to the programmer and
thus another ’invisible’ chip.

....the center of synthesis....

If we had taken the lid off our SEGA keyboard, we would
find plonked dead center on the main circuit board, the rowdy
member of the Z80A’s encapsulated companions. This is IC4,
a 16 legged DIL (that’s where that missing pickle from my
lunch went...ED!!). DIL is the abbreviation of the term
Dual-In-Line package which describes a chip which has two
rows of pins, one along each side. It is none other than the SGC,
SN76489AN Sound Generation Controller, that we analysed in
the last issue of this series. This chip is connected to the
Z80A through that chip’s port &HT7F.

«...PPI(e) and chips???....

INext on the menu is, of course, IC5 which is the 8255A PPI
(Programmable Peripheral Interface). This is another of the
larger variety of chips (extricated from a bigger spud, no
doubt...ED) being a 40 pin DIL the same as the Z80A. This IC is

more often referred to as the I/O (Input/Output) interface.
If the Z80A is the brains of the mob, then the 8255A must be
considered the sensory receptor of your SEGA computer (it
feels through the keyboard, it hears the cassette player and it
speaks to the printer). This device is connected to the Z80A via
four separate ports &HDC (input), &HDD (irput), &HDE (output)
and &HDF (control) and is responsible for interfacing the
keyboard, joysticks, printers and cassette drive with the
microprocessor, Port A (&HDC) is used for the keyboard input.
Port B (&HDD) is programmed to accept further keyboard
input into it’s Least Significant nibble and the Most Significant
nibble is used for the Cassette input and SP-400 printer/plotter
status checks. The three least significant bits in Port C (&HDE)
are connected to pins 13, 14 and 15 of IC6 and are used to
address the keyboard matrix and the most significant nibble is
utilised by the Cassette output and the outputs for the SP-400.

° The 8255A is an extremely flexible device. It can be
programmed (by means of the control register) to operate in various
modes and configurations. This control register is very complex
and requires many pages to cover it’s full capabilities, thus a
whole article will be devoted to this chip in a future issue
of this tome (allwais waitink...waitink...waitink...ED).

«..making sense from QWERTY....

IC6 is the 74LS145 Keyboard Matrix Decoder. It is a 16
Pin DIL and is physically connected between the 8255A and
the keyboard, It decodes any key presses and presents this decoded
data to the 8255A, when that chip requests this information. In
addition to this, this chip is assigned the task of obtaining
and decoding the joystick input.

«oeedrilling from the Seargent Major....

"T'his IC (being IC7) is perhaps the MOST ’invisible’ of
all of the chips on the SEGA’s circuit board. For openers, it’s
on the underside of the circuit board (which makes it harder
to see), it is not a DIL (Ah, ha, a clever IC at last...ED) and is
provided to regulate the power supply to the circuit board,

34

thus ensuring that all the other components are presented
with a regulated current. It is a PC7805, three pin regulator.

....The best way to fry your chips....

T his next Integrated Circuit, IC8, is a hybrid affair
created for thé purpose of interfacing the cassette drive with
the 8255A. This chip converts the input signals from the
cassette into square waves (more suitable for Processing) and
is provided with a 20dB attenuator for producing output
signals to the cassette drive (It is worth noting that this
chip is not designed to accomodate a power input of 240V, a fact
I discovered when the afformentioned voltage was accidently connected
directly to this chip...it fried...ED!!!). This chip is located
immediately behind the cassette input/output plugs located
at the rear of the SEGA’s keyboard. It is an 11 pin In-Iine. IC.

..c.Dropping in on an old friend....

Continuing in numerical order, we now find ourselves
confronted by the enormity of the SEGA’s VDP. ICY, the
TMS99294, is perhaps the most visible of all of the ICg within
the SEGA, since it’s output is responsible for everything that
is seen upon your television (or monitor) screen. It is this
output which provides the interaction between the human
being behind the keyboard and the electronics beneath it.
Like the Z80A and the 8255A before it, this chip is the third (and
the last) of the 40 pin DIL chips that can found on the circuit
board within the SEGA’s console. Like the Z80A, it too is
controlled by a clock (a quartz crystal oscillator). This clock however,
ticks over at the rate of 10.74 MHz!!! This incredible rate is
necessary in order to keep up with the speed of the 'gun’
inside the television tube which ’draws’ what you see upon
the screen. Although we have already discussed at length the
ins and outs of the RAM associated with this beast, a more
detailed expose of this chip’s abilities will have to wait for
another chapter of our tale.

....More is better....

Naturally, you would expect to find the aforementioned
VRAM following (and connected to) to SEGA’s Video Display
Processor. What you might not expect is that this VRAM resides
in eight individual chips, IC10 to IC17. Each of these DILs
contains a whole 2KBytes of the VRAM and are connected to
the VDP via IC18. This is the 74HC04 14 pin DIL which is used
to interface the 8 VRAM chips with the VDP and is as ’invisible’
as a chip can get!!!

We have now covered all of the Integrated Circuits which
appear upon the main circuit board beneath the SEGA’s
keyboard. There is however a small circuit board located
above the main board which is associated with the signal
processing for the VDP. There are three more additional chips
located upon this board all of which are completely ’invisible’
to the programmer and thus any explanation of their operation
would be of no real value.

" All of these previously mentioned devices are by no means
the complete array of chips at the disposal of the operator
of a SEGA computer, there are many more contained within
the confines of the Super Control Station SF-7000. Since this
most desirable piece of hardware is not universally available (and
most of the integrated circuits therein require an involved
knowledge of Machine Code), we feel that a forage through
their intricate details can be left for another episode (that
future episode of WORKSHOP is going to be a real humdinger...ED!!).

weesIn ONE ‘’ere....

Many of you may have pondered upon the the earlier
coverage of the MB8128 (IC3 ~ the 2K on-board RAM chip)
and wondered where all of that 48 Kbytes of RAM that the
salesman said you had available to you!! For those of you
who may not know, RAM is the acronym for the term Random Access
Memory (you mean it has nothing to do with sheep...ED???).
This form of memory is designated so because of the nature of

it’s accessibility. That is, it can be accessed completely at
random. Each of the memory cells which comprise the total
can be addressed individually for the purpose of obtaining
the contents there-in ~ READing ~ or to alter the contents
at that location ~ WRITing. The alternative form in which
memory can be found is known as ROM. This stands for Read
Only Memory. This form is as it’s name implies. It is stored
memory that cannot be altered by an attempt to WRITE to it (I
had always thought computers were illiterate...ED).

It is precisely a number of these types of Intergrated
Circuits which make up the numbers to provide the aforementioned
apparent memory loss. They can be found lurking within the confines
of the Disk Drive I/O cassette, the IITA BASIC Cartridge or
the IIIB BASIC Cartridge and any of the GAMES Cartridges
or My Cards. Thus, the SEGA’s memory capability is fully user
selectable (yet another feature of our marvellous machine)!!

There is however, one slight disadvantage with this
arrangement. The program, which are the instructions that
execute SEGA’s BASIC, is contained within ROM for all of these
possibilities except Disk BASIC!!

.scsMemories are made of this....

Both of the BASIC cartridges contain within their meagre
dimensions a total of 32 Kbytes of ROM (though the two BASICs
are slightly different) and either 16 Kbytes of RAM (IIIA) or 32
Kbytes of RAM (IIIB). Observant readers will note that these values
are greater than the FREe memory which is available according
to the BASIC interpreter. This discrepancy is caused by the necessity
to allocate a certain amount of this RAM for the use of the
interpreter’s SYSTEM RAM (which has been previously discussed
in these pages).

Disk BASIC on the other hand comprises a total of 64
Kbytes of RAM. What is commonly called Disk BASIC ROM is,
in fact, only a program that has been loaded from a Disk and
stored within that 64 Kbytes of RAM. The only true ROM to
be found within the SF-7000 is the ROM chip which provides the
IPL or Initial Program Loader. This area of memory occupied by

7

A Ba

the Disk BASIC interpretor is called Disk BASIC ROM for no
other reason than convention. It is this difference between
the systems that enables a programmer to provide utilities
(for example, those which have appeared within the pages of
this magazine) that can permanently modify the operation of Disk
BASIC. If Disk BASIC were contained within a ROM chip (as
is Cartridge BASIC), none of these programs could exist.
Conversely, because the Cartridge BASIC interpretor is
contained within ROM, such modifying programs for cartridge
BASIC cannot exist!

This ability to load the BASIC system program from the
stored contents of a compact floppy disk makes for what is
perhaps the second big (Bigger???..ED) advantage of the
SF-7000, besides the sheer speed of program loading capacity.
The presence of the IPL allows any number of alternate
SYSTEM programs to be inserted into the SF-7000’s RAM
completely at random, sometimes two (or more) at a time!!!
« This is the end of this issue (Ohhh!! Just when I was
getting involved...ED)! We shall leave you to devour this
general overview of the SEGA’s hardware system and to wait
with bated breath for the next issue wherein you WILL join
us for an in depth promulgation of the ZILOG Z80A microprocessor’s
machinations. We’ll ’pick your SEGA’s brains’. Ta, tall

AU
e

Tivull - o%)

el -)

FeRSIES NOQA S24 O 1[7 ‘
Article = ey
INKEY$ - . . Mick's mess.. 1
SYNTAX «.the shortest distance between tworpvp,j,nt.s.. :
CLUB NOTES «.everythings coming up roses.. |

TOP THE TOPS ..danger alley..

UTILITY ..is there a docter in the house?..

KEYBOARD MAESTRO «.continue the run,,

RUSSTIAN DANCE | +.rapid rumba.,

ADDRESS BOOK ..handy hints..

PROGRAMS ..pick that pitch..

?ERRATUM) ; ..googly gold..

m2 «.watch out for falling computers..

***'
Sega Help Line -

If you have any urgent problems with your computer, or wish

to find other Sega users in Yyour area then call one of these members :
Garry 309-7130 4
Stewart 783-7328

’I‘?\ey will be happy to help yous:

teting Co-ordinator
Box 589

Hiall Vie. 3195 G t— 5 $3 '
-i*:c **1:* Kok ok K *4?1# '%%%Q)******-
| i k)ii?r) =& - : ,

i TBUONY e e

