
Dr.DoM
I1

A

!*ft§ a

J 0 u
f v l I I

t m f r m a M n d C o m

ASM LIVES! w
68040 PROGRAMMING
JftSXiNC- ■ ;* '
HIGH-LEVEl LANGUAGES
08j£CT*0?' •=

!
§8

S T

:
(HanHBI 1 fi|5

mi -JUp §
lil 1li il •iiti i|1fill!IB!

S#
jg |g

H

J O B
Jfcgglgi

i f i !
B H & S

CONTENTS MARCH 1990
VOLUME 15, ISSUE 3

F E A T U R E S __

ASSEMBLY LANGUAGE LIVES! 1 6
by Michael Abrash
Assembly language isn't the be-all and end-all of PC programming, but as Michael states,
it’s sometimes the only game in town when performance or program size are important.
ASSEMBLY LANGUAGE TRICKS OF THE TRADE 30
by Tim Paterson
Every programmer collects a personal bag of programming tricks. Tim’s has been 13 years
in the making, and he shares some of his favorites with you.
68040 PROGRAMMING 38
by Stephen Satchell
The newest member of the 680x0 family provides some challenges for programmers at all
levels, particularly when it comes to caching.
HOMEGROWN DEBUGGING - 386 STYLE! 46
by Al Williams
Use the 80386’s hardware to debug your programs by including Al’s assembly language
code to establish breakpoints.
MANAGING MULTIPLE DATA SEGMENTS UNDER
MICROSOFT WINDOWS: PART II 58
by Tim Paterson and Steve Flenniken
Last month, Tim and Steve presented a method for managing multiple data segments under
MS Windows using the segment table. This month, they provide a sample Windows program
that puts the segtable library to work.
OBJECT-ORIENTED PROGRAMMING WITH ASSEMBLY LANGUAGE 66
by Randall Hyde
Randy makes a case that the object-oriented paradigm isn’t completely the domain of
high-level programming languages. He believes that OOP techniques can be applied, and
are worth considering for ASM projects too.

E X A M I N I N G R O O M _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
INSIDE WATCOM C 7.0/386 74
by Andreiv Schulman
Andrew suspects that Watcom’s C 7.0/386 has launched the opening salvos in a 32-bit 386
development tool war. He also looks at how Novell has implemented the compiler for its
C Network Compiler/386.

P 1 0 G_R_ A M M E R ' S w O R K B E N C H _ _ _ _ _ _ _ _ _ _
MIXED-LANGUAGE PROGRAMMING WITH ASM 84
by Karl Wright and Rick Schell
As Karl and Rick point out, it’s not only practical but often advisable to mix languages and
memory models in order to achieve the best results. Assembly language is a vital part of
this mix.

C O L 0 M N s_ _
PROGRAMMING PARADIGMS 122
by Michael Swaine
Lisp has been codified, gentrified, and now objectified. Michael looks at how the Common
Lisp data-type system underlies the object system, and how Lisp functions have been
extended to the object world.
C PROGRAMMING 127
by Al Stevens
TEXTSRCH, Al’s text retrieval project, continues to grow. Now you can select and view one
of the files from within the TEXTSRCH program itself. He then uses this feature to explore
the CURSES function library.
STRUCTURED PROGRAMMING 134
by Jeff Duntemann
There really were some neat ideas at last fall’s Comdex, you just had to search them out.
Jeff describes the jewels he discovered, then delves into sets in Modula-2.

D E P A R T M E N T S _ _ _ _ _ _ _ _ _
E D IT O R IA L 6
by Jonathan Erickson

LETTERS 8
by you

SWAINE’S F L A M E S 160
by Michael Swaine

P R O G R A M M E R ' S
SERVICES________________

OF INTEREST 152
compiled byJanna Custer

ADVERTISER INDEX 153
where to go for more information
on products

PROGRAMMER’S
M A R K E T P L A C E 154
classified ads

N E X T I S S U E _ _ _ _ _ _ _ _ _ _ _
If you’ve been scratching your head over
neural networks, you’ll want to pay special
attention to our April issue. We'll also pro
vide the long-awaited code implementation
for our Rhealstone real-time benchmark,
begin an in-depth examination of VGA, and
include DDJ's 1989 index.

Dr. Dobb’s Journal, March 1990
200

3

E D I T O R I A L

Patent Letter
Suits Mark Nelson’s article on the LZW data compression algorithm (DDJ October, 1989) sparked a

forest of fires, at least in respect to patenting algorithms. The first spark, if you recall, was a
letter from Ray Gardner, pointing out that the LZW algorithm was patented by Unisys back

in 1985 (see “Letters,” December 1989). Mark’s response answered a few questions but raised
several more.

About the time we published Ray’s letter and Mark’s reply, the U.S. Court of Appeals settled a
dispute between the U.S. Patent Office and Sharp Corporation in a case that revolved around Sharp's
patent application for a voice-recognition circuit. The Patent Office had rejected Sharp’s original
application in part because they felt the circuit’s only purpose was to execute an algorithm. And,
the Patent Office insisted, algorithms can’t be patented because they are nothing more than
mathematical abstractions. Furthermore, the Patent Office felt that Sharp was trying to patent every
possible means of implementing the algorithm, not just the way it was used in this particular
voice-recognition circuit.

As it turned out, the Court of Appeals didn’t agree with the Patent Office. The court said that an
algorithm can be safeguarded, at least as how it is used to describe a physical device (like a circuit)
or in terms of other functional equivalents of that algorithm.

To better come to grips with this issue, I called Charles Gorenstein, the Falls Church, Virginia
attorney who represented Sharp. Early in our conversation, Mr. Gorenstein stated that “a purely
mathematical algorithm is probably not patentable” but, he added, the specific methods of
implementing an algorithm are patentable. In other words, what is patentable is the method, not
the math. If someone developed a different circuit to execute Sharp’s voice-recognition algorithm,
that’s fine and dandy. And apparently that’s part of the basis of the Court of Appeal’s decision.

Key to any patent grant is the concept of “new and unobvious,” an area that Mr. Gorenstein feels
the Patent Office has overlooked. Using a 1979 patent for spreadsheets as an example, he explained
that just about anyone with a ledger, a pencil, and some data would fill out the rows and columns
in much the same way as they would with an electronic spreadsheet. A ledger — and a spreadsheet —
is obvious. He therefore questions whether the spreadsheet patent should ever have been granted.
This question of “obvious” raises another important issue. What may be unobvious to those in the
Patent Office may very well be obvious to technically sophisticated programmers like DDJ readers.

What all this leads up to is a letter I received from Bob Bramson, the Unisys patent attorney Mark
mentioned in his response. I won’t give a blow-by-blow account of the letter, you can read it for
yourself on page 8, the first entry in this month’s “Letters” section.

I will say that the letter is a politely worded clarification of Unisys’s patent on the LZW algorithm,
with only a slight sense of the steel behind it, at least in reference to Unisys's intention of going
after infringers.

I’m sorry, but I still don’t understand. It seems that if, as I think the court ruled, you can use
Sharp’s algorithm to design a different voice-recognition circuit, you should be able to use Sharp’s
(or Unisys’s or anyone else’s) algorithm for an entirely different purpose than it is used in the
original patent. That is, you should be able to use the LZW algorithm in a program that has nothing
to do with telecommunications or modems. This assumes, of course, that Unisys’s patent is for the
modem and the algorithm as it helps define the modem. I agree with Mark. Unisys will indeed be
very busy tracking down programmers who have implemented some form of the LZW algorithm.

I’m all for any company, large or small, taking steps to protect R&D investments that give it a
competitive edge. But it’s distasteful for large companies to threaten smaller outfits with litigation
that can’t be won in the courts, but can be outlasted by a large company with the resources to do
so. Now I’m not in any way suggesting this is Unisys’s ploy, nor does Mr. Bramson even hint at this,
it’s far too often the way the world works.

In his response to the letter that started all of this, Mark suggested that software developers who
intend on using patented algorithms (like LZW) in commercial products get some legal advice
before proceeding. Mr. Gorenstein seconded this, even to the point of suggesting that programmers
do a patent search prior to implementation. While this advice is sound and safe, it is also lengthy
and expensive, luxuries that software developers usually can’t enjoy.

Today’s mail didn’t bring a letter from a lawyer, but it did include a letter from Dan Abelow, a
Newton, Massachusetts reader who specializes in analyzing emerging technologies, and who,
coincidentally, proposes to write an article on “Enabling Patents.” He calls the topic a “blossoming
controversy [that] has failed to germinate positive suggestions” and, from what I can tell, he’s
making a case that software patents may actually encourage innovation and invention. I don’t know
that I agree with him, but I’m curious enough to give him a call and find out what he has in mind.

Jonathan Erickson
editor-in-chief

Dr. Dobb’s Journal, March 1990
201

L E T T E R S

Patented Algorithm s
Dear DDJ,
In the “Letters” column of your De
cember 1989 issue, Mark Nelson dis
cusses U.S. Patent 4,558,302 entitled
“High Speed Data Compression and
Decompression Apparatus and Method.”
This patent was developed by Terry
Welch, a former Unisys employee, and
is owned by Unisys. According to Mr.
Nelson, I have been quoted as saying
that Unisys will “license the algorithm
for a one time fee of $20,000.” As a
concession to the modem industry, Uni
sys has agreed to license the patent to
modem manufacturers for use in mo
dems conforming to the V42.bis data
compression standard promulgated by
CCITT, for a one-time fee of $20,000.
This $20,000 license, however, is not a
general license under all applications
of our patent but is limited to the spe
cific application discussed above.

Responding to the second paragraph
of Nelson’s remarks, Unisys is actively
looking into the possibility that a large
number of software developers may
be infringing one or more of our data
compression patents. We have only re
cently become aware of these potential
infringers and the process of taking
action will take some time.

Unisys is happy to accept inquiries
from persons interested in acquiring a
license to U.S. Patent 4,558,302. If your
readers have any further questions, they
should contact Mr. Edmund Chung of
our licensing office, at 313-972-7114.

Robert S. Bramson
Unisys
Blue Bell, Penn.

Say I t A in’t So
Dear DDJ,
Dan W. Crockett’s assertion in the Janu
ary 1990 DDJ “Letters” section that struc
tured programming requires that each
functional node (or implementation
unit) have only a single parent is alarm
ing, and damned difficult to program

in the real world. I think that he inter
prets the abstract requirements of struc
tured programming a little too literally
when it comes to coding.

As an example, consider a Pascal
function, which formats dollar amounts
for output. The function might take a
real dollar argument and translate it to
a “ $nnn,nnn, . . . ,nnn.nri' format, and
be declared as function DoliarFmtCv :
real):string; The whole point of hav
ing the function is that it can be called
from any procedure or function in a
program; if the dollar amounts are for
matted incorrectly we can first check
to see if the error lies in DollarFrnt,
because it is solely responsible for per
forming the task.

This is structured programming: Break
ing down a task into smaller and smaller
(andfinally, logically indivisible) subtasks.
Subtasks which perform similar or iden
tical tasks can then be coded as a single
(probably parameterized) routine.

Mr. Crockett wants program struc
ture to be a B, Quad, or whatever tree,
which is fine, but reality demands that
the implementation be a threaded tree.
Under the Crockett scheme we would
be forced to write a separate DollarFrnt
for each caller (AmountDue_Dolla?Fmt,
AmountPaid_DollarFmt, ad nauseani)\
The resulting plethora of duplicate rou
tines would produce a worse debug
ging situation than Mr. Crockett thinks
he’ll have already — never mind the
maintenance nightmare.

The “single” restriction structured pro
gramming is the requirement that a sin
gle functional node not have more than
one entry point within it, which is to
say that all callers must enter through
the same door. It is perfectly reason
able for a routine to have more than
one caller — without multiple callers
there would be little reason for build
ing a distinct procedure or function for
performing the task.

Going back to the DollarFrnt exam
ple: The structural decomposition of a
hypothetical bill printing task might be

Print Bill

List Line Items Calculate Interest Calculate Sum
1 1 1Format Line Item Format Interest Format Sum
I I I

Format Amt Print Interest Print Sum
I I I

Print Item & Amt etc. etc.

It is (hopefully) obvious that “Format
Amt,” “Format Interest,’’and “Format
Sum” should be programmed as calls
to a single formatting routine, even
though they are different tasks in the
abstract.

There are dangers in interpreting any

abstraction too literally. And there is
that other thing, in the word of Will
Rogers: “It’s not what we don’t know
that hurts, it’s what we know that ain't
so.”

Brook Monroe
Durham, North Carolina

Locator F ix
Dear DDJ,
The listing of Mark Nelson’s “Locate
tool” in the January 1990 issue has a
bug in the read_header_data proce
dure: It occurs in his calculation of
image_size. The line:

image_size = (header. file_
size_in_pages -1) * 512;

should be replaced with:

if (header. image_length_mod_512
= = 0)

image_size = header.file_
size_in_ pages * 512;

else
image_size = (header.file_

size_in_pages -1) * 512;

The bug occurs when the actual image
size is an even multiple of 512 bytes.
As an example, consider an image size
of 1526 (512 * 3). In this case,
header_file_size_in_ pages would be
three and header.image_length_mod_
5-/2would be zero. Mark’s code would
produce an incorrect size of 1024 due
to the decrement of headerfile_size_
in_ pages.

I had the opportunity of stumbling
into this when writing a combination
.EXE loader/relocator/unrelocator for
a non-DOS-based embedded control
system.

Thank you for your time and keep the
interesting articles like Mark’s coming.

Bill Trutor
Holden, Mass.

Mark responds: Bill has correctly iden
tified a mistake in my program. I think
I might have avoided this mental error
with better naming o f structure mem
bers. In any case, this is one o f those
program errors that occurs so infre
quently (1 out o f 512 links) that it can
be extremely elusive, so thanks to Bill
fo r pointing it out.

D ata S tructure Dream M achine
Dear DDJ,
In Jeff Duntemann’s column in the De
cember 1989 issue of DDJ, he men
tioned his dream system under Win
dows 386.1 have a question about this.
I understand the languages and the
PageMaker part, but could he expand

(continued on page 12)

8
202

Dr. Dobb’s Journal, March 1990

L E T T E R S

(continued from page 8)
on using Paradox? Do I understand
him to mean that you use it to keep
track of details about your data struc
tures? Sounds interesting; could he elabo
rate?

Guy Townsend
CIS 73040,1671

Jeffs response: Hate to be a spoilsport,
but mostly what I use Paradox fo r is to
keep my various contact files a key
stroke away. The notion o f using a
real-relational database to manage the
gritty details o f major development pro
jects is a good one, but the language
vendors are going to have to do the
integration between the tools and the
database. Some major vendors are in
deed working on this, (still secretly)
and y o u ’ll be seeing the results in DDJ
when they surface.

In tek H eard From
Dear DDJ
From time to time you must hear from
disgruntled companies who feel that
they have suffered at the hands of one
of your writers performing a post
mortem with an axe.

Knowing, however, that Al Stevens
is a venerable pilgrim to the hallowed
halls of Bell Labs and a proponent of
the object-oriented paradigm, we sup
pose that his summarial execution of
our product was caused by a bit of
underdone potato.

In his November “C Programming”
column, just after explaining to his read
ership that he was neither rigorous nor
controlled, he set about to describe the
available C++ compilers and transla
tors available for DOS. Without rigor
or control he dismissed our Intek C++
product without evaluating the prod
uct at all! He chose instead to fault an
example program that we provide with
our distribution of the AT&T translator.
This example program (which we sup
ply the source to in the product distri
bution) invokes the C preprocessor,
the C++ translator, and the target C
compiler in succession. We supplied it
to provide our customers with a con
venient method of progressing from
source to executable if they were in
voking from the command line. The
mentioned bug occurred only with DOS
3.3, and as with all software companies
that stand behind their product with
integrity, we supplied the fix to all of
our customers long before Al’s column
went to print. Of course, Al didn’t men
tion that other translator products don’t
offer anything like this and certainly don’t
supply the source to such a program.

Did Al mention that the near, far,
huge, pascal, fortran, and cdecl key

words don’t work with the AT&T distri
bution or with some other translator
products but that they do with Intek
C++? No. Ever tried to use a third party
header file with some of these keywords
in it or try to link to a library, expecting
the results of these modifiers, Al?

Did Al mention that if one tried to
compile any production size C++ source
modules with other products that they
would run out of memory? No. Maybe
he’d rather make sure that all of his
source files were less than 4K in size
and that he could only include three
or less header files.

Did Al benchmark the fact that the
only product from among the group
that he mentioned that will compile the
AT&T C++ source distribution is Intek
C++? No. (That’s AT&T’s definition of
the robustness of a C++ translator im
plementation by the way.)

Please assure Al that Intek C++ will
continue to have a future in the PC
world. Our client list has many of the
Fortune 500 firms among it. We also
use our own product in providing fac
tory automation applications to the ma
jor workstation and computer manu
facturers in the country.

We feel like you would feel if in a
review of magazines Dr. Dobb’s was
dismissed as not being a quality soft
ware tools magazine because it sounds
like it should be a medical journal.

Mac Cutchins
Intek
Bellevue, Wash.

Al responds: My evaluation o f Intek
C++ consisted at first o f the seemingly
simple task o f getting it to compile the
hello.cpp program that comes with the
translator. “Hello, world,’’nothing more,
right out o f the box. That simple task
involved two days o f frustration and
several phone calls to Intek.

The Intek technical support person
at first insisted that there was some
thing wrong with my setup. The nature
of the bug— the translator worked ev
ery other time— encouraged both o f
us to believe that. The compiler failed,
I called, he made a suggestion, the
compiler worked. I hung up, the com
pilerfailed, I called, and so on. One of
those times we changed operating s>s-
tems, and the technical support person
concluded that my copy o f DOS 3-3
was the culprit. He must have remem
bered that episode and subsequently
convinced you, Mr. Cutchins, but not
me. The bug was identical fo r DOS
Versions 3-0, 3-2, 3-3, and 4.0. Under
3.1, the bug is different, and hello.cpp
just never compiles. When I reported
these findings, your technical support
person, by now tired o f hearing from

me, curtly announced that there must
be some problem, that it would getfixed,
goodbye, and thank you very much. I f
you fixed that bug, I never heard about
it, before or after my column went to
print. Until now, that is. I guess as a
pesky magazine columnist with a free
review copy o f your pricey product, I
d on’t rate an upgrade. Never once dur
ing all those calls did Intek suggest that
I abandon the “example” CPLUSpro
gram and use the lower-level programs,
which I now see is the obvious solution.

In my opinion, Intek C++ is under
packaged and over-priced. The skimpy
40-page spiral-bound manual devotes
only 10 pages to installing and using
the translator, has exactly two sentences
about using it with Turbo C, has some
critical typos (the C_COMPIIER envi
ronment variable is misspelled, fo r ex
ample), and never lets on that the CPLUS
program is a mere example to be used
at one’s own risk. Intek C++ fails to
measure up to the standards o f quality
that PC progratnmers have come to
expect in their language products. My
assessment o f your future in the PC
market was based on my view o f the
cost and quality o f the Intek C++ soft
ware, documentation, and support and
of the expensive hardware/softwarefoun
dation necessary to use it. I stand by
that assessment. I f you believe that In
tek C++ has improved substantially since
my evaluation o f it, I ’ll be pleased to
give it another look.

R ound and R ound We Go
Dear DDJ,
Recently I completed a graphics course,
so I read with interest the January issue
article by Robert Zigon dealing with
generation of circles. I found the article
to be a clear and well written exposi
tion of the problem. However, any al
gorithm based upon the parametric rep
resentation of a circle must involve sig
nificant overhead in the form of floating
point calculations. A superior algorithm
developed by J.E. Bresenham some
years ago avoids such overhead.

The Bresenham algorithm makes use
of the fact that screen coordinates are
integer valued, so it should be possible
to select the circle’s coordinates using
only integer arithmetic as well. Use of
only integer arithmetic is the key to the
efficiency of the algorithm. The algo
rithm is used to advance along the pe
rimeter of the circle, selecting the adja
cent pixel which is nearest to the circle
at each step. Because of circular sym
metry, it suffices to determine only one-
eighth of the circle using this tech
nique.

An excellent derivation of the algo-
(continued on page 14)

12 Dr. Dobb’s Journal, March 1990
203

Dr. Dobb’s S0F1WARE
TOOLS FORTH f
PROFESSIONAL
p j m m m

PUBLISHER Peter H utchinson

EDITORIAL
EDITOR-IN-CHIEF Jonathan Erickson
MANAGING EDITOR Monica E. Berg
TECHNICAL EDITORS M ichael Floyd, Ray Valdes
EDITORIAL ASSISTANT Ja n n a Custer
CONTRIBUTING EDITORS A l Stevens,
J e ff D untem ann, M artin Tracy, D avid Betz,
Tom G enereaux, A ndrew Schulm an
COPY EDITORS Rhoda Simmons,
Pamela Dillehay, N an Fornal
EDITOR-AT-LARGE Michael Swaine

ART/ PRODUCTI ON
ART/PRODUCTION DIRECTOR Larry L. Clay
ART DIRECTOR M ichael Hollister
PRODUCTION SUPERVISOR A m y Shulm an Lesovoy
TECHNICAL ILLUSTRATOR Linda A n n Clark
TYPOGRAPHERS Teresa Raines,
Margaret Anderson, Charlene Carpentier
COVER PHOTOGRAPHER Michael Carr

CIRCULATION
DIRECTOR OF CIRCULATION Maureen K am inski
CIRCULATION MANAGER Randy Robertson
CIRCULATION PLANNING MANAGER M anny Sawit
DIRECT MARKETING MANAGER Andrea Weingart
NEWSSTAND MANAGER Sarah Forsman
DIRECT MARKETING COORDINATOR Francesca Davies
PROMOTION COORDINATOR Pam Moore
FULFILLMENT COORDINATOR A n n e Jean

ADMI NI STRATION
VICE PRESIDENT OF FINANCE Kate Deschamps
CONTROLLER Mary Collopy
CREDIT MANAGER Betty Arsene
ACCOUNTING SUPERVISOR Renate Kernke
ACCOUNTS RECEIVABLE W endy Ho
ACCOUNTS PAYABLE LuAnn Rocklewitz

MARKETI NG/ ADVERTI SI NG
DIRECTOR OF SALES AND MARKETING
Karla Spormann
ADVERTISING COORDINATOR Laura Stack Pullen
MARKETING ASSISTANT Sara Noah Ruddy
ACCOUNT MANAGERS see page 152

M&T PUBLI SHI NG INC.
CHAIRMAN OF THE BOARD O tm ar Weber
DIRECTOR C. F. von Q uadt
PRESIDENT Laird Foshay
VICE PRESIDENT OF PUBLISHING William P. H oward
VICE PRESIDENT/GROUP PUBLISHER
RandallL. Stickrod

DR. DOBB’S JOURNAL (USPS 307690) is published monthly, ex
cept sem im onthly in December, by M&T Publishing, Inc., 501
G alveston Dr., Redwood City, CA 94063; 415-366-3600. Second-
class postage paid at Redwood City and at additional entry points.

ARTICLE SUBMISSIONS: Send m anuscripts and disk (w ith article
and listings) to the editorial assistant 415-366-3600.

DDJ ON COMPUSERVE: Type GO DDJ.

DDJ LISTING SERVICE: 603-882-1599. Supports 300/1200/2400
baud, 8-data bits, no parity, 1-stop bit. Type listings (use lowercase)
at the login prom pt.

SUBSCRIPTION: $29.97 for 1 year; $56.97 for 2 years. Foreign
orders m ust b e prepaid, including the additional postage (air or
surface) in U.S. funds draw n on a U.S. bank. Add $13 for surface
mail to all addresses out of the U.S.; add $33 for airmail to Canada
and Mexico; or $32 for airlift to all o ther countries.

POSTMASTER: Send address changes to Dr. D obb'sJournal, P.O.
Box 56188, Boulder, CO 80322-6188. ISSN 1044-789X

CUSTOMER SERVICE: For subscription orders, questions, and
changes o f address call toll-free 800-456-1215 (U.S. and Canada)
o r write Dr. Dobb 's Journal, P.O. Box 56188, Boulder, CO 80322-
6188. For book/softw are orders call 800-533-4372 (in California
800-356-2002).

FOREIGN NEWSSTAND DISTRIBUTOR: W orldwide Media Ser
vice Inc., 115 E. 23rd St., New York, New York 10010; 212-420-0588
FAX 212-420-1265.

Entire contents copyright ©1990 by M&T Publish- The
ing, Inc., unless otherw ise noted on specific Audit
articles. All rights reserved. W Bureau

L E I I E R S

(continued from page 12)
rithm is given in the text Computer
Graphics by Donald Hearn and M.
Pauline Baker (Prentice Hall, 1986). The
derivation depends only upon elemen
tary algebra, but may require some
what greater mathematical maturity due
to the notation used. The text also pre
sents Pascal code for the algorithm.
Another reference, which gives a lim
ited explanation and a C code implemen
tation of the algorithm, but which does
not attempt to derive the algorithm, is
Graphics Programming in C by Roger
T. Stevens (M&T Books, 1988).

Joseph M. Hovanesjr.
Pittsburgh, Pennsylvania

Forth Fan
Dear DDJ,
Here’s 20 cents to fan the Flames of
T.S. Kuhn’s book, The Structure o f Sci
entific Revolutions. It caused me to go
cold turkey re. the tube for three days.

Martin Tracy reaffirmed my belief that
Forth in its dialects offers the best pres
ently available forum for discussion of
“discrete mathematics” and the founda
tions of computing science. But I would
like to see his work in the form of a
bootable operating system and not a guest
under another commercial product.

I confess that my own present work,
“simpli-Forth,” which is strongly tied
to the 6502, still requires a fig-Forth
boot to get off the ground. Perhaps if I
work, I can learn enough about target
compilers to create my own boot codes.

It seems to me that small operating
systems with too-early emphasis on hid
ing or transportability may not be in
the best interest of learners who seek
to know in detail how their computing
systems work. I would like to see small
Forth systems place the user in a pro
gramming environment which makes
plain the processes of his machine.
That is why calls to DOS seem mis
placed to me; I’d prefer that all of a
small Forth system be available to the
decompiler and user.

Would not a system for the program
ming of “smart” peripherals be more
useful and general by omission of read
only memory? One could imagine modi
fied error-handling, perhaps by redi
recting the error-message stream to the
calling device and transmitting a raise-
error-request to it. But I remain con
vinced that the “smart” external should
be executing a standard and expand
able Forth kernel, albeit a minimal one,
and that communication with it should
be in the form of a standard, inter
preted input stream.

The user of such a device could then
load codes indicating how the forth

coming data is to be handled, followed
by the commands to be executed and
the data (e.g., 80 PRINTLINE THE
QUICK BROWN FOX JUMPS OVER . . .) .
At the end of such a session, some
command such as DONE would then
forget the loaded object-behavior back
to that formerly executing. Instead of
relying on ROM to make our machines
robust we would enter a new arena of
opportunity for flexibility. It is time for
a generation of peripherals which can
follow the lead and dance.

On another subject, Brodie encour
ages us, “Use dumb words.” One of
the major differences between fig-Forth
and Forth-83 is in the use of the STATE
variable and its effect on words such
as ’ and LITERAL. In the process of
learning to use STATE-sensitive words
correctly, I, too, have been hopelessly
confused from time to time. But the
fully interactive capabilities possible in
a modern Forth machine may require
STATE-sensitive behavior.

For this reason I chose to write SIF
(STATE @ IF) which may be used:

: TEST SIF COMPILE THEN DO-IT •
IMMEDIATE

which will cause TEST to compile DO
IT if compiling else execute it (COM
PILE is not IMMEDIATE). Although this
example makes TEST equal to DO-IT,
more-useful examples can be drawn.
Another word might be ?COMPILE that
would combine the effects of SIF, THEN,
and IMMEDIATE and be used: : TEST
PCOMPILE DO-IT ; so that all words
using PCOMPILE would automatically
be made IMMEDIATE.

“Use dumb words” is sound advice.
But some quite interesting capabilities
arise only when one uses correctly
written words with STATE-sensitive
behavior.

Jon W. Osterlund
Greeley, Colo.

D DJ

We welcome your comments (and sug
gestions). Mail your letters (include disk
i f your letter is lengthy or contains code)
to DDJ, 501 Galveston Dr., Redwood
City, CA 94063, or send them electroni
cally to CompuServe 76704,50 or via
MCI Mail, c/o DDJ. Please include your
name, city, and state. We reserve the
right to edit letters.

Dr. Dobb’s Journal, March 1990

.1 0 I R N A L

204

Assembly Language
Lives!

More Speed, Less Filling

M ichael Abrash

here’s an old joke that goes something like this:

Person #1: Help! My brother thinks he’s a chicken, and
I don’t know what I should do.

Person #2: Have you told him the truth?
Person #1: I would, but I need the eggs.

Updated for the modern age of structured languages and
object-oriented programming, that joke would read:

Manager #1: Help! My programmers think assembly lan
guage is a viable programming language, and I don’t
know what I should do.

Manager #2: Have you told them the truth?
Manager #1: I would, but I need the speed.

Assembly language beats everything else hands down
when it comes to performance — especially when program
ming for the 80x86, where assembly language is wild, woolly,
and wondrous — yet it gets no respect. When you flat-out
need performance, there simply are no substitutes for as
sembly language — so why doesn’t anyone seem to love it?

Assembly Language Isn't Cheap
Experts, pundits, and management types have been beating
the drums for the demise of assembly language for years.
There are many good reasons for wishing it dead. Com
pared to compiled code, good assembly-language code is
harder to write, is more bug prone, takes more time to
create, is harder to maintain, is harder to port to other
platforms, and is more difficult to use for complex, multi
programmer projects. That makes assembly language an
expensive, demanding, and time-consuming development
language. Given the realities of time to market, the relative
costs of good assembly language and high-level language
programmers, programmer turnover, and ever-increasing

Dr. Dobb’s Journal, March 1990
205

Michael works on high-performance graphics software at
Metagraphics in Scotts Valley, Calif. He is also the author
o f Zen of Assembly Language published by Scott, Foresman
& Co., and Power Graphics Programming, from Que.

16

software complexity, it’s neither surprising nor unreason
able that most of the industry wishes assembly language
would go away.

Assembly language lives, though, for one simple reason:
Properly applied, it produces the best code of any language.
By far.

Assembly Language Lives
Don’t believe me? Consider this. If the carbon-based com
puter between your ears were programmed with as good a
compiler as Microsoft’s, then you’d generate much better
code in assembly language than does Microsoft C, because
you know vastly more about what you want your program
to do and are marvelously effective at integrating that knowl
edge into a working whole. High-level languages are artifi
cially constrained programming environments, able to pass
relatively little of what you know along to the ultimate
machine code. There are good reasons for that: High-level
languages have to be compilable and comprehensible by
humans. Nonetheless, there’s no way for a high-level lan
guage to know where to focus its efforts, or which way to
bias code.

For example, how can a Pascal compiler know that one
loop repeats twice, on average, while another repeats 32,767
times? How can a C compiler know that one subroutine is
time critical, deserving of all possible optimization, while

another subroutine executes in the background while wait
ing for the next key to be pressed, so speed matters not at
all? The answer is: No way. (Actually, #pragma can do a
little of that, but it’s no more than a tiny step in the right
direction.)

Just as significantly, no compiler can globally organize
your data structures and the code that manipulates those
structures to maximum advantage, nor take advantage of the
vast number of potential optimizations as flexibly as you
can. (Space forbids even a partial listing of optimization
techniques for the 80x86 family: The list is astonishingly
long and varied. See Tim Paterson’s article in this issue for
a small but potent sample.) When it comes to integrating all
the information about a particular aspect of a program and
implementing the code as efficiently as possible given the
capabilities of a particular processor, it’s not even close:
Humans are much better optimizers than compilers are.

Almost any processor can benefit from hand-tuned as
sembly language, but assembly language lives most vi
brantly in the 80x86 family. The 80x86 instruction set is
irregular; the register set is small, with most registers dedi
cated to specific purposes; segments complicate everything;
and the prefetching nature of the 80x86 renders actual
execution time non-quantifiable — and optimization at best
an art and at worst black magic — making the 80x86 family
a nightmare for optimizing-compiler writers. The quirky

Dr. Dobb’s Journal, March 1990
206

1 7

A S M L I V E S

(and highly assembly language amenable) instructions of
the 8086 live on in the latest 80x86-family processors, the
80386 and 80486, and will undoubtedly do the same for
many generations to come. Other processors may lend
themselves better to compilers, but the 80x86 family is and
always will be a wonderland for assembly language.

Consider this: Well-written assembly language provides
a 50 to 300 percent boost in performance over compiled
code (more sometimes, less others, but that’s a conservative
range). An 8-MHz AT is about three times faster than a PC,
a 16-MHz 80386 machine is about twice as fast as an AT, and
a 25-MHz 80386 is about three times as fast as an AT. There
are a lot of PCs and ATs out there — 20 to 30 million, I’d

When you absolutely, positively need
to keep program size to a minimum,
assembly language is the way to go

guess — and there is a horde of users contemplating the
expenditure of thousands of dollars to upgrade.

Now consider this. Those users don’t have to upgrade —
they just need to buy better-written software. The per
formance boost good assembly language provides is about
the same as stepping up to the next hardware platform, but
the assembly language route is one heck of a lot cheaper.

In other words, better software can eliminate the need for
expensive hardware, giving the developer the opportunity
to realize a healthy profit for his extra development efforts.
Just as important is the fact that good assembly language
runs perfectly well on slower computers, making the market
for such software considerably larger than the market for
average software. If you make your software snappy on an
8088, your potential market doubles instantly and the com
petition thins.

Finally, it’s on the slower computers — the PC and AT —
that assembly language optimization has the most effect
(see the example later in this article), and that’s precisely
where improved performance is most needed.

Enter the User
So assembly language produces the best code. What of it?
If high-level languages make it easier and faster to create
programs, who cares if those programs are slower?

The user, that’s who. Users care about perceived perfor
mance — how well a program seems to run. Perceived
performance includes lack of bugs, ease of use, and, right
at the top of the list, responsiveness. Hand users a whiz-
bang program that makes them wait at frequent intervals,
and they’ll leave it on the shelf after trying it once. Give users
a program that never gets in their way, and they may love it
without ever knowing quite why. In these days of all-too-
sluggish graphical interfaces, the performance issue is cen
tral to the usability of almost every program.

What users don’t care about is how a program was made.
Do you care how your car was designed? You care that it’s
safe, that it’s reliable, and that it performs adequately, but
you certainly don’t care whether the manufacturer used
just-in-time manufacturing, or whether mainframe or micro
computer CAD was used in the design process. Likewise,
users don’t care whether a programmer used OOP or C or
Pascal, or COBOL, for that matter; they care that a program
does what they need and performs responsively. That’s not

purely a matter of speed, but without speed the user will
never be fully satisfied. And when it comes to speed, as
sembly language is king.

Use Only as Directed
When you need it, there’s no substitute for assembly lan
guage, but it can be a drag when you don’t need it — so
know when to use it. Humans are better large-scale design
ers and small-scale optimizers than compilers, but they’re not
very good at the grunt work of compiling, such as setting up
stack frames, handling 32-bit values, allocating and ac
cessing automatic variables, and the like. Moreover, humans
are much slower at generating code, so it’s a good idea to
avoid being a “human compiler.” Some people create com
plex macros and assembly language programming conventions
and do all their programming in assembly language. That
works — but what those macros and conventions do is
make assembly language function much like a high-level
language, so there’s no great benefit, especially given that
you can drop into assembly language from a high-level
language at any time just by calling an assembly language
subroutine (or, better yet, by using in-line assembly lan
guage in a compiler that offers that feature, such as Turbo
C). Unless you’re a masochist, let your favorite compiler do
what it’s best at — compiling — and save assembly lan
guage for those small, well-defined portions of your software
where your efforts and unique skills pay off handsomely.

A relevant point is that assembly language alone is not the
path to performance. If you have a program that takes as
long as a second to update the screen, you have problems
that assembly language alone won’t solve: Proper overall
design and algorithm selection are also essential. However,
most software designers consider the job done when the
design and algorithm phases are complete, leaving the
low-level optimization to the compiler. I repeat: No com
piler can match a good assembly language programmer at
low-level optimization. Given the irregular nature of the
80x86 family and the huge PC software market, it’s well
worth the time required to hand-optimize the few critical
portions that control perceived performance. Only in as
sembly language can you take full responsibility for the
performance of your code.

Don't Spit into the Wind
While I can’t offer a cut-and-dried dictum on when to use
assembly language, the practice of using it when the user
would notice if you didn’t is a good rule of thumb. While
some programmers would take this rule too far and use
assembly language too often, the vast majority of program
mers will lean over backwards the other way, in the face of
all evidence to the contrary. Hal Hardenberg’s late, la
mented DTACK Grounded reveled in the folly of the AT&T
programmers who implemented the floating-point routines
for a super-micro in C rather than assembly language —
with the result that the computer performed floating-point
arithmetic not quite so fast as a Commodore VIC-20!

Likewise, I once wrote an article in which I measured the
performance of an assembly-language line-drawing im
plementation at four to five times that of an equivalent C
implementation. One reader rewrote the C code for greater
efficiency, ran it through Microsoft C rather than Turbo C,
and wrote to inform me that I had shortchanged C; assembly
language was actually “only” 70 percent faster than C. As it
happens, the assembly-language code wasn’t fully opti
mized, but that’s not the important point: What really mat
ters is that when programmers go out of their way to
produce code that’s nearly twice as slow (and in an impor
tant user-interface component, no less) in order to use a

18 Dr. Dobb’s Journal, March 1990
207

A S M L I V E S

(continued from page 18)
high-level language rather than assembly language, it’s the
user who’s getting shortchanged. Commercial developers
in particular can’t afford to ignore this, and I suspect that
most such developers are DDJ readers. If you’re aiming to
sell hundreds of thousands of copies of a program, you’re
guaranteed to have stiff competition. If you don’t go the
extra mile to provide snappy response, someone else will —
and you’ll be left out in the cold.

Assembly language lives, though, for
one simple reason: Properly applied,

it produces the best code of any
language. By far

On the other hand, assembly language code is harder and
slower to write, and pays off only in the few most critical
portions of any program. There are limits to the levels of
complexity humans can handle in assembly language, and
limits to the development time that can be taken before a
product must come to market. Identify the parts of your
programs that significantly affect the performance perceived
by the user (a code profiler can help greatly here), and focus
your efforts on that code, with especially close attention to
oft-repeated loops.

80x86 Assembly Language in Action
Enough talk. Let’s look at an example of assembly language
in action. Listing One, page 94, shows a C subroutine,
CopyUppercase, that copies the contents of one fa r zero-
terminated string to another fa r zero-terminated string, con
verting all lowercase characters to uppercase in the process.
The subroutine consists of a single, extremely compact loop
that should be ideal for compiler optimization. In fact, I
organized the loop for the best results with Microsoft C 5.0,
the test compiler, and used the intermediate variable Upper-
SourceTemp in order to allow for more efficient compiled
code. There may be a more efficient way to code this
subroutine, but if you’re going to go to the trouble of being
compiler-specific and knowing compiler code generation
that intimately, why not use assembly language, which
provides direct control and gives you the freedom to create
the best possible code? Microsoft C 5.0 generates the code
shown in Figure 1 from the version of CopyUppercase in
Listing One when maximum optimization is selected with
the /Ox switch. It’s not bad code, but neither is it great. The
fa r pointers are stored in memory and must be loaded each
time through the loop, and a considerable amount of work
is expended on determining whether each character is up
percase, although the case check is done with a table
look-up, which is generally one of the most desirable 80x86
programming techniques. A serious failing is that none of
the 80x86 family’s best instructions — the string instructions —
are used. The upshot is that Listing One runs in the times
listed in Figure 2 on various PC-compatible computers. (All
times discussed in this article were measured with the Zen
timer described in my book Zen o f Assembly Language,
from Scott, Foresman & Company, modified slightly to work
with Microsoft C.)

Can we do better in assembly language? Indeed we can,
as Listing Two (page 94), which replaces the C version of

20
208

Dr. Dobb'sJournal, March 1990

A S M L I V E S

(continued from page 20)
CopyUppercase in Listing One with an assembly language
version, illustrates. Listing Two simply keeps bothyarpoint-
ers in registers and uses string instructions to access both
strings; the return for the 21 assembly-language instructions
that do that is a performance improvement ranging from
two to three-plus times, as shown in Figure 2. If this code
happens to be in a performance-sensitive portion of a pro
gram, that’s quite a return for a little assembly language.

Now, you may well think that the above example is
biased in favor of assembly language, what with the fa r
pointers, which assembly language tends to handle much
better than do compilers. I would disagree: Almost every
PC program now takes advantage of the full 640K of mem
ory, and most of that memory must be accessed via fa r
pointers, so access to fa r data is a most important issue to
PC developers, and the ability of assembly language to
handle fa r data just about as fast as near data is a substantial
point in favor of assembly language. In fact, this example is
representative of a large class of problems developers face,
involving data copying, data transformation, data checking,
pointers, and segments. Nonetheless, let’s see what hap
pens if we alter CopyUppercase to use wear pointers.

Listing Three (page 94) shows Listing One changed to use
near pointers. Listing Three, which generates the code
shown in Figure 3, is indeed much faster than Listing One;
it still takes at least half again as long as Listing Two, but it’s
closing the gap. By contrast, Listing Two wouldn’t much
benefit from near pointers, because it already keeps the
pointers in the registers. Does that mean that for near data
C almost matches assembly language?

Not a chance. We haven’t optimized the assembly lan
guage implementation yet; Listing Two is just a straight port
of Listing One from C to assembly language. Listing Four
(page 94) shows Listing Two converted to use near point-

_ C o py llpp erca se proc near
push bp
mov bp,sp
sub sp,0002

LabeM :
les bx,[bp+08]
mov cl,es:[bx]
inc word ptr [bp+08]
mov
cbw

ax,cx

mov bx,ax
test byte ptr [bx+0115],02

je Label2
mov ax,cx
sub al,20
jmp Label3

Label2:
mov ax,cx

Label3:
les bx,[bp+04]
mov es:[bx],al
inc word ptr [bp+04]
or cl,cl
jne Labe 11
mov [bp-02],cl
mov sp,bp
pop
ret

bp

CopyU ppercase proc near

Figure 1: The code generated/orCopyUppercase by Micro
soft C 5-0 when Listing One is compiled with the/Ox switch
(maximum optimization)

22

String type/
Language
(Listing)

Execution time in microseconds on
8088 80286 80386

Far strings/C
(Listing One)

2258 (1.0) 466 (1.0) 140 (1.0)

Far strings/ASM
(Listing Two)

662 (3.4) 150 (3.1) 62 (2.3)

Near strings/C
(Listing Three)

1183 (1.9) 282 (1.7) 95(1.5)

Near strings/
A S M
(Listing Four)

574(3.9) 115 (4.1) 50 (2.8)

Near strings/
optimized A S M
(Listing Five)

410(5.5) 85 (5.5) 46 (3.0)

Figure 2: The execution times o f the various C and assem
bly language implementations o f CopyUppercase shown
in Listings One through Five. For a given listing running
on a given processor, the number in parentheses represents
the performance o f that listing relative to the performance
of Listing One on that processor; the higher the value, the
better the performance. 8088 timings were performed on
an IBM XT; 80286 timings ivereperformed on a 10-MHz
one-wait-state AT clone; and 80386timings were performed
on a 20-MHz zero-wait-state 32K-cache Toshiba T5200

_C opyU ppercase proc near
push bp
mov bp,sp
sub sp,0002
push di
push si
mov di,[bp+04]
mov si,[bp+06]

L a b e l!:
mov cl,[si]
inc si
mov
cbw

ax.cx

mov bx,ax
test byte ptr [bx+0115],02

je Label2
mov ax,cx
sub a 1 ,20
jmp
nop

Label3

Label2:
mov ax,cx

Label3:
mov [di],al
inc di
or cl,cl
jne Label4
mov [bp+04],di
mov [bp+06],si
mov [bp-02],cl
pop si
pop di
mov sp.bp
pop
ret

bp

CopyU ppercase proc near

Figure 3: The code generated fo r CopyDppevcase by Micro
soft C 5.0 when Listing Three is compiled with the /Ox switch
(maximum optimization)

Dr. Dobb’s Journal, March 1990
209

A S M L I V E S

(continued from page 22)
ers, plus a couple of twists. First, two bytes are loaded,
converted to uppercase, and stored at once, cutting the
number of memory-accessing instructions in half. Second,
the value used to convert characters to uppercase and the
upper- and lowercase bounds are stored in registers outside
the loop, so that they can be used more efficiently inside the
loop. These are simple optimizations, but ones that I doubt
you’ll find a compiler using — and they’re highly effective.
As Figure 2 indicates, Listing Four is approximately 20
percent faster than Listing Two and about two times faster
than the nearC implementation of Listing Three.

If you have a program that takes as
long as a second to update the screen,

you have problems that assembly
language alone won’t solve

We’re not done optimizing yet, though. We’ve focused
so far on relatively simple, linear optimization. Let’s pull out
all the stops, throw some unorthodox techniques at the
problem, and see what comes of it.

On most PC compatibles, the key is this: The processor
is slow at fetching instruction bytes and branching (in fact,
all 80x86 processors are relatively slow at branching). If we
can keep one or the other of those aspects from dragging
the processor down, we can often improve performance
considerably. As it happens, we can attack both bottlenecks.
Look-up tables shrink code size, thereby easing the instruc
tion fetching problem, and avoid branches as well. Well
then, why not simply look up the uppercase version of each
character? While we’re at it, why not look it up with the
remarkably compact and efficient xlat instruction? In this
way we can convert the five instructions used to convert to
uppercase in Listing Four to a single xlat. We can also
improve performance by repeating multiple instances of the
contents of the loop in-line, one after the other; doing this
allows virtually all of the conditional jumps to fall through,
eliminating branching almost entirely. Both changes appear
in Listing Five, page 94. As Figure 2 indicates, those two
changes improve performance by 8 to 40 percent — and the
improvement is greatest on the slower 8088 and 80286
machines, which is surely where speed matters most. (Nor
is this code maxed out even yet; I simply had to draw the
line somewhere in the interests of keeping the code readily
comprehensible and this article to a reasonable length. For
example, we could use lodsw to speed up Listing Five much
as we did in Listing Four. Never assume that your code is
fully optimized!)

Bear in mind, too, that the code in Listing Five can handle
fa r pointers as easily as near if the look-up table is moved
into the code or stack segment and accessed with a segment
override, a change that would scarcely affect performance
at all. When it comes to handling fa r strings, then, w e’ve
improved performance by three to five and one-half times.
To put that in perspective, the performance improvement
gained by running the original C code on a 20-MHz zero-wait-
state 32K-cache 80386 computer rather than a run-of-the-
mill 10-MHz one-wait-state 80286 computer was only a little
over three times. I think it’s obvious which is the cheaper
solution to improving performance.

(It’s worth noting that carefully crafted assembly language

Dr. Dobb’s Journal, March 1990
210

A S M L I V E S

(continued from page 24)
was required to produce the massive performance improve
ment measured earlier. Assembly language by itself guaran
tees nothing, and bad assembly language, which is easy to
write, brings new meaning to the word bad.)

Don’t think I’ve picked an example that stacks the deck
in favor of assembly language. In fact, assembly language
would do considerably better if we worked with arrays or
fixed-length Pascal-style strings, and would do better than
compiled code in cases where there were more variables to
keep in the registers. We also weren’t able to use repeated
string instructions in the earlier example; when such instruc
tions can be used, as is often the case when an entire
program’s data structures are organized with efficient as
sembly language code in mind, the performance advantage
of assembly language can approach an order of magnitude.
In short, we looked at a simple, limited example (and actually
one that lends itself relatively well to compiler optimi
zation), and in optimizing it we’ve scarcely begun to tap the
treasure trove of assembly-language tools and techniques.

Yes, compiler library functions can use string instructions
and other assembly-language tricks as readily as your own
assembly language code can, but there’s a great deal that
library functions can’t do. Don’t assume that library func
tions are well written, either — some are, but many aren’t.
And remember that the author of the library knows no more
than the author of the compiler about when you most need
performance, and so must design code for adequate perfor
mance under all circumstances. You, on the other hand, can
precision-craft your code for best performance exactly when
and where you need it. Also, keep in mind that library
functions can work only within the current model. When
you’re working with data on the fa r heap in a program
compiled with the small model (an efficient arrangement for
programs that must handle a great deal of data), library
functions can’t help you.

Finally, Microsoft C is a very good optimizing compiler,
considerably better than most of the compilers out there.
There are a few compilers that generate somewhat better
code than Microsoft C, but I’m willing to bet that most of the
C programmers reading this use either Microsoft or Turbo
C. (Turbo C did not match Microsoft C on this particular
example, so I used Microsoft C in order to give C every
advantage.) The C code was written to allow for maximum
optimization (the loop is only four lines long, for goodness’
sake) and uses a macro — not a function call — that ex
pands to a table look up. In other words, the cream of the
C crop, given readily optimized code and using a look-up
table, went head-to-head with a few dozen hand-optimized
assembly-language lines — and proved to be about two to
five times slower.

Size Matters Too
I’ve focused on performance so far because the primary use
of assembly language lies in making software faster. Assem
bly language can make for far more compact programs as
well, although that’s less often important because the PC
has a large amount of memory available relative to process
ing power and because saving space is a diffuse effort,
requiring attention throughout the program, while enhanc
ing performance is a localized phenomenon, and so offers
a better return on programming time.

There are cases where program size is crucial — memory-
resident programs, device drivers, utilities, for example —
and assembly language can work wonders. Of course, good
assembly language code is very tight, and hence very small,
but there’s more to it than that. It’s easy to drive programs
with compact data strings in assembly language (see “Roll

your Own Minilanguages with Mini-Interpreters” which I
co-authored with Dan Illowsky, DDf September 1989). It's
also easy to map in code sections from disk as needed;
assembly language can be far more flexible than any overlay
manager. Finally, assembly language eliminates the need
for non-essential start-up and library code. Co-workers tell
me of the time they needed to distribute a program to accept
a keypress from the user and return a corresponding error
level to a batch file. Written in C, the program was 8K in size;
unfortunately, the distribution disk didn’t have that much
free space. Rewritten in assembly language, the same pro
gram was a mere 50 bytes long.

When you absolutely, positively need to keep program
size to a minimum, assembly language is the way to go.

Can Live with It, Can't Live without If
Assembly language isn’t the be-all and end-all of PC pro
gramming, but it is the only game in town when either
performance or program size is paramount. Assembly lan
guage should be used only when needed and, used wisely,
offers unparalleled code quality and an excellent return for
programming time invested.

For all the drawbacks of assembly language, eight-plus
years of PC software development have proven that devel
opers can live with it; programs containing assembly lan
guage have been written in an expeditious manner and
work very well, indeed. Those same years have shown that
developers can’t afford to live without assembly language.
I suspect you’d be hard pressed to find any important PC
software that contains no assembly language at all, and I can
assure you that any application with a graphical user inter
face either contains assembly language or is a dog. (Sure,
Windows applications and applications that link in third-
party libraries may not contain assembly language, but that’s
because they’ve passed that responsibility off to other devel
opers. And just who are those developers? DDf readers,
that’s who. Somebody has to create the good code that
top-notch software requires.)

For all the wishing, 80x86 assembly language isn’t going
away soon; in fact, it’s not going to go away at all. The 80x86
architecture lends itself beautifully to assembly language,
and performance will always be at a premium, no matter
how fast processors get. Back, when I used a PC, I thought
if I had a computer that was ten times faster, all my software
would run so fast that I’d never have to wait. Well, now I
use just such a computer, and much of the software I use is
faster as well (MASM, for example, is about ten times faster
than it used to be, and TASM is even faster) — and still I
spend a lot of time waiting. Software is never fast enough,
and better software is one heck of a lot cheaper than better
hardware.

Availability
All source code is available on a single disk and online. To
order the disk, send $14.95 (Calif, residents add sales tax)
to Dr. Dobb’s Journal, 501 Galveston Dr., Redwood City,
CA 94063, or call 800-356-2002 (from inside Calif.) or 800-533-
4372 (from outside Calif.). Please specify the issue number
and format (MS-DOS, Macintosh, Kaypro). Source code is
also available online through the DDJ Forum on Compu
Serve (type GO DDJ). The DDJ Listing Service (603-882-
1599) supports 300/1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the system answers, type:
listings (lowercase) at the log-in prompt.

D D J

(L is tin g s b e g in o n pa ge 9 4 .)
Vote for your favorite feature/article.

C ircle Reader Service No. 1.

26 Dr. Dobb’s Journal, March 1990
211

Assembly Language
Tricks of the Trade

Hand-picked code fo r smaller, faster programs

Tim Paterson

I
t is the nature of assembly language programmers to
always look for ways to make their programs faster and
smaller. Over the years, the individual programmer
develops a personal catalog of tricks and techniques
that squeeze out a few bytes here or a few clocks there.

My own catalog of 8086 tricks has been 13 years in the
making, including a few from the 8080 that survived the
translation.

One of the original motivations for finding some of these
alternatives to the obvious approach is the severe “branch
penalty” of the 8086 and 8088. When a conditional jump is
taken on the 8086/8088, four times as many clock cycles are
required (16) as when the jump is not taken. However, this
penalty has been reduced on the 286 and 386. When taking
a conditional jump, the newer processors require Only seven
clocks, plus one clock for each byte in the instruction at the
target of the jump. That is, if you’re jumping to an instruction
that is 2 bytes long, the conditional jump takes nine clocks.
This improvement means that several of the nine tricks
presented here are of little or no value on the 286 and 386.
However, I have presented them anyway so you’ll know
what they do if you see them. They are also still useful for
code targeted to the 8086/8088.

For each of these tricks, I have compared its size and
speed to the “direct” approach. Because the 286 is now the
largest selling processor in PCs, I have used 286 clock
counts to compare timing. When conditional jumps branch
out of the presented code sequence, I assume the target
instruction is 2-bytes long so that the branch would take
nine clocks.

Tim is the original author o f MS-DOS, Versions 1.x, which
he wrote in 1980- 82 while employed by Seattle Computer
Products and Microsoft. He was also the founder o f Falcon
Technology, which was eventually sold, to Phoenix Tech
nologies, the ROM BIOS maker. He can be reached through
the DDJ office.

#1 Binary-to-ASCII Conversion

Converts a binary number in AL, range 0 to OFH, to the
appropriate ASCII character.

ad d a l , " 0 "
cmp a l , " 9 "
jb e H a v e A sc ii
ad d a l , "A" - (' '9 " + 1)

H a v e A s c i i :

Direct approach: 8 bytes, 12 clocks for OAH-OFH, 15
clocks for 0 -9 .

ad d a l ,9 0 H ;9 0 H -9 F H
d a a ;9 0 H -9 9 H , 00H -05H+CY
a d c a l ,4 0 H ; ODOH - 0D9H +CY, 41H - 46H
d a a ;3 0 H -3 9 H , 41H -46H = " 0 " - " 9 " , "A "-"F "

Trick: 6 bytes, 12 clocks.

#2 Absolute Value

Find absolute value of signed integer in AX.

o r a x , ax ; S e t f l a g s
jn s A x P o s i t iv e /A lr e a d y t h e r i g h t a n sw e r i f p o s i t i v e
neg ax ; I t was n e g a t i v e , so f l i p s ig n

A x P o s i t iv e :

Direct approach: 6 bytes, 7 clocks if negative, 11 clocks
if positive.

cwd ; E x te n d s ig n th r o u g h dx
x o r a x ,d x ; Com plem ent ax i f n e g a t iv e
su b a x , dx ; In c re m e n t ax i f i t was n e g a t iv e

Trick: 5 bytes, 6 clocks.

(continued on page 32)

; H an d le 0 - 9
/D id i t w ork?

/A p p ly c o r r e c t i o n f o r OAH -OFH

30
212

Dr. Dobb’s Journal, March 1990

T R I C K S

(continued from page 38)

#3 Smaller of Two Values ("MIN'

Given signed integers in AX and BX, return smaller in AX.

cmp a x ,b x
j l A x S m alle r
x chg a x ,b x

A x S m a lle r :
; Swap s m a l l e r i n t o ax

Direct approach: 5 bytes, 8 clocks if ax >= bx, 11 clocks
otherwise.

a x , bxsub
cwd
and a x ,d x
add a x .b x

; C o u ld o v e r f lo w i f s i g n s a r e d i f f e r e n t ! !
;d x = 0 i f ax >= b x , dx = OFFFFH i f ax < bx
; ax = 0 i f ax >= b x , ax = ax - bx i f ax < bx
; ax = bx i f ax >=bx, ax = ax i f ax < bx

Trick: 7 bytes, 8 clocks. Doesn’t work if lax - bx\ >
32K. Not recommended.

#4 Convert to Uppercase

Convert ASCII character in AL to uppercase if it’s lower
case, otherwise leave unchanged.

cmp
jb
cmp
j a
su b

CaseO k:

a l , " a "
CaseOk
a l , 11 z"
CaseOk
a l , "a " - "A" ; In r a n g e " a " - " z " , a p p ly c o r r e c t i o n

Direct approach: 10 bytes, 12 clocks if less than “a”
(number, capital letter, control character, most symbols),
15 clocks if lowercase, 18 clocks if greater than “z” (a few
symbols and graphics characters).

su b a l , " a " / L o w e rc a se now 0 - 25
cmp a l , " z " -- " a " +1 / S e t CY f l a g i f lo w e rc a s e
sbb a h , ah / ah = OFFH i f lo w e r c a s e , e l s e 0
and a h , " a " - "A" / ah = c o r r e c t i o n o r z e ro
sub a l , ah /A p p ly c o r r e c t i o n , lo w e r t o u p p e r
add a l , " a " / R e s to r e b a s e

Trick: 13 bytes, 16 clocks. Although occasionally faster,
it is bigger and slower on the average. Not recommended.
Used by Microsoft C 5.1 stricmp() routine.

#5 Fast String Move

Assume setup for a standard string move, with DS:SI
pointing to source, ES.DI pointing to destination, and
byte count in CX. Double the speed by moving words,
accounting for a possible odd byte.

r e p
s h r
movsw
jn c
m ovsb

A llM oved :

c x , l /C o n v e r t t o w ord c o u n t
;Move w ords

A llM oved ;CY c l e a r i f no odd b y te
; Copy t h a t l a s t odd b y te

Direct: 7 bytes, 10 clocks if odd, 11 clocks if even (plus
time for repeated move).

r e p

re p

s h r c x , l
movsw
a d c c x ,c x
m ovsb

/ C o n v e r t t o w ord c o u n t
/Move w ords
;M ove c a r r y b a c k i n t o cx
;M ove o n e m ore i f odd c o u n t

Trick: 8 bytes, 9 clocks if even, 13 clocks if odd (plus
time for repeated move). Not recommended.

#6 Binary/Decimal Conversion

The 8086 instruction AAM (ASCII adjust for multiplica
tion) is actually a binary-to-decimal conversion instruc
tion. Given a binary number in AL less than 100, AAM
will convert it directly to unpacked BCD digits in AL and
AH (ones in AL, tens in AH). If the value in AL isn’t
necessarily less than 100, then AAM can be applied twice
to return three BCD digits. For example:

aam ; a l = o n e s , ah = t e n s & h u n d re d s
mov c l , a l ; S ave o n e s in c l
mov a l , a h ; S e t up t o do i t a g a in
aam ; ah = h u n d re d s , a l = t e n s , c l = o n e s

AAM is really a divide-by-ten instruction, returning the
quotient in AH and the remainder in AL. It takes 16
clocks, which are actually two clocks more than a byte
DIV. However, you easily save those two clocks and
more with reduced setup. There’s no need to extend the
dividend to 16 bits, nor to move the value 10 into a
register.

The inverse of the AAM instruction is AAD (ASCII
adjust for division). It multiplies AH by 10 and adds it to
AL, then zeros AH. Given two unpacked BCD digits (tens
in AH and ones in AE), AAD will convert them directly
into a binary number. Of course, given only two digits,
the resulting binary number will be less than 100. But
AAD can be used twice to convert three unpacked BCD
digits, provided the result is less than 256. For example:

/ a h = h u n d r e d s , a l =
a a d
mov a h , a l
mov a l , c l
a a d

t e n s , c l = o n es
/C om bine h u n d re d s an d t e n s

/M ove o n e s t o a l
/B in a r y r e s u l t i n a x , mod 256

AAD takes 14 clocks, which is one clock more than a
byte MUL. Again, that time can be saved because of
reduced setup.

#7 Multiple Bit Testing

Test for all four combinations of 2 bits of a flag byte in
memory.

mov a l , [F l a g]
t e s t a l , B i t l
jn z B i t l S e t
t e s t a l , B i t 2
j z B o th Z ero

B i t 2 0 n l y :

B i t l S e t :
t e s t a l , B i t 2
jn z B othO ne

B i t l O n l y :

Direct approach: 15 bytes, up to 29 clocks (to BothOne').
The parity flag is often thought of as a holdover from

earlier days, useful only for error detection in communica
tions. However, it does have a useful application to cases
such as this bit testing. Recall that the parity flag is EVEN
if there are an even number of “one” bits in the byte
being tested, and ODD otherwise. When testing only 2
bits, the parity flag will tell you if they are equal — it is
EVEN for no “one” bits or for 2 “one” bits, ODD for 1
“one” bit.

The sign flag is also handy for bit testing, because it
directly gives you the value of bit 7 in the byte. The
obvious drawback is you only get to use it on 1 bit.

(continued on page 34)

32 Dr. Dobb’s Journal, March 1990
2 13

T R I C K S

(continued from page 32)
t e s t [F l a g] , B i t l + B it2
jz B o th Z e ro
jp e B othO ne ; B i t s a r e e q u a l , b u t n o t b o th z e ro

;O ne (an d o n ly on e) b i t i s s e t
. e r r e B i t l EQ 80H /V e r i f y B i t l i s t h e s ig n b i t

j s B i t lO n ly
B i t 2 0 n l y :

Trick: 11 bytes, up to 21 clocks (to BitlOnly).
Note that the parity flag is only set on the low 8 bits of

a 16-bit (or 32-bit 386) operation. Suppose you test 2 bits
in a 16-bit word, where 1 bit is in the low byte while the
other is in the high byte. The parity flag will be set on the
value of the 1 bit in the low byte — EVEN if zero, ODD
if one. This is potentially useful in certain cases of bit
testing, as long as you are aware of it!

Another example of using dedicated bit positions is to
assign flags to bits 6 and 7 of a byte. Then test it by
shifting it left 1 bit. The carry and sign flags will directly
hold the values in those 2 bits. In addition, the overflow
flag will be set if the bits are different (because the sign
has changed).

Finally, there is a way to test up to 4 bits at once.
Loading the flag byte into AH and executing the SAHF
instruction will copy bits 0, 2, 6, and 7 directly into the
carry, parity, zero, and sign flags, respectively.

#8 Function Dispatcher

Given a function number in a register with value 0 to
n - 1 , dispatch to the respective one of n functions.

/F u n c t io n num ber i n cx

jc x z F u n c tio n O
d e c cx
j z F u n c t i o n l
d e c cx
j z F u n c tio n 2

Direct approach 1: 3*n - 4 bytes, 5*n clocks maximum.
Not bad for small n (n < 10).

/F u n c t io n num ber i n bx

s h l b x , l
jmp tD is p a t c h [b x]

Direct approach 2: 2*n + 6 bytes, 15 clocks. The best
approach for large n when speed is a consideration.

/F u n c t io n num ber i n cx

j c x z F u n c tio n O
lo o p N o tF u n c l

F u n c t i o n l :

N o tF u n c l:
lo o p N otF unc2

F u n c t i o n 2 :

N o tF u n c 2 :
lo o p N otF unc3

F u n c t i o n 3 :

Trick: 2*n - 2 bytes, 10*n - 16 clocks maximum. Slow,
but compact.

#9 Skipping Instructions

Sometimes a routine will have two or more entry points,
but the only difference between the entry points is the first
instruction. For example, the instruction that differs from
one entry point to the next could be initializing a register
to different values to be used as a flag later on in the routine.

34
214

(continued on page 36)

Dr. Dobb’s Journal, March 1990

T R I C K S

(continued from page 34)
E n t r y l :

mov a l , 0
jmp Body

mov a l , 1
jmp Body

mov a l , -1
Body:

Direct approach: 10 bytes, 11 clocks (from Entryl).
Instead of using jump instructions to skip over the

alternative entry points, a somewhat sleazy trick allows
you to simply skip over those instructions. The technique
goes back at least to 1975 with the first Microsoft Basic
for the 8080. It became known as a “LXI trick” (pro
nounced “liksee”), after the 8080 mnemonic for a 16-bit
move-immediate into register. Essentially, it allows you
to skip a 2-byte instruction by hiding it as immediate data.
A variation, the “MVI trick” (pronounced “movie”), uses
an 8-bit immediate instruction to hide a 1-byte instruction.

Applied to the 8086, there is another variation. The
skip can use a move-immediate instruction and destroy
the contents of one register, or it can use a compare-
immediate instruction and destroy the flags. Using the
latter case the example above could be code such as this:

SKIP2F MACRO
db 3DH /O pcode b y te f o r CMP AX, <immed>
ENDM

E n t r y l :
mov
SKIP2F

a l , 0
/.N ext 2 b y t e s a r e im m e d ia te d a t a

E n t r y 2 :
mov
SKIP2F

a l , 1
/N e x t 2 b y t e s a r e im m e d ia te d a t a

E n t r y 3 :
mov a l , -1

B ody:

The effect of this when entered at Entryl is:
E n t r y l :

mov a l , 0
cmp a x , 01B0H ; D a ta i s MOV AL, 1
cmp a x , OFFBOH ; D a ta i s MOV A L ,-1

Body:

Trick: 8 bytes, 8 clocks (from Entryl).
This trick should always be hidden in a macro. Here

is a more complete macro that requires an argument
specifying what register or flags to destroy. The argument
is any 16-bit general register or “F” for flags.

SKIP2 MACRO ModReg

IFID N I <M odR eg> ,< f> ;M o d ify f l a g s ?
db 3DH /O pcode b y te f o r CMP AX, <immed>

ELSE
? _ i = 0

IRP R e g ,< a x ,c x ,d x ,b x , s p ,b p , s i , d i >
IFIDN <ModReg> , <Reg> ; F in d t h e r e g i s t e r i n l i s t y e t ?

db 0B8H + ? _ i
EXITM

ELSE
? _ i = ? _ i + 1
ENDIF ; IF ModReg = Reg

ENDM ; IRP
. e r r n z ? _ i EQ 8 ; F la g an e r r o r i f no m a tch
ENDIF ; IF ModReg = F

ENDM ; SKIP2

/E x am p les
SKIP2 f /M o d ify f l a g s o n ly
SKIP2 ax /D e s t r o y a x , f l a g s p r e s e r v e d

DDJ
Vote for your favorite feature/article.

Circle Reader Service No. 2.

36 Dr. Dobb’s Journal, March 1990
215

68040
Programming
More than ju st an 030 with floating point

S tephen Satchell

T
he newest entry in the CPU chip
wars is now ready for the sys
tem builders: The Motorola
68040. The first available chips
will work at 25 MHz, with 33
MHz and faster parts becoming avail

able later this year. Don’t think, though,
this is just a faster 68030: Motorola built
in some nifty features to make
multiprocessing hardware much easier
to design and build.

68000 Family Overview
Motorola has gone to great pains to
make a line of compatible 32-bit micro
computer chips. Like IBM did with the
System/360 mainframe computers of the
mid-1960s, Motorola made sure that
applications code written for the earlier
members of the 68000 family would run
without modification on later chips. This
scheme makes the assumption that pro
grammers segregate I/O and chip con
trol code from the rest of the system.

The general programming model for
the 68000 family is the same: Eight
32-bit data registers, seven 32-bit ad
dress registers, one 32-bit user stack
pointer, one 32-bit supervisor stack
pointer, and chip-specific registers. The
68000 family supports operations on in
dividual bits, 8-bit bytes, 16-bit words,
32-bit longwords, and packed binary
coded decimal (BCD) data. Address calcula
tions are all 32 bits, although some CPUs

Steve is free-lance writer and co-foun-
der o f Project Notify, a non-profit, emer
gency communications network. He
can be reached at P.O. Box 8656, In
cline Village, N V 89450 or on Compu
Serve at 70007,3351.

have limited addressing capability.
The 68008 (1980) is much the same

as the Intel 8088 in that it talks to the
outside world over a 20-bit address bus
and an 8-bit data bus.

The 68000 (1979). the first CPU in
the family, and the low-power CMOS
68HC000 use a 24-bit address bus and
16-bit data bus.

The 68010 (1982) takes the 68000
and adds virtual memory support, us
ing an external memory management
unit (MMU) and a special three-instruc-
tion “loop mode” that lets the 68010
execute a tight three-instruction loop
repeatedly without fetching the instruc
tions from memory more than once.

The 68020 (1984) is the first true
32-bit member of the 68000 family. The

address and data busses are both a full
32-bits wide, allowing the chip to di
rectly access four gigabytes (4096
Mbytes) of memory, up to 32 bits at a
time. Memory management is provided
by an external MMU. Instead of the
68010’s “loop mode,” the 68020 imple
ments a 256-byte (64 x 4 direct
mapped) instruction cache so that most
loops run out of on-chip cache
memory — improving execution time
33 percent and reducing the load on
the system bus. Bit-field instructions let
you deal with data of varying bit lengths.
Instructions for multiprocessing were
added into the 68020 as well.

The 68030 (1987) moves demand-
page memory management on-chip,
and adds a 256-byte (64 x 4 direct

38
216

Dr. Dobb'sJournal, March 1990

6 8 0 4 0

(continued from page 38)
mapped) data cache on-chip to com
plement the 68020’s 256-byte instruc
tion cache. The data cache uses a write-
through philosophy. The bus system
implements a burst transfer mode, that
lets the chip effectively use page-mode,
nibble-mode, and static-column DRAM
to load data and instructions into cache
memory quickly.

Enter the 68040
The newest member of the 68000 fam
ily, the 68040, essentially combines a
beefed-up 68030 and the low-level func
tions of the 68881 floating-point copro

cessor onto the same chip. The im
provements, however, go much beyond
that. Motorola’s goal appears to be to
make the 68040 as suitable as possible
for large-scale multiprocessing systems.

Instead of one MMU trying to serve
the entire chip, the 68040 gives you
two: One for instructions, one for data.
This keeps data and instruction accesses
from causing page table entry faults
(not to be confused with page faults)
so as to minimize the amount of time
the 68040 has to go to RAM to fetch
address translation information.

The two on-chip memory caches are
completely changed. Not only do you

have a 4-Kbyte data cache and a 4-
Kbyte instruction cache, but the cache
system — particularly the data cache —
is designed to minimize the number of
times you have to go to the system
bus. The two caches are organized as
64 four-way associative maps (256 lo
cations), with 16 bytes of data in each
cache location. The data cache can be
write through, as it is in the 68030, or
the 68040 can use a copyback philoso
phy that delays the write to memory
until the chip needs the cache location
for something else or the CPU’s super
visor empties the cache.

When using cache in a multiprocessing
system, you can have data that is one
value in cache and another value in
main memory. This problem is called
“cache coherency.” The 68040 takes
care of this problem with “bus
snooping” — the chip looks at the sys
tem bus, and when a write memory
cycle is detected, any on-chip cache
location containing data for the changed
location is marked invalid.

What happens, though, when one
68040 has changed data, but hasn’t writ
ten it back to DRAM yet? The bus snoop
hardware has another trick up its sleeve.
When a read memory cycle is detected,
the 68040 checks its data cache to see
if it changed the requested location; if
so, it inhibits the RAM memory cycle
and sends the correct data to the other
CPU. This reduces the amount of work
programmers have to do to keep data
up-to-date.

If you do a lot of scientific work,
watch out for the floating-point unit.
On the 68040, the only floating-point
operations supported are absolute value,
add, branch on condition, compare,
decrement and branch conditionally,
divide, move, move multiple, multiply,
negate, nop, restore internal state, save
internal state, set on condition, square
root, subtract, trap on condition, and
test. Other operations supported by the
68881, such as the trig and logarithmic
functions, have to be handled by soft
ware emulation.

Assembler Programming Considerations
Portability When writing code that
needs to run on different systems, you
need to limit yourself to those instruc
tions common to all the 68000 family.
(See Table 1 for those instructions to
avoid.) In particular, pay attention to
addressing modes. The 68020, ’30, and
’40 support some additional modes not
found on the ’00, ’08, and '10. Also try
to segregate chip-dependent functions
from the rest of your program. This
limits how much code has to be re
placed as you shift from CPU to CPU.
The majority of your code should be

40 Dr. Dobb's Journal, March 1990
217

6 8 0 4 0

(continued from page 40)
running in user mode anyway.

Loops The loop mode of the ’10
is of limited use, being composed of a
loop-able instruction and a DBcc instruc

tion. Use this construct when you can
on the off chance you end up running
on a ’10, such as one of the older Sun
workstations. Where possible, try to
keep loops under 256 bytes, the size

68010 from 68000 and 68008

Move from CCR Move from Condition Code register
Move from SR Move from Status register
MOVEC Move Control register
MOVES Move Status register
RTD Return and Deallocate

68020 from 68010 Vi : ' • :
Data alignm ent restriction dropped

Bcc Branch conditionalty (allow 32-bit displacements)
BFCHG Test Bit Field and Change
BFCLR Test Bit Field and Clear
BFEXTS Bit Field Extract Signed
BFEXTU Bit Field Extract Unsigned
BFFFO Bit Field Find First One-bit
BFINS Bit Field Insert
BFSET Test Bit Field and Set
BFTST Test Bit Field
BKPT Breakpoint
CALLM Call Module
CAS Compare and Swap Operands
CAS2 Compare and Swap Dual Operands
CHK2 Check register against upper and lower bound
CMP2 Compare register against upper and lower bound (between)
cpBcc Branch on Coprocessor condition
cpDBcc Test Coprocessor condition Decrement and Branch
cpGEN Coprocessor General function
cpRESTORE Coprocessor Restore functon
cpSAVE Coprocessor Save function
cpScc Set on Coprocessor condition
cpTRAPcc Trap on Coprocessor condition
DIVSL Long signed divide
DIVUL Long unsigned divide
EXTB Extend byte to long
PACK Pack binary coded decimal (BCD)
RTM Return from Module (*not* “Read the manual")
TRAPcc Trap conditionally
UNPK Unpack binary coded decimal (BCD)

68030 from 68020 ' • '

(CALLM)
PFLUSH Invalidates specific entry in the address translation cache (ATC)
PFLUSHA Invalidates all entries in the address translation cache (ATC)
PLOAD Load an entry into the address translation cache
PMOVE Load an entry into the address translation cache
PTEST Get information about a logical address
(RTM)

68040 from 68030
■,v.; iaffiiS ISSiSi. SffiV WiSMb \ iSK. WiSlM :V;-v:Vr. •... ItSM.

CINV Invalidate cache entries
(cpBcc)
(cpDBcc)
(cpGEN)
(cpRESTORE)
(cpSAVE!
(cpScc)
(cpTRAPcc)
CPUSH Push, then invalidate, cache entries

Floating-point instructions

MOVE 16 Move 16-byte block; block must be aligned
(PFLUSHA)
(PLOAD)
(PMOVE)

Table 1: 680x0fam ily instruction set differences. An instruction or capability
added or changed is in the open. An instruction or capability removed is in
parens. For example, the CALLM instruction was removed in the 68030, so in
the table it shows as (CALLM).

2 1 8
Dr. Dobb'sJournal, March 1990

6 8 0 4 0

(continued from page 42)
of the instruction cache on the ’20. If a
much-repeating loop can’t be squeezed
down that far, move seldom-executed
code such as exception code outside
of the loop. The longer you can stay in
the cache, the faster that loop executes.

Loop Data In assembler, it is usu
ally easier to whip through an array
word by adjacent word, so most as
sembler language programmers won’t
have to concentrate on what order data
gets accessed. If you are writing a table-
driven package, though, pay attention
to how table information makes you
access data. Where possible, the table
should be optimized so your program
sweeps through any array. This is some

what important on the ’30, and much
more important on the ’40 — particu
larly in multiprocessing systems.

Tests Many times, you have to load
one of two values into a register or
location based on some test condition.
The “IF . . . THEN . . . ELSE . . . ” con
struction is easy to understand, but the
multiple branches can play hob with
instruction fetching. Instead, try " . . . IF
. . . THEN . . . " where you set the less
common value, perform the test, and
conditionally branch around the more
common value. The penalty on ’00,
’08, and ’10 CPUs is almost zero, but
the savings on the ’20, ’30, and ’40 can
be significant. In fact, the first way re
quires at least five instructions (test,

branch-false, set-1, branch, set-2) while
the other way saves one instruction
(set-2, test, branch-false, set-1).

High-Level Language Considerations
Portability Chip-dependent functions
usually have to be written in assem
bler, so make sure the design of the
system routines are as generic as possi
ble so you don’t have to change appli
cations code when the next gee-whiz
feature is introduced in the 68050. You’ll
need to package separate interface mod
ules for each chip. High-level code
should always be run in user mode.

Loops If your compiler can opti
mize for the loop mode on the ’10 or if
the library includes routines to perform
functions using loop mode, use them.
When structuring loops that are exe
cuted often consider dropping struc
tured programming practices to pack
the loop as tight as possible. The goal
is to get the loop within the 256-byte
window of the instruction cache of the
’20. Branches are much cheaper than
function calls to get the seldom-used
code out of the loop. You have more
latitude with the larger cache on the ’30
and ’40.

Loop Data Be very careful when
transversing arrays that you know ex
actly how your compiler is working.
Fortran programmers need to remem
ber that they have to vary the first sub
script first in order to walk through
data sequentially. For PL/I and Pascal
programmers, most compilers require
you to vary the last subscript first to
sweep an array. C programmers need
to remember that when accessing a
multidimensional array using the array
operators that are in the construct “a[i][j]”,
the fragment “a[il” loads a pointer, then
“<e>[j]” loads the desired word; use
an intermediate pointer where possi
ble to limit the amount of pointer load
ing when the first subscript is held
locally constant.

Tests You are at the mercy of the
compiler when it comes to ordering
tests to save time. Because compilers
vary so much in what they do, it prob
ably isn’t worth it to change the way
you select values.

Conclusion
The 68040 is more than “just a 68030
with floating point’’ and more than Mo
torola’s weapon to fight the Intel 80486.
It is a well-designed product in its own
right. Graphics programmers like the
support for manipulating bits, particu
larly the bit-field instructions introduced
by the ’20 and continued in the ’40.

DDJ
Vote for your favorite feature/article.

Circle Reader Service No. 3.

Dr. Dobb’s Journal, March 1990
219

Homegrown
Debugging -386Style!

Use hardware breakpoints to sniff through your C and
assembly code

A
lthough the installed base of
80386-based machines is ever
increasing, most use this
souped-up machine as a faster
8086. One of the problems in
running the 80386 under DOS is that

you lose many of the advantages of the
386. In addition, many of the 80386’s
powerful features are only usable in
protected mode. Of course, developers
loath to use special 80386 features be
cause this can shut them out of the
large 8086/80286 market.

Still, some features are usable while
the 80386 is operating as an 8086 (the
so-called “real mode”). For instance, the
80386 has powerful on-board hardware
that allows sophisticated debugging tech
niques that require hardware debugging
boards on other processors. This on
board hardware is available in real mode
(as well as the other modes). With a little
ingenuity, you can put this hardware to
work while debugging programs.

This article puts a little of that kind
of ingenuity in your hands by showing
how you can use the 80386 hardware
to debug your programs. I’ll provide a
program that can be included in your
assembly code to establish breakpoints
for the purpose of debugging either C
or assembly language programs. In ad
dition, I’ll provide an example program
and a quick utility that I’ll explain shortly.

Al Williams is a staff systems engineer
fo r Quad-S Consultants Inc. His cur
rent work includes a hypertext system,
several expert systems, and a 386 DOS
extender package. He can be reached
at 2525 South Shore Boulevard, Suite
309, League City, TX 77573-

Al W illiam s

All examples presented in this article
compile under either MASM 5.0 or Mi
crosoft C 5.1.

BREAK386
BREAK386 (Listing One, BREAK386
.ASM, page 96) is not a traditional de
bugger in the sense of, say, DEBUG or
CodeView. By adding BREAK386 to
your assembly language code, you can
study it with code, data, and single-
step breakpoints. You can also exam
ine DOS or BIOS interrupts that your
program calls. In addition, BREAK386
can add the same 386 hardware debug
ging to your Microsoft C programs.

BREAK386 provides functions to set
up 386 debugging (setup386()), set
breakpoints (break386(J), and reset
80386 debugging (clear386()). In ad
dition, BREAK386 provides an optional
interrupt handler (intl_386(J) that sup
ports register, stack, and code dumps
along with single stepping. You can
use any of these functions from either
C or assembly language.

There are cases where you may wish
to modify intl_386() or write your
own interrupt handler. For example,
you may want to send the register
dumps to a printer and automatically
restart your program. With C, you will
often want the interrupt handler to print
out variables instead of registers. I’ll
provide some example interrupt han
dlers in C in a later section.

Using 6REAK386
You must assemble BREAK386 before
you can use it. Be sure to change the
. MODELsVatement to reflect the model
you are using. If you are using explicit

segment definitions in assembly, you
must decide how to integrate BREAK-
386’s code and data segments with your
own. Assemble BREAK386 with the /Ml
option to prevent MASM from convert
ing all labels to uppercase. The result
ing .OBJ file can be linked with your
programs just as with any other object
module.

If you are using programs (such as
memory managers or multitaskers) that
also use 386-specific functions, you may
have to remove these programs before
BREAK386 will function. The other pro
gram will usually report a “privilege
exception” or something similar. Sim
ply remove the other 386 programs
and try again.

Adding 386 breakpoints to your pro
gram requires three steps:

• Call setup386() to set the debug in
terrupt handler address

• Set up breakpoints with the break-
386() call

• Call clear386() before your program
returns to DOS

Note that when calling these rou
tines from assembly, the routine names
contain leading underscores. For con
venience, Listing Two (BREAK386.INC,
page 102) contains the assembly lan
guage definitions to use BREAK386.
Listing Three (BREAK386.H, page 102)
contains the same definitions for C.
BREAK386.INC also includes two mac
ros, traceon and traceoff which are
used to turn single stepping on and off
from within the program.

Figure 1 shows the output from a
breakpoint dump when using intl_

4 6
220

Dr. Dobb’s Journal, March 1990

3 8 6 D E B U G G I N G

Ccontinued from page 46)
386(). The hexadecimal number on
the first line is the contents of the low
half of the DR6 register at the time of
the breakpoint. The display shows all
16-bit and segment registers (except
FS and GS). Following that is a dump
of 32 words of memory starting at the
bottom of the stack (1CB1:09FA in the
example). The first three words of the
stack are from the debug interrupt. The
first word is the IP register, followed
by the CS register and the flags. A sim
ple change in the interrupt handler can
remove this extra data from the display
(see “Detailed Program Operation” in
the next section).

Below the stack dump is a dump of
program code. This dump usually con
sists of 16 bytes; 8 bytes before the

current instruction and 8 bytes at the
instruction pointer. This is convenient
for data breakpoints because they oc
cur after the offending instruction. The
dump shows the starting memory ad
dress (1B66:0049) followed by the bytes
at that address. An asterisk marks the
current CS:IP location, followed by the
remaining 8 bytes. If IP is less than 8,
the code dump will start at CS:0 result
ing in fewer than 8 bytes before the
asterisk.

The last line of the dump prompts
you for further action. You can:

1. View your program’s output screen.
When you select this option, BREAK386
replaces the current screen with your
program’s original output. To restore
the debugging screen, press any key.

2. Toggle the trace flag. This will switch
the state of the trace or single-step flag,
and continue the program in the same
manner as the “C” command (see num
ber 3). To determine whether or not
tracing is on, examine the value of
DR6. If bit 14 is set (4000 hex), tracing
is on.
3. Continue execution of the program.
Selecting this option will resume the
program where it left off. The program
will execute until the next breakpoint
(if the trace flag is clear) or to the next
instruction (if the trace.flag is set).
4. Abort the program. This will cause
the program to exit. Be careful, how
ever, when using this selection. If you
have interrupt vectors intercepted, ex
panded memory allocated, or anything
else that needs fixing before you quit,
the “A” command will not take care of
these things unless you rewrite the in
terrupt handler or clear386(.). (Also, if
your program spawns child processes,
and the breakpoint occurred in the child,
the abort command will terminate the
child and the parent program will con
tinue without breakpoints.)

Listings Four and Five, page 102, show
examples of using BREAK386 in assembly
and C. The identifiers beginning with
BP_ are defined in BREAK386.H and

Program breakpoint:OFF1
AX=0000 FL=7216 BX=0080 CX=0007 DX=06AA
Sl = 0000 DI = 0A00 SP=09FA BP=0882
CS=1 B66 IP=0051 DS=1 BAD ES=1B56 SS=1CB1
Stack dump:(1CB1 : 09FA)
0051 1 B66 7216 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

CODE = 1 B66 : 0049 =6A 04 E8 3F 00 83 C4 08 * B9 14 00 8A D1 80 C2 41

<V>iew output, <T>race toggle, <C>ontinue or <A>bort? _

Figure 1: Sample output from a breakpoint dump

221

3 8 6 D E B U G G I N G

(continued from page 48)
BREAK 386.INC.

A few notes on these functions are
in order. Your program must call
setup386() before any other BREAK386
calls. You should pass it a segment and
an offset pointing to the interrupt han
dler. After calling setup386(), you may
use break386() to set and clear break
points. Figure 2 shows the parameters

break386() requires.
You must keep in mind a few facts

about the 80386 when setting break
points or tracing. First, 2- and 4-byte
data breakpoints must be aligned ac
cording to their size. For example, it is
incorrect to set a 2-byte breakpoint at
location 1000:0015 because that loca
tion is on an odd byte. Similarly, a
4-byte breakpoint can monitor address

1000:0010 or 1000:0014 but not address
1000:0013. If you must watch an un
aligned data item, you will have to set
multiple breakpoints. For example, to
monitor 2 bytes at 1000:0015, set a 1-
byte breakpoint at 1000:0015 and an
other at 1000:0016.

Also, keep in mind that a data break
point will occur even if you only access
a portion of its range. For instance, if

80386 Debugging Features
Most PC developers are familiar with
some aspect of chip debug assistance.
Even the 8088 has a breakpoint inter
rupt and a “single-step flag," which
allows debuggers to trace code one
instruction at a time. The 386 shares
these same features with the earlier
processors, but adds eight debug reg
isters (two of which Intel reserves).
These debug registers control the hard
ware breakpoint features.

Hardware breakpoints are much
more powerful than ordinary break
points (such as those in DEBUG) for
two reasons. First, hardware break
points don’t actually modify your pro
gram. This means that you can set
breakpoints anywhere, even in ROM.
Also, a program can’t overwrite a break
point when it modifies itself or loads
an overlay. Second, it is possible to
set breakpoints on data. A data break
point triggers when your program ac
cesses a certain memory location.

Microsoft’s CodeView implements
a similar data breakpoint capability,
called “traeepoints." To maintain com
patibility with non-386 PCs, however,
CodeView doesn’t use 386 features,
As a result, CodeView checks trace-
points after the execution of each in
struction. This, of course, is terribly
slow. By moving the traeepoints to
386 hardware, execution isn’t slowed
down at all. Actually, you will usually
want to slow down execution just a
bit (see the discussion of the exact
bit), Even then, the slowdown in exe
cution is imperceptible.

Because there are four debug ad
dress registers in the 80386, it is possi
ble to have four active breakpoints
at once. Each address register (DR0-
DR3) represents a linear address at
which a different breakpoint will oc
cur. In protected mode, the concept
of a linear address is not straightfor
ward. In real mode, however, a linear
address can easily be calculated from
a segment/offset pair. Simply multi
ply the segment value by 10 hex (shift
left 4 bits) and add the offset. For

example, to set a data breakpoint at
B800:0020 (somewhere in the CGA
video buffer), you would need a lin
ear address of:

B800 x 10 + 20 = B8020

Once you have loaded the address
registers, you must enable the break
points you wish to use and tell the
processor what type of breakpoints
they are. This is done via the debug
control register (DR7). DR7 contains
bits to enable each breakpoint and
to set their type individually (see Fig
ure 4). You will notice that DR7 has
global and local enable bits as well
as global and local exact bits (ex
plained shortly). The difference be
tween the various global bits and lo ̂
cal bits is only important when the
80386 is multitasking in protected

mode. For the purpose of this article,
they are the same.

The Exact Bits
The exact bits are flags to tell the
80386 to slow down. At first glance,
this doesn't seem to be helpful, but a
detailed look at the 80386 architec
ture reveals the purpose of this bit.

The 80386 gains some of its speed
by overlapping instruction fetches and
data fetches. This is an excellent idea
when executing code, but causes prob
lems in debugging data. Without the
exact bit set, a data breakpoint will
not occur at the instruction that caused
the data access! Being somewhat of
an inconvenience, Intel included the
GE, l.E bits. With either (or both) of
them set, data breakpoints will occur
immediately after the instruction that
caused them, although the processor

31________________________ o

Len R/W Len R/W Len R/W Len R/W G G L G L G L G L G L
X X X X X

3 3 2 2 1 1 0 0 D E E 3 3 2 2 1 1 0 0

Legend:

X = Reserved bit, do not use
Len = Breakpoint length
R/W = Breakpoint read/write status
GE = Global exact
LE = Local exact
G0-G3 = Global breakpoint enable (breakpoints 0-3)
L0-L3 = Local breakpoint enable (breakpoints 0-3)
GD = General Detect

Figure 4: Bits contained in DR7 to enable and set the type o f breakpoints

B B B B B B B
X X X X X X X X X X X X X X X X

T S D
X X X X X X X X X

3 2 1 0

Legend:

X = Reserved bit, do not use
BO-3 = Breakpoint occurred
BD = Illegal access to breakpoint registers
BS = Single step interrupt occurred
BT = Task switch occurred

Figure 5: Bits in DR6 corresponding to the various breakpoints conditions

50
222

Dr. Dobb’s Journal, March 1990

The original Volume 15 book had a printing error:

pages 223-25 4 were missing and

pages 255-28 6 were repeated twice.

The missing pages were recreated in this PDF by

taking the equivalent pages from the March 1990

magazine issue.

you are monitoring a word at 2200:00F0
and a program writes a byte to 2200:
00F1, a breakpoint will occur.

Setting a data breakpoint with break-
386() will also set the global exact bit.
When all the data breakpoints are either
reassigned or deactivated, break386()
will clear the exact bit.

Because intl_386() always sets the
resume flag, you will find that a code

will lose a slight amount of speed.
Other Bits
All debug breakpoints generate an
interrupt 1. To distinguish the various
breakpoints, you must read the de
bug status register (DR6). DR6 has
bits corresponding to the various break
point conditions (see Figure 5). Note
the BT flag at bit 15. As with the local
bits in DR7, only multitasking sys
tems use the BT flag. Therefore, the
flag is not considered in this article.
The 386 never clears the bits in DR6,
so after you determine what caused
the interrupt, you should clear DR6.
The Only Other Bit We Haven't
Discussed i s . . .
With the general detect (GD) bit set
in DR7, the 80386 prohibits access to
the debug registers. Any attempt to
access the debug registers will cause
an interrupt 1 with the BD flag set in
DR6. Intel's in-circuit emulator uses
this feature, although you can use it
if you have any reason to disable or
control access to the debug registers.
When a GD interrupt occurs, the in
terrupt handler is invoked and the
GD bit is cleared. Otherwise, the rou
tine would fault (with an endless loop)
when the interrupt routine attempted
to read DR6.

You can decide from the interrupt
routine whether to terminate the user
program, or to allow access to the regis
ters. BREAK386 does not use theGD bit.

The Resume Flag
The last consideration with breakpoint
interrupts is how to resume the inter
rupted program. If we simply return
(as in a normal interrupt), there is
nothing to stop a code breakpoint
from occurring again immediately. The
resume flag (found in the flag’s regis
ter) prevents this from occurring. This
flag inhibits further debug exceptions
while set, and resets automatically as
soon as one instruction successfully
executes. Control of the resume flag
is automatic in protected mode. Han
dling it from real mode, however, is
somewhat of a trick, as seen in
BREAK386. — A.W.

Dr. Dobb’s Journal, March 1990 51
223

3 8 6 D E B U G G I N G

| breakpoint that immediately follows a
data breakpoint won’t work. I’ll show
how this can be rectified shortly.

Because INT and INTO instructions
temporarily clear the trace flag, BREAK-
386 will not single step through inter
rupt handlers. If you wish to single
step through an interrupt routine, you
will have to set a breakpoint on its first
instruction. A replacement for intl_
3 8 6 () might emulate INT and INTO
instructions to solve this problem.

Because BREAK386 uses BIOS key
board and video routines, take care
when placing breakpoints in these rou
tines. In addition, single-stepping BIOS
keyboard and video routines should
be avoided. If you must debug in these
areas, reassemble BREAK386 so that it
doesn’t use BIOS (see the DIRECT
equate in BREAK386.ASM). Note, how
ever, that many of its features will no
longer function. Finally, you should
avoid setting breakpoints in BREAK386’s
code or data.

BREAK386.INC contains two mac
ros, traceon and traceoff that can be
used to control tracing. You may insert
them anywhere in your code to enable
or disable tracing. Remember, how
ever, that you will see the traceoff macro
as well as your own code when single
stepping.

The function clear386() must be
called prior to exiting the program. This
turns off the breakpoint handlers. If
you fail to call clear386() for any rea
son (a control-break, or a critical er
ror), the next program that uses a loca
tion you have breakpointed will cause
the break to occur. This can have un
fortunate consequences because your
interrupt 1 handler is probably no longer
in memory. If you find that you have
exited a program without turning off
debugging and you have not encoun
tered a breakpoint, run DBGOFF (List
ing Six, page 104) to turn off hardware
debugging.

With some care, BREAK386 can be
used with other debuggers. In Code
View, for example, BREAK386 seems
to work fine, as long as you are not
single stepping (via CodeView). When
you single step data breakpoints will
be ignored and BREAK386 code break
points will “freeze” CodeView at that
step. If you are using BREAK386 with
CodeView, it is probably a good idea
to leave the code breakpoints and sin
gle stepping to CodeView.

Detailed Program Operation
BREAK386 (Listing One) begins with
the .386P directive, which ensures that
MASM 5.0 will generate references to
the debug registers. Be careful to place
the .MODEL directive before the .386P,

52
224

Dr. Dobbs Journal, March 1990

3 8 6 D E B U G G I N G

(continued from page 52)
otherwise 32-bit segments will be gen
erated (which doesn’t work well with
unmodified DOS!).

The parameters you may want to
change are near the top of the source
file. The equate to DIRECT controls the
video mode. If DIRECT is 0, BREAK386
uses BIOS for input and output. If,
however, you want to poke around in
the keyboard or video routines, you
must set DIRECT to 1. This causes
BREAK386 to use direct video output
for the debug dump. It will share the
screen with your program (no video
swapping) and breakpoints will simply
terminate the program in a similar man
ner to the “A” command mentioned
earlier.

You can change the STKWRD equate
to control how many words are dumped
from the stack when using intl_386().
Setting STKWRD to zero will completely
disable stack dumping. Similarly, if you
set INTSTACK to zero, the display will
not show the IP/CS/FLAGS at the top
of the stack. If you are writing your
own interrupt handler and don’t need
intl_386(), you can assemble with EN-
ABLE_INT1 set to zero to reduce
BREAK386’s size.

The operations of start386(), clear-
386(), and break386() are fairly straight
forward. The implementation of intl_
386() deserves some comment. It is
important to realize that in tl_386()
only debugs non-386-specific programs
because it only saves the 16-bit regis
ters and the 8086 segment registers
(intl_386() does not destroy FS and
GS). Because intl_386(Jonly runs on
a 386, it does use the 32-bit registers.
You can easily modify intl_386() to
save all the 386 registers, but it requires

more space on the interrupted pro
gram's stack.

The most difficult aspect of the inter
rupt handler is managing the resume
flag. The code below label cl converts
the three words at the top of the stack
into six words so that setting the re-

2- and 4-byte data
breakpoints must be
aligned according to

their size. For example,
it is incorrect to set a
2-byte breakpoint at
location 1000:0015

because that location is
on an odd byte

sume flag is possible. There are three
things to remember about the way the
resume flag is managed:

1. As mentioned earlier, intl_386() al
ways sets the resume flag. As a conse
quence, a code breakpoint that occurs
immediately after a data breakpoint will
not cause an internipt. This is due to the
resume flag being set even though the
instruction that generated the data break
point has already executed. When the
program restarts, the next instruction

will execute with the resume flag set.
This could be rectified by not setting
the resume flag in the interrupt handler
when processing data breakpoints.
2. An interrupt handler written entirely
in C has no way to manipulate the
resume flag properly. Listing Seven,
page 104, however, shows two assem
bly language functions that allow you
to write your handler in C. (See the
next section for more details on writing
C interrupt handlers.)
3. In real mode, hardware interrupt han
dlers (for example, those in the BIOS)
will probably not preserve the resume
flag. This means that if your code runs
with interrupts enabled, there is some
chance that one breakpoint will cause
two interrupts. This chance increases
greatly if interrupts remain disabled dur
ing the interrupt 1 processing. Why is
this true? If the 80386 receives a hard
ware interrupt just before executing an
instruction with tire resume flag set, it
will process that interrupt. When the
interrupt returns, the resume flag is clear
and the breakpoint occurs again. When
interrupts are disabled during break
point processing, it is far more likely
that an interrupt is pending when the
program restarts. If interrupts were en
abled while processing the debug in
terrupt, however, there is little chance
of this happening. If it does, simply
press “C” (when using intl_386()).

Advanced Interrupt Handlers in C
It is possible to write an interrupt han
dler completely in C to monitor data
breakpoints. The handler must be de
clared as a fa r interrupt function. For
example, the following function could
be linked with the example in Listing
Five:

void interrupt far
newl(Res,Rds,Rdi,Rsi,Rbp,Rsp,Rbx,Rdx,

Rex,Rax)
I
printf(" \ nBreakpoint reached. \ n");
I

By calling setup386newl() instead of
setup386(intl_386), new l(9 will be in
voked for every breakpoint. Your func
tion can read and write the interrupted
program’s registers using the supplied
parameters (Rax, Rbx, and so on). Keep
in mind that you cannot use this tech
nique for code breakpoints. Cs inabil
ity to manipulate the resume flag will
cause an endless loop on a code break
point.

Listing Seven, provides the functions
to write interrupt handlers in C. The
procedure is much the same as de
scribed earlier, except that you must

(continued on page 57)

Dr. Dobb’s Journal, March 1990

retcode=break386(n,type,address);
where:

n is the breakpoint number (from 1 to 4).
type is the type of breakpoint. This should be one of the manifest constants defined in
BREAK386.H (or BREAK386.INC). If you are clearing the breakpoint, the type is not
meaningful.
address is the address to set the breakpoint. This must be a far address (that is, one
with both segment and offset). If you are using small model C, you should cast the
pointer to be a far type (see the example). To clear a breakpoint, set address to
0000:0000 (or a far NULL in C).
retcode is returned by the function. A zero indicates success. A non-zero value means
that you tried to set a breakpoint less than 1 or greater than 4. Note that the type
parameter is not checked for validity.

The types available are:
BP CODE - Code breakpoint
BP DATAW1 - One byte data write breakpoint
BP_DATARW1 - One byte data read/write breakpoint
BP_DATAW2 - Two byte data write breakpoint
BP_DATARW2 - Two byte data read/write breakpoint
BP DATAW4 - Four byte data write breakpoint
BP DATARW4 - Four byte data read/write breakpoint

Figure 2: The parameters required foj break386()

54
225

3 8 6 D E B U G G I N G

(continued from page 54)
call csetup386() instead of setup386().
The argument to csetup386() is always
a pointer to an ordinary fa r function
(even in small model).

The actual interrupt handler is _cintl_
386(). This function will call your C
code when an interrupt occurs. _cintl
_386() passes your routine two argu
ments. The first argument, a fa r void
pointer, is set to the beginning of the
interrupted stack frame (see Figure 3
for the format of the stack frame). The
second argument is an unsigned long
m/that contains the contents of DR6.

All registers, and local variables on
the stack can be read using the pointer
to the stack frame (if you know where
to look). In addition, all values (except
SS) can be modified. It is usually wise
not to modify SP, CS, or IP.

_cin tl_386() switches to a local
stack. The size of the stack can be
controlled using STACKSIZE (near the
top of Listing Seven). Be sure to adjust
the stack if you need more space.

Listing Eight (page 105) shows an
example of an interrupt handler in C.
The example interrupt handler displays
a breakpoint message and allows you
to continue with or without breakpoints,
abort the program, or change the value
of a local variable in the loopO function.

Future Directions
Many enhancements and modifications
are possible with BREAK386. By alter-

Address
I

Contents
1 1i

PTR+28 Code ’s stack
PTR+26 Flaqs
PTR+24 C S
PTR+22 IP
PTR+20 AX
PTR+18 CX
PTR+16 DX
PTR+14 BX Points to IP
PTR+12 SP ^ (above)
PTR+10 BP
PTR+8 S1
PTR+6 D1
PTR+4 ES
PTR+2 DS Pointer passed
PTR+0 SS

Example:
(PTR)

To read AX use:

n=*((unsigned int far *)PTR+10);

Here, we add 10 to PTR rather than 20
since PTR is cast to an unsigned int
pointer and each unsigned int is two
bytes long.

Figure 3■ Stack frame passed to the C
interrupt handler

Dr. Dobbs Journal, March 1990
226

ing the words on intl_386()’s stack, for
example, you can modify registers. You
can redirect output to the printer (al
though you can screen print the display
now) by replacing the OUCH routine.
Perhaps the most ambitious enhancement
would be to use BREAK386 as the core
of your own debugger. You could write
a stand-alone debugger or a TSR de
bugger that would pop up over an
other debugger (DEBUG or CodeView).

Keep in mind that 386 hardware break
points aren't just for debugging. The
data breakpoint capability has many
uses. For example, you might want to
monitor the BIOS keyboard typeahead
buffer's head and tail pointers to see
when a keystroke is entered or removed.
In this manner you could capture the
keyboard interrupt in such a way that
other programs couldn't reprogram your
interrupt vector.

You can also use data breakpoints
to detect interrupt vector changes or
interrupt processing. Some assembly
language programs could use data break
points for automatic stack overflow de
tection. Programs that decrement the
stack pointer without using a push in
struction (Microsoft C programs, for ex
ample) are not candidates for this type
of stack protection.

Debugging with 386 assistance is quite
practical and useful. The programs pre
sented here should get you started and
help you develop your own programs
with this powerful hardware feature.
Bibliography
Turley, James L., Advanced 80386
Programming Techniques, Osborne
McGraw-Hill, Berkeley, Calif., 1988.

Intel Corporation, 80386 Program
mer’s Reference Manual, Intel Corp.,
Santa Clara, Calif., 1986.
Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif, residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves
ton Dr., Redwood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS. Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Compu
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the
system answers, type: listings (lower
case) at the log-in prompt.

DDJ

(Listings begin o n page 96.)
Vote for your favorite feature/article.

Circle Reader Service No. 4.

57

Part II

Managing Multiple
Data Segments Under
Microsoft Windows

The segment table provides a little-known way o f managing
multiple data segments

Tim Paterson and Steve Flenniken

I
n last month’s installment, we pre
sented a method for managing mul
tiple data segments under MS Win
dows using a little-known Windows
feature, the segment table, along

with a library of macros and functions
to assist in applying the technique. For
this month’s installment, we’ve prepared
a sample Windows program called “seg
ments” that demonstrates the segtable
library. In its “random action" phase, it
randomly allocates, reallocates, and frees
global memory. A window displays sta
tistics about each memory block, in
cluding its pSeg (the address of its Seg
mentTable entry), the current segment
number, the previous segment num
ber, and the number of times it has

Tim is the original author o f MS-DOS,
Versions 1.x, which he wrote in 1980-
82 while employed by Seattle Computer
Products and Microsoft. He was also
the founder o f Falcon Technology,
which was eventually sold to Phoenix
Technologies, the ROM BIOS maker.
Steve formerly worked at Seattle Com
puter Products, Rosesoft (makers o f Pro-
Key), and is now with Microrim, work
ing with OS/2 and Presentation Man
ager. Both can be reached c/o DDJ.

moved since it was allocated. A timer
function is used to keep the window
continuously updated, even when an
other application has the input focus.

The sample application in Listing One
(page 106) uses one segment as the
place to keep track of all the other
segments that it fiddles with and dis
plays in the window. That segment
contains an array of structures, one for
each additional segment. Because it is
referenced so often, the macro FAR-
DATAP is defined to return the far
pointer to the first structure in this seg
ment. Listings Two through Five (be
ginning on page 108) provide the rest
of the files required by the application.

The menu bar is used to start and
stop the random action mode. When
on, the timer function picks one of the
structures. If the structure does not yet
have a pSeg, it allocates one with a
random amount of memory. If it al
ready has a pSeg, it will do one of three
things: Reallocate the pSeg with a differ
ent memory size; free the data, but
keep the pSeg\ or free the pSeg alto
gether. Whenever a segment is allo
cated or reallocated, a text string con
taining the last action (“A” for allocate
or “R” for reallocate) and the size of the

segment (for example, “1484 bytes”)
is copied into the segment as its data.
Whether the random action is on or
off, the function checks to see if any
of the segment numbers in the seg
ment table have changed, and updates
the display window if they have.

This sample is a useful demonstra
tion in two ways. First, it has examples
on how to code with the segment ta
ble. It includes many references to its
far array of memory descriptor struc
tures, and shows how IFP (indirect far
pointer) parameters are passed to the
functions strcpyifpf) and strlenifp().
Second, it makes the segment table
visible through a window so that its
activity can be observed. As other ap
plications are run (with random action
stopped), you can see the effects as
Windows keeps rearranging memory.
Unless, of course, you are using LIM 4.0
EMS, which lets Windows just swap the
data out without physically moving it.

Read-Only Data
Some applications use large amounts
of read-only (constant) data. An exam
ple of this is Microsoft Excel, which is
written in C and compiled into pcode,
not native 8086 code. The pcode is

58 Dr. Dobb'sJournal, March 1990
227

W I N D O W S M A N A G E M E N T

(continued from page 58)
data, not code, because it is never actu
ally executed. Other applications could
simply have large amounts of data in
the form of tables or other structures.

Like code, read-only data should be
marked as discardable in the linker defi
nition file. This allows Windows to throw
it away to make room, but reload it from
disk later when needed. Another good
practice is to keep segment size to less
than 16K, the size of the LIM 3.2 ex
panded memory page frame. Windows
can then choose to use space in EMS
for those segments that fit, entirely trans
parent to the application.

Code and read-only data don't sound
any different so far, but there is an
important distinction. Windows keeps
track of how often each code segment
is used, in order to help it make a good
decision on discarding one when it
needs to free some memory. It does
this with the reload thunk. Every far
call to a discardable segment actually
calls a thunk specific to that entry point.
If the segment being called is present
in memory, the thunk will contain a
jump to the entry point. If the segment
is not loaded, the thunk will cause Win
dows to load it. Either way, the thunk
also notes the fact that a call to that
segment was made. Windows uses a
least-recently used (LRU) algorithm for
detennining the best segment to discard
when memory is needed. The thunks
are the source of its information.

The easiest way to deal with discard
able read-only data segments is to put
a little code in them. These lines of
assembly language belong in each seg
ment (but with a unique entry point
name for each):
Load_This_Segment:

mov ax,cs
retf

To ensure that a segment is loaded,
and to find out where, call this entry
point. The return value in ax is the
segment of the data. The call to this
entry point is, of course, actually a call
to a thunk that ensures the segment is
loaded.

The segment number returned by
this call can be stuffed into an empty
entry in SegmentTable so that it will
stay updated in case of movement. But
recall that this segment can also be
discarded. In that case, Windows will
update the segment table with the (even-
numbered) handle for that segment.
This complicates things a bit. Now we
could make a reference to the segment
table and find an even number, indi
cating that the segment we want has
been discarded. Calling the entry point
(the reload thunk) is the easiest way

to bring the segment back.
Once the segment has been loaded,

we can use it as much as we want, as
long as Windows doesn't discard it.
But if we never call the segment’s entry
point again, Windows will think we’ve
stopped using it — after all, it’s the calls
through the thunk that keep track of
usage. Without periodic calls to the
entry point, this segment will be one of
the first to be discarded, no matter how
much we’ve actually been using it.

Fortunately, Windows provides a
mechanism to remind us to call the

Some applications use
large amounts of read
only (constant) data.
An example of this is

Microsoft Excel

entry point periodically. On a regular
basis (typically every fourth timer tick,
or 4.5 times per second), Windows per
forms an “LRU sweep.” One of the
things Windows will do during the LRU
sweep is to fill part of our segment
table with zeros. The number of words
set to zero is specified in SegmentTableflI,
the zero fill starts at SegmentTable[2], In
addition, SegmentTable! 1] itself is also
set to zero, which means nothing will
be zero-filled again until it is reset to
some value. This use of SegmentTable!11
suggests using a macro to give it the
name cwClear.

The idea is to set aside the first por
tion of the segment table for read-only
data. At every LRU sweep, Windows
will zero fill the segment numbers that
were stored in there. When we try to
access a segment number that has been
zeroed, we will see an even number
and conclude it was discarded. Then
we call the segment’s entry point to
reload it, and the thunk will record the
activity. Hopefully, this will prevent the
segment from being discarded while it
is still needed. The overhead of zero
filling the table and calling the entry
point is quite small compared with the
time to reload a segment from disk.

Note that the segtable library, as writ
ten, is not set up for this type of use.
The non discardable data segments,
such as segDgroup, must be moved
above the zero-fill area in SegmentTable.
Because there are a fixed number of
read-only data segments, they would
probably each have their own fixed

60
228

Dr. Dobb’s Journal, March 1990

W I N D O W S M A N A G E M E N T

(continued from page 60)
segment table entry. New access mac
ros would be required that could deal
with a segment that was not present.

Debugging Considerations
Microsoft considers the ideal environ
ment for running Windows to be a
80386 computer with extended mem
ory running 386MAX by Qualitas of
Bethesda, Maryland. 386MAX puts the
computer into Virtual 8086 Mode and
manages memory by using the 386’s
paging mechanism. It provides three
important benefits for Windows. First,
it fully emulates LIM 4.0 expanded mem
ory (EMS). Second, it performs the same
function as the Windows program HI-
MEM.SYS, making available the first 64K
of extended memory for use by Win
dows. Third, it allows TSR programs
such as mouse and network drivers to
be loaded out of the way of conven
tional memory — the base 640K mem
ory space.

When Windows finds itself loaded
into a computer with LIM 4.0 EMS, and
there’s a fair amount (like 256K) of
conventional memory left, it will use
“large frame” EMS. This means that the
base 640K memory space becomes part
of the EMS page frame. Windows can
then swap different logical memory
pages into the base 640K.

While this is a great way to run Win
dows, especially when running several
large applications, it’s not so good for
debugging with Symdeb. Symdeb seems
to get confused by the EMS swapping,
and we’ve gotten some very strange
results. Now we always disable 386MAX
whenever we will be debugging a Win
dows program with Symdeb. On the
other hand, CodeView for Windows is
apparently so large that Windows
doesn’t use large frame EMS. Code
View is so big that it requires EMS to
run, and it works fine with 386MAX.

While my comments about EMS ap
ply generally to Windows debugging,
there is a booby trap specific to work
ing with a segment table. (Naturally
we’re telling you this because it hap
pened to us.) Recall that, during Win
dows’ LRU sweep, cwC'lear (Segment-
Table! 11) is used as a count of words
in the segment table to zero fill. Should
this word get accidently set through
a programming error, unbelievably
strange results can occur. A random
value stored in cwClear will zero out a
random amount of DGROUP; possibly
including your stack. What makes this
bug so nasty is that the LRU sweep is
driven by the timer tick interrupt, so
the data gets wiped out without you
ever seeing how. Even a 386 hardware
breakpoint will not necessarily catch it.

(In our experience, the hardware break
point caught this bug when debugging
with a serial terminal, but not when
using a monochrome monitor.)

Extensions
As written, the segtable library and as
sociated macros assume that the seg
ments in the table are always present
in memory. This is guaranteed by the
fact that none of the segments in the
table are marked as discardable. Ex
cept for DGROUP, they are all allocated
by SegmentAlloc(), which does not set
the GMEM_DISCARDABLE flag.

If the use of the segment table was
expanded to include read-only segments
as discussed above, then there would
be discardable segments in the table.
An even value in a table entry would
signify that that segment had been dis
carded. More complicated access mac-'
ros would be needed to account for
this possibility and to provide the mecha
nism to reload the segment. The mac
ros could take one of two approaches.
The first method would be to always
call a near function for each segment
reference, and that function would test
for an even entry and perform the re
load if needed. The alternative is to
make the test for an even entry in line,
and call a function only when reload
ing is necessary. In fact, having both
of these forms available might be handy
so that the speed/size tradeoff can be
made on a case-by-case basis. It is likely
that read-only segments would be used
only in special ways, so that many seg
ment table references could still assume
the segment was always present and
use the original, more efficient macros.

We have been describing the whole
idea of the segment table as being suit
able for large applications with multi
ple segments of data. There is, how
ever, a limit on how much data a Win
dows program can have. Being non-
discardable, the data must be present
in memory at all times. This usually
limits an application to not more than
300K under the best conditions. Large
frame EMS does not increase this limit,
but it does allow each of several appli
cations running simultaneously to have
about as much data space as if they
were running alone.

The problem is the 640K limit on con
ventional memory, and one possible an
swer is EMS. Windows will allow individ
ual applications to control the small (LIM
3.2-style) EMS frame, which provides four
16K portholes into the EMS space. It is
completely up to the application to man
age its expanded memory, using inter
rupt 67Hto access EMS functions.

One way to go about this is to inte
grate EMS management with the mem-

62 Dr. Dobb’s Journal, March 1990
229

ory management functions of the
segtable library. Any data segment of
less than 16K is a candidate for alloca
tion in EMS instead of using GlobalAl-
loc(). SegmentAlloc() could be modi
fied to do this, putting the EMS seg
ment into the segment table and re
turning a pSeg. In this way, the use of
EMS becomes completely transparent
to the rest of the application.

There is, however, a serious draw
back. Because there is space for only
four EMS pages in the page frame, we
can't allocate more than four pages
before we run out of places to put
them. Of course, the whole point of
EMS is that we can have many mega
bytes of data, but we only need to use
a few pages at any one time. Some of
the EMS pages we allocate for data will
have to be mapped out of the page
frame — becoming momentarily inac
cessible — so that others can be
mapped in when we need them.

Fortunately, the segment table mecha
nism provides a handy way to do this.
pSegs are the handle by which the ap
plication can refer to any chunk of
memory, whether conventional, acces
sible EMS, or inaccessible EMS. If the
pSeg points to an odd-numbered value
in the segment table, then that segment
is present; if it points to an even-num-
bered value, then it is not present. This
is exactly the same rule that is used for
read-only data segments.

To take this approach, the applica
tion’s EMS manager must ensure that
EMS segments are odd. Whenever it
must change the EMS map, it will have
to update the segment table. When a
page is mapped out, its segment num
ber in the table must be found and
replaced with an even-numbered
marker. This marker must represent suf
ficient information to make the page
accessible again. For example, 1 byte
of the marker could represent an index
into a table that includes the EMS han
dle, while the other byte is the logical
page number. Remember that only 15
bits are available, because the least signifi
cant bit must be zero.

The access macros must understand
how to deal with segments that aren’t
present, using the same general tech
niques as they would for read-only seg
ments. However, the segment is “re
loaded” by calling the EMS manager,
instead of by calling a Windows reload
thunk. The application’s memory man
ager will need to have some reason
able way to decide which logical page
to map out when a different one must
be mapped in. One approach would
be to approximate the LRU algorithm
by discarding the least-recently mapped-
in page. Then when two different seg

Dr. Dobb’s Journal March 1990

ments, say A and B, are needed at the
same time, this can be ensured by the
sequence access-A, access-B, access-
A. The second access-A is required be
cause the access-B might have caused A
to get mapped out. This could happen
only if A was already present at the start,

Microsoft’s own
Windows applications

use all of the techniques
discussed here

so that the first access-A did nothing.
To support cases when more than

two segments were needed at once, a
locking mechanism could be used. This
would be similar to Windows' Global-
LockO and GlobalUnlock(), except that
it would be handled by the applica
tion’s memory manager. A streamlined
alternative to making function calls for
locking would be to set aside one or
more special locations in the segment
table. The presence of the segment in
a special location would tell the mem
ory manager not to map it out.

If the computer has no (or not
enough) EMS, we can still do some
thing to handle large amounts of data.
By using the segment table and some
additional help from Windows, we can
set up a virtual memory system — that
is, disk swapping. The key is to allo
cate memory with the Windows func
tion GlobalAlloc() by using the flags
GMEM_DISCARDABLE and GMEM_
NOTIFY. This tells Windows that it can
discard the memory if it needs to, but
to ask permission first. When Windows
notifies the application that it would
like to discard a segment, we can write
that segment to disk first, then stick a
marker for that segment in the segment
table. As with EMS, the marker will
represent the information needed to
reload the segment the next time it is
accessed.

The function that Windows will call
to ask permission to discard a segment
is set by using GlobalNotify(). This func
tion is documented in the Windows 2.0
SDK update booklet, with additional
information in the Windows 2.1 SDK
update. The function we register with
Windows in this manner could be de
clared as:

BOOL FAR PASCAL
NotifyProc(HANDLE hmem);

FULL AT&T C++: ANNOUNCING VERSION lv2 2 .0 !
Guidelines announces its port of version 2.0 of AT&T’s C++ translator. As an

object-oriented language, C++ includes: classes, multiple inheritance, member
functions, constructors and destructors, data hiding, and data abstraction. Object-
oriented means that C++ code is more readable, more reliable, and more reusable.
And that means faster development, easier maintenance, and the ability to handle
more complex projects. C++ is Bell Labs’ answer to Ada and Modula 2. C++ will
more than pay for itself in saved development time on your next project.

C++
from GUIDELINES for the IBM PC: $395

Requires IBM PC-AT or compatible with 512K plus 384K extended memory.
Note: C++ is a translator, and requires the use of Microsoft C 4.0 or later.

Here is what you get:
• The full AT&T v2.0 C++ translator with

extended memory support.

• Libraries for stream I/O and complex
math.

• C++ Primer, the definitive book on
C++ version 2.0 by Stanley B. Lippman.

• Sample programs written in C++.

• Printed installation guide and
documentation.

• 30-day money-back guarantee.

NOW AVAILABLE FOR
UNIX V/386 - $495
To Order:

Send check or purchase order to:

GUIDELINES SOFTWARE, INC.
P .O . Box 6368 , D ep t. DDJ
M oraga, CA 94570

To order with VISA or MC,
phone (415) 376-5527. (California
residents add sales tax.)

C++ was ported by GUIDELINES under license from AT&T.
Call or write for a free C++ information package.

CIRCLE NO. 351 ON READER SERVICE CARD

63

230

W I N D O W S M A N A G E M E N T

(continued from page 63)
The argument is supposed to be the
handle of the segment being discarded.
However, the Windows 2.1 SDK up
date says that in Version 2.03, it was
actually the segment number, not the
handle. This can be straightened out
for both versions by calling Global-
Handle(), which can take either the
handle or segment number as its argu
ment, and will return them both, as
mentioned earlier.

NotifyProc() is a function in the ap
plication, but it must be in a fixed code
segment. It will be called for each seg
ment Windows would like to discard.
If the application wants the segment
locked, the function can return a false
(zero) value and Windows will not dis
card it. The locking protocols could
be the same as we suggested for EMS:
Adding lock and unlock functions, and/
or reserving special locations in the
segment table. If the segment isn’t
locked, NotifyProc() can write it to a
disk file that has already been created
for that purpose. Then it returns true
and Windows will reclaim the space.

Any of these extensions — read-only
data, EMS, disk swapping — may be
combined. Using any one of them re
quires handling the case of segments
that are not currently accessible. Once
this jump has been made, the others
can be added with little or no addi
tional change to the main body of the
application. Microsoft’s own Windows
applications use all of the techniques
discussed here (a great deal of time
was spent using Symdeb on Excel in
preparing this article). While we ha
ven’t covered all of the procedures in
detail, these ideas can be used to build
Windows applications with virtually un
limited data capacity.

Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif, residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves
ton Dr., Redwood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Compu
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the
system answers, type: listings (lower
case) at the log-in prompt.

DDJ
(Listings begin on page 106.)

Vote for your favorite feature/article.
Circle Reader Service No. 5.

Dr. Dobb’s Journal, March 1990 65
231

Object-Oriented
Programming in

Assembly Language
OOP applies equally well to assembly language and high-level

language programs

One of the promises of the ob
ject-oriented paradigm is that
it will reduce program com
plexity and implementation
effort for many different types

of programs. Object-oriented program
ming, however, is no panacea. It is a
technique, like recursion, that you can
apply in certain cases to reduce pro
gramming effort. While there are cer
tain types of programs whose object-
oriented implementation is better, ex
amples abound where object-oriented
programming systems (OOPS) buy you
nothing. Nonetheless, object-oriented
programming techniques are a valu
able tool to have in one’s war chest.

OOPS are nothing new. They have
been around since the late 1960s. Yet
the object-oriented paradigm was lan
guishing until Object Pascal and C++
began generating mainstream interest.
The success of these languages dem
onstrates that OOP is not the domain
of a few esoteric programming lan
guages. Rather, object-oriented program
ming is applicable to almost any pro
gramming language.

Still, assembly language may not seem

Randy is the designer o f numerous hard
ware and software projects, including
assemblers fo r a variety o f systems. In
addition to consulting, he is currently
a part-time instructor in computer sci
ence at California Polytechnic Univer
sity in Pomona and at UC Riverside.
He can be contacted at 9570 Calle La
Cuesta, Riverside, CA 92503-

Randall L. Hyde

like the place to apply the object-ori-
ented programming paradigm. But keep
in mind that people were saying the
same thing about Pascal and C five
years ago.

What does an object-oriented assem
bly language program look like? A bet
ter question to ask is, “What is the
essence of an object-oriented program,
and how does one capture it within
an assembly language program?’’ Once
you strip away the gloss and notation
convenience provided by languages
such as C++, you’ll find that the two
main features of an object-oriented pro
gram are polymorphism and inheritance.

Polymorphism takes two basic forms
in most programming languages: static
and dynamic. The general idea, how
ever, is the same. You call different
subroutines by the same name. Static
polymorphism provides notational con
venience in the form of operator/func
tion overloading in languages such as
C++. Static polymorphism uses the
parameter list, along with the routine’s
name (together they form the routine’s
signature), to determine which routine
to call. For example, consider the C
routines:

CmplxAddCC(Cl, C2, C3);
/»C1=C2+C3;7

CmplxAddCR(Cl, C2, Rl);
/*Cl=C2+ToCmplx(Rl);*/

CmplxAddRC(C 1, Rl, C2);
/*Cl=ToCmplx(Rl)+C2;7

In C++ you could write:

CmplxAdd(Cl, C2, C3);
CmplxAdd(Cl, C2, Rl);
CmplxAdd(Cl, Rl, C2);

and the C++ compiler would figure out
whether to call CmplxAddCC, CmplxAdd-
CR, or CmplxAddRC. (Actually, you
could overload C++’s “+” operator and
use the three forms C1=C2+C3;, Cl=
C2+R1;, or C1=R1+C2;, but the exam
ple above would be still valid.)

Static overloading, while convenient,
does not add any power to the lan
guage. The calls to CmplxAdd call three
different routines. CmplxAddfCl, C2, C3)
calls CmpbcAddCC, CmplxAdd (C1,C2,R)
calls CmplxAddCR, and CmplxAdd-
(C1,R,C2) calls CmplxAddRC. The C++
compiler determines which routine this
code will call at compile time. Static
polymorphism is a mechanism that lets
the compiler choose one of several
different routines to call depending
upon the calling signature.

Sometimes you may want to use the
same signature to call different rou
tines. For example, suppose you have
a class shape in which there are three
graphical objects: circles, rectangles, and
triangles. If you have an arbitrary ob
ject of type shape, the compiler cannot
determine which DRAW routine to call.
The program determines this at run
time. This allows a single call to draw
circles, rectangles, triangles at run time
with the same machine instructions.
This is dynamic polymorphism — de
termining at run time which routine to
call. C++ uses virtual functions and Ob-

66
232

Dr. Dobb’s Journal, March 1990

O O P I N A S M

(continued from page 66)
ject Pascal uses override procedures
and functions to implement dynamic
polymorphism.

Inheritance lets you build up data
structures as supersets of existing data
structures. This provides a mechanism
whereby you can generalize data types,
allowing you to handle various objects
regardless of their actual type. This lets
you define such diverse shapes as cir
cles, rectangles, and triangles and treat
them as compatible structures.

Implementing Classes and Inheritance
Because structures and classes are

closely related, it may be instructive to
look at the implementation of struc
tures before looking at classes. Con
sider S, a variable of the type in Exam
ple 1. Somewhere in memory the com
piler needs to generate storage for the
fields of S. Traditionally, compilers al
locate these fields contiguously (see
Figure 1). Indeed, Microsoft’s assem
bler (MASM) allows you to declare struc
tures in a similar fashion, as shown in
Example 2. If S provides the base ad
dress of this structure, S+0 is the ad
dress of S.i, S+2 is the address of S.j,
and S+4 is the address of S.c.

Now consider the case of a pair of

C++ classes (Sc and 7c) in Example 3-
Pointers to objects (pS and pT) may
point at an object of the prescribed
type or to an object that is a descendant
of the pointer’s base class. For example,
pS can point at an object of type Sc or
at an object of type 7c. Remember, ac
cessing ‘pS.j is equivalent to (int) XpS+2),
so if pS points at an object of type 7c,
the j field must also appear at offset
two within the structure. For inheritance
to work properly, the common fields
must appear at the same offset within
the structure (see Figure 2).

Additional fields in the subclass often
appear after the fields in the parent
class, so most compilers implement class
7c as in Example 4. Note that the off
sets to i, j, and c are the same for both
Sc and 7c.

When I first began exploring how
to implement inheritance in assembly,
I got the bright idea of using macros
inside structure definitions to handle
the problem of inheritance. Briefly, I
wanted to implement Sc and 7c as in
Example 5. Unfortunately, MASM
doesn't allow you to expand macros
or strucs inside a structure. Disap
pointed, I tried the brute force way to
implement Sc and 7c, as illustrated in
Example 6.

Unfortunately, I’d forgotten that
MASM doesn’t treat these symbols as
part of the structure. Names such as i,
j, c, and so on must be unique in the
program. As you can plainly see in
Example 6, I declared i twice, and the
assembler gave me a “redefinition of
symbol” error. Almost ready to give
up, I tried the method in Example 7.

MASM simply equates the field names
to the offsets within the structure. So it
equates i to zero, j to two, and so on.
MASM does not associate i with labels
of type Sc. You can use the symbols T.j
and S.j in your program. Because the

operator behaves like the “+” op
erator, T.j is just like T+2.

For 7c to inherit the fields of Sc, all
we have to do is reserve enough space
at the beginning of the 7c structure for

Exam ple 1: The variable S

int x;
int j;
char *c

E xam ple 2: Declaring
structures in MASM

SType struc
i dw
j dw
c dd
SType ends

Exam ple 3- C++ classes

int i;
int j;
char *c;

Sc *pS;
Tc *pT;

Tclass Tc:Sc

int k;
char *d;

E xam ple 4: The way most compilers
implement a class like Tc

. Tc Tc struc
i dw

int i; j dw

int j; C dd

char *c; k dw

int k; d dd

char *d Tc ends

E xam ple 5: One approach
to implementing Sc and Tc

Scltems macro

i dw ?

j dw ?
c dd ?
endm

Tcltems macro
Scltems

k dw

d dd
endm

Sc struc
Scltems

Sc ends

Tc struc
Tcltems

Tc ends

High memory

&S+4

-
c

&S+2 - j

&S+0 - i

Low memory

pS+4

pS+2

pS+0

High memory

d

k

c c

i i
i i

Low memory

pT+10

pT+8

pT+4

pT+2

pT+0

Figure 1: Storage allocation fo r S Figure 2: Storage allocation /br*pT and *pS

68 Dr. Dobbs Journal, March 1990
233

O O P I N A S M

(continued from page 68)
each of the fields of Sc. Above, I stuck
in the two DW and the DD pseudo
opcodes to reserve space for the i, /,
and c fields. This technique might get
inconvenient if the number of inher
ited fields is large. The code in Exam
ple 8 solves this problem.

The first DB pseudoopcode in Tc
reserves the necessary space for the
fields Tc inherits from Sc. Likewise, Uc
(which is a subclass of Tc) reserves
space at the beginning of the structure
for the fields inherited from Tc and Sc.
The code in Example 8 works great if
you don’t need to initialize any of the
fields inherited from Sc\ if you need to
initialize some fields, you'll have to use
the brute force method and redeclare
space for each field.

Methods
The earlier paragraphs discuss how to
implement objects whose fields are all
variables. What happens when you in
troduce methods? If you're not over
loading a method, you can treat it in
the same manner as any other assem
bly language procedure and call it di
rectly. If you are overloading a method,
you must call it indirectly via a pointer
within the object.

Consider the C++ class declaration
in Example 9- The assembly code im
plementing this class is shown in Ex
ample 10. To call S.geti, you would use
the 8086 instruction: CALL S.geti.

Because S.geti is a double word mem
ory variable, the CALL instruction will
call the procedure S.geti, which points
at Sc_geti. The fact that we’re calling the
methods indirectly will be useful when
we look at overloading a little later.

THIS
Suppose we have three instances of
class Sc, say SI, S2, and S3 declared in
assembly language as follows:

51 Sc
52 Sc
53 Sc

Sl.geti, S2.geti, and S3 geti all call the
same procedure (call it Sc_geti). How
does Sc_getidifferentiate between Sl.i,
S2.i, and S3.8 In object-oriented lan
guages such as Object Pascal and C++,
the compiler automatically passes a spe
cial parameter named this to the method.
this always points at the object through
which you’ve invoked the method.
When you execute Sl.geti, the com
piler passes the address of SI in this to

geti. Likewise, the compiler passes the
address of S2 in this when you call
S2.geti.

You can pass this to a method just
as any other parameter. Because the
most efficient way of passing parame
ters is in the 8086’s registers, I’ve adopted
the convention of passing this in the
ES:BX registers. The Sc_geti method
would look something like Example
11 (assuming we’re returning i in the
AX register). This example demonstrates
a major problem with object-oriented
programming — it is very inefficient.
To load Sl.i into AX, see Example 12.
This requires six instructions where,
logically, you should only need one
(mov ax, S l.i). Welcome to the won
derful world of object-oriented program
ming! Yet circumventing all this over
head by loading Sl.i directly into AX
will eliminate the benefits of object-
oriented programming.

Actually, this isn’t as bad as it looks.
A good part of the time ES:BX will
already be pointing at the object you
want to access. Nevertheless, the call
and return are considerable overhead
just to load the AX register with a word
value. Stroustrup anticipated this prob
lem when designing C++ and he solved
it by providing inline functions (a.k.a.

E xam ple 6: The brute force
method o f implementing Sc and Tc

Sc struc
i dw 7

j dw 7
c dd 7
Sc ends

Tc struc
i dw 7

j dw

c dd
k dw
d dd
Tc ends

E xam ple 7: Yet another attempt
at implementing Sc and Tc

Sc struc
i dw ?

j dw ?
c dd 7

Sc ends

Tc struc
dw ?
dw
dd

k dw
d dd
Tc ends

S Sc
T Tc

Exam ple 8: The solution to
implementing Sc and Tc

Sc struc
i dw 7

j dw 7

c dd 7

Sc ends

Tc struc
db (size

k dw 7

d dd ?

Tc ends

Uc struc
db (size

e dw 7
Uc ends

S Sc
T Tc
U Uc

Exam ple 9: A C++ class declaration

class Sc

int i,j;
char *c;

public:

int geti() {return
int getj() {return
void seti(x) int x,
void setj (x) int x,

};

i }; /* Ignore the fact that C++ */
j}; /* would implement these */
{i = x;}; /* methods in-line. */

{j = x;};

E xam ple 10: Assembly code for
implementing the code in
Example 9

Sc struc
i dw 7

j dw 7

c dd 7

geti dd Sc_geti
getj dd Sc_getj
seti dd Sc_seti

set j dd Sc_setj

Sc ends

S Sc

70
234

Dr. Dobb’sfournal, March 1990

(continued from page 70)
macros). We can use this same tech
nique in assembly language to improve
efficiency as Example 13 illustrates. This
code snippet demonstrates another con
vention I adhere to: I make macros for
all method calls, even those that are
actual calls. This lets me use a consis
tent calling format for all methods,
whether they are actual subroutines or
are expanded in-line.

There is one major drawback to ex
panding a procedure inline; you can
not overload procedures (C++’s inline
functions suffer from this as well. You
cannot have an inline virtual function).

Therefore, you should only use this
technique for those particular methods
that you will never need to overload.
Fortunately, the macro implementation
makes it easy to switch to a call later if
you need to overload the procedure.
Just substitute a call for the inline code
inside the macro.

Polymorphism and Overloading
Overloaded procedures allow the
“same” method to perform different
operations, depending upon the object
passed to the method. Consider the
class definitions in Example 14. Red
and Circle are types derived from Shape.

If ES:BX points at a generic shape (that
is, ES:BX points at an object of type
Shape, Red, or Circle) then CALL_
THIS.Draw will call Shape_Draw,
Red_Drau\ or Circle_Draw, depend
ing upon where ES:BX points. This lets
you write generic code that needn’t
know the particular details of the shape
it's drawing. The object itself knows
how to draw itself via the pointer to the
specific draw routine.

Allocation of Objects
High-level object-oriented languages
such as Object Pascal and C++ tend to
hide many of the allocation details from
you. In assembly language, naturally,
the programmer has to handle all of the
allocation details. Although a complete
discussion of dynamic allocation of ob
jects is beyond the scope of this article,
the subject is so pervasive that it war
rants a brief mention.

Static allocation of an object in as
sembly language is quite simple. If you
have the shape class definitions (shape,
red, and circle) mentioned earlier, you
can easily declare variables of these
types using declarations of the form:

MyRect rect
MyCircle circle
MyShape shape

This automatically fills in the DRAW
field for these variables (the linker/
loader fills in such addresses when it
loads the program into memory). What
happens if you are dynamically allocat
ing storage for an object? Assume we
have a routine, alloc, to which we pass
a byte count in CX, and it returns a
pointer to a block of memory that size
in ES:BX. Now suppose we allocate a
rectangle with the code in Example 15.
Alloc will not be smart enough to fill
in the pointer to the rect.DRAW rou
tine. This is something we’ll have to
do ourselves. This requires the four
instructions in Example 16.

Eight instructions may not seem like
a lot to create a simple object. Keep in
mind, however, that our simple shape
object only has one overridden method.
If there were a dozen methods, you
would need 52 instructions. Clearly, a
CREATE procedure begins to make a
lot of sense. Each subclass (shape, rect,
and circle) will need its own CREATE
method. CREATE is not a method you
normally overload, because during the
creation process you know exactly the
type of object you’re creating. By conven
tion, the CREATE methods I write al
ways allocate the appropriate amount
of storage, initialize any important fields,
and then return a pointer to the new
object in ES:BX. The code in Example
17 provides an example, using the rect

E xam ple 11: The Sc_geti method
_THIS equ es:[bx]
Sc_geti proc far

mov ax, _THIS.i
ret

Sc_geti endp

E xam ple 12: Loading Sl.i into AX
mov bx, seg SI
mov es, bx
mov bx, offset SI
call Sl.geti /Assuming SI is in the data seg

E xam ple 13: Improving efficiency

Inline expansion of geti to improve efficiency:

Geti macro
mov ax, _THIS.i
endm

Perform actual call to routines which are too big to
expand in-line in our code:

Printi macro
call _THIS.Printi
endm

Geti ;Get i into AX.

Printi ;Call Printi routine.

Exam ple 14: Typical class definitions

Shape struc
ulx dw ? /Upper left X coordinate
uly dw ? /Upper left Y coordinate

lrx dw ? /Lower right X coordinate

lry dw ? ;Lower right Y coordinate

Draw dd Shape_Draw /Default (overridden) DRAW routine

Shape ends

Rect struc
dw 4 dup (?) /Reserve space for coordinates

dd Rect_Draw /Draw a rectangle

Rect ends

Circle struc
dw 4 dup (?) /Reserve space for coordinates

dd Circle_Draw /Draw a circle

Circle ends

72 Dr. Dobb'sJournal, March 1990
235

and circle types. To manipulate these
objects, we need only load the appro
priate pointer into ES:BX and access
the appropriate fields or call the ap
propriate methods via this.

Other Conventions
While writing object-oriented programs
in assembly language, I’ve found cer
tain guidelines helpful in the initial de
sign phases (that is, before having to
take efficiency into consideration). Most
of these guidelines are widely accepted
object-oriented practices; others per
tain mainly to assembly language. Here
are the major ones I’m using:
• Try to use dynamic allocation for ob
jects wherever possible. In the best ob
ject-oriented programs, instances of an
object appear and disappear through
out the program. Rarely will a single
instance exist throughout the execu
tion of a program. Because an object’s
methods always reference fields of an
object indirectly, there is little benefit
to statically allocated objects. Convert
ing a statically allocated object to a
dynamically allocated one later on is
messy. Get it right the first time!
• Avoid accessing the individual vari
ables (fields) within an object. Write
methods that store values into these
fields and retrieve values from them.
This information-hiding technique is
well proven in OOP and isn’t particu
larly worthy of further discussion.
• Overload as many methods as pos
sible. CREATE is probably the only

method you shouldn’t overload. Ac
cess methods, which provide access
to the fields of the outermost class,
might be another candidate for direct
access. But the loss of generality for a
small increase in efficiency is rarely
worth it.
• Always use macros to call methods,
especially those you’re not calling indi
rectly. This provides a consistent call
ing mechanism for methods and lets
you easily overload methods you
choose to implement inline or without
overloading. This applies equally well
to accessing fields in an object.
• As a bare minimum, each class should
have the following methods: CREATE,
DISPOSE, COPY, and a set of access
methods for each of the fields. COPY
should copy the contents of one in
stance variable’s fields to another vari
able.

Naturally, these are just guidelines,
not rules etched in stone. But a certain
amount of discipline early in a project
helps prevent considerable kludging
later on.

An Example
The example in Listing One (page 110)
is a program that adds, subtracts, and
compares signed binary integers, un
signed binary integers, and BCD val
ues. While not a complete example (it’s
missing several important methods such
as CREATE, PRINT, DISPOSE, and so
on) it demonstrates the flavor of object-
oriented programming in assembly lan
guage.

What About Your Programs?
Object-oriented programming is a con
cept that can reduce the time you spend
developing certain classes of programs.
The OOP concept applies equally well
to assembly language and high-level
language programs. The only draw
back is that you don’t have a large
library of classes to build upon. Of
course, these same problems exist for
Object Pascal and C++ users. Time will
solve this problem for those languages
as users begin developing reusable mod
ules for both, which is all that is pre
venting object-oriented assembly lan
guage from taking off. Perhaps some
day you will be able to buy off-the-
shelf object-oriented assembly language
libraries; until then, you’ll have to write
your own. Even so, the tricks and tech
niques of object-oriented programming
are well worth considering for your
next assembly language project.

DDJ

(Listing begins o n page 110.)
Vote for your favorite feature/article.

Circle Reader Service No.6.

Example 15: Code to allocate
a rectangle

mov cx, size rect
call alloc
mov word ptr MyRectPtr, bx
mov word ptr MyRectPtr+2, es

Example 16: Filling in the
pointer to the rect.DRAW routine

mov ax, offset rectDRAW
mov _this.DRAW, ax
mov ax, seg rectDRAW
mov _this.DRAW+2, ax

Example 17: Code fo r example
using the rect and circle types

mov cx, size circle
call CreateCircle
mov word ptr CircVarPtr, bx
mov word ptr CircVarPtr+2, es

mov cx, size rect

call CreateRect
mov word ptr RectVarPtr, bx
mov word ptr RectVarPtr+2, es

Dr. Dobb’s Journal, March 1990
236

E X A M I N I N G R O O M

Inside
Watcom C 7.0/386
32■-bit code can speed up your programs
on an already quick machine

Andrew Schulm an

Over two years ago, the cover
of the July 1987 issue of Dr.
Dobb s carried the title “386
Development Tools Within
Your Lifetime” a photograph

of a skeleton that rotted away in front
of its computer while waiting for de
cent 386 tools, which summed up ev
eryone’s feelings about programming
for the Intel 80386 microprocessor.

Things have improved a great deal
since that issue. Watcom C7.0/386, for
instance, produces 32-bit code (such
as MOV FAX, 12345678b, and MOV
FS.fEAXj, ESI) while staying keyword
and library compatible with the de facto
16-bit industry standard, Microsoft C
5.1 (MSC51). Even weird low-level rou
tines such as intdosx(), _dos_setvect(),
_dos_keep(), and _chain_intr() do the
right thing in 32-bit protected mode.

Of course, Watcom C7.0/386 (WAT-
386) has many of the same features as
Watcom’s 16-bit C compiler (see “Ex
amining Room," DDJ September 1989).
This includes Watcom's famous register-
based parameter passing. Many of Wat
com’s innovations involve the reduction,
and sometimes elimination, of function
call overhead. Any block of code that
takes input from registers and puts out
put into registers is effectively a func
tional object, and WAT386 takes advan
tage of this fact in several places, includ
ing the nifty #pragma aux feature.

Andrew is a software engineer in Cam
bridge, Mass., working on CD-ROM net
work applications, and is also a con
tributing editor fo r DDJ. He can be
reached at 32 Andrew St., Cambridge,
MA 02139.

Buying In
WAT386 produces very different code
from either Microsoft C or Turbo C
(neither of which has an option to gen
erate 386 instructions, much less 32-bit
code). Yet, this compiler will fit seam
lessly into your current work habits.
Unlike MetaWare's High C 386 com
piler, using WAT386 does not produce
“culture shock."

Still, all is not rosy. It will cost you
over $1000 in software to get into 386
development. WAT386, like High C,
costs $895, and you will also need a
32-bit DOS extender, like the industry-
standard Phar Lap 386 toolkit, which
costs $495.

Further, the new Watcom Cl.0/386
compiler is just that — new. While writ
ing this review, I found a number of
bugs in the compiler and its standard
library. Watcom was undoubtedly un
der pressure from its major client, No
vell, to get the 386 compiler out the
door. By the time you read this review,
though, a second, more stable, release
of WAT386 should be available.

Primarily because of its newness,
WAT386 in some ways is not as good
a product as MetaWare’s High C 386,
which has been around for two and a
half years. Still, there is value in WAT386.
For many PC programmers, this will
be a much easier product to use than
MetaWare’s High C. WAT386’s Micro
soft compatibility is very important. On
the other hand, the next release (1.6)
of High C 386, in addition to many
other changes, is scheduled to have
what a MetaWare press release calls
“86% compatibility with Microsoft’s C
libraries.”

32 Bits!
WAT386 generates code for 32-bit pro
tected mode. Thus, sizeofdnt) and
sizeof(unsigned) are each 4 bytes, not
2 bytes. Likewise, sizeofivoid *) is 4
bytes. Note that sizeofivoid near *) is
also 4 bytes.

The all-important ANSI C identifier
size_t, which is the unsigned type of
the result of the sizeof() operator and
the type used by function parameters
that accept the size of an object, is also
4 bytes (typedef unsigned size_t).

C standard library functions such as
malloc(), fwrite(), and strncpyf) all
take size_t parameters, and strlenf) re
turns a size_t. These standard library
functions deal in quantities between 0
and UINT_MAX. In the 16-bit code gen
erated by PC compilers like MSC51,
UINT_MAX is OxFFFF (65,535), yield
ing the familiar 64K limit on PC array
lengths, string lengths, malloc blocks,
and so on.

But in 32-bit code, UINT_MAX is
OxFFFFFFFF, or 4,294,967,295 — the
magical upper “limit” of 4 gigabytes!
In the native mode of the 386, this is
the upper bound set on array lengths,
string lengths, and malloc blocks. Effec
tively, no limit at all.

The Environment
If fwritef) can write 4 gigabytes at a
time (which might be handy if you're
working with CD-ROM or some other
form of mass optical storage), how can
it possibly work with MS-DOS? DOS is
a 16-bit operating system. (So is OS/2.)
The DOS Write function {INT21, fu n c
tion 40FD, which fwrite() must even
tually call, expects the number of bytes

74 Dr. Dobb’s Journal, March 1990
237

E X A M I N I N G R O O MProgrammers
Wholesaler " _

Attention!
Corporate Accounts

Resellers
Programmers

Checf<iour values!
LIST 1-2 3+

BASIC
Turbo Basic 100 67 64
QuickBASIC 99 67 64
Basic Dev. Sys. 7.0 495 329 321

C LANGUAGE-COMPILERS
Lattice C - 6.0 250 156 143
Microsoft C 5.1 450 287 283
Microsoft Quick C 99 67 64
Turbo C by Borland 150 98 94

DATABASE MANAGEMENT
Clarion 695 399 379
Paradox 3.0 725 489 479

DBASE
Clipper Summer ’87 695 429 419
dBASE IV 795 489 479
FoxBASE + 2.1 395 209 199

DBASE TOOLS
Clear+ for dBASE 200 149 139
dBRlEF w/BRIEF 285 Save Save
dSalvage 100 83 79
R&R Relational Reportwriter 149 99 93

EDITORS
BRIEF 199 Save Save
Epsilon 195 139 109

FORTRAN
MS FORTRAN 450 299 289

OBJECT-ORIENTED
Smalltalk/V 100 59 54
Zortech C++ 199 Call Call

OTHER PRODUCTS
Carbon Copy Plus 195 115 104
HEADROOM by Helix 130 85 79
Norlon Utilities Advanced 150 89 87
PC Tools Deluxe 129 85 79
Remote2 195 104 99

SPREADSHEETS
1-2-3 495 299 289
Excel 495 339 329

TEXT SCREENS ADDONS
C Worthy w/Forms 295 Save Save
Greenleaf DataWindows 395 249 239
Vermont Views 395 319 299

WORD PROCESSING
Sprint 200 134 129
WordPerfect 495 239 234

Prices subject to change without notice. "DD390W"

Programmers
Wholesaler™
800 - 228-3736
CANADA South Shore Park

800-344-2495 Accord, MA 02018
FAX 617-740-1892 Hours: M-F 8:30-5

(continued from page 74)
to write in the 16-bit CX register. The
maximum is 64K. How can WAT386, or
any 32-bit C compiler for DOS, pro
duce code that's compatible with 16-
bit DOS?

The answer is that 386 C compilers
(for DOS) produce code to be run un
der a 32-bit DOS extender. Programs
such as Phar Lap's 386 I DOS-Extender
and Eclipse Computer Solutions’ OS/
386 do not replace DOS. Instead, they
(almost invisibly) manage the interface
between 16-bit real-mode DOS and your
32-bit protected-mode program.

In the example offw rite l), the 32-bit
code produced by WAT386 or High C
(which MetaWare actually calls “High
C for MS-DOS/386”) continues to call
INT 21, function 40H. But now, the
number of bytes to write goes into the
full 32-bit ECX register rather than the
16-bit CX register.

A DOS extender takes over INT 21
(as well as other software interrupts
like INT 10, INT 16, and so on), han
dles some functions itself, and passes
others on to DOS. A program running
under a 32-bit DOS extender is effec
tively running under “MS-DOS/386,”
because, for example, a call to write
640K is really going to write 640K. The
DOS extender will invisibly break this
up into multiple calls to the “real” INT
21, function 40H.

Another interesting example is tnal-
loc<). If your 386 computer came with
4 gigabytes of memory, you could grab
it all with a single call to malloc(). As
in 16-bit real-mode C compilers, the C
memory manager eventually calls INT
21, function 48 (allocate memory).
Here, however, the DOS extender pro
vides a complete replacement, not a
front end, for the DOS routine. There
is one difference between Phar Lap
and Eclipse: 3861 DOS-Extender expects
in EBX the number of 4K pages to
allocate, where OS/386 more closely
mimics DOS, expecting the number of
16-byte paragraphs. The WAT386 stan
dard library detects which DOS exten
der it is running under and allocates
memory appropriately.

By default, WAT386 produces code
to be run under Phar Lap Software’s
386 I DOS-Extender. The Phar Lap toolkit
(DOS extender, linker, assembler, and
debugger) must be purchased sepa
rately, however.

Oddly, you don’t need a 386 machine
or a DOS extender to run the WAT386
compiler. By the time you read this
review, Watcom should be shipping a
32-bit protected-mode version of the
compiler. In the version I reviewed,
however, all compiler components were
16-bit real-mode programs. To avoid

“Not enough memory to fully optimize
procedure” warnings, I had to specify
that the compiler use a large-model
version of the code generator. Pretty
crazy for a 386 development system!

Presumably, if your customers had
386s but you didn’t (which is probably
the exact opposite of the real situation),
you could use these 16-bit tools to gen
erate 386 code on your AT.

Programs compiled with WAT386 and
linked with Phar Lap’s 386 I LINK will
only run on 386-based machines. To
sell such programs, and to acquire a
program that will “bind'' the DOS ex
tender into the executable so that your
customers don’t need to know any
thing about the DOS extender, you must
acquire a redistribution package from
Phar Lap. This costs an extra $1000 for
unlimited distribution.

So the entrance fee for 386 develop
ment is still pretty steep. What do you
get in return? A lot: Code that runs
several times faster than 16-bit code;
the elimination of 64K limits on array
sizes or function parameters; and the
elimination of the 640K boundary, al
lowing you to use all physical memory
in the machine.

Note that this “MS-DOS/386” gives
you big memory, but not virtual mem
ory (VM). This is an important differ
ence from OS/2. However, a VM man
ager (386 I VMM) is available for $295
from Phar Lap, and WAT386 code, like
High C code, runs without change un
der 3861 VMM.

WAT386 code runs under one other
environment: Novell's new 32-bit net
work operating system, NetWare 386
(see the accompanying box).

The Code
How can a 32-bit C compiler such as
WAT386 produce code that runs sev
eral times faster than 16-bit code run
on the same machine? Consider the
following two lines of code:

extern char*Env;
char *p=Env

Compiling under the “large model”
(which is what most commercial PC
software uses), any 16-bit C compiler,
including Watcom’s non-386 compiler,
produce code something like that shown
in the first portion of Example 1, in
which the 4-byte fa r pointers are trans
ferred piecemeal from one location to
another.

Because mov mem, reg takes 2 clock
cycles on a 386 and mov reg, mem takes
4 cycles regardless of whether the com
piler uses the 8-bit (AL), 16-bit (AX),
or 32-bit (EAX) form of the register, this
takes (2*2) + (3*4) = 16 cycles. In con-

(continued on page 79)
CIRCLE NO. 199 ON READER SERVICE CARD

76
2 3 8

Dr. Dobb'sJournal, March 1990

E X A M I N I N G R O O M

(continued from page 76)
trast, the 32-bit equivalent takes 2 + 4
= 6 cycles (shown in the second por
tion of Example 1).

The 32-bit code is similar to the code
that would be generated by a 16-bit com
piler working with 2-byte near pointers:

mov ax, _Env
mov word ptr _p, ax

In fact, “flat model” 32-bit code and
“tiny model” 16-bit code are very simi
lar. The only difference is that the 16-
bit code can handle quantities up to

Watcom and Novell
In addition to producing code for Phar
Lap’s 3861 DOS-Extender and, with
some difficulty, for Eclipse’s OS/386,
the 32-bit Watcom C compiler also
works with Novell’s new network op
erating system, NetWare 386. In fact,
Watcom C7.0/386 is being repackaged
by Novell as its C Network Compiler/
386. (This is the subject of Novell’s
strange “See Dick and Jane” ads.)

NetWare 386 is a 32-bit operating
system, and this allows for several
performance leaps over the existing
286-based NetWare. Instead of the
current limit of 100 users per file server,
which is dictated by the single 64K
data segment available in “medium
model” (used in 286-based NetWare),
the new NetWare 386 allows 250 si
multaneous users per file server. Like
wise, Novell claims that network
throughput is two to three times
greater than its already zippy through
put figures.

In NetWare 386, the lack of seg
mentation in "flat model” is taken to
its logical (but scary) extreme — no
memory protection. Novell baldly
states that, "There is no memory or
other application-level protection: All
applications and device drivers run
in kernel mode” (NetWare Technical
Journal, July 1989).

When used with NetWare 386, the
Watcom C compiler produces server
applications — programs that run in
file-server memory (the so-called “file
server” thus becomes a generic server).
These server applications are called
“NetWare Loadable Modules,” or
NLMs, and are somewhat like value-
added processes (VAPs) in pre-386
NetWare; except unlike VAPs, NLMs
can be loaded or unloaded at any
time, without taking down the file
server. NLMs, in fact, are dynamic-
link libraries and, in addition to pro
viding services to clients on the net
work, can provide functions to be
called by other NLMs.

For instance, when calling a C stan
dard library such as open() from an
NLM, you are actually calling a rou
tine in CLIB.NLM, which is the C stan
dard library provided as a dynamic-

link library. The code for open() is
not linked into your executable.

To produce such an NLM, use the
NLMLINK provided by Novell rather
than the Phar Lap linker. Similar to
the OS/2 linker, NLMLINK requires a
.DEF file with import statements. The
module produced by the Novell linker
essentially contains unresolved exter
nals that are resolved when the NLM
is loaded into file server memory
(either by invoking the LOAD com
mand at the file server console, or by
spawning one NLM from within an
other).

The library included with C Net
work Compiler/386 includes many func
tions not available in the standard
Watcom library. Naturally, functions
are provided to support network com
munications with Novell’s IPX and
SPX. The Btrieve data management
library is provided as BTRIEVE.NLM.
The Novell library includes functions
(for example, Test A ndSetBitf) and
BitScan(J) to interface to the 386-bit
test instructions.

Network servers are inherently mul
titasking (multiple operations must be
in progress simultaneously on behalf
of multiple clients), so the library con
tains functions for “execution threads,”
such as BeginThread(), EnterCritSec(),
ExitCritSecC), SuspendThreadC), and
so on. There are also functions to
manage semaphores and queues.

While this part of the Novell API
seems modeled on OS/2, it is impor
tant to note that NetWare 386 uses
non-preemptive multitasking. Inside
a “big job," it is therefore necessary
to call a routine such as delay() or
ThreadSwitch() so that other threads
are not starved.

The library that Watcom provided
for Novell contains a few modifica
tions to support multiple threads.
Global variables such as errno are in
fact allocated on a prethread basis.
Static data such as used by the notori
ous strtok() function is also handled
differently than in a single-threaded
library. No new keywords (such as
private, used in Lattice C 6.0 for OS/2)
have been added, however. — A.S.

Dr. Dobbs Journal, March 1990 79
239

E X A M I N I N G R O O M

64K, w hereas the 32-bit code can han
dle quantities up to 4 gigabytes.

Right now , WAT386 supports flat
model and small model. In the flat mem
ory m odel, the application's code and
data must total less than 4 gigabytes in
size. In the small m em ory model, your
code and data are each “lim ited” to 4
gigabytes. By default, WAT386 uses the
flat model. W hen linking with the Lahey
linker (LINK-EM/32) provided with OS/
386, you must com pile with the small
model.

Because an offset into a segm ent is
4 bytes while the segm ent registers are
still 2 bytes, s izeo f(vo id f a r *) is 6 bytes
(an FWORD, not a DWORD). But b e
cause a n e a r pointer is a 4-byte q uan
tity, you almost never have to deal with
f a r pointers. W hen a segm ent takes a
4-byte offset, even the most sloppily
written, bloated program in the world
should do fine w ith the flat model.
O nce loaded, DS and CS stay constant.
Effectively, this is a linear address space.

Real-World Benchmarks
Interpreters are better for benchm ark
ing com pilers than the tiny program s
that are usually used. Such benchm arks
usually involve a fair am ount o f source
code. The C source code for several
interpreters is readily available, and to
execute one line in the interpreted lan
guage, the interpreter needs to crunch
through a lot of C code.

In the rem ainder o f this review, I’ll
describe using WAT386 (and Meta Ware
High C) to port a larger program to the
386: ISETL (Interactive Set Language),
w ritten in C by Gary Levin (Dept, of
Mathematics and Com puter Science,
Clarkson University, Potsdam, N.Y.).
ISETL is an interpreter for working with
sets, tuples, propositions, several dif
ferent types of functional objects, ma
trices, and other constructs useful for
studying the mathematical foundations
of com puter science. It is described in
the book Learning D iscrete M a them a t
ics w ith ISETL by Nancy Baxter, Ed Du-
binsky, and Gary Levin (New York: Sprin-
ger-Verlag, 1989). ISETL deserves a full

16-bit code:
mov es, seg _Env
mov ax, word ptr es:_Env
mov dx, word ptr es:_Env+2
mov word ptr _p, ax
mov word ptr _p+2, dx

32-bit code:

mov eax, _Env
mov _p, eax

Exam ple 1: 3 2 - a n d 16-bit co d e g e n
era ted u n d e r the large m em ory’ m odel

discussion, but for now I'll just describe
the process of producing ISETL/386.

Due to space considerations, the
ISETL/386 listings are not included in
this issue. They are available through
DDJ (see the end of this article for
information). The ISETL im plem enta
tion consists of 29 .C files and 14 ,H files,
and totals about 13,000 lines of code.
Some of the code is YACC output.

To sell such programs,
and to acquire a
program that will

“bind” the DOS
extender into the

executable so that your
customers don’t need to
know anything about
the DOS extender, you

must acquire a
redistribution package

from Phar Lap

W hen I tried to produce a 386 ver
sion of this real program , my opinion
about WAT386 vs. High C nearly re
versed. As long as I was w orking on
small one- or tw o-m odule programs,
WAT386’s similarity to Microsoft C and
Turbo C m ade it preferable to Meta-
Ware High C. But once I started w ork
ing on ISETL/386, with m ore source
code, written by som eone else, my al
legiance shifted to High C.

High C provides better warning m es
sages than WAT386; the High C com
piler is faster than WAT386 (remem ber,
the WAT386 com piler I used w as a
16-bit real-mode program); surprisingly,
High C seem s to produce better overall
code than WAT386; and, most im por
tant, High C and its standard library
isn’t buggy like WAT386.

I should m ention that Watcom has
terrific technical support. If you call
up with a problem , you get to talk to
the person responsible for the library
or the compiler. Watcom is quick to
find and fix bugs and, with the W ATCH

utility that com es with WAT386, they
have m ade the patch a fine art. Wat
com runs a well-organized BBS. On
the other hand, I d o n ’t even know how
good Meta W are’s technical support is,
because I never needed to use it.

At one time or another, w e've all
thought w e’ve found a com piler bug
only to discover that in fact w e have a
bug in our ow n code. But after w ork
ing with WAT386 for about a m onth, I
found that nearly every time it was a
com piler or library bug.

First o f all, one of the key switch
statem ents in ISETL was behaving bi-
zarrely. The value of the variable being
sw itched on was correct, w e w ould
jump to the correct case label, but a
function call to E m it(4 2) w asn’t w ork
ing. The problem is that any constant
(for exam ple, 42), used (anyw here) in
side a switch statem ent is scram bled if
that constant happens to match the
num ber of case labels in the switch
statement! This bug should be fixed
by the time you read this. If you have
this sam e release of the compiler, you
can dow nload a patch from the Wat
com BBS.

A nother problem occurs because the
ISETL initialization file opens the DOS
device CON (to im plem ent a p a u se (J
routine for use in ISETL program s) and
tries to read from this device. The prob
lem is, w hen reading from any of the
DOS device files (CON, AUX, and so
on), the WAT386 library gets confused
betw een binary and text mode; a call
to wait for one character actually waits
for 512 characters, that m akes it seem
like the m achine is hung.

In another project, I found that int-
d o sx(. . .) w as not w orking, even
though int386x(0x21,. . . ^w orked fine.
If this has not been corrected by the
tim e you read this, a patch is available
from the Watcom BBS.

In that sam e project, I found an ob
scure bug in W atcom’s use of the "in
terrup t” keyw ord that had to do with
calling an interrupt function rather than
generating an interrupt. Basically, func
tions defined with void interrupt (far *j)()
work. But functions defined with void
(in te rru p tfa r f) () (note the placem ent
of parentheses) don 't do a PUSHED
w hen you call them.

There is one problem that’s not Wat
com ’s fault: D ebugging with the 386
flat memory m odel is hardly better than
debugging in real m ode. With one sin
gle segm ent w orking as a linear ad
dress space, it is now here as easy to
catch bugs as w hen you have lots of
little segm ents (for exam ple, a 286-
based protected-m ode DOS extender
such as DOS/16M). In fact, to debug
ISETL/386, I found it necessary to cre-

80
240

Dr. D obbs Journal, M arch 1990

E X A M I N I N G R O O M

(continued from page 80)
ate a DOS/16M version (ISETL/286).
This show s that segm entation is not
such a bad idea, after all, it’s crucial for
genuine m emory protection. The ideal
situation is to use lots of segm ents for
developm ent, and then switch over to
the flat m odel for production.

The only assistance you get in catch
ing m emory protection violations from
the WAT386 flat m em ory is the Phar
Lap linker’s OFFSET switch, which al
lows you to load code or data starting
at som e offset other than zero. This
way, you get page faults w hen derefer

encing bad pointers, though you often
w o n ’t know w here they com e from.

Benchmarking with ISETL/386
O nce ISETL/386 was up and running
with WAT386,1 was able to write som e
ISETL programs and use them for bench
marking the com pilers. In addition to
contrasting WAT386 and High C, I was
able once again to com pare 32-bit code
with 16-bit code, using the Turbo Co
p roduced executable from the ISETL
distribution.

Figure 1 show s the results for two
different ISETL program s to generate

prime num bers, for an ISETL program
to generate the first 1000 Fibonacci num
bers, and for an overall test of ISETL
operations.

Rather than use explicit loops, the
ISETL prime num ber program in List
ing O ne (page 115) uses set notation.
This program creates the set o f all odd
num bers less than n, takes the union
o f this set w ith the singleton set (21,
then takes the difference betw een the
resulting set and the set of all odd com
posite num bers less than n. The result
ing set is the set o f all primes <= n.
This can be expressed in a few lines
of ISETL code.

Listing Two (page 115) perform s the
sam e operation, but uses ordered tu
ples (sets are, of course, unordered). I
had to choose a small num ber n be
cause, even with garbage collection,
ISETL gobbles up a lot o f memory.

Listing Three (page 115) is a p ro
gram to generate the first 1000 Fibon
acci num bers. This relies on ISETL’s
support for assignm ent to the return
value of a function (which allows one
to write functions that "rem em ber” past
values-dynam ic program m ing) and
ISETL’s arbitrary-precision arithmetic.
Fibonacci(lOOO) is a 209-digit number.
ISETL/386 takes 15 seconds to com
pute the first 1000 Fibonacci num bers

WAT386 HIGH C 386 TURBO C

PRIME.SET 2000 18.0 16.3 24.8
PRIME.SET 4000 42.6 40.0 N/A
PRIME.TUP 2000 1:03.7 52.7 1:11.3
PRIME.TUP 4000 4:14.9 3:27.6 N/A
FIB.SET 1000 15.0 14.1 20.4
FIB.SET 1200 18.0 17.0 N/A
overall test 1:05.3 59.4 1:30

total 477.5 407.1 N/A

ISETL filesize 133K 148K 209K
ISETL full compile 12:52 min. 11:45 min. 3:30 min.

Figure 1: ISETL test execu tio n tim es in seconds (W a tcom a n d H igh C ru n
tim es u s in g P h a r Lap 3 8 6 1 D O S-E xtender)

82 Dr. D ohb’sJournal, M arch 1990
241

in the WAT386 version and 14 seconds
in the High C version. The 16-bit Turbo
C ISETL takes 20.4 seconds.

The High C 386 version o f ISETL was
faster than the WAT386 version in ev
ery case tested. Overall, the High C
version w as about 15 percent faster
than the WAT386 version. This is some-

Programs such as
Phar Lap’s 386 \DOS-

Extender and
Eclipse Computer

Solutions’s OS/386 do
not replace DOS. They
manage the interface
between 16-bit real

mode DOS and your
32-bit protected-mode

program

what surprising since, as is well known,
MetaWare produces High C by using
an automatic com piler-com piler (which
MetaWare m arkets separately as the
Translator Writing System).

Profiling with the DOS/16M protected-
m ode debugger from Rational Systems
(DOS/16M currently has the only d e
cent protected m ode C source-level d e
bugging tools available), I found that
ISETL generally spends 50 percent of
its time in only four routines. Perhaps
this test is som ew hat lopsided. Any
real program , on the o ther hand, will
have similar “hot spots.”

The Future
Over the next few months, bo th Wat
com and MetaWare are planning major
upgrades that may be out by the time
you read this. O ne obvious change in
H igh C is that while the 1.5 libraries are
m issing functions such as o p e n (),
fd o p e n (), d u p () , f i l e n o (), and signal(),
High C 1.6 is scheduled to include both
a M icrosoft-compatible standard library
(including _dos_k.eep(), in t8 6 x (J), a 32-
bit version o f the GFX graphics library,
and a 32-bit version of the Sterling Cas
tle C library.

WAT386’s new release should include
a 32-bit protected m ode source-level
debugger, a 32-bit version of W atcom’s
graphics library (which is identical to
the MSC51 graphics library), a 32-bit
version of the WAT386 compiler, and
a 32-bit version of W atcom’s Express
in-memory quick compiler. The source-
level debugger is urgently needed, and
should put Watcom ahead in the 386
developm ent tool race.

A 386 com piler w ar may indeed be
starting. W hile WAT386 itself is not fully
mature, its arrival is a sign of the grow
ing strength of the m arket for 386 d e
velopm ent tools. And about time too,
now that the first 486s are rolling off
the assembly line. But remember, even
an 80586 will not save you from bad
code.

Product Information

Watcom C7.0/386
Watcom
415 Phillip Street
W aterloo, Ontario, Canada N2L 3X2
800-265-4555
Price: $895
Requirements: 386-based PC- or PS/2
com patible, MS-DOS 3.1 or higher,
386 DOS extender toolkit: 3861 DOS-
Extender (Phar Lap) or OS/386
(Eclipse Com puter Solutions)

C Network Compiler/386
Novell D evelopm ent Products
P.O. Box 9802
Austin, Texas 78766
512-346-8380
Price: $995

Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif, residents add sales
tax) to Dr. D o b b ’s Jo u rn a l, 501 Galves
ton Dr., Redw ood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
o r 800-533-4372 (from outside Calif.).
Please specify the issue num ber and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the D DJ Forum on Com pu
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR w hen the
system answers, type: listings (low er
case) at the log-in prompt.

DDJ

(Listings begin o n page 115.)

Vote for your favorite feature/article.
C ircle Reader Service No. 7.

Dr. D obbs Journal, M arch 1990
242

P R O G R A M M E R ' S WORKBENCH

Mixed-Language
Programming with ASM
Getting the jo b done often requires
blending models and languages

Karl Wright and Rick Schell

A
s applications get larger, few er
and few er are written in a sin
gle language. Large software
projects tend to com e together
in a piecemeal fashion — some
parts are borrow ed from previous pro

jects, other parts m ay be purchased
from various vendor sources, and, let’s
face it, every program m er has a favor
ite language. Assembly languages have
m ade great strides recently in the area
o f mixed language programming. Now
m ore than ever before, it m akes sense
to write applications with m ore than
one language and to include assembly
language in the mix.

Furthermore, every programming lan
guage ever created has inheren t
strengths and w eaknesses. O ne area
in w hich different languages have dis
tinct strengths is in how procedures are
called. This is an extrem ely im portant
issue, because in m any applications
m ore time and effort is spent getting
in and out o f procedures than doing
anything else! Conversely, a good choice
of procedure calling conventions can
actually m ake the difference betw een
an applica tion that can be w ritten
quickly and one w hich cannot be writ
ten at all.

Usually, higher-level languages such

K arl is th e p r in c ip a l developer o f Turbo
A ssem b le r a n d h e c a n be re a c h e d
a t P.O. B o x 39, B edford. M A 01730 .
Rick, is d irec to r o f la n g u a g e develop
m e n t f o r B o r la n d In te rn a tio n a l a n d
c a n be rea ch ed a t 1800 G reen Hills
Road, Scotts Valley, CA 95065 .

as C and Pascal use an argum ent pass
ing technique known as the “stack frame
m ethod,” w here argum ents are pushed
onto a stack and addressed as an offset
from som e “fram e” pointer. It is a good
general technique in that it allows for
an unlimited num ber of arguments with
built-in recursion.

C and Pascal each m ake use of a
slightly different flavor of the stack frame
m ethod. The C-style stack frame per
mits a variable num ber of argum ents
to be passed to a procedure. This re
quires that the caller rem ove the argu
m ents from the stack after the proce
dure call, because it is the caller w ho
know s best how m any argum ents w ere
passed. In Pascal, on the other hand,
the num ber of argum ents is fixed, so
the procedure itself is responsible for
rem oving its argum ents from the stack.
Typically, this is done efficiently with
the single m achine instruction R E T xx .

Until recently, assembly language was
generally limited to w hat is know n as
the “register passing m ethod” of pass
ing arguments. With register passing,
argum ents are passed to procedures
in m achine registers o r at fixed m em
ory locations. (Stack frames could be
constructed in assembly language, but
with considerable effort on the part of
the program m er.) Register passing is
not a general argument passing method.
There are a limited num ber o f registers
in any m achine, and explicit PUSH and
POP instructions must be used to re
tain the availability of argum ents dur
ing recursion. Nevertheless, register pass
ing is a m uch m ore efficient m ethod

of passing argum ents than the stack
frame w hen the num ber of argum ents
to a procedure is small and the particu
lar argum ent registers are chosen care
fully in light o f the instructions, which
are to be done inside the procedure.

A Text "Spectrum Analyzer" Example
The example used to illustrate this point
is a program that reads one or more text
files, breaks them into words, and counts
the individual words. It then sorts the
resulting array by w ord count, and dis
plays the w ord and the associated count
together in a neat, tabular form.

This exam ple em phasizes speed of
execution, with the additional criteria
that m odularity is preserved and nasty
tricks like self-modifying code are not
used. This will permit the program to
be relatively easy to change or to up
grade, and still be considerably faster
than anything written wholly in a sin
gle language.

The major points that need to be
covered are the interfaces between m od
ules and w hat each m odule is respon
sible for, as well as the overall organi
zation of the application.

The com m and line that this program
will accept has the following format:
SPECTRUM <file_spec> <file_spec> . . .
where each <file_spec> can include wild
cards. If a file nam e is given m ore than
once, its spectrum will be taken more
than once. The output of the applica
tion will be a table that is written to
Standard O ut and is sorted in order of
reference count, the most referenced
w ords being listed first.

84 Dr. D obb’s Journal. M arch 1990
243

P R O G R A M M E R ' S W 0 R K B E N C H

(continued from page 84)
The basic steps are: 1. Initialize all

data structures. 2. Parse the command
line. For each file spec, read the file(s)
and break it (them) into words. Keep a
reference count for each unique word.
3. Build a list of unique words and sort
it by reference count. 4. Scan the sorted
list and print out the reference count and
associated word for each list element.

For the sake of performance, the work
o f reading a file, breaking it into words,
and hashing them into a symbol table
is best handled in assem bly language,
as is the other time bottleneck that
occurs w hen the sort is done. Less time-
critical areas, such as com m and-line
parsing and table formatting, are writ
ten in C to provide greater flexibility
in the user interface. Finally, the gener
ality of assem bly language, another in
herent strength, m akes it best for deal
ing with the heap and error handling
modules.

The major m odules w e need and
the ir respective languages are: ER
ROR. ASM, the assem bly language error
handler (see Listing O ne, page 116);
HEAP.ASM, the assembly language mem

ory allocator (Listing Two, page 116);
WORD.ASM. the assem bly language
lexer/w ord , table/file input (Listing
Three, page 116); SORT.ASM, the as
sembly language general-sort proce
dure (Listing Four, page 119); and SPEC
TRUM. C, the command-line parsing, text
fonnatting, and output written in C (List
ing Five, page 120). The make file is
show n in Listing Six, page 121.

Throughout the program, w e’ve made
every effort to use an appropriate call
ing convention for the situation. On
procedures w ith stack frames, Pascal-
style calling conventions are most fre
quently used because o f their inher
ently faster execution and smaller code
requirem ents. Only on procedures that
require a variable num ber of arguments
do w e use a C-style stack frame.

The extensive modularity w e use in
this application is not absolutely neces
sary given its small size. We have tried,
however, to put forth as general a treat
m ent as possible, dem onstrating tech
niques that are appropriate even for
very large applications. The use of
strong data abstraction is one of these
techniques. In strong data abstraction,

the details of an actual data structure
are know n only to a small set o f proce
dures that m anage that data structure.
The data structure and the procedures
that m anage it are taken together to
form a m odule. Any other code in the
program that deals with the data struc
ture must do so through the appropriate
procedures — any other access is con
sidered to be a breach of modularity.
In this application , the HEAP and
WORD m odules are good exam ples of
strong data abstractions.

The program uses SMALL model with
a NEAR stack. All o f the code is in
segm ent _TEXT (except for any code
in the C libraries), so CS is always set
to _TEXT. Data, uninitialized data, and
stacks are all in DGROUP, so SS must
always be set to DGROUP. DS is also
set to DGROUP in the C sections of the
program , but is used as a general seg
m ent register in the assembly language
code.

The interfaces to the procedures in
the various m odules pretty well spell
out the function of each module:

E rror H andling Module Because
errors need only to be caught and dis-

Assembler Specific Features
The assem bly language section of the
application w as written in Borland’s
Turbo Assembler 2.0 and uses several
features unique to that assembler. If
you are using another assembler, you
may need to modify portions of the
exam ple so that your assem bler will
accept it. The following are the fea
tures I used and how you can w ork
around them in your assembler.
Extended CALL automatically builds
a calling stack frame by generating a
series of PUSHes in the order appropri
ate to the specified language. For ex
am ple , CALL foopascal, ax, bx, wordptr
w ould PUSH the three argum ents AX,
BX, and WORDPTR onto the stack in
the order appropriate for Pascal stack
frames, and is equivalent to

PUSH ax
PUSH bx
PUSH w ordptr
CALL foo

Multiple PUSHes/POPs permit more
than one item at a time to be PUSHed
or POPed with a single instruction.
For exam ple,

PUSH AX BX
POP BX AX

is equivalent to

PUSH AX
PUSH BX
POP BX
POP AX

Local Symbols are enabled with the
LOCALS directive. All local symbols
begin with the tw o characters @@.
They are scoped to be local to the
enclosing procedure. For exam ple

fo o l proc
jmp @@exit

@@exit: ret
endp

foo2 proc
jmp @@exit

@@exit: ret ;This @@EXIT can co
exist amicably w ith the former one.
endp

If you are using an assem bler that
does not support this feature, one
way to w ork around it is to change
the .MODEL statem ent at the start of
each m odule to .MODEL SMALL, PAS
CAL. This will cause all symbols within
a p rocedure to becom e local.
ARG and USES Statements the as

sembler used for the example has a
way of setting up procedure stack
frames that is somewhat easier to read
than the standard method. For example:

foo proc pascal
arg a l,a2
uses ds,si

is equivalent to the statement:

foo proc pascal uses ds si.al,a2

Som e assem blers require a language
to be specified in the .MODEL state
m ent before the language keyw ord
PASCAL is recognized. If this is true
for your assem bler, you w'ill need to
change the .MODEL statem ent at the
start o f each m odu le to .MODEL
SMALL,PASCAL.
The CODEPTR type is used occasion
ally in the exam ple. It m eans either
WORD o r DWORD dep en d in g on
w hether the selected m odel has NEAR
or FAR code, respectively. Because the
exam ple is SMALL m odel, you may re
place CODEPTR with WORD w herever
it is found.

— R.S.

86
244

Dr. D obb’s Journal, M arch 1990

P R O G R A M M E R ' S WORKB E NC H

void pascal E R R O R JN IT (void)
Initializes error module.

unsigned pascal ERROR_TRAP (void pascal (*execution_procedure)())
Returns 0 if no error occurred in the execution of
EXECUTION_PROCEDURE or any procedures it calls. (Otherwise,
an error code is returned.) EXECUTION_PROCEDURE is a
generic procedure which can generate errors in its execution
(via ERROR_LOG) and might be declared in C as follows:
void pascal execution__procedure(void)

void pascal ERROR_LOG (unsigned e rro rco d e)
Causes control to pass to the nearest enclosing ERROR_TRAP.
Execution resumes with that instance of function ERROR_TRAP
returning error code.

Table 1: Required procedures fo r error handling

void pascal H E A P JN IT (unsigned starting_segment, unsigned segment_count)
Initializes the heap to start at a certain segment and be
a certain size.

void far * pascal HEAP__ALLOC (unsigned paragraph count)
Allocates the requested number of paragraphs from the
heap and returns the far address of the memory in DX:AX.
NOTE: The offset part of the address is always 0.

Table 2: Required procedures fo r stack heap

void pascal W O R D JN IT (unsigned maximum_word_count)
Initializes symbol table. The maximum number of
different words allowed is passed so that a hash table
can be initialized.

void pascal WORD READ (unsigned file_handle)
Reads all the text there is from the specified file
handle and analyzes it.

void pascal WORD_SCAN (void pascal ('w ord_procedure)0)
Calls the specified procedure once for each individual
symbol. The word descriptor for the symbol is passed to
WORD PROCEDURE as an argument. W ORD_PROCEDURE might
be declared in C as follows:
void pascal word_procedure(unsigned word_descriptor).

char far * pascal WORD NAME (unsigned word_descriptor)
Returns the FAR address of the name of the described symbol.

unsigned pascal W 0R D _R E FC 0U N T (unsigned word_descriptor)
Returns the total reference count of the described symbol.

unsigned pascal W ORD_COUNT (void)
Returns the total number of d istinct words processed so far.

int pascal W ORD_COM PREF (unsigned w ord_descriptor1, unsigned
word_descriptor2)

Compares the reference counts of two word descriptors.
Returns flags for refcount(word_descriptor2) -
refcount(word_descriptor1). NOTE: This procedure, while
it obeys Pascal calling conventions, is not callable
directly from C because it returns its result in the flag
register. It also has the requirement that the registers
CX and DX are preserved.

This procedure might be described as using a sort of
“ hybrid" calling convention, where a stack frame is
used but high-level language register conventions are not
obeyed.

Table 3: Procedures fo r symbol table

88

(continued from page 86)
played w ithout the ability to resum e
execution of the application, the error
handling schem e this program uses is
a mechanism whereby the stack pointer
is saved at som e point in the execution
of the program , and if an error is en
countered, the program is resum ed at
that point. The required procedures are
listed in Table 1.

Heap Module Because data struc
tures are allocated but never freed, a
sim ple stack heap is the best choice for
both perform ance and simplicity. The
application uses a paragraph-based
heap w here m em ory is allocated with
16-byte granularity. This turns out to
be useful because it permits any data
item allocated from the heap to be
described with a single 16-bit segm ent
address. See Table 2.

Symbol Table Module The symbol
table m odule is responsible for much
of the actual w ork of reading in a file,
converting it to words, and recording
the w ord usage information. After it is
read in, each symbol is represented by
an area of m em ory allocated from the
heap containing the reference count
for the symbol and the actual text of
the symbol. Because it is allocated from
the heap, each symbol can be addressed
by using a 16-bit w ord descriptor. Re
fer to Table 3-

Sorting Module The sort routine is
written in assem bly language because
a recursive algorithm was chosen and
recursion tends to be faster if register
passing can be used appropriately. In
this case, there are a small num ber of
registers that are used directly; m ore
importantly, during the innerm ost step
of the recursion (w hich is done most
often) no registers w hatsoever need to
be saved on the stack. Recursion with
a stack frame can t m ake a decision this
intelligent, because access to the argu
m ents is needed first.

The son procedure operates on an
array of words, calling a generic com
parison routine whose address is passed
as an argument. This comparison routine
uses a hybrid calling convention, where
a stack frame is present but registers are
not necessarily consistent with C. The
level of generality this arrangem ent
achieves is high, but it does require that
the comparison routine be written in as
sembly language. See Table 4.

If raw speed w ere the only concern,
the SORT_DO procedure might best
be integrated entirely into the symbol
table m odule, which w ould perm it the
com parison to be perform ed directly
and w ould rem ove the need to call the
com parison routine. But w e felt that a
m ore general treatm ent was superior
in term s of modifiability — it is rela-

Dr. D obb’s Journal, M arch 1990
245

tively straightforward to add a switch
to control the particular sorting method,
for exam ple.

The Com m and-line Parsing and
Text Form atting Module We are now
ready to lay out the full-scale sequenc
ing of the program . Given the assem
bly language interface listed earlier, the
following steps should be taken by the
C portion of the program:

Assembly language’s
flexibility can assist in

everything from
optimization to the

creation of programs
using more than one

interfacing convention

void pascal SORT_DO (unsigned far *sort_array, unsigned sort__count,
int pascal (*compare_procedure)())
Uses the specified compare procedure to order the array.
COMPARE_PROCEDURE is called with two array values, and
returns flags appropriate to a comparison of those
values. Note that compare_procedure cannot be written in
C because the value is returned in the machine flags. In
addition, the segment registers are not guaranteed to be
set up in a manner consistent with C when
compare_procedure is called. Com pare j>rocedure itself is
expected to preserve CX and DX. The definition for
com pare_procedure might be stated:
int pascal com parejDrocedure(unsigned v a lu e l, unsigned value2)

Table 4: P rocedures f o r sorting

1. Allocate m em ory from DOS, call ER-
ROR_INIT, and set up an error trap
using ERROR_TRAP.
2. Call HEAP_INIT and WORD_INIT
appropriately.
3. Parse the com m and line. For each
file spec, call WORD_READ for all files
matching the file spec (the C code is
responsible for resolving all wild cards
and for opening and closing each file).
4. Request the total num ber o f unique
w ords using WORD_COUNT, and allo
cate an array of 16-bit w ord descriptors
using HEAP_ALLOC that is large enough
to hold them. Call WORD_SCAN appro
priately to fill up the array with w ord
descriptors.
5. Sort the array using SORT_DO with
the comparison routine WORD_COMP
REF, w hich com pares the count of
references for tw o w ord descriptors.
6. Write the table title.
7. Scan the array to write out the table
entries. Use WORD_REFCOUNT to get
the reference count for each w ord d e
scriptor, and WORD_NAME to get the
nam e string for each w ord descriptor.

Theory of Operation
The SPECTRUM program uses a hash
function and hash table to achieve its
level o f perform ance. Inside the WORD
m odule, the procedure WORD_READ
reads text into a buffer. This text is
copied to a storage area one w ord at a
time. During the copy operation, which
uses the LODSB and STOSB instruc-

Dr. D obbs Journal, M arch 1990
246

89

P R O G R A M M E R ' S W O R K B E N C H

tions, the text is converted to up p er
case and the hash value for the w ord
is calculated, all on-the-fly.

The hash table is an array of w ord
descriptors. An elem ent in the hash
table is 0 if there is not yet an associ
ated symbol. The hash function is cal
culated by looking at each character
in the word, rotating the previous hash
value circularly left by five, and XORing
in the character value. The final hash
value is m asked off to becom e an in-

Now more than ever
before, it makes sense
to write applications
with more than one

language and to
include assembly

language in the mix

dex into the hash table.
After the hash index is calculated,

the corresponding hash table entry is
checked. If it is 0, a new symbol is
created, and its reference count is in
itialized to 1. O therwise, the text of the
w ord is com pared against the text stored
in the symbol w hose w ord descriptor
is found in the hash table. If it agrees,
the correct symbol has been located,
and its reference count is increm ented.
If not, a collision has occurred, and the
next hash value is calculated by adding
11*2 to the current hash index (this
num ber must be relatively prim e to the
size of the hash table). The process
then repeats until the correct hash ta
ble entry or a 0 is found.

An unusual techn ique is used to
speed the recognition of the various
different character types during the lex-
ing process. BX is initialized to point
to a translation table, w hich contains a
bit for each pertinent character type.
An XLAT instruction followed by a TEST
AL,xxxis then all that is needed to iden
tify a character as a numeral, delimiter,
lowercase alphabetic, and so on.

A nother unusual technique is used
to describe objects in the assem bly lan
guage section of the program. Rather
than use a full 32 bits to describe the
address o f a data object, which is som e
what cumbersome, a paragraph address

is used instead. This paragraph address
becom es the “descriptor” for the ob
ject. Data within the object is addressed
by loading an appropriate segm ent reg
ister w ith the object descriptor and ac
cessing the data w ith a constant offset
using that segm ent register.

After all files have been read in and
parsed, an array of w ord descriptors is
built using the routine WORD_SCAN.
This array is then sorted using SORT_DO
w ith the com parison routine WORD_
COMPREF. SORT_DO is a recursive sort
that requires N*LOG(N) com parisons.
It operates by dividing the array into
tw o roughly equal parts, recursively
sorting each part, and then merging the
tw o parts in place.

Finally, to ou tput the table, the array
is scanned sequentially. For each w ord
descriptor in the array, WORD_NAME
is used to obtain the actual text of the
w ord, and WORD_REFCOUNT is used
to obtain the reference count. These
values are displayed using PRINTF.

Conclusion
It is not only practical but advisable to
mix languages and m odels in order to
achieve the best results. M odern as
sembly language is a vital part o f this
mix, and will continue to be important
in the future, because space and per
formance are always important for com
petitive software, no m atter how pow
erful the hardw are becom es. Assembly
language’s flexibility can assist in ev
erything from optim ization to the crea
tion of program s using m ore than one
interfacing convention.

Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif, residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves
ton Dr., Redw ood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue num ber and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Com pu
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR w hen the
system answers, type: listings (low er
case) at the log-in prom pt.

D DJ

(Listings begin on page 116.)

Vote for your favorite feature/article.
Circle Reader Service No. 8.

Dr. D obb’s Journal, M arch 1990
247

A S M L I V E S

l is tin g O ne (Text begins on page 16.)
/* Sample program to copy one far string to another far string,
* converting lowercase letters to uppercase letters in the process. */

♦include <ctype.h>
char Source[] = "AbCdEfGhljKlMnC)pQrStUvWxYz0123456789!";

char D e s t [100);
/* Copies one far string to another far string, converting all lower
* case letters to upper case before storing them. */

void CopyUppercase(char far *DestPtr, char far *SourcePtr) {
char UpperSourceTemp;
do {

/* Using UpperSourceTemp avoids a second load of the far pointer
SourcePtr as the toupper macro is expanded */

UpperSourceTemp = *SourcePtr++;
*DestPtr++ = toupper(UpperSourceTemp);

} while (UpperSourceTemp);

}
main() (

CopyUppercase((char far)Dest,(char far *)Source);

End Listing One

Listing Two
C near-callable subroutine, callable as:

void CopyUppercase(char far ‘DestPtr, char far ‘SourcePtr);
Copies one far string to another, converting all lowercase letters
to upper case before storing them. Strings must be zero-terminated.

parms struc
dw ? ;pushed BP
dw ? ;return address

DestPtr dd ? d e s t i nation string
SourcePtr dd ? ;source string
parms ends

.model small

.code
public _CopyUppercase

_CopyUppercase proc near
push bp
mov bp.sp ;set up stack frame
push si .•preserve C's register vars
push di
push ds ;we'll point DS to source

les di,[bp+DestPtr]
.•segment for the duration of the loop.
,-point ES:DI to destination

Ids si,[bp+SourcePtr] ;point DS:SI to source
CopyAndConvertLoop:

lodsb ;get next source byte
cmp al,'a' ;is it lowercase?
jb SaveUpper ;no
cmp al,'z' ;is it lowercase?

ja SaveUpper ;no
and al,not 20h .•convert to uppercase

SaveUpper:
stosb ;store the byte to the dest
and al, al ;is this the terminating 0?
jnz CopyAndConve rt Loop ;if not, repeat loop
pop ds .•restore caller's DS
pop di .•restore C's register vars
pop si
pop bp .•restore caller's stack frame
ret

_CopyUppercase endp
end End Listing Two

Listing T hree
/* Sample program to copy one near string to another near string,
* converting lower case letters to upper case letters in the process. */

iinclude <ctype.h>
char So u r c e d = "AbCdEfGhljKlMn()pQrStUvWxYz0123456789!";
char D e s t [100];
/* Copies one near string to another near string, converting all lower
* case letters to upper case before storing them. */

void CopyUppercase(char *DestPtr, char ‘SourcePtr) {
char UpperSourceTemp;
do {

/* Using UpperSourceTemp allows slightly better optimization
than using *SourcePtr directly */

UpperSourceTemp = *SourcePtr++;
*DestPtr++ = toupper(UpperSourceTemp);

} while (UpperSourceTemp);

}
main() {

CopyUppercase(Dest, Source);

1 End listin g Three

Listing Four
C near-callable subroutine, callable as:

void CopyUppercase(char ‘DestPtr, char ‘SourcePtr);

Copies one near string to another, converting all lowercase letters to

uppercase before storing them. Strings must be zero-terminated.

parms struc
dw
dw

DestPtr dw
SourcePtr dw
parms ends

;pushed BP
;return address
.•destination string
;source string

.model small

.code
public

_CopyUppercase
CopyUppercase
proc near

push bp
mov bp, sp
push si
push di
mov di,[bp+DestPtr]
mov si,[bp+SourcePtr]
mov c x , ('a' shl 8) +

mov bl,not 20h

CopyAndConvertLoop:

;set up stack frame
;preserve C's register vars

;point DI to destination
;point SI to source
;preload CH with lower end of
; lowercase range and CL with
; upperend of that range
;preload BL with value used to
; convert to uppercase

lodsw ;get next two source bytes
cmp al, ch ;is the 1st byte lowercase?

jb SaveUpper ;no
cmp al, cl ;is the 1st byte lowercase?

ja SaveUpper ;no
and al,bl ;convert 1st byte to uppercase

SaveUpper:
and al, al ;is the 1st byte the terminating 0?

jz SaveLastAndDone ;yes, save it & done
cmp ah, ch ;is the 2nd byte lowercase?

jb SaveUpper2 ;no
cmp ah, cl ;is the 2nd byte lowercase?

ja SaveUpper2 ;no
and ah,bl .•convert 2nd byte to uppercase

SaveUpper2:
stosw ;store both bytes to the dest
and ah, ah ;is the 2nd byte the terminating 0?
jnz CopyAndConve rt Loop ;if not, repeat loop
jmp short Done ;if so, we're done

SaveLastAndDone
stosb ;store the final 0 to the dest

Done:
pop di .•restore C's register vars
pop si
pop bp .•restore caller's stack frame
ret

_CopyUppercase endp
end End Listing Four

Listing Five
C near-callable subroutine, callable as:

void CopyUppercase(char *DestPtr, char ‘SourcePtr);
Copies one near string to another, converting all lowercase letters to
upper case before storing them. Strings must be zero-terminated. Uses
extensive optimization for enhanced performance.

parms struc
dw
dw

DestPtr dw
SourcePtr dw
parms ends

;pushed BP
;return address
.•destination string
;source string

.model small

.data
; Table of mappings to uppercase for all 256 ASCII characters.
UppercaseConversionTable label byte
ASCII_VALUE=0

rept 256
if (ASCII_VALUE It 'a') or (ASCII_VALUE gt ' z')

db ASCII_VALUE ;non-lowercase characters map to themselves

else
db ASCII_VALUE and not 2Oh

endif
ASCII_VALUE=ASCII_VALUE+1

endm
.code
public

_CopyUppercase
push
mov
push
push
mov
mov
mov

_CopyUppercase
proc near
bp
bp, sp

di
di,[bp+DestPtr]
si,[bp+SourcePtr]

;lowercase chars map to upper equivalents

;set up stack frame
;preserve C's register vars

;point DI to destination
;point SI to source

bx,offset UppercaseConversionTable
;point BX to lowercase to
; uppercase mapping table

This loop processes up to 16 bytes from the source string at a time,
branching only every 16 bytes or after the terminating 0 is copied.

CopyAndConvertLoop:
rept 15 ;for up to 15 bytes in a row.
lodsb ;get the next source byte
xlat ;make sure it's upper case
stosb ;save it to the destination
and al.al ;is this the terminating 0?
jz Done ;if so, then we're done
endm
lodsb ;get the next source byte
xlat ;make sure it's upper case
stosb ;save it to the destination
and al, al ;is this the terminating 0?
jnz

Done:
CopyAndConvertLoop ;if not, repeat loop

pop di .•restore C's register vars
pop si
pop bp .•restore caller's stack frame
ret

_CopyUppercase endp
end

End Listings

94 Dr. D obb’s Journal, M arch 1990
248

3 8 6 D E B U G G I N G

; you must use @CodeSize

IF @CodeSize
argl EQU < [BP+6]>
arg2 EQU < [BP+8]>
arg3 EQU < [BP+10]>
arg4 EQU < [BP+12]>
ELSE
argl EQU < [BP+4]>
arg2 EQU < [BP+6]>

arg3 EQU < [BP+8]>
arg4 EQU < [BP+10]>
ENDIF

Listing O ne (Text begins on page 46.)

* File: BREAK386.ASM
* BREAK386 "main programs". Contains setup386, clear386, break386 and

* intl_386.
* Williams - June, 1989
* Compile with: MASM /Ml BREAK386;

MODEL small
386P

public _break386,_clear386,_setup386,_intl_386

Set up stack offsets for word size arguments based on the code size
Be careful, regardless of what Microsoft's documentation says,

True for models with far code

.DATA
Things you may want to change:

DIRECT EQU 0
STKWRD EQU 32
INTSTACK EQU 1
USE_INT1 EQU 1

oldoffset
oldsegment

IF USE_INT1
video
csip
done
notdone
stkmess

dw 0
dw 0

IF 0 use BIOS; IF 1 use direct video access
of words to dump off the stack
When 0 don't display interrupt stack words
Set to 0 to disable intl_386()

old interrupt 1 vector offset
old interrupt 1 vector segment

segment of video adapter (changed by vinit)

vpage
vcols

dw ObOOOH
db 'CODE=',0
db 'Program terminated normally.',0
db 'Program breakpoint:',0
db 'Stack dump:',0

db 0
db 80

; get old inti vector

get new interrupt handler address

IFE DIRECT
prompt db '<V>iew output, <T>race toggle, <C>ontinue or <A>bort? ',0
savcursor dw 0 ; inactive video cursor

ALIGN 4
vbuff dd 1000 dup (07200720H)
ELSE
cursor dw 0
color db 7
ENDIF
ENDIF

.CODE

; This is the start up code. The old interrupt one vector is saved in
; oldsegment, oldoffset. intl_386 does not chain to the old vector, it
; simply replaces it.

_setup386 proc
push bp
mov bp,sp
push es
mov ax,3501H

int 21h
mov ax,es
mov oldsegment,ax
mov oldoffset,bx
pop es
mov ax,arg2
push ds
mov dx,argl

; If intl_386 is being assembled, setup386 will check to see if you are
; installing intl386. If so, it will call vinit to set up video parameters

; that intl_386 requires.
IF USE_INT1

cmp ax,seg _intl_386
jnz notus
cmp dx,offset _intl_386
jnz notus
push dx
push ax
call vinit ; Int'l video if it is our handler
pop ds
pop dx

ENDIF
notus: mov ax,2501H ; Store interrupt address in vector table

int 21H
pop ds
xor eax,eax ; Clear DR7/DR6 (just in case)
mov dr7,eax
mov dr6,eax

pop bp
ret

_setup386 endp

This routine sets/clears breakpoints
Inputs:

breakpoint # (1-4)
breakpoint type (see BREAK386.INC)
segment/offset of break address (or null to clear breakpoint)

Outputs:
AX=0 If successful
AX=-1 If not successful

_break386 proc
push bp
mov bp,sp
mov bx,argl
cmp bx,1
jb outrange
cmp bx,4
jna nothigh

outrange:
mov ax,0ffffH
pop bp
ret

nothigh:
movzx eax,word ptr arg4
shl eax,4

movzx edx,word ptr arg3
add eax,edx
jz resetbp
dec bx
jz bpO
dec bx
jz bpl
dec bx
jz bp2
mov dr3,eax
jmp short brcont

bpO: mov dr0,eax
jmp short brcont

bpl: mov drl,eax
jmp short brcont
mov dr2,eax

breakpoint # (1-4)

error: breakpoint # out of range

get breakpoint address

calculate linear address
if address = 0 then
turn breakpoint off!
set correct address register

b p 2 :
brcont:

movzx eax,word ptr arg2
mov cx,argl

; get type
; calculate proper position

push cx
dec cx
shl cx,2
add cx,16
shl eax,cl
mov edx,Ofh

shl edx,cl
not edx
pop cx
shl cx,l
dec cx
mov ebx,1
shl ebx,cl
or eax,ebx
mov ebx,dr7
and ebx,edx
or ebx,eax

; Adjust enable bit (set on for data bp's,
adjge:

mov eax,200H
and ebx,OfffffdffH
test ebx,033330000H
jz nodatabp
or ebx,512

nodatabp:
mov dr7,ebx
pop bp
xor ax,ax
ret

; Here we reset a breakpoint by turning off its enable bit & setting type to 0
Clearing the type is required so that disabling all data breakpoints will

rotate type

calculate type mask

calculate position of enable bit

enable bp
get old DR7
mask out old type
set new type/enable bits
off if no data bp's)

reset GE bit
test for data bp's

; clear the GE bit also.
resetbp:

mov cx, bx ; calculate type/len bit positions
mov edx,Ofh
dec cx
shl cx, 2
add cx, 16
shl edx,cl
not edx
mov cx,bx ; calculate enable bit position
shl cx, 1
dec cx
mov eax, 1
shl eax,cl
not ax ; flip bits
mov ebx,dr7
and ebx,eax ; clear enable
and ebx,edx ; clear type
jmp adjge

_break386 endp

; Reset the debug register, disabling all breakpoint. Also restore the old

; interrupt 1 vector
_clear386 proc

pushf
pop ax
and ax,0FEFFH
push ax
popf
xor eax,eax
mov dr7,eax
mov dr0,eax
mov drl,eax
mov dr2,eax
mov dr3,eax
mov dr6,eax
mov ax,2501H
push ds
mov bx,oldsegment
mov dx,oldoffset
mov ds,bx
int 21H
pop ds

turn off trace flag

turn off all other breakpoints

restore old int 1 vector

(continued on page 98)

9 6 Dr. D obb’s Journal, M arch 1990
249

3 8 6 D E B U G G I N G

Listing O ne (Listing continued, text begins on page 46.)
ret

_clear386 endp

IF USE_INT1
; This is all code relating to the optional INT 1 handler

; This macro is used to get a register value off the stack and display it
; R is the register name and n is the
; i.e.: outreg 'AX',10

outreg macro r,n
mov ax,& r
mov dx,[ebp+&n SHL 1]
call regout
endm

; This is the interrupt 1 handler
_intl_386 proc far

sti
pusha
push ds
push es
push ss
push 0data
pop ds
mov bp,sp

IFE DIRECT
call savevideo

END IF
mov ax,video
mov es,ax
assume cs:@code,ds:@data
mov bx,offset notdone
call outstr
mov edx,dr6
call hexout
xor edx,edx
mov dr6,edx
call crlf

;do register dump
outreg 'AX',10
outreg 'FL',13
outreg 'BX',7
outreg 'CX',9
outreg 'DX',8
call crlf
outreg 'SI',4
outreg 'DI',3
outreg 'SP',6
outreg 'BP',5
call crlf
outreg 'CS',12
outreg 'IP',11
outreg 'DS',2
outreg 'ES',1
outreg 'SS',0
call crlf

; do stack dump
IF STKWRD

mov bx,offset stkmess
call outstr
push fs
mov dx, [ebp]
mov fs,dx
mov al,' ('
call ouch
mov al,' '
call ouch
call hexout
mov al,':'
call ouch
mov al,' '
call ouch
mov bx,[ebp+12]

IFE INTSTACK
add bx,6

END IF

mov dx,bx
push bx
call hexout
mov al,')'
call ouch
call crlf
pop bx
mov cx,STKWRD

sloop:

mov dx, fs:[bx]
push bx
push cx

call hexout
pop cx
pop bx
inc bx
inc bx
loop sloop
pop fs

END IF
nostack:

; Here we will dump 16 bytes starting
; that caused the break

push fs
call crlf
mov bx, offset csip
call outstr
mov cx,8
mov ax,[ebp+24]
mov fs,ax
mov bx,[ebp+22]

position of the register on the stack

; Enable interrupts (see text)
; Save all Registers

; Reload DS
; point ebp to top of stack

; get video addressabilty

; Display breakpoint message

; Print stack dump title

; get program's ss

; get stack pointer (before pusha)

; skip interrupt info if desired

; get word at stack

; display it

8 bytes prior to the instruction

; get cs

; get ip

cmp bx,8
jnb ipbegin
mov cx,bx

ipbegin: sub bx,cx
push bx
push cx
mov dx,ax
call hexout
mov al,' :'
call ouch
mov al,' '
call ouch
mov dx,bx
call hexout
mov al,'='
call ouch
pop cx
pop bx
or bx,bx
jz ipskip

iploop:
mov dl,fs:[bx]
push bx
push cx
call hexlout
pop cx
pop bx
inc bx
loop iploop

ipskip:
push bx
mov al,'*'
call ouch
mov al,' '
call ouch
pop bx

; This is basically a repeat of the above loop except it dumps the 8 bytes
; starting at IP

mov cx,8
xiploop:

mov dl,fs:[bx]
push bx
push cx
call hexlout
pop cx
pop bx
inc bx
loop xiploop
call crlf
call crlf
pop fs

IFE DIRECT
; Here we will ask if we should continue or abort

mov bx,offset prompt
call outstr

keyloop:
xor ah,ah ; Get keyboard input
int 16H
and al,0dfh ; make upper case
cmp al,'T'
jz ttoggle
cmp al,' A'
jz ql
cmp al,'C'
jz cl
cmp al,'V'
jnz keyloop

; Display program's screen until any key is pressed
call savevideo
xor ah,ah

int 16H
call savevideo
jmp keyloop

; Execution comes here to toggle trace flag and continue
ttoggle:

xor word ptr [bp+26],256 ; toggle trace flag on stack

; Execution comes here to continue running the target program
c l :

call crlf
IFE DIRECT

call savevideo
ELSE

xor ax,ax
mov cursor,ax

END IF
pop ss
pop es
pop ds
popa

; This seems complicated at first.
; You MUST insure that RF is set before continuing. If RF is not set
; you will just cause a breakpoint immediately!
; In protected mode, this is handled automatically. In real mode it
; isn't since RF is in the high 16 bits of the flags register.
; Essentially we have to convert the stack from:

; 16 bit Flags 32 bit flags (top word = 1 to set RF)
; 16 bit CS to ----- > 32 bit CS (garbage in top 16 bits)

16 bit IP 32 bit IP (top word = 0)

; All this so we can execute an IRETD which will change RF.

sub esp,6
xchg ax,[esp+6]
mov [esp],ax
xor ax,ax
mov [esp+2],ax
mov ax,[esp+6]
xchg ax,[esp+8]

; make a double stack frame
; get ip in ax
; store it

; eip = 0000:ip

(continued on page 100)

; make sure we have 8 bytes before
; the begining of the segment
; If not, only dump from the start
; of the segment

; display address

; if starting at 0, don't display any
; before IP

; get byte

; output it

; put '*' before IP location

98
250

Dr. D obb’s Journal, M arch 1990

3 8 6 D E B U G G I N G

Listing O ne Listing continued, text begins on page 46.)
mov [esp+4),ax
xor ax,ax
mov [esp+6],ax
mov ax,[esp+8]
xchg ax,(esp+10]
mov [esp+8],ax
mov ax,1
xchg ax,[esp+10]
iretd

ENDIF

; Execution resumes here to abort the target program
ql:
IFE DIRECT

call savevideo
ENDIF

call quit
_intl_386 endp

IFE DIRECT
; save video screen & resto
; (assumes 25 lines/page)
savevideo proc near

pusha
push es
mov ah,Ofh
int lOh
mov vpage,bh
mov vcols,ah

push savcursor
mov ah,3
mov bh,vpage
int 10H
mov savcursor,dx
pop dx
mov ah,2

int 10H
movzx ax,vpage

mov cl,vcols
xor ch,ch
mov dx,cx
shl cx,3
shl dx,1
add cx,dx
mov dx,cx
shl cx,2
add cx,dx
push cx
mul cx
mov di,ax
pop cx
shr cx,2
mov ax,video
mov es,ax
mov si,offset vbuff

xloop: mov eax,es:[di]
xchg eax,[si]
mov es:[di],eax
add si,4
add di,4
loop xloop
pop es
popa
ret

savevideo endp
ENDIF

; This routine prints a register value complete with label
; The register name is in AX and the value is in dx (see the outreg macro)
regout proc near

push dx
push ax
mov al,ah
call ouch
pop ax
call ouch
mov al,'='
call ouch
pop dx
call hexout
ret

regout endp

; Plain vanilla hexadecimal digit output routine
hexdout proc near

and dl,Ofh
add dl,'0'
cmp d l ,3ah
jb ddigit
add dl,' A'-3ah

ddigit:
mov al,dl
call ouch
ret

hexdout endp

; Plain vanilla hexadecimal word output routine
hexout proc near

push dx
shr dx,12
call hexdout
pop dx
push dx
shr dx,8
call hexdout
pop dx

ours (only with BIOS please!)

; reread video page/size in case
; program changed it

; get old cursor

; set new cursor

; compute # bytes/page

; vcols * 25 * 2

; start at beginning of page

; # of double words to transfer

; store inactive screen in vbuff
; swap screens

; zero that stack word & restore ax
; get flags

; set RF

; DOUBLE IRET (32 bits!)

; Call with this entry point to output just a byte
hexlout:

push dx
shr dx,4

call hexdout
pop dx
call hexdout
mov al,' '
call ouch
ret

hexout endp

; These routines are for direct video output. Using them allows you to
; debug video bios calls, but prevents you from single stepping IF DIRECT
;output a character in al assumes ds=dat es=video destroys bx,ah
ouch proc near

mov bx,cursor
mov ah,color
mov es:[bx],ax
inc bx
inc bx
mov cursor,bx
ret

ouch endp

; <CR> <LF> output, assumes ds=dat es=video destroys ax,cx,dx,di clears
df
crlf proc near

mov ax,cursor
mov cx,160
xor dx,dx
div cx
inc ax
mul cx
mov cursor,ax
mov cx,80
mov ah,color
mov al,' '
mov di,cursor
cld
rep stosw
ret

crlf endp

ELSE
; These are the BIOS output routines
; Output a character
ouch proc near

mov ah,Oeh
mov bh,vpage
int lOh
ret

ouch endp

; <CR> <LF> output.
crlf proc near

mov al,Odh
call ouch
mov al,Oah
call ouch
ret

crlf endp

Intialize the video routines
■init proc near

mov ah,Ofh
int lOh
mov vcols,ah
mov vpage,bh
cmp al,7 ; monochrome
mov ax,ObOOOH
jz vexit
mov ax,0b800H

exit: mov video,ax
ret

init endp

outputs string pointed to by ds:bx (ds must be dat) es= video when DIRECT=1
outstr proc near

tagn:
mov al, [bx]
or al,al
jz outout
push bx
call ouch
pop bx
inc bx
jmp outagn

outout: ret
outstr endp

This routine is called to return to DOS
quit proc near

call _clear386
mov ax,4c00h ; Return to DOS
int 21h

quit endp

End Listing One

(continued on page 100)

100 Dr. D obbs Journal, M arch 1990
251

3 8 6 D E B U G G I N G

Listing Two (Text begins on page 46.)

File: BREAK386.INC
Header file to include with assembly language programs using BREAK386
Williams - June, 1989

IF @CodeSize ; If large style models
extrn _break386:far,_clear386:far,_setup386:far,_intl_386:far

ELSE
extrn _break386:near,_clear386:near,_setup386:near,_intl_386:far

END IF

Breakpoint equates
BP_CODE
BP_DATAW1
BP_DATARW1
BP_DATAW2
BP_DATARW2
BP_DATAW4
BP DATARW 4

EQU
EQU
EQU
EQU

EQU
EQU 13
EQU 15

CODE BREAKPOINT
ONE BYTE DATA WRITE BREAKPOINT
ONE BYTE DATA R/W BREAKPOINT
TWO BYTE DATA WRITE BREAKPOINT
TWO BYTE DATA R/W BREAKPOINT
FOUR BYTE DATA WRITE BREAKPOINT
FOUR BYTE DATA R/W BREAKPOINT

Macros to turn tracing on and off
Note: When tracing, you will actually

tracing off

traceon macro
push bp
pushf
mov bp,sp
xchg ax,[bp]
or ax,100H
xchg ax,[bp]
popf
pop bp
endm

traceoff macro
push bp
pushf
mov bp,sp
xchg ax,[bp]
and ax,OFEFFH
xchg ax,[bp]
popf
pop bp
endm

'see" traceoff before it turns

End Listing Two

Listing T hree

File: BREAK386.H

Header for C programs using BREAK386 or CBRK386
Williams - June, 1989

#ifndef NO_EXT_KEYS
♦define _CDECL cdecl

♦else
♦define _CDECL

♦endif

♦ifndef BR386_HEADER
♦define BR386_HEADER

/* declare functions */
void _CDECL setup386(void (_CDECL interrupt far
void _CDECL csetup386(void (_CDECL far *)());
void _CDECL clear386(void);
int _CDECL break386(int,int, void far *);
void _CDECL far interrupt intl_386();

7
0
1
3
5
7

13
15

CODE BREAKPOINT*/
ONE BYTE DATA WRITE BREAKPOINT*/
ONE BYTE DATA R/W BREAKPOINT*/
TWO BYTE DATA WRITE BREAKPOINT
TWO BYTE DATA R/W BREAKPOINT*/
FOUR BYTE DATA WRITE BREAKPOINT*/
FOUR BYTE DATA R/W BREAKPOINT*/

/* breakpoint types
♦define BP_CODE
♦define BP_DATAW1
♦define BP_DATARW1
♦define BP_DATAW2
♦define BP_DATARW2
♦define BP_DATAW4
♦define BP DATARW4

Listing F our

;* File: DEBUG386.ASM
;* Example assembly language program for use with BREAK386
;* Williams - June, 1989
;* Compile with: MASM /Ml DEBUG386.ASM;

.model large

.386

INCLUDE break386.inc
.stack OaOOH

End Listing Three

.data
align 2
memcell dw 0

make sure this is word aligned
cell to write to

.code

main proc
;setup data segment

mov ax,0data
mov ds,ax
assume cs:0code,ds:0data

; start debugging
push seg _intl_386
push offset _intl_386
call _setup386
add sp,4

; set up a starting breakpoint
push seg bpl
push offset bpl
push BP_CODE
push 1
call _break386
add sp,8

push seg bp2
push offset bp2
push BP_CODE
push 2
call _break386
add sp,8

push seg bp3
push offset bp3
push BP_CODE
pus’ ^
call _break386
add sp,8

push 6data
push offset memcell
push BP_DATAW2
push 4
call _break386
add sp,8

segment of interrupt handler
offset of interrupt handler

balance stack (like a call to C)

segment of breakpoint
offset of breakpoint
breakpoint type
breakpoint ♦ (1-4)

balance the stack

set up breakpoint ^2

set up breakpoint ^3

set up breakpoint M (data)

b p l :

loopl:

bp2:

b p 3 :

mov cx,20

mov dl,cl
add dl , '0'
mov ah,2

int 21h

loop loopl

mov bx,offset memcell
mov ax,[bx]
mov [bx],ah

call _clear386
mov ah,4ch
int 21h
endp
end main

loop 20 times

print some letters

repeat

point bx at memory cell
read cell (no breakpoint)
this should cause breakpoint 4
shut off debugging

back to DOS

End Listing Four

Listing Five

* File: DBG386.C
* Example C program using BREAK386 with the built in interrupt handler

* Al Williams — 15 July 1989
* Compile with: CL DBG386.C BREAK386

♦include <stdio.h>
♦include <dos.h>
♦include "break386.h"

int h e r e [10];
void far *bp;
int i ;

main ()

{
int j;
setup386(intl_386);
bp=(void far *)&here[2];
break386(l,BP_DATAW2,bp) ;

for (j=0;j<2;j++) {
for (i=0;i<10;i++)

{
char x;
putchar(i+' 0');
here[i]=i;

)
break386(1,0,NULL) ;

}
clear386();

/* set up debugging */
/* make long pointer to data word */
/* set breakpoint */

/* loop twice */
/* for each element in here[] */

/* print index digit */
/* assign ♦ to array element */

/* turn off breakpoint on 2nd pass */

/* turn off debugging */

End Listing Five
(continued on page 104)

102 Dr. D obb’s Journal, M arch /9 9 0
252

3 8 6 D E B U G G I N G

Listing Six (Text begins on page 46.)

* File: DBGOFF.ASM

* Try this program if you leave a program abnormally (say, with a stack
* overflow). It will reset the debug register.
* Williams - June, 1989
* Compile with: MASM DBGOFF;

.model small

. 386P

.stack 32

.code

; clear dr7

; exit to DOS

End Listing Six

main proc

xor eax,eax
mov dr7,eax
mov ah,4ch
int 21H

main endp
end main

Listing Seven

* File: CBRK386.ASM
* Functions to allow breakpoint handlers to be written in C.
* Williams - June, 1989
* Compile with: MASM /Ml CBRK386.ASM;

MODEL small
386P

public _csetup386

Set up stack offsets for word size arguments based on the code size
Be careful, regardless of what Microsoft's documentation says,
you must use @CodeSize (not @codesize, etc.)

True for models with far code

pop es
mov ax,arg2
push ds
mov dx,argl
mov c_seg,ax
mov c_off,dx
mov ax,seg _cintl_386
mov ds,ax
mov dx,offset _cintl_3
mov ax,2501H
int 21H
pop ds
xor eax,eax
mov dr6,eax
pop bp
ret

_csetup386 endp

Here is the interrupt handler!!!
Two arguments are passed to C, a far pointer to the base of the stack
frame and the complete contents of dr6 as a long unsigned int.

IF @CodeSize
argl EQU < [BP+6]>
arg2 EQU < [BP+8]>
arg3 EQU < [BP+10]>
arg4 EQU < [BP+12]>
ELSE
argl EQU < [BP+4]>
arg2 EQU < [BP+6]>
arg3 EQU < [BP+8]>
arg4 EQU < [BP+10]>
ENDIF

.DATA
; You may need to change
; handler runs with
STACKSIZE EQU 2048

oldoffset dw 0
oldsegment dw 0
oldstack equ this dword
sp_save dw 0
ss_save dw 0
ds_save dw 0
es_save dw 0
ccall equ this dword
c_off dw 0
c_seg dw 0
oldstkhqq dw 0

old interrupt 1 vector offset
old interrupt 1 vector segment

C routine's adress is saved here

Old start of stack

; New stack address for C routinenewsp equ this dword
dw offset stacktop
dw seg newstack

; Here is the new stack. DO NOT MOVE IT OUT OF DGROUP
; That is, leave it in the DATA or DATA? segment,
newstack db STACKSIZE DUP (0)
stacktop EQU $

extrn STKHQQ:word ; Microsoft heap/stack bound

.CODE

This routine is called in place of setup386(). You pass it the address of
a void far function that you want invoked on a breakpoint.
It's operation is identical to setup386() except for:

1) The interrupt 1 vector is set to cintl_386() (see below)
2) The address passed is stored in location CCALL
3) DS and ES are stored in ds_save and es_save

_csetup386 proc
push bp
mov bp,sp
push es
mov ax,es
mov es_save,ax
mov ax,ds
mov ds_save,ax
mov ax,3501H
int 21h
mov ax,es
mov oldsegment,ax
mov oldoffset,bx

The stack frame is as follows:

(Interrupted code's stack)
FLAGS
CS

CX
DX

SP •
BP

ES
DS
SS

(Stack pointer points to IP above)

pointer passed to your routine points here

The pointer is two way. That is, you can read the values or set any of
them except SS. You should, however, refrain from changing CS,IP,or SP.

_cintl_386 proc
pusha
push es
push ds
push ss
mov ax,@data
mov ds,ax
mov ax,ss
mov ss_save,ax
mov sp_save,sp
cld
lss sp,newsp
mov ax,STKHQQ
mov oldstkhqq, ax
mov ax,offset newstack
mov STKHQQ,ax
sti
mov eax,dr6
push eax
push ss_save
push sp_save
mov ax,es_save
mov es,ax
mov ax,ds_save
mov ds,ax
call ccall
xor eax,eax
mov dr6,eax
mov ax,@data
mov ds,ax

lss sp,oldstack
add sp,2

mov ax,oldstkhqq
mov STKHQQ,ax
pop ds
pop es
popa

This seems complicated at first.
You MUST insure that RF is set before continuing. If RF is not set
you will just cause a breakpoint immediately!
In protected mode, this is handled automatically. In real mode it
isn't since RF is in the high 16 bits of the flags register.
Essentially we have to convert the stack from:

save registers

point at our data segment

remember old stack location

switch stacks
save old end of stack

load new end of stack

put DR6 on stack for C

put far pointer to stack frame
on new stack for C

restore es/ds from csetup386()

call the C program
clear DR6

regain access to data

restore old stack
don't pop off SS
(in case user changed it)
restore end of stack

16 bit Flags
16 bit CS
16 bit IP

32 bit flags (top word = 1 to set RF)
32 bit CS (garbage in top 16 bits)
32 bit IP (top word = 0)

All this so we can execute an IRETD which will change RF.

sub esp,6
xchg ax,[esp+6]
mov [esp],ax
xor ax,ax
mov [esp+2],ax
mov ax,[esp+6]
xchg ax,[esp+8]
mov [esp+4],ax
xor ax,ax

; make a double stack frame
; get ip in ax
; store it

; eip = 0000:ip

; get cs

104 Dr. D obbs Journal, M arch 1990
253

mov [esp+6],ax
mov ax,[esp+8] ; zero that stack word & restore ax
xchg ax,[esp+10] ; get flags
mov [esp+8],ax
mov ax,1 ; set RF
xchg ax,[esp+10]
iretd ; DOUBLE IRET (32 bits!)

End Listing Seven

_cintl_386 endp
end

Listing Eight

File: CBRKDEMO.C

Example C interrupt handler for use with CBRK386
Williams - June, 1989
Compile with: CL CBRKDEMO.C BREAK386 CBRK386

#include <stdio.h>
♦include <conio.h>
♦include <ctype.h>
♦include <dos.h>
♦include "break386.h"

/* functions we will reference */
int loop();
void far broke ();

main()

{
int i;

/* declare function broke as our interrupt handler */
csetup386(broke);

break386(1,BP_CODE,(void far *)loop); /* set break at function loop */

for (i=0;i<10;i++) loop(i);
printf("Returned to main.\n");

clear386(); /* turn off debugging */

♦define IOFFSET 15 /* use 16 for large, medium or huge models */
n = * ((unsigned int far *)P+IOFFSET);
printf("\nBreakpoint reached! (DR6=%1X i=%d)\n",dr6,n);

/* Ask user what to do. */
do.. {

printf("<C>ontinue, <M>odify i, <A>bort, or <N>o breakpoint? ");
c=getche();
p utch('\r');
putch('\n'); /* start a new line */
if (!c) /* function key pressed */

{
getch () ;
continue;

}
c=toupper(c);

/* Modify loop's copy of i (doesn't change main's i) */
if <c=='M')

{
int newi;
printf("Enter new value for i: ");
scanf("%d",Snewi);
♦((unsigned int far *)p+IOFFSET)=newi;
continue;

}
if (c=='A') /* Exiting */

1
clear386(); /* ALWAYS turn off debugging!!! */
e x i t (0);

}
if (c=='N')

breaking=0; /* We could have turned off breakpoints instead */
) while (c!='A'&&c!='N'&4c!='C');

}
}

End Listings

/* This function has a breakpoint on its entry */
loop(int j)

{
printf("Now in loop (%d)\n",j);

* Here is the interrupt handler!!!

* Note it must be a far function (normal int the LARGE, HUGE & MEDIUM
* models). Two arguments are passed: a far pointer to the base of the stack
* frame and the complete contents of dr6 as a long unsigned int.

* The stack frame is as follows:

(Interrupted code's stack)
FLAGS
CS
IP < -
AX
CX
DX
BX
SP —
BP
SI
DI
ES
DS
SS < -

(Stack pointer points to IP above)

pointer passed to your routine points here

The pointer is two way. That is, you can read the values or set any of
them except SS. You should, however, refrain from changing CS,IP,or SP.

void far broke(void far *p,long dr6)

{
static int breaking=l; /* don't do anything if breaking=0 */
int c;
if (breaking)

{
int n;
int far *ip;

* Here we will read the local variable off the interrupted program's stack!
* Assuming small model, the stack above our stack frame looks like this:
* i variable sent to loop
* add - address to return to main with
* <our stack frame starts here>

This makes i the 15th word on the stack (16th on models with far code)

Dr. D obbs Journal, M arch 1990
254

105

W I N D O W S M A N A G E M E N T
Listing O ne (Text begins on page 58.)
/* segments.c */

♦include <stdio.h>
♦include <stdlib.h>
♦include <windows.h>
♦include "segments.h"
♦include "segtable.h"

int szAppNameLength = 8;
char *szAppName = "Segments";

char.. *szClocks = "Too many clocks or timers!";
char *szOutOfMemory = "Not enough memory.";

♦define MAX_VARIABLE_PSEGS (MAXPSEGS - MINPSEGS - 1)

typedef struct data {
PSEG pseg;

SEG lastseg;
SEG oldseg;
short changed;

} DATA, FAR * DATAP;

PSEG psegdata;
♦define FARDATAP ((DATAP)FARPTR(0, *psegdata))

short xchar;
short ychar;
BOOL random_action = TRUE;
int action_count = 0;
HWND hWindow;

PSEG allocate(LONG size, char *string);
BOOL reallocate(PSEG pseg, LONG size, char *string);
LONG FAR PASCAL SegmentsWndProc(HWND, unsigned, WORD, LONG);
int FAR PASCAL timer_routine(HWND hwnd, unsigned message, short id, LONG time)
IFP strcpyifp(IFP stringl, IFP string2);
int strlenifp(IFP string);

int FAR PASCAL timer_routine(HWND hwnd, unsigned message, short id, LONG time)

{
/* Randomly allocate/free a segment in the Segment Table or
monitor the Segment Table for movement. Update the line in the window
that changes.
*/

int i;
LONG size;
char buffer[40];
RECT rect;
int random_switch;

message;
id;

time;

if (random_action)

{
if (++action_count < 10)

return(0);

action_count = 0;

i = rand() % MAX_VARIABLE_PSEGS ;

size = (LONG)rand(); /* 0 <= size <= 32767 */
sprintf(buffer, " %d bytes", (short)size);
random_switch = rand();

if (FARDATAP[i].pseg)

{
if (random_switch > 2*32767/4)

{
if (FARDATAP[i].lastseg == 0) /* if data is free */

FARDATAP[ij.changed = -1; /* reset the count *■/
buffer [0] = 'R';
reallocate(FARDATAP[i].pseg, size, buffer);

)
else if (random_switch > 1*32767/4)

{
SegmentFree(FARDATAP[i].pseg);
FARDATAP[i].pseg = 0;

t
else if (*FARDATAP[i].pseg)

DataFree(FARDATAP[i].pseg);

}
else

{
buff e r [0] = 'A';
FARDATAP[i].pseg = allocate(size, buffer);
FARDATAP[i].changed = -1;

SetRect(&rect, 9*xchar, (i+2)*ychar, 46*xchar, (i+3)*ychar);
InvalidateRect(hwnd, &rect, TRUE);

)

for (i = 0; i < MAX_VARIABLE_PSEGS; i++)

{

if (FARDATAP[i].lastseg != *FARDATAP[i].pseg)

{
FARDATAP[i].oldseg = FARDATAP[i].lastseg;
FARDATAP[i].lastseg = ‘FARDATAP[i].pseg;
FARDATAP[i].changed++;
SetRect(&rect, 9*xchar, (i+2)*ychar, 46*xchar, (i+3)*ychar);
InvalidateRect(hwnd, Srect, TRUE);

}
}
return(0);

}

void SegmentsPaint(HDC hDC)

(
char buffer[100];
short len;
int i;

TextOut(hDC, 9*xchar, ychar, "pseg seg oldseg moved", 23);
for (i = 0 ; i < MAX_VARIABLE_PSEGS; i++)

<
len = sprintf(buffer, "data[%d] %.4X %.4X", i, FARDATAP[i].pseg,

♦FARDATAP[i].pseg) ;
TextOut(hDC, xchar, (i+2)*ychar, buffer, len);

if (FARDATAP[i].pseg)

{
if (*FARDATAP[i].pseg == 0)
TextOut(hDC, 31*xchar, (i+2)*ychar, "Data Free", 9);
else

{
len = sprintf(buffer, "%.4X %.2X", FARDATAP[i].oldseg,

FARDATAP[i].changed);
TextOut(hDC, 21*xchar, (i+2)*ychar, buffer, len);

strcpyifp(MAKEIFP(buffer, fifeegDgroup),
M AKEIFP(0, FARDATAP[i].pseg));

len = strlenifp(MAKEIFP(buffer, ssegDgroup));
TextOut(hDC, 31*xchar, (i+2)*ychar, buffer, len);

}
I
else
TextOut(hDC, 31*xchar, (i+2)*ychar, "Free”, 4);

}

}

IFP strcpyifp(IFP stringl, IFP string2)

<
char FAR *strl;
char FAR *str2;

strl = IFP2PTR(stringl);
str2 = IFP2PTR(string2);

while (1)

{
*strl++ = *str2;
if (*str2 == 0)

break;
str2++;

}
return(stringl);

}

int strlenifp(IFP string)

{
char FAR *str;
int len;

str = IFP2PTR(string);

for (len = 0; str[len] != 0; len++)

return(len);

}

BOOL Segmentslnit(HANDLE hlnstance)

{
WNDCLASS SegmentsClass;

SegmentsClass.hCursor = LoadCursor(NULL, IDC_ARROW);
SegmentsClass.hlcon = Loadlcon(hlnstance,

MAKEINTRESOURCE(SEGTABLEICON));
SegmentsClass.IpszMenuName = "segmentsmenu";
SegmentsClass.IpszClassName = szAppName;
SegmentsClass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

SegmentsClass.hlnstance = hlnstance;
SegmentsClass.style = CS_HREDRAW ! CS_VREDRAW;

SegmentsClass.lpfnWndProc = SegmentsWndProc;

if (!RegisterClass((LPWNDCLASS)&SegmentsClass))
return FALSE;

return TRUE;

}

PSEG allocate(LONG size, char *string)

{
/*
Allocate 'size' bytes from the global heap. Copy a null terminated
'string' into the allocated memory.

*/
PSEG pseg;
char FAR *farptr;
int i;

if (!(pseg = SegmentAlloc(size)))
return NULL;
farptr = FARPTR(0, *pseg);
for (i = 0; string[i] &S i < (int)size-1; i++)

farptr [i] = string[i];
farptr[i] = 0;
return pseg;

}

BOOL reallocate(PSEG pseg, LONG size, char *string)
(
/*
Allocate 'size' bytes from the global heap. Copy a null terminated string
'string' into the allocated memory.

*/
char FAR *farptr;
int i;

if (!(SegmentRealloc(pseg, size)))
return FALSE;
farptr = FARPTR(0, *pseg);
for (i = 0; string[i] && i < (int)size-1; i++)

farptr[i] = string[i];
farptr[i] = 0;

return true,- (continued on page 108)

1 0 6 Dr. D obb’s Journal, M arch 1990
255

W I N D O W S M A N A G E M E N T
Listing O ne (Listing continued, text begins on page 58.)
int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance, LPSTR IpszCmdLine,

int cmdShow)

(
MSG msg;
HWND hWnd;

int i;
TEXTMETRIC tm;
HDC hdc;
FARPROC IpprocTimer;
DATAP datap;

IpszCmdLine;

if (!hPrevInstance)
if (!Segmentslnit(hlnstance))

return FALSE;

SegmentInit();
if (!(psegdata =

SegmentAlloc((DWORD)sizeof(DATA)*MAX_VARIABLE_PSEGS)))

{
MessageBox(hWnd, szOutOfMemory, szAppName, MB_OK);
return FALSE;

}

datap = FARPTR(0, *psegdata);
for (i = 0 ; i < MAX_VARIABLE_PSEGS; i++)

(
datap[i].lastseg = 0;
datap[i].pseg = 0;

}

hdc = CreateIC("DISPLAY", NULL, NULL, NULL);
GetTextMetrics(hdc, &tm);
xchar = tm.tmAveCharWidth;
ychar = tm.tmHeight;
DeleteDC(hdc);

hWindow = hWnd = CreateWindow(szAppName, szAppName, WS_TILEDWINDOW, 0,0,
46*xchar, 14*ychar, NULL, NULL, hlnstance, NULL);

IpprocTimer = MakeProcInstance(timer_routine, hlnstance);
while (ISetTimer(hWnd, 1, 100, IpprocTimer))

{
if (IDCANCEL == MessageBox(hWnd, szClocks, szAppName,

MB_ICONEXCLAMATION I MB_RETRYCANCEL))
return FALSE;

ShowWindow(hWnd, cmdShow);

UpdateWindow(hWnd);

while (GetMessage(&msg, NULL, 0, 0))

{
TranslateMessage(&msg);
DispatchMessage(&msg);

}

return (int)msg.wParam;

}

LONG FAR PASCAL SegmentsWndProc(HWND hWnd, unsigned message, WORD wParam,
LONG IParam)

{
PAINTSTRUCT ps;

switch (message)

{
case WM_COMMAND:

switch (wParam)

{

case MENU_START:

random_action = TRUE;
break; ■

case MENU_STOP:
random_action = FALSE;
break;

default:
break;

)
break;

case WM_DESTROY:
KillTimer(hWnd, 1);

PostQuitMessage(0);
break;

case WM_PAINT:
BeginPaint(hWnd, &ps);
SegmentsPaint(ps.hdc);
EndPaint(hWnd, &ps);
break;

default:
return DefWindowProc(hWnd, message, wParam, IParam);
break;

}
return(0L);

}

End Listing One

Listing Two
/* segments.h */

♦define SEGTABLEICON 1
♦define MENU_START 50
♦define MENU_STOP 51

Listing T hree
♦ segments.mak

cp=cl -d -DDEBUG -c -W2 -DLINT_ARGS -AM -Gswc -Os -Zdpi

.c.obj:
$ (cp) $*.c >$*.err
type $*.err

segtable.obj: segtable.c segtable.h

segments.obj: segments.c segments.h segtable.h

segments.res: segments.rc segments.ico segments.h
rc -r segments.rc

segments.exe: segments.obj segments.res segments.def segtable.obj
link4 /linenumbers/co segments segtable,/align:16,/map,mlibw/noe,segments.def
mapsym segments
rc segments.res

End Listing Three

Listing Four
/* segments.rc */

♦include "segments.h"

SEGTABLEICON ICON segments.ico

segmentsmenu MENU
BEGIN

MENUITEM "Start!", MENU_START
MENUITEM "Stop!", MENU_STOP

END

Listing Five
; segments.def

NAME Segments

DESCRIPTION 'Segments'

STUB 'WINSTUB.EXE'

CODE MOVEABLE
DATA MOVEABLE MULTIPLE

HEAPSIZE 10000
STACKSIZE 4096

EXPORTS
SegmentsWndProc 01
timer routine 02 End Listings

End Listing Four

End Listing Two

108 Dr. D obb’s Journal, M arch 1990
2 5 6

O O P I N A S M

Listing O ne (Text begins on page 66.)
page 62, 132

OBJECTS.ASM — This program demonstrates object-oriented programming
techniques in 8086 assembly language.

dseg segment byte public 'data'

; Unsigned Data Type:
Unsigned struc
Value dw 0
Get dd ? AX = This

Put dd ? This = AX
Add dd ? AX = AX + This
Sub dd ? AX = AX - This

Eq dd ? Zero flag = AX == This
Lt dd ? Zero flag = AX < This
Unsigned ends
; UVar lets you (easily) declare an unsigned variable.
UVar macro var
var Unsigned <,uGet,uPut,uAdd,uSub,uEq,uLt>

endm
/ Signed Data Type:
Signed struc

dw
dd
dd
dd
dd
dd
dd

Signed ends
; SVar lets you easily
SVar macro
var Signed

endm
; BCD Data Type:
BCD struc

dw
dd
dd

dd
dd
dd
dd

BCD ends
; BCDVar lets you (easily) declare a BCD variable.
BCDVar macro var
var BCD <,bGet, bPut, bAdd, bSub, bEq, bLt>

endm
; Declare variables of the appropriate types (For the sample pgm below):
; Also declare a set of DWORD values which point at each of the variables.
/ This provides a simple mechanism for obtaining the address of an object.

? ;Get method
? ;Put method
? ;Add method
? ;Sub method
? ;Eq method
? ;Lt method

declare a signed variable,
var
<,sGet, sPut, sAdd, sSub, sEq, sLt>

0 /Value
? ;Get method
? ;Put method
? ;Add method
? ;Subtract method
? ;Eq method
? /Lt method

UVar ul
UlAdr dd UI /Provide convenient address for Ul

UVar u2
U2Adr dd U2 /Ditto for other variables.

SVar si
SlAdr dd si

SVar s2
S2Adr dd s2

BCDVar bl
BlAdr dd bl

BCDVar b2
B2Adr dd b2

; Generic Pointer Variables:
Generiel dd ?

Generic2 dd ?

dseg ends

cseg segment byte public 'CODE'
assume cs:cseg, ds:dseg, es:dseg, ss:sseg

_This equ es:[bx] /Provide a mnemonic name for THIS.

Macros to simplify calling the various methods
Get macro

call
endm
macro
call
endm

macro
call
endm
macro
call
endm

macro
call
endm
macro
call
endm

This. Get

_This._Eq_

/ Methods for the unsigned data type:
uGet proc far

mov ax, This
ret

uGet endp
uPut proc far

mov This,ax

ret
uPut endp
uAdd proc far

add ax, This
ret

uAdd endp
uSub proc far

sub ax, This
ret

uSub endp
uEq proc far

cmp
ret

ax, This

uEq endp
uLt proc far

cmp ax, This

jb ulsLt
cmp ax, 0
jne uLtRtn
cmp ax, 1

uLtRtn: ret
ulsLt: cmp

ret
ax, ax

uLt endp

;Force Z flag to zero.

;Force Z flag to one.

; Methods for the unsigned data type.
sPut equ uPut
sGet equ uGet
sAdd equ uAdd
sSub equ uSub
SEq equ uEq

sLt proc far
cmp ax, _Th

jl sIsLt
cmp ax, 0
jne sLtRtn
cmp ax, 1

sLtRtn: ret
sIsLt: cmp ax, ax

ret
sLt endp

;Same code, why duplicate it?

;Force Z flag to zero.

;Force Z flag to one.

; Methods for the BCD-data type
bGet equ uGet
bPut equ uPut
bEq equ uEq
bLt equ uLt

bAdd proc far
add ax, This
da a
ret

bAdd endp
bSub proc far

sub ax, This
das
ret

bSub endp

;Same code, don't d u d i c a t e it.

n o Dr. D obb’s Journa l, M arch 1990
257

; Test code for this program:
TestSample proc near

push ax
push bx
push es

Compute "Genericl = Genericl + Genei
les bx, Genericl
_Get
les bx, Generic2
_Add
les bx, Genericl
_Put

pop es
pop bx
pop ax

ret
TestSample endp
; Main driver program
MainPgm proc far

mov ax, dseg
mov ds, ax

; Initialize the objects:

; ul = 39876. Also initialize Genericl to point at ul for later use.
les bx, UlAdr
mov ax, 39876
_Put
mov word ptr Genericl, bx
mov word ptr Genericl+2, es

; u2 = 45677. Also point Generic2 at u2 for later use.
les bx, U2Adr
mov ax, 45677
_Put
mov word ptr Generic2, bx
mov word ptr Generic2+2, es

; si = -5.
les bx, SlAdr
mov ax, -5
_Put

; s2 = 12345.
les bx, S2Adr
mov ax, 12345
_Put

? bl = 2899.
les bx, BlAdr
mov ax, 2899h
_Put

; b2 = 195.
les bx, B2Adr
mov ax, 195h
_Put

; Call TestSample to add ul & u2.
call TestSample

; Call TestSample to add si & s2.
les bx, SlAdr

mov word ptr Genericl, bx
mov word ptr Genericl+2, es

les bx, S2Adr
mov word ptr Generic2, bx
mov word ptr Generic2+2, es

call TestSample
; Call TestSample to add bl & b2.

les bx, BlAdr
mov word ptr Genericl, bx
mov word ptr Genericl+2, es
les bx, B2Adr
mov word ptr Generic2, bx

mov word ptr Generic2+2, es
call TestSample

mov ah, 4ch ;Terminate process DOS cmd.
int 21h

MainPgm endp
cseg ends

sseg segment byte stack 'stack'
stk dw OfOh dup (?)
endstk dw ?
sseg ends

end MainPgm

End Listing

Dr. D obb’s Journal, M arch 1990
2 5 8

111

E X A M I N I N G R O O M

Listing O ne (Text begins on page 74.)
$ PRIMES.SET
$ ISETL program to find number of primes <= n, using set notation

size := 1000 ;
sqrt_size := fix(sqrt(size)) ;
composites := (i*j i i in {3,5..sqrt_size), j in (i..size div i }} ;
primes := {2} + (3,5..size) - composites ;
print size ;
print #primes ;

End Listing One

Listing T h ree
$ FIB.TUP
$ ISETL program to find Fibonacci numbers, using dynamic

$ uses lo g (): only accurate up to 308 digits
digits := func(x);

if (x = 0) then return 1 ;
else return 1 + floor(log(abs(x))) ;
end;

end;

$ use "dynamic programming" to assign to fib()
fib := func(x);

fib(x) := fib(x-l) + fib(x-2) ;
return fib(x) ;

end;

fib(0) := 1 ;
f i b (1) := 1 ;

fibonacci := [fib(x) : x in [1 .. 100 0]] ;
print fibonacci(1000) ;
print digits(fibonacci(1000)) ;

Listing Two
$ PRIMES.TUP
$ ISETL program to find number of primes <= n, using ordered tuples

$ tuple difference operator
diff := func (tl, t2);

return [i : i in tl ! i notin t2] ;
end;

size := 1000 ;
sqrt_size := fix(sqrt(size)) ;
composites := [i*j : i in [3,5..sqrt_size], j in [i..size div i]] ;
primes := [2] + [3,5..size] .diff composites ;
print size ;
print #primes ;

End Listing Two

Dr. D obb’s Journal, M arch 1990

programming

End Listings

115
259

P R 0 G R A M M E R ' S WORKBE N C H

Listing O ne (Text begins on page 84.)
;* Module description * This module takes care of error trapping. The scheme
;used records the trapping routine stack pointer so that an error can cause
;the stack to return to a consistent state. This module was written using
/Borland's Turbo Assembler 2.0.

/** Environment **
.model small ;Set up for SMALL model,
locals /Enable local symbols.

/** Macros **

; « G e n e r a t e correct return based on m o d e l »
procret macro
if @codesize

retf
else

retn
endif
endm

;** Public operations **
public pascal ERROR_INIT
public pascal ERROR_TRAP

public pascal ERROR_LOG

;** Uninitialized data *
.data?
errstk dw ? ;SP at 1

;* * Code * *
.code
;Set up DS to nothing si
assume ds:nothing

; [Initialize error manag
error_init proc pascal

mov errstk,-1

ret
endp

; [Set up error trap]
;This procedure preserves the previous ERRSTK, sets up a new ERRSTK, and
;calls the passed procedure. On exit, the previous ERRSTK is restored.
error_trap proc pascal /Pascal calling conventions,
arg 00proc:codeptr ;Only argument is procedure to call,
uses ds,si,es,di ;Force a save of all registers C cares for.

push errstk
;Call internal routine to record return address on stack,
call 00rtn
pop errstk

ret
00rtn label proc

mov errstk,sp ;Save SP so we can restore it later,
call 00proc pascal ;Call procedure.
xor ax,ax ;Return code = 0 for normal return,
procret

endp

; [Log error]
/Control is passed to the last ERROR_TRAP, if any.

/Error code is passed and returned in AX.
error_log proc pascal

arg 00error_code:word
cmp errstk,-1 /Lock up if no error address.

001: jz 001

mov ax,00error_code
mov sp,errstk
procret

endp
end

End listin g One

Listing Two
/* Module description * This module manages a simple stack-based heap.
/Deallocation is not supported. NOTE: This module must be assembled with /MX
/to publish symbols in the correct case. This module is written using
/Borland's Turbo Assembler 2.0.

/** Environment **
.model small /Set up for SMALL model,
locals /Enable local symbols.

/** Equates **
err_memory = 1 /Out of memory error number.

/** Public operations **
public pascal HEAP_INIT
public pascal HEAP_ALLOC

/** External operations **

/ « E r r o r h a n d l e r »
extrn pascal ERROR_LOG:proc

/** Uninitialized data **
.data?

memptr dw ? /Pointer to first free segment,
memsiz dw ? /Remaining paragraphs in heap.

/** Code **
.code
/Set up DS to nothing since that is the typical arrangement,
assume ds:nothing

/[Initialize the heap]
heap_init proc pascal /Declare proc with PASCAL calling conventions,

arg 00start_seg:word,00para_size:word

/Initialize heap.
/Allocate memory from heap.

/Long jump library procedure for errors.

/Initialize error handler.
/Set up error trap.
/Log error.

error log (-1 if none).

that is the typical arrangement.

/Declare proc with PASCAL calling conventions.

/Arguments are starting segment and para count,

mov ax,00start_seg
mov memptr, ax
mov ax,00para_size
mov memsiz,ax
ret

heap_init endp

/ [Allocate memory from the heap]
heap_alloc proc pascal /Declare proc with PASCAL calling conventions.
arg @0para_count:word /Only argument' is count of paragraphs.

/See if there is enough remaining.
mov ax,00para_count
cmp memsiz,ax
jc 00err
sub memsiz,ax
add ax,memptr
xchg ax,memptr
mov dx,ax
xor ax,ax
ret

00err: /Out-of-memory error,
mov ax,err_memory
call error_log pascal,ax
/Never returns.

heap_alloc endp

end End Listing Two

Listing T hree
/* Module description * This module reads source files and converts them into
/words, then files the words away in a symbol table with the help of a hash
/function. This module was written using Borland's Turbo Assembler 2.0.

/** Environment **
.model small /Set up for SMALL model,
locals /Enable local symbols.

/** Equates **
Z « E r r o r n u m b e r s »
err_hash = 2 /Out of hash space error number.
err_read = 3 /Read error.

/ « H a s h f u n c t i o n »
hash_rotate = 5 /Amount to rotate for hash function.
hash_skip = 11/Number of entries to skip on hash collision.

/ « R e a d b u f f e r »

rbf_size = 800h /Size of read buffer in paragraphs.

/** Public operations **
public pascal WORD_INIT
public pascal WORD_READ
public pascal WORD_COUNT
public pascal WORD_NAME
public pascal WORD_REFCOUNT
public pascal WORD_SCAN
public pascal WORD_COMPREF

Initialize hash table.
Read file, convert to words, and hash them.
Get total word count.
Get name of word.
Get reference count of word.
Scan all words.
Compare word reference counts.

/** External operations **
/ « H e a p »

extrn pascal HEAP_ALLOC:proc /Heap allocation.

/ « E r r o r h a n d l i n g »
extrn pascal ERROR_LOG:proc /Trap an error.

/** Data structure **
/ « S y m b o l table e n t r y »
symtbl struc
symref dw ? /Reference count,
symsiz dw ? /Length of word,
ends
symnam = size symtbl /Offset of start of name text.

/** Initialized data **
.data

/ «Translation character type t a b l e »
typdlm = 1 /Delimiter bit.
typnum = 2 /Numerical digit.
typcas = 20h /Lower case bit: Set if lower case letter,
xlttbl label byte

db '0' dup (typdlm)

db 10 dup (typnum)

db ('A'-l)-'9' dup (typdlm)
db 'Z'-('A'-l) dup (0)
db ('a'-l)-'Z' dup (typdlm)
db 'z'-('a'-l) dup (typcas)
db 255-'z' dup (typdlm)

/** Uninitialized data **
.data?

/ « H a s h table v a l u e s »
hshptr dw ? /Segment address of hash table.
hshsiz dw ? /Total number of hash entries. Must be a power of 2!
hshcnt dw ? /Total free entries remaining in hash table,
hshmsk dw ? /Mask for converting hash value to address.

/« R e a d buffer v a l u e s »
rbfptr dw ? /Segment address of read buffer.

/ « W o r d b u f f e r »
wrdbuf db 256 dup (?)

/* * Code * *

. code
/Set up DS to nothing since that is the typical arrangement,

assume ds:nothing

/[Initialize hash table] (L iS tiflg COTltiflUed Ofl pClge 1 1 8)

116 Dr. D obb’s Journal, M arch 1990
260

P R O G R A M M E R ' S W 0 R K B E N C H

Listing T h ree (Listing continued, text begins on page 84.)

/Argument: Maximum number of words.
word_init proc pascal
arg @@max_word_count:word
uses es,di

;First, allocate read buffer,
mov ax,rbf_size
call heap_alloc pascaljax
mov rbfptr,dx
;Now convert maximum word count to power of 2.
mov ax,@0max_word_count
mov cl,16+1

0011: dec cl
shl ax,1
jnc @011
mov ax,1
shl ax,cl
/Initialize some hash parameters.
mov hshsiz,ax
mov hshcnt,ax
dec ax
shl ax,1
mov hshmsk,ax
;Now, allocate hash table from heap.
mov ax,hshsiz ;Size of hash table in words.
add ax, 7
mov cl,3

shr ax,cl /Convert to paragraphs,
call heap_alloc pascal,ax
mov hshptr,dx
/Clear out hash table: 0 means 'no value',
mov es,dx
xor di,di
cld
mov cx,hshsiz
xor ax,ax
rep stosw
ret

word_init endp

; [Read file and assimilate all words]
word_read proc pascal
arg @0handle:word /Argument is file handle,
uses ds,si,es,di

/Load XLAT buffer address. The XLAT table is used for case conversion
/and for character type identification,
mov bx,offset xlttbl

@0read: /Read next buffer while delimiter processing,
call 00brd
jcxz 0@done

@0skip: /Skip all delimeters, etc.
lodsb
xlat xlttbl
test al,typdlm
loopnz 0@skip
jnz 0@read
/Adjust pointer & count,
dec si
inc cx
/If it is a number, skip to end.
test al,typnum
jnz @0num

/It is a word. We'll transfer a word at a time to the word buffer,
/hashing it as we go. DX will be the current hash value. CX is the
/amount remaining in the buffer,
xor dx,dx
/Initialize output address,
push ss

pop es
mov di,offset wrdbuf

@@clp: /Transfer. This is THE most time-critical loop in the program,
lodsb /Read character,
mov ah,al
xlat xlttbl
test al,typdxm
jnz 0@wend
and al,typcas
neg al
add al,ah

stosb
/Calculate hash value,
mov ah,cl
mov cl,hash_rotate

rol dx,cl
mov cl,ah
xor dl,al
loop 00clp
/End of buffer while word processing,
call 00brd
jcxz 00wnd2
jmp 0@clp

00nrd: /Read next buffer while number processing,
call 00brd
jcxz 00done

@@num: /Numbers are not considered 'words' and should be skipped.
/Skip up to first delimiter,
lodsb
xlat xlttbl
test al,typdlm
loopz 00num
jz 0@nrd
/Adjust pointer and count,
dec si
inc cx
jmp @@skip

0@done: ret
00wend: /End of word. Adjust buffer pointer,

dec si
0@wnd2: /End of word. Hash value is in DX, upper-case word is in WRDBUF,

/DI points to end of word + 1.
push ds si cx bx /Save the registers we will use for this step.

/Null-terminate the word.

/Calculate the word's length.

/Put the hash value in a useable register.
/Lower bit will be discarded, so shift.
/Initialize DS.

@0hlp:

/Compare length of word.

/Compare actual text if that agrees.

/Get its type.
/Abort if delimiter.

/Use case bit to convert to upper case.

/Save it in word buffer.

/Keep going until end of buffer.
Read more.

00dne2
00make

xor al,al
stosb
mov cx,di

sub cx,offset wrdbuf
mov bx,dx
shl bx,1
push ss
pop ds

assume ds:dgroup
/Now it is time to locate the word in the hash table if it is there,
/or create an entry if it is not.
mov es,hshptr
and bx,hshmsk
mov a x ,es:[bx]
and ax,ax
jz 00make
/Verify that the hash entry is the correct one.
mov es,ax
mov ax,cx
cmp e s : [symsiz],ax
jnz 0@coll
mov si,offset wrdbuf
mov di,symnam
repz cmpsb
mov cx,ax
jz 00fd
/Collision! Advance to the next candidate hash entry,
add bx,hash_skip*2
jmp 0@hip
ret
/We have encountered this word for the first time.
/We must create a new symbol entry of the appropriate size.
/First decrement remaining free hash count,
dec hshcnt
jz @0herr
push cx
push bx

mov ax,cx. /Calculate length of symbol descriptor,
add ax,symnam+15
mov cl,4

shr ax,cl
call heap_alloc pascal,ax
pop bx

mov e s :[bx],dx
pop cx

/Record symbol descriptor in hash table.

/Record length.

00fd:

00nwd:

/Move text of word into symbol table.

/Clear reference count.
Increment reference count.

mov es,dx
mov e s : [symsiz],cx
mov di,symnam
mov si,offset wrdbuf
shr cx,l
rep movsw
rcl cx,l
rep movsb
mov e s : [symref],0
/Matching entry found
inc es:[symref]
/Go on to the next word in the buffer, if any.
pop bx cx si ds

assume ds:nothing
jcxz 00dne2
jmp 00skip
/Out of hash space error,
mov ax,err_hash

call error_log pascal,ax
/No return from ERROR LOG.

/ (Read buffer)
/Reads the next hunk of buffer. Returns actual amount read in CX,
/DS:SI as start of data to read.
0@brd: push dx bx

mov cx,rbf_size*16
mov bx,00handle
mov ah,3fh
mov ds,rbfptr

xor dx,dx
int 21h
jc 00err
mov cx,ax
xor si,si
pop bx dx
cld
retn

0@err: /Read error.

mov ax,err_read
call error_log pascal,ax
/No return is needed because ERROR_LOG never returns.

word_read endp

/Use RETN so stack frame return won't be generated.

/[Get total word count]
word_count proc pascal

mov ax,hshsiz
sub ax,hshcnt
ret

word_count endp

/ [Get address of name of word]
word_name proc pascal
arg 00word_desc:word

mov dx,@0word_desc
mov ax,symnam
ret

word_name endp

/ [Get refcount for word]
word_refcount proc pascal
arg 00word_desc:word
uses ds

mov ds,00word_desc
mov ax,ds:[symref]
ret

word_refcount endp

/Load total word capacity.
/Subtract actual remaining free words.

/Argument is word descriptor.

/Argument is word descriptor.

118 Dr. D obb’s Journal, M arch 1990
261

; [Scan all words]
word_scan proc pascal
arg @@scan_proc:codeptr /Argument is procedure to call for each word,

uses ds,si
mov ds,hshptr
xor si,si
mov cx,hshsiz
cld

@011: lodsw
and ax,ax
jnz @@take

@@next: loop @@11
ret

@@take: push cx ds
push ss
pop ds
call @@scan_proc pascal,ax
pop ds cx
cld
jmp @@next

word_scan endp

; [Compare reference counts for two word descriptors]
word_compref proc pascal
arg @@word_descl :word, @@word_desc2:word
uses ds

mov ds,@@word_desc2
mov a x,ds:[symref]
mov ds,@@word_descl
sub a x,ds:[symref]

ret
word_compref endp
end

End Listing T hree

Listing F our
;* Module description * This module contains the sort routine for SPECTRUM.
/This module was written using Borland's Turbo Assembler 2.0.

;** Environment **
.model small ;Set up for SMALL model,
locals /Enable local symbols.

;** Public operations **
public pascal SORT_DO /Perform sort.

/** Code **
.code
/Set up DS to nothing since that is the typical arrangement,

assume ds:nothing

; [Sort procedure]
sort_do proc pascal
arg @@array:dword,@@count:word,@@compare_proc:codeptr

uses ds,si,di

/First load up registers for internal recursion. DS:SI will be
/the current sort array address, CX the count of elements to sort.

Ids si,@@array
mov cx,@@count
call @@sort
ret

/Internally recursive sort routine. This routine accepts DS:SI as the sort
/array address, and CX as the count of elements to sort.
@@sort: cmp cx,2

jnc @@go
retn

@@go: /Save all registers we will change.
/Internally, DI and DX will be start and count of second merge area,
push si cx di dx
/Divide into two parts and sort each one.
mov dx,cx
shr cx,l
sub dx,cx
call @@sort
mov di,si
add di,cx
add di,cx
xchg si,di
xchg cx,dx

call @@sort
xchg cx,dx
xchg si,di
/Now, merge the two areas in place.
/Each area must be at least size 1.

@@mrgl: /Compare - DS:DI - DS:SI.
call @@compare_proc pascal,ds:[di],d s : [si]

//The following commented-out sequence is the code that would be required

//if strict Pascal calling conventions were adhered to for calling
;/COMPARE_PROC. You can see how much extra work this is!!
;; push cx dx
;; push ds
;; mov ax,ds:[di]
;; mov bx,ds:[si]
;; push ss

pop ds
;; call @@compare_proc pascal,ax,bx
;; pop ds
;/ pop dx cx
;/ and ax,ax

jns @@ok
/Slide up first merge area using starting value from DI.
mov ax,ds:[di]

(Listing continued on page 120)

Dr. D obb’s Journal, M arch 1990
2 6 2

119

P R O G R A M M E R ' S W O R K B E N C H

l is tin g F o u r (Listing continued, text begins on page 84.)
push si cx

@0sllp: xchg ax,ds:[si]
add si,2
loop @@sllp
xchg ax,ds:[si]
pop cx si
add si,2
add di,2
dec dx
jnz @@mrgl
jmp short @@exi

@@ok: /Correct so far. Advance SI.

add si,2
loop @@mrgl

@@exi: /Restore registers,
pop dx di cx si
retn

sort_do endp

end

End listin g Four

Listing Five
/*»*** File: SPECTRUM.C ****•/

/* This C module is written using Borland's Turbo C 2.0 and can be
compiled using the default switches. It should be linked with the file
WILDARGS.OBJ from the Turbo C examples directory to enable the wild card
file name expansion facility. Without WILDARGS, SPECTRUM will still work
but will not be capable of expanding file names with wild cards.

The following is an example make file, where TA is the assembler name, TCC
is the C compiler name, TLINK is the linker name, \TC\LIB contains the C
libraries, and \TC\EXA contains the Turbo C examples:

spectrum.exe: spectrum.obj heap.obj word.obj error.obj sort.obj
tlink \tc\lib\cOs+\tc\exa\wildargs+spectrum+heap+word+error+sort,spectrum,,

\tc\lib\cs.lib;
heap.obj: heap.asm

ta heap /mx/
word.obj: word.asm

ta word /mx/
error.obj: error.asm

ta error /mx/
sort.obj: sort.asm

ta sort /mx/
spectrum.obj: spectrum.c

tcc -c spectrum

*/

/*** Header Files ***/

♦include <dos.h>
♦include <stdio.h>
♦include <fcntl.h>

/*** Function Protypes ***/
/* Used Locally */

int allocmem(unsigned, unsigned *)/
int freemem (unsigned)/
int _open(const char *, int oflags)/

int _clo s e (int)/
/* Error trapper */
extern void pascal error_init (void)/
extern unsigned pascal error_trap (void pascal (*execution_procedure)())/

extern void pascal error_log (unsigned error_code)/
/* Heap */
extern void pascal heap_init (unsigned starting_segment,

unsigned segment_count)/

extern void far * pascal heap_alloc (unsigned paragraph_count)/
/* Symbol table */
extern void pascal word_init (unsigned maximum_word_count)/

extern void pascal word_read (unsigned file_handle)/
extern void pascal word_scan (void pascal (*word_procedure)() };
extern char far * pascal word_name (unsigned word_descriptor)/

extern unsigned pascal word_refcount (unsigned word_descriptor)/
extern unsigned pascal word_count (void)/
extern int pascal word_compref (unsigned word_descl, unsigned word_desc2)/

/* Sorting procedure */
extern void pascal sort_do (unsigned far *sort_array, unsigned sort_count,

int pascal (*compare_procedure)())/

/*** Global Variables ***/
/* Error table */
char * error_table [] = {
"Insufficient Memory\n",
"Out of Hash Space\n",
"File Read Error\n",
"Usage: SPECTRUM filespec [filespec] ... [filespec]\n(filespec may have ?,*)\n"

}/

/* Arguments */
int global_argc/
char **global_argv/

/* Memory */
unsigned segment_count;
unsigned starting_segment;

/* Sort array */
unsigned sort_index/
unsigned far *sort_array/

/**** Procedures ****/
/* Fill sort array with descriptors */

263

void pascal array_fill(unsigned word_desc)

{
sort_array[sort_index++] = word desc;

}

/* Main execution procedure */
void pascal main2 (void)

{
int i;
unsigned j;
int words = 0;
int file_handle;
i f (global_argc < 2) (

error_log(4);

}
heap_init (starting_segment, segment_count);
word_init (32767);
for(i=l ; i<global_argc ; i++) {

file_handle = _open (global_argv[i], 0_RD0NLY);
if (file_handle != -1) {

word_read(file_handle);
_ c l o s e (file_handle);
} else (
error_log(3);

}
}

/* Obtain array address */
sort_array = (unsigned far *)heap_alloc((word_count()+7)/8);
/* Fill array */
sort_index = 0;
word_scan(array_fill) ;
/* Sort array */
printf ("Sorting...\n");
sort_do (sort_array, sort_index, word_compref);

/* Display output */
printf ("\nCount\tWord\n");
printf ("----- \t---- \n");
for (i=0 ; i<sort_index-l ; i++) {

j = word_refcount(sort_array[i]);
words = words + j;
printf ("%d",j);
printf (11 \t”);
printf ("%Fs",word_name(sort_array[i]));

printf ("\n");

)
printf ("\nTotal unique w ords:\t%d\n",sort_index);
printf ("Total words:\t\t%d\n",words);

/* Main procedure */

int main(int argc, char *argv[])

{
int i;
/* Copy arguments */
global_argc = argc;

global_argv = argv;

error_init();
segment_count = allocmem(65535,&starting_segment);
allocmem(segment_count, &starting_segment);
i = error_trap (main2);
if (i ! = 0) (

/* Print error message */

printf (error_table[i-1]);

}
freemem (starting_segment);
return (i);

I End Listing Five

Listing Six
spectrum.exe: spectrum.obj heap.obj word.obj error.obj sort.obj

tlink /v \tc\lib\cOs+\tc\exa\wildargs+spectrum+heap+word+error+sort,

spectrum,,\tc\lib\cs.lib;
heap.obj: heap.asm

ta heap /mx /zi
word.obj: word.asm

ta word /mx /zi
error.obj: error.asm

ta error /mx /zi
sort.obj: sort.asm

ta sort /mx /zi
spectrum.obj: spectrum.c

tcc -c -v spectrum

End Listings

2 6 4

P R M 1 A M M I H G P H A D I G M S

G ettin g C L O S

W hat m akes Lisp relevant today
is that it is converging, in terms
of features and perform ance,
w ith other developm ent envi

ronm ents for large softw are projects.
W hen Guy Steele published Common
Lisp: The Language (Digital Press, 1984),
he codified w hat quickly becam e the
de facto standard for Lisp; now the
ANSI subcom m ittee X3J13 has nearly
com pleted a draft standard for Com
m on Lisp that includes the Com mon
Lisp O bject System (CLOS), an object-
oriented extension to the language. I
had this colum n half w ritten w hen the
second edition of Steele’s book arrived,
containing m uch new material, includ
ing an entirely new chapter on CLOS.
It forced me to go back and rewrite
several things; this colum n also cor
rects som e things I said last m onth that
are now out of date. Steele’s treatm ent
o f CLOS is essentially the ANSI com
m ittee’s treatm ent, and should be very
close to the final draft standard, due
out this year.

This convergence, though, is turning
Lisp into som ething new . At last year’s
OOPSLA m eeting, Bjarne Stroustrup
sum m ed up CLOS by calling it a multi
paradigm language. The circum stances
(the developer of C++ being asked to
deliver a lecture on the virtues of CLOS)
left it unclear w hether he m eant it as a
term of opprobrium or as a compliment.

Michael Swaine
This colum n’s beat is paradigm s, and

it seem ed w orthw hile to take a look at
how one paradigm (functional program
m ing) is ex tended to another (object-
oriented program m ing). In January w e
looked at “p u re” Lisp; in February w e
saw how this pure functional paradigm
has evolved w ith the w idespread ac
ceptance of Com m on Lisp, and this
m onth w e ’ll take a look at the objectifi

cation of Lisp in the form of the Com
m on Lisp Object System. We’ll exam
ine tw o themes: H ow the Com m on
Lisp data-type system underlies the
CLOS class system, and how the basic
concept o f a function, a key aspect of
Com m on Lisp as w ell as o f “p u re” Lisp,
has been ex tended to the object world.

Typing Tutor
Some of the things I said last m onth
have been superseded by the new edi
tion of Steele’s book, and this edition
makes som e things m ore official than
they w ere previously. Because of these
things and also because CLOS classes
m ap into the Com m on Lisp hierarchy,
I’ll spell out the Com m on Lisp data
type relationships in som e detail.

To begin with, it’s not really a hierar
chy, but an overlapping structure that
Rosemary Simpson, in her Common
Lisp: The Index (Coral Software and
Franz, Inc., 1987) calls a “heterarchy.”
Two types stand at the very top and
bottom of the Com m on Lisp data type
heterarchy, t is a supertype of every
other type, and nil is a subtype of every
other type. No object is o f type nil.
Every object is o f type t,

The following subtypes of type t are
of interest because X3J13 has defined
them to be pairw ise disjoint: character;
number; symbol, cons, array, random-
state, hash-table, read-table, package,
pathname, and stream. A Common Lisp
object cannot belong to m ore than one
of these types, although it need not
belong to any of them.

In addition to these types, any data
type created by the dej.struct or defclass
m acros (a user-defined structure or a
CLOS class, respectively) is also dis
joint from any of the above types. Any
tw o user-defined structures are disjoint
from one another unless defined o th
erwise, and the sam e goes for classes.
Classes, though, are always defined in
term s of o ther classes. I w o n ’t say m uch

about structures here, and I’ll discuss
classes later.

Functions are data objects, too, and
the data type function is disjoint from
som e of the above types, specifically
from character, number, symbol, cons,
and array. The types character, num
ber, symbol, cons, array, and function
are w orthy o f som e elaboration.

Lisp Has Character
First, I’ll discuss characters and num
bers, correcting som e outdated info from
last m onth.

X3J13 redefined the character subtypes
that w ere given in the first edition of
Steele’s book. Now the base-character
and extended-character subtypes form
an exhaustive partition of the type char
acter. All characters are one or the other
o f these types. Base-character is im
plem entation-defined, but m ust be a
supertype of standard char, w hich is a
set of 96 characters that any Lisp im
plementation must support; the extended-
character type seem s to be X3J13’s way
of dodging the confusion of bit and
font attributes prevalent in Lisp.

Formerly, the data type number con
tained three disjoint subtypes, rational,
float, and complex. Now a new type,
real, has been introduced. The hierar
chy runs like this: Types real and com
plex are disjoint subtypes of type num
ber, other subtypes of type number
can b e defined. Each of these tw o
subtypes also has tw o disjoint subtypes.
Type real has the disjoint subtypes ra
tional and float, it’s possible to define
o ther real subtypes. Type rational has
the disjoint subtypes integer and ratio;
other rational types can be defined.

However, type integer has exactly
tw o subtypes, and Com m on Lisp does
not allow other subtypes of integer to
be defined. The tw o integer subtypes
are fixnum and bignum. The fixnum
data type is a conventional fixed-word-
length integer, the w ord length being

122 Dr. Dobb's fourna l, M arch 1990
265

implementation-dependent, bignums are
“true” integers, their size dependen t
only on storage limits, not on w ord
length, fixnum s are m ore efficient than
bignums, and are used w here efficiency
is m ore im portant than being able to
represent precisely the num ber of grains
of sand required to fill the universe.
For exam ple, fixnum is the required
data type for array indices.

An object o f type ratio represents
the ratio of two integers. The Lisp sys
tem is required to reduce all ratios to
the low est terms, representing a ratio
as an integer if that is possible.

Com m on Lisp defines four subtypes
of type float, but an im plem entation
need not have all four as distinct types.
Types short-float, single-float, double
float, and long-float, in nondecreasing
order of w ord length, all m ust be sup
plied, bu t any adjacent pair o r triplet
of these may be identical. Any float
subtypes that are not identical m ust be
disjoint.

An object o f type complex represents
a com plex num ber in Cartesian form,
as a pair o f num bers. The tw o num bers
m ust be of type real, and bo th must
be rational or bo th m ust be of the same
floating-point type.

Everything in Lisp is a List
Characters and num bers are straight
forw ard data types, but symbols and
lists are trickier. Symbols are nam ed
data objects. Type symbol includes
am ong its sub types one peculiar
subtype: type null, null is the type of
exactly one Lisp data object: the object
nil. The status o f type null is one rea
son that the type relationships of Com
m on Lisp form a heterarchy rather than
a hierarchy, null is a subtype of tw o
types, neither of w hich is a subtype of
the other: symbol and list, nil is the
only object that is both a list and a
symbol.

Actually, at ano ther level, all sym
bols have a list-like structure. Each sym
bol has an associated data structure
called a “property list,” a list of pairs,
the first elem ents being (typically) sym
bols, and the second elem ents being
any Lisp data objects. The purpose of
the property list o f a symbol has evolved
over time; in Com m on Lisp it is less
im portant than in earlier Lisps, being
used now for data not needed fre
quently, such as debugging, docum en
tation, or com piler information. Nei
ther a property list nor a symbol is of
type list, but som ehow everything in
Lisp is a list o f som e sort. (Viewed
another way, alm ost everything in Lisp
is a function, as w e ’ll see shortly.)

The data type list, though, is not
regarded as being as basic as type cons.

Dr. D obb’s Journal, M arch 1990
266

1 2 3

P R O G R A M M I N G P A R A D I G M S

These are alternate ways of viewing
the sam e thing. A list is recursively
defined to be either the object nil o r a
cons w hose second com ponent is a
list. A cons is a data structure w ith two
com ponents, w hich can be pretty m uch
anything; usually, though, the second
com ponent of a cons is a list (or nil, the
em pty list). The first com ponents o f the
conses m aking up a list are the ele
m ents of the list.

The data type cons, then, is the type
of the basic data structure used to build
lists. Any object that is a cons is also a
list, so list is a supertype of cons. The
data type list has exactly tw o subtypes,
and they are disjoint: cons and null. In
this sense, null is the (type of the)
em pty list, list itself is a subtype of the
data type sequence, which has one other
subtype: vector, vector and list are dis
joint.

Vectors, and arrays generally, can
be rather com plex. Arrays can be com
plex, w ith the ability to share data with
other arrays, be dynam ically sized, and
have fill pointers. An array that has
none of these features is called a “sim
ple array.” Vectors are one-dim ensional
arrays; they differ from lists in perfor
mance characteristics. Accessing an ele
m ent of a list is, on average, a linear
function of list length, while the time
to access an elem ent o f a vector is
constant. W hen it com es to adding an
elem ent to the beginning of a list or
vector, though, the relationship is re
versed: constant for the list, and a lin
ear function of vector length for the
vector.

O ne o f vec to r’s m ore interesting
subtypes is type string. Type string is
the union of one or m ore vector types
w ith the characteristic that the types of

the vector’s elem ents are subtypes of
type character.

According to X3J13, the data type
function is strictly disjoint from data
types cons and symbol. But lists and
symbols are the only tools available for
referring to functions, or for invoking
them. This is probably a use-m ention
distinction, but in any case, w hen a list
or symbol is used in this w ay it is auto
matically coerced to type function. As
w e’ll see shortly, th e re’s som e truth to
the exaggeration that everything in Lisp
is a function.

Lisp Has Class
CLOS is an object-oriented extension
to CL, adding four kinds of objects to
CL: classes, instances, generic functions,
and m ethods. The key aspects are ge
neric functions, m ultiple inheritance,
declarative m ethod com bination, and
a m etaobject protocol. Classes and in
stances are tied to data types, generic
functions to functions. I’ll say only a
little bit here about the m etaobject p ro
tocol, w hich is not yet officially a part
of CLOS.

The Com m on Lisp O bject System
m aps classes into the data types just
described. Many Com m on Lisp types
have corresponding classes w ith the
same nam es, but not all. Normally, a
class has a corresponding type w ith the
same nam e.

Because the types do not form a
simple tree, and a type can be a subtype
of tw o types neither o f w hich is a
subtype of the other, you might expect
CLOS to support m ultiple inheritance,
in w hich a class can inherit from m ore
than one superclass. In fact, this is the
case. The heterarchical structure of types
is m irrored in the inheritance structure
of classes, but CLOS requires that m ore
structure be added to establish a clear
precedence order for inheritance. For
exam ple, the class vector has super
classes sequence and array, just as the
type vector has supertypes sequence
and array, but from w hich superclass
does vector inherit what?

CLOS resolves questions such as this
by requiring that you specify an order
ing of direct superclasses w hen you
define a class (and by supplying this
ordering for predefined classes). The
business of deriving a full p recedence
order is fairly com plex, but the CLOS
class precedence order for predefined
classes resolves such issues. In particu
lar, the precedence order for the class
null is null, symbol, list, sequence, t\
and the precedence order for the class
string is string, vector, array, sequence,
t. By implication, the precedence order
for the class vector is vector, array, se
quence, t\ so array m ethods have prece

dence over sequence m ethods w hen
class vector is inheriting m ethods.

Everything in Lisp is a Function
The simplifying generalization is that
everything in Lisp is a function. It’s
nearly true; any data object can be
treated as a function, or rather, as a
form. A form is simply a data object
treated as a function. You treat a data
object as a function w hen you hand it
to the evaluator, w hich is the m echa
nism that executes Lisp program s. The
evaluator accepts a form and does what
ever com putation the form specifies.

The evaluator can be im plem ented
in various ways, such as by an inter
preter that traverses the form recursively,
performing the required calculations
along the way; or as a pure compiler;
or by som e mixed form. Common Lisp
requires that correct program s produce
the sam e results, regardless o f the
m ethod of im plem entation. The evalu
ator is available to the user via the
function eval, and also the special form
eval-when, which allows specifying that
a form should be evaluated, say, only
at com pile time.

Not every data object specifies a mean
ingful function, but most do. To the
evaluator, there are three kinds of forms,
corresponding to three nearly disjoint
data types. There are symbols, lists,
and self-evaluating forms (per X3J13,
all standard Com m on Lisp objects, ex
cept symbols and lists, are self-evaluat-
ing forms).

Self-evaluating forms are taken liter
ally by the evaluator; they return them
selves on evaluation.

Symbols nam e variables, constants,
keyw ords and functions. They evalu
ate to w hatever they nam e; for exam
ple, w hat they are bound to or w hat
they are set to.

Lists, from the viewpoint of the evalu
ator, com e in three varieties: special
forms, m acro calls, and function calls.
Note that while a function is not a list,
a function call is.

Special forms are structural elem ents
o f the language that d o n ’t fit the func
tional paradigm well, such as the if-then-
else structure. These deviations from
the purity of the paradigm have been
a part of Lisp since the beginning, and
new special forms have been added
over the years, but in Com m on Lisp the
set o f special forms is fixed and cannot
be ex tended by the program m er. A
macro is a function from forms to forms,
m uch as in o ther languages. A macro
call, w hen evaluated, is said to be ex
panded. Program m ers can ex tend the
set of macros. D espite the fact that they
are not true functions, special forms
look like functions syntactically, as do

1 2 4 Dr. D obb’s Journal, M arch 1990
267

macros. The consequence of this is
that w hen you are sitting at the key
board typing in Lisp code, it feels like
you are dealing w ith one kind of con
struct: A parenthesized list that repre
sents a function and its arguments.

A form that is a function call consists
o f a list w hose first elem ent is a func
tion nam e. The other elem ents of the
list, if any, are treated by the evaluator
as forms to be evaluated to provide the
function with arguments. There are two
levels of evaluation that take place w hen
ever the evaluator deals w ith a func
tion call: The argum ents get evaluated,
then the function is evaluated with these
argum ents. Typically, the evaluation of
the function produces a value, which
becom es the value of the original form.

There are tw o w ays in w hich the first
elem ent of a form can nam e a function,
one involving a sym bol and the other
involving a list. Because symbols are
used to nam e functions, this is the most
direct and obvious way. The other way
involves the use of a lam bda expres
sion. A lam bda expression is techni
cally not a form, and cannot be evalu
ated. It is a list, the first elem ent being
the w ord lambda. The second elem ent
is a list of param eters, and this is fol
low ed by som e num ber of forms to be
evaluated, w hich can use the param e
ters. W hen the function that the lambda
expression nam es is applied to argu
ments, the param eters are bound to the
argum ents and the forms are executed
w ith these bindings.

Using a lam bda expression as a func
tion nam e is like slipping physical ac
tions into your speech, as you w ould
be doing if you referred to w hat com es
at the end of a joke by m aking a punch
ing motion, then saying the w ord “line.”
Lambda expressions see their main use
in defining functions, roughly like this:

defun <fn-name> <lambda-list>
<forms>

CLOS adds generic functions to Lisp.
Because the evaluation of functions is
central to Lisp, the extension of func
tions to generic functions has a lot to
say about how it feels to program in
CLOS.

A generic function is a true Lisp func
tion, is called w ith the sam e syntax,
and can be used in the sam e contexts
in w hich a Lisp function can be used.

Defining a generic function object is
similar to defining a function. You use
the defgeneric macro, basically like this:

defgeneric <fn-name> <lambda-list>
<m ethods>

The difference is that, rather than a

fixed set o f forms to be evaluated, the
generic function has a collection of
m ethod descriptions, each of which
may consist of a num ber of forms. The
m ethod descriptions have their ow n
lam bda lists that must be congruent
w ith the main lam bda list. Texas Instru
m ents has im plem ented generic func
tions in its TICLOS as norm al com piled
functions w ith pointers to data struc
tures containing their slots. W hen the
function is called, it is up to the object
system to select the appropriate m ethod
from its m ethods. Actually, not select;
the technique is m ore general than this,
and is called “m ethod com bination.”
The code eventually executed is called
the “effective m ethod .”

The selection/com bination has three
stages: select applicable m ethods, o r
der them by precedence, and apply
m ethod combination. The m ethod com
bination, defined in the definition of
the generic function, can be as simple
as using the m ost specific m ethod, or
it can be som e function of som e of the
applicab le m ethods. Som e built-in
m ethod com bination types are +, and,
or, append, max, and min, w hich per
form the corresponding functions on
the applicable m ethods to produce the
effective m ethod.

Some of the most interesting CLOS
functions are those that allow custom i
zation of the object system itself, by
manipulating metaobjects and metaclas
ses. Unfortunately, these have not yet
been approved by X3J13 for inclusion
in the standard. They do, however, sup
port the original spirit of Lisp as an
in trospective language, w ith all the
strangeness that Douglas Hofstadter sug
gested w hen I quoted him last m onth,
a quote that I here double-quote:

“A .. . double-entendre can happen
with LISP programs that are designed
to reach in and change their own struc
ture. I f you look at them on the LISP
level, you will say that they change
themselves; but i f you shift levels, and
think o f LISP programs as data to the
LISP interpreter. . . then in fact the sole
program that is running is the inter
preter, and the changes being made are
merely changes in pieces o f data. ”

Editor’s Note: For a general discus
sion o f functional programming, see
‘Functional Programming and FPCA
’89” by Ronald Fischer, DDJ, December
1989- Also, see "A Neural Networks
Instantiation Environment" by Andrew
J. Czuchry, Jr. in next m onth’s DDJ for
more information on programming in
Lisp.

D DJ

Vote for your favorite feature/article.
C ircle Reader Service No. 10.

Dr. D obb’s Journal, M arch 1990
2 6 8

125

C P R O G R A M M I N G

A Thousand CURSES
on TEXTSRCH

Last month we com pleted the re
trieval processes of the TEXTSRCH
project, a “C Programming” column
project that we started in December

of last year. It builds and maintains a
text indexing and retrieval data-base sys
tem that allows a user to find text files
by composing key w ord query expres
sions. The program has tw o passes: an
index builder and a query retrieval p ro
gram . The query retrieval p rogram
searches the text file indexes for files
that m atch the criteria o f a Boolean key
w ord search. It delivers a list of the file
nam es that m atch the search. W ith the
softw are, d ev e lo p ed th rough last
m onth’s installment, a user can deter
m ine w hich files in the text data base
m atch the criteria o f the query, and
from there he or she can m ove the files
into another application, for exam ple,
a w ord processor.

This m onth w e will add a new fea
ture to TEXTSRCH to allow the user to
select and view one of the files from
within the TEXTSRCH retrieval program
itself. Instead of m erely displaying a
list of file nam es that rpatch the query,
TEXTSRCH will display them in a m enu
w indow from w hich the user can se
lect. Then it will display the contents
of the selected file w ith the query ex
p ression’s key w ords highlighted.

We use this new feature to explore

Al Stevens
the screen driver softw are called
“CURSES.” CURSES is a library of func
tions that w ere originally im plem ented
in Unix V. Its purpose is to allow you
to write portable, term inal device-inde-
penden t C program s. The Unix system
and the C language are still inexorably
oriented to the simple teletype-like con
sole device. The standard input and
output devices are such that they can

be anything from a clunky old ASR-33
te letype to a h igh-reso lu tion , m any
MIPS, full-color, belch-fire, neck-snap-
per graphics workstation. To support
them all, stdin and stdout m ust speak
to the low est-com m on denom inator.

There are still m any installations that
use sim ple term inal devices, and these
devices are grist for the stdin, stdout
mill. Terminals are the sam e yet they
are different. A system ’s local devices
m ay be m any and varied, and the re
m ote dial-up users are likely to be call
ing in from any one of a num ber of
different term inal types. These differ
ent video display term inal devices can
w ork as one because they share the
com m on ability to send and receive
ASCII text w ith carriage returns and
line feeds. If that is the only w ay a
program needs to com m unicate w ith a
user, then these devices share all the
com m onality they will ever need.

There are, however, features in the
typical video display term inal that a
program can use to enhance its user
interface. Most such terminals have com
m and sequences to clear the screen,
position the cursor, and so forth. As
you might expect, there is no one way
to do all this. ANSI published a stan
dard, and som e term inal devices com
ply. The ANSI.SYS device driver that
com es w ith MS-DOS allows a PC to use
the ANSI protocols.

Many term inals have their ow n, non-
ANSI ways to clear the screen, position
the cursor, scroll, and achieve other
video effects. A program w ritten sp e
cifically to use the features of one of
these term inals m ust be m odified if an
incom patible term inal is connected to
the program . As a program m er in such
an environm ent you have three choices:
You can write to the com m on base,
w hich m eans simple, unadorned, glass-
teletype ASCII text; you can use the
unique features o f the term inal du jour

and modify your program every time a
new term inal com es into the picture;
or you can write to a higher-level video
protocol and have a system-level inter
preter library translate your video com
m ands into the com m ands of w hatever
term inal a user signs on with. The first
choice is the appropriate one for text
filter program s and console com m and
program s. The second one is appropri
ate w hen the operating environm ent
is w ell-defined and contained, and per
haps w hen user language perform ance
is an issue. The third choice is the best
one to m ake w hen you are striving for
portability and device independence.

CURSES
To provide for an environm ent w here
users w ith different term inals can use
the sam e software, and w here the soft
w are can use the video terminal features
that go beyond sim ple text display, the
Unix system contains the “CURSES” li
brary and the “term caps” data base.
The data base describes the video p ro
tocols o f each of the terminals, and the
library provides functions that translate
a higher-level com m on protocol into
that o f the user’s term inal device.

CURSES functions facilitate a prim i
tive w indow -oriented display architec
ture. You can define w indow s and use
them as virtual terminals. There are
character and string display operations,
cursor positioning operations, video at
tributes (such as highlighting and nor
mal displays), keyboard character and
string input, scrolling, and sim ple text
editing operations such as inserting and
deleting characters and lines.

CURSES w orks in m em ory buffers.
You address your operations to a de
fined w indow , and CURSES m akes the
changes in memory. These changes do
not appear on the screen until you tell
CURSES to refresh the w indow . This
m ethod might seem peculiar to a PC

Dr. D obb’s Journal, M arch 1990 127
269

C P R O G R A M M I N G

program m er w ho is accustom ed to in
stantaneous video m emory updates. But
it reflects its roots in the RS-232 ASCII
terminal. It takes m ore time to update
a term inal’s screen than it does to write
characters into a PC’s video memory.
For exam ple, a 24 x 80 term inal operat
ing at 19,200 baud will use about a
second to refresh its screen. A well-
behaved video library can keep a copy
of the current screen image and be
building another copy to contain w hat
ever changes you are making. W hen
you tell it to refresh, the library can, if
the terminals features allow, refresh only
that part of the screen that changes.

Lattice C 6.0
Lattice C is an old PC w orkhorse that
has been around since Gates w as in
short pants and Kahn w as a dynasty. It
w as one of the original full K&R C
compilers for the PC. The first Microsoft
C was in fact Lattice in a Microsoft binder
giving Microsoft an entrance into the
C com piler marketplace while they took
their tim e building one of their own.
Because Microsoft’s ow n C com piler
targeted upw ard compatibility for pro
grams written with their earlier Lattice
version and because the rest o f the C
com piler business strives for compati
bility with Microsoft C, it can be said that
Lattice had a strong influence on w hat
C com pilers for the PC w ould becom e.

There are Lattice versions now for
other platforms, including the am azing
and wonderful Commodore Amiga. The
m ost recent version for the PC, Version
6.0, supports DOS and OS/2, conforms
w ith the ANSI p ro p o sed draft, and
com es with a source-level debugger,
an editor, an assembler, a librarian, a
linker, lots of utility program s, a com
m unications function library, a data
base library that supports dBase III for
mats, a graphics library, a library of
DOS-OS/2 Family M ode functions, and
a CURSES library. If you do not require
an Integrated D evelopm ent Environ
m ent after the fashion of T urbo C,
QuickC, and others (and m any of us
do not), this is as com plete a C lan
guage developm ent environm ent as
y o u ’d w ant.

The Lattice CURSES Library
The Lattice CURSES library is available
in source code for $125 so you can
port it to the com piler of your choice.
This CURSES library provides a m eans
for developing screen program s that
can be ported betw een DOS, OS/2,
and Unix w ith m inim um changes. I
used the Lattice com piler and this li
brary to build the docum ent viewing
feature that w e are adding to TEXTSRCH
this m onth.

Porting Crotchety TEXTSRCH to Lattice C
I w rote the first three installments of
TEXTSRCH in Turbo C 2.0. My inten
tion w as to m ake the code as close to
ANSI C and as far from the PC architec
ture as possible to avoid restricting the
program to a particular platform. To
use the Lattice CURSES library, I d e
cided to port the code to Lattice C
rather than to port the CURSES code
to Turbo C. Som ehow I figured I’d have
an easier time of it by porting m y ow n
stuff. Maybe, m aybe not.

CURSES is a library of
functions that were

originally implemented
in Unix V to allow you

to write portable,
terminal

device-independent
C programs

The port w as reasonably easy with
just a few hitches. Here is w hat I ran
up against, and w hat follows is a new
crotchet that I hereby induct into the
“C Programm ing” colum n Crotchet Hall
of Fame.

It is said that a com piler that com
piles program s that com ply w ith the
ANSI standard is considered to be an
ANSI-conforming compiler. But w hat
about those com pilers that extend the
standard? For exam ple, W atcom C su p
ports the C++ convention for double
slash com m ents. The Turbo C fopen
function allows the use of a non-stan-
dard m ode parameter. To be sure, both
com pilers will com pile program s that
do not use these extensions. But, be
cause you can write program s that use
them , you can unintentionally write
code that is not ANSI-conforming. Turbo
C has, of course, m any other ex ten
sions, such as pseudo-register variables
and interrupt functions. Many compilers
now include the interrupt function type,
w hich I first saw in W izard C, the an
cestor of Turbo C. Usually you can tell
the com pilers to disallow such ex ten
sions, that you are interested in writing
portable code, and the com pilers will
com ply. But w hen an extension takes
the form of the values accepted as a
function’s parameters, the compiler does

not p reem pt the extension. So, in all
my innocence and w ith good inten
tions aforethought, I used the Turbo C
“rt” and “w t” formats for the fopen
m ode parameter. The Lattice fopen func
tion, in true ANSI com pliance, simply
refused to o p en those files because it
did not recognize the m odes. Turbo C
also supports m ode formats such as
“r+b” w here ANSI and the Lattice docu
m entation specify “rb+.” Naturally, I
used the non-standard formats in my
fopen calls. You should go through all
the code in <index.c> from last m onth
and change every “r+b” to “rb+” and
“w + b” to “w b + .” C hange all fopen
m odes that include the “t” to rem ove
the “t.” I believe that the definition of
com pliance should exclude such ex
tensions.

The nex t portability issue cam e w ith
header files. Turbo C puts som e func
tion prototypes into m ore than one
header file. In this case, I included the
non-standard <process.h> to get the
prototype for the exit function. Accord
ing to ANSI, this p ro to type is in
<stdlib.h>, and that is w here Lattice
keeps it.

The m oral o f the story has to be: Get
a good ANSI function library reference
book and ignore the library docum en
tation that com es w ith your compiler.

O ther storm s in my port w ere the
result o f issues unrelated to ANSI C.
The TEXTSRCH <cmdline.c> source file
uses the T urbo C findfirst and findnext
functions to search a file directory. ANSI
C has no equivalent functions because,
I suppose, there are som e C platforms
that have no analogue to the DOS di
rectory search. W hen I w rote about
those functions last m onth, I said you
w ould n eed to m ake substitutions if
you are using a different compiler. Now
I find myself in that sam e boat. Be
cause Lattice has equivalent functions
in its dfind and dnext functions and
because it does not have the <dir.h>
file that cm dline.c includes, I coded a
<dir.h> that substitutes w ith m acros the
Lattice functions for the Turbo C func
tions. You will find <dir.h> as Listing
O ne on page 144.

I had the global variable OK defined
as 0, and the Lattice <curses.h> defines
it as 1. If you use the Lattice definition,
all the TEXTSRCH code w orks fine.

The next set o f problem s occurs b e
cause of errors in the Lattice header
files. It’s difficult to imagine how these
errors have gone undetected until now .
The <curses.h> file includes definitions
of keystroke values for the keypad keys.
O ne of these is KEY_PGDN, w hich d e
fines the value returned w hen you press
the PgDn key. The definition, 0x0181,
is wrong. It should be 0x0151. The

128
270

Dr. D obb’s Journal, M arch 1990

C P R O G R A M M I N G

(continued from page 128)
m acros for the CURSES wstandout and
wstandend functions are incorrect. They
do not include the win param eter in
the m acro expansion. Not only do you
get com piler warnings, bu t the func
tions do not work. Finally, the Lattice
<stdlib.h> header file specifies in the
free function prototype that free returns
void, w hich is wrong. It returns int. I
had to repair the Lattice header files to
proceed.

My final p rob lem w as w ith the
CURSES screen driver softw are. For
som e reason it reprogram s the video
m ode of m y Vega Video 7 in a w ay
that m akes the display go off into the
w eeds at unexpected times, usually af
ter I exit my program . To solve this
problem I w ould n eed to look at the
source code for CURSES, and time and
deadlines do not permit. A w orkaround
solution is to run the TEXTSRCH pro
gram from a batch file that executes the
DOS com m and MODE COSO after the
TEXTSRCH program exits to DOS.

TEXTSRCH
To install the new file-viewing func
tions of TEXTSRCH, you m ust replace
the source file nam ed <search.c> from
last m onth w ith the one in Listing Two,
page 144. You must also com pile and

link <display.c>, Listing Three, page
144, and <error.c>, Listing Four, page
149, into the <textsrch.exe> program .

The BLDINDEX program w orks the
sam e w ay that it d id before. The new
feature is in the TEXTSRCH program .
W hen you enter a query expression the
results are now displayed in a screen
w indow w ith an ASCII -> cursor to the
left of each file nam e. With the up and
dow n arrow keys, you m ove that cur
sor and scroll the display. W hen the
cursor points to a file you m ight w ant
to view, press the Enter key. The first
page of the selected docum ent text dis
plays in a new full-screen w indow . The
up and dow n arrow keys will scroll the
display. The up and dow n page keys
will page the display. The H om e key
goes to the first page and the End key
to the last. During the display all occur
rences of the key w ords from the query
expression d isplay in a h ighlighted
m ode. You can m ove to the next page
w here a key w ord appears by pressing
the right arrow key. The left arrow key
m oves you to the previous page w here
a key w ord appears.

Here is how to use CURSES to achieve
these results. The process_residt func
tion in <search.c> is changed. Instead
of displaying the matching file names it
builds an array of those names. Then it

calls the CURSES initscr function to in
itialize the screen manager, calls select Jext
so the user can select a file to look at,
and calls the CURSES endwin function
to shut down the screen manager.

The select_text function is w here the
user picks a file to view. We use the
CURSES neunvin function to build a
m enu w indow . The keypad function
allows the CURSES keyboard routines
to recognize the keypad characters, and
the wsetscrreg function defines the scroll
ing boundaries of the w indow . Use of
this function prevents the w indow bor
ders from scrolling along w ith the rest
of it.

The display_page function displays
a specified page o f the file m enu in the
w indow . Initially w e call it to display
the first page. T hen w e draw a box
around the w indow , write the ASCII
-> selector cursor, and read the key
board. The various cases under the key
stroke switch, take care of m oving the
selector cursor up and dow n, and pag
ing and scrolling the file selector menu.
W hen the user presses the Enter key,
that case calls the display_text func
tion, passing the nam e of the selected
file as show n in the m enu w indow .

At this point w e m ust consider the
values assigned to the different keys
w e are interpreting. They are taken

130 Dr. D obb’s Journal, M arch 1990
271

C P R O G R A M M I N G

(continued from page 130)
from the Lattice <curses.h> header file
and they correspond to w hat the Lat
tice version of the CURSES wgetch func
tion returns for the cursor keys w hen
the CURSES keypad m ode is on. These
values m ight not apply to different e n
vironm ents. Also see the use of the
VERT_DOUBLE and HORIZ_DOUBLE
global variables in the call to the CURSES
box function. These too ap p e ar in
<curses.h> and they correspond to the
PC’s graphics characters for border char
acters. You m ight need to change these
values to som ething that m atches your
system. CURSES does not provide for
border corner characters, but the Lat
tice im plem entation recognizes the IBM
set and uses the matching corner g raph
ics characters.

Look now at Listing Three to see the
code that displays a text file. The func
tion nam ed display_text opens the file
and calls its do_display function if the
file opens OK. If not, it calls the er-
ror_handler function that you will find
in Listing Four. This general-purpose
function displays an error m essage in
a w indow , waits for a key press, and
clears the message.

The do_display function reads all the
lines of text from the chosen file and
stores them in a linked list in the heap.
The list connects each line to its fol
lowing line and records the positions
of any key w ords in each line.

The findkeys function takes care of
finding and storing key w ord occur
rences. It scans the line of text com par
ing each w ord to the ones in the query
expression. If a w ord m atches one of
the keys, its character offset relative to
the start o f the line goes into the header
block of the line’s linked list entry. The
header block can contain up to five
key w ords for each line, w hich should
be enough to call your attention to the
line.

After all the lines o f text are tucked
aw ay in the linked list, the program
builds a full-screen w indow to display
the text. The display_textpage function
displays a page of text beginning w ith
a specified line. It displays the lines a
character at a time. If the current char
acter position is m arked in the line’s
header block as the position of a key
word, the program calls the CURSES
wpstandout function to cause the w ord
to be highlighted. W hen the program
finds the next w hite space character, it
calls the CURSES upstandend function
to return the display to the normal,
non-highlighted m ode.

O nce a page is displayed, the pro
gram reads the keyboard. As with the
file selector m enu, the keystroke val
ues control the screen display. You can

132
272

Dr. D obb’s Journal, M arch 1990

page and scroll up and dow n, and you
can m ove the next o r previous page
w here a m arked key w ord appears.
The pagemarked function m akes this
test, finding the first line of the speci
fied page and looking at each entry in
the list to see if any line has a m arked
key word.

W hen you press the ESC key, the
function calls wclear to clear the text
display w indow and wrefresh to re
fresh that clearing to the screen. Then
it deletes the w indow and frees the
heap of the linked list entries.

Back in the select_text function the
file selector w indow gets redisplayed
and the user can pick out another file
to look at.

TEXTSRCH Performance
H ow effective is the CURSES approach
to the developm ent of portable code?
The proof w ould be in the successful
porting of a program such as this one
to another platform. I am sure that this
program w ould port to a Unix system
w ith no m ore fuss than I had moving
it to Lattice C. There is, however, one
big area of concern in such a move.
We do not know how efficiently the
program w ould operate. CURSES is a
technique for the portability of screen
driver code to a m ultitude of display

devices. Its im plem entation in the Lat
tice library m akes for an effective and
efficient program because they used all
the PC tricks for fast screen updates.
W hat’s m ore, I developed this program
on and for a 20-MHz 386 com puter.
The only w ay to know how well or
poorly this particular use of CURSES
w ould w ork on a slow er m achine or
with a different term inal is to m ove the
program. So, w ith that in mind, I m oved
TEXTSRCH to the slow est com patible
com puter at my house, an 8-MHz COM
PAQ II. I am happy to report that it
w orks fine. This does not, however,
qualify it for an environm ent w here the
terminal device is a serial VDT. I w ould
suspect that som e of the ways I used
CURSES are not the best choices for
such a setup. A seasoned CURSES p ro
gram m er probably know s intuitively
w hat to do and w hat to avoid to sup
port the m ost effective user interface.

The collective abilities and shortcom
ings of CURSES across a w ide selection
of term inals w ould, no doubt, influ
ence the w ay you w ould design a user
interface. G iven that one could learn
these boundaries and w ith all this in
mind, I can conclude that CURSES is
an effective technique for w ide plat
form independence of text-based screen
m anagem ent. That, o f course, is no

new s to Unix program m ers, w ho have
had CURSES for several years. It is news
to those others o f us w ho m ight be
looking for tidy ways to develop pro
gram s on the PC that can be m oved to
o ther operating environm ents.

Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif, residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves
ton Dr., Redw ood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
o r 800-533-4372 (from outside Calif.).
Please specify the issue num ber and
form at (MS-DOS, Macintosh, Kaypro).
Source code is also available online
th rough the DDJ Forum on Com pu
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR w hen the
system answers, type: listings (low er
case) at the log-in prom pt.

D D J

(Listings begin o n page 144.)

Vote for your favorite feature/article.
Circle Reader Service No. 11.

Dr. D obb’s Journal, M arch 1990 133
273

S J R U C T U R E D P R O G R A M M I N G

Sifting fo r Sharks’
Teeth

P rowling the 23 miles of aisles at
Comdex Fall, looking for program
m er tools, is like sifting the sand
hills over in Lockhart Gulch west

of Scotts Valley, looking for sharks’
teeth. You know that they ’re dow n
there, and if you dig long enough y o u ’ll
find a few, However, the smart guys
run dow n to N ew Age Annie’s Kosmic
Krystal Koop in Santa Cruz and buy
one of the nice clean sharks’ teeth An
nie keeps in a “Save the W hales” bowl
next to the two-for-a-dollar tiger eyes.
Saves a heap o ’ diggin’ — w hich is what
y o u ’re doing by buying this magazine.

Into the Outback
W hat w ild and w onderful program m er
stuff there is is not on the main floor,
by and large. (Exceptions might in
clude the Microsoft booth, w hich was
the size of a small county in Arkansas.)
Finding the good stuff m eans traipsing
around the outlying hotels such as the
Tropicana and Bally’s.

The #1 Neat Com dex Idea for p ro
gram m ers com es from tw o different
vendors, w ho solved the sam e knotty
problem using tw o different technolo
gies. The problem is a com m on one:
Running out o f DOS m em ory while
doing a build on a large application
using command-line compilers and link
ers. QuickPascal has this problem in
spades; for all its m any virtues, QP uses
m em ory like cheap cologne and al
ways runs out before Turbo Pascal.
Even a m em ory m iser such as Turbo
will run out eventually if you hand it a
big enough application.

Jeff Duntemann, KI6RA

Qualitas’ superb 386-to-the-MAX nib
bles on the problem by using the 386’s
hardw are m em ory m anager to rem ap
som e of 386 ex tended m em ory dow n
beneath the video refresh buffer. You
can get a contiguous DOS m em ory area
as large as 704K if y o u ’re using a m ono
chrom e display adapter. A small San
Jose, California com pany nam ed V
Com m unications takes the idea m uch

further, by m oving the video refresh
buffer entirely to som e other location
in 386 m emory and making BIOS aware
of the move. Their Memory Commander
product can give you as m uch as 924K
of contiguous DOS memory, d epend
ing on w hat TSRs, device drivers, and
BIOS software needs space in the first
megabyte.

924K is an extrem e case. The com
pany says a typical system should be
able to have about 860K available for
compiles, if no attem pt is m ade to ad
dress screen m em ory directly. Because
com m and-line com pilers and linkers
typically write to standard output rather
than the refresh buffer, this is not a
problem . And 860K could allow you
to build a m uch larger app. Think of
all that symbol table space . . .

Invisible Software of Foster City, Calif,
has a product that does m uch the same
thing, only they use a little-know n and
less-understood feature called “shadow
RAM,” supported by several of the Chips
and Technologies VLSI chip sets for
286 and 386 m otherboards. Shadow
RAM is present only in those m achines
using those chip sets. If the m other
board is equ ipped w ith a m inim um 1
Mbyte of RAM, (rather than the canoni
cal 640K) the chip set can m ap portions
of that RAM w here it needs to. The
feature w as developed to allow the
copying of code from slow er BIOS
ROMs into faster RAM to im prove per
form ance, but it can also m ap RAM into
the segm ent space betw een $A000 and
$B800 (assuming you don’t have a m ono
chrom e display board) giving you a
contiguous DOS space of as m uch as
736K. So w hile the Invisible RAM prod
uct does not give you quite as m uch
potential space as Memory Commander,
it has the advantage of w orking in the
great many inexpensive Asian 286 m oth
erboards that use the Chips chip sets.
(Memory Com mander, rem em ber, is a
386-only product.) You can dow nload
a test program from Invisible Software’s
BBS to detect and report on w hether
you have the necessary chip set in your
system. Call them for details if you ’re
interested; it’s a very slick product.

Documentation on Demand
The #2 Neat Com dex Idea for p ro
grammers solves an ugly logistical prob
lem facing sharew are authors: H ow to
provide attractive printed docum enta
tion w ithout going broke. As one of the
inducem ents to registering a shareware
package, m any authors offer typeset
printed docum entation. The catch is
that m anuals cannot be printed eco
nomically in batches of few er than 500
o r so, and costs d o n ’t really go dow n
until the num bers head up into the tens
o f thousands.

However, w hen you punt your share
w are creation out into the brave, cold
world, you have no idea how m any
registrations y o u ’re likely to get. Worse,
products generally evolve far m ore
quickly than 500 m anuals are likely to
be needed, leaving authors stuck with
piles of obsolete m anuals that are fully
paid for — and worthless.

W orkhorse laser printers (especially
HP’s that prints on bo th sides of a sheet
at once) and desktop publishing pack
ages such as Ventura Publisher allow
high-quality, short-run printed output.
W hat’s needed is a m echanism to bind
loose sheets together in a professional-
looking way, and at Com dex I found
one: The Unibind binding system.

In a nutshell, Unibind w orks like
this: The sheets to be bound are placed
inside a plastic or card-stock folder with
a therm oplastic adhesive bar running
dow n the middle. This assem blage is
then p laced in a toaster-gadget that
positions the sheets and cover accu
rately, and heats them until the adhe
sive melts and glues the sheets together
at the spine and the spine to the cover.
The system can b ind stacks from 2
sheets to 650 sheets in size, and each
volume takes about 45 seconds to bind.

Systems similar to this have been
available for som e time, but the ones
I’ve seen and used (typically from
C heshire) are extrem ely m essy and
mechanically fragile. Unibind is nei
ther; the bound volum es are tidy and
show no loose traces of adhesive, and
the binder device has far few er m oving
parts than Cheshire and similar systems.

1 3 4
2 7 4

Dr. D obb’s Journal, M arch 1990

Once bound, the sheets are in there for
the long haul; I w as unable to pull any
of the sheets from the bound volum e
w ithout tearing them. O n the dow n
side, the system has significant upfront
costs, and the per-piece cost o f the
bound volum es is higher than volum es
printed and bound at a printing plant.
However, there is no w aste and no
obsolescence, because the system truly
allows “docum entation on dem and .”
You print w hat you need as you need
it, folding in updates as they happen ,
no sooner, no later. You can support
several low-volume shareware prod
ucts w ithout going broke printing 500
m anuals for each while expecting to
sell m aybe 20 or 30 m anuals per year.

It’s getting tougher and tougher all
the time to put low-cost specialty soft
w are p roducts on the m arket and m ake
them pay. Shareware is our last best
hope in this regard, and Unibind can
help solve that ugly docum entation is
sue. If y o u ’re a sharew are author you
ought to look into it.

Stereo-On-A-Card
The #3 Neat Com dex Idea for p ro
gram m ers m ay seem a little loopy, but
it solved an infuriating problem for me
and may solve that sam e problem for
you if you ’re one of the m any program
m ers w ho listens to music w hile p ro
gramming. The D esktop Stereo p rod
uct from O ptronics of Ashland, Ore. is
a half-sized board for the PC bus con
taining a world-class FM stereo receiver
and 4 watts per channel amplifier. There
are no tuning knobs on the board
bracket; all controls are done electroni
cally, through pop-up dialog boxes con
taining, am ong other things (dare I say
it?) radio buttons. You can view the
FM band as a graph of vertical bars
displaying signal intensity at various
frequencies (neat touch!) and preset
up to ten frequencies w ith m nem onic
nam es such as “KRAP” or “Hillbilly
Rock” and punch them up like buttons
on your car radio.

The problem that this board solves
is that the expensive Japanese CD-
equ ipped boom boxes that m any of
us place beside our RAM charged 386
boxes leak like sieves. Unless your fa
vorite FM station’s tow ers are on the
next block, w hat y o u ’ll hear on your
FM receiver is likely to be your m a
chine’s switching transients playing solo,
and that is dull (if pow erful) music. I’d
long since abandoned FM and simply
play my CDs. The FM m odule on the
D esktop Stereo card is extrem ely well
shielded (it had better be!) and abso
lutely quiet in the absence of signal
m odulation.

Now I can listen to PBS again. 20

plus stations accessible from fringey
Scotts Valley. No racket. Jeff-Bob says
check it out.

All Set with Modula
Let’s continue our discussion of the
vice president of Structured Languages,
Modula-2. Will M odula ever overtake
Pascal for small machines? Probably
not. Unless . . . the president decides
not to run in OS/2 land, in w hich case
the race gets interesting. Modula-2 is
already very big over on the OS/2 side
of things, second (so far as I can tell)
only to You Know W hat. If this contin
ues for a few m ore years, the OS/2
products could achieve a form idable

critical mass, especially since M odula
contains standard syntactic support for
multitasking. (More on that very thorny
issue w hen I get OS/2 running reliably
on this sorry excuse for a 386 machine.)
If y o u ’re contem plating a project for
OS/2, ignore those C-sirens claiming
that C is the only w ay to go. You can
do very well w ith Modula-2, according
to sources that I trust. Someday I’ll know
from firsthand experience, sigh.

No, in this issue w e’re going to talk
about sets. Sets are w hat drove me out
of Modula-2 several years ago. W hen
the language spec w as first released I
jum ped on it, w ith full intent to port
over my disks full o f code, w ritten in

Dr. D obb’s Journal, M arch 1990 135
275

S J R U C T U R E D P R O G R A M M I N G

the faltering corpse of Pascal/MT+ for
CP/M-80. I dug in and discovered sev
eral days into the project that I cou ldn’t
do it. My code w as absolutely p ep
pered w ith the killer type definition:

TYPE
CharSet = SET OF Char;

Uh-uh, said the compiler. Sets in Modula-2
may have no more than 16 elements.

This is a serious sem antic bite in the
buns. Sets w ork well for m e and I use
them a lot, especially for building sys
tem s to handle characters m oving from
one place to another, as from the key
board to the screen or from a serial
port to the screen or to a disk file. Like
Maxwell’s Dem on, a set is a filter that
can pass odd characters am ong the
ASCII throng w hile denying passage
to others in a group just as odd. Con
sider the elegance of this classic con
struct:

IF AnswerChar IN [‘Y’,‘y ’]
THEN D olt ELSE DontDoIt;

The alternative is this:

IF (AnswerChar = ‘Y’) OR
(Answer-Char = ‘y ’)
THEN . . .

You might argue that the second form
resolves to few er m achine instructions,
and I’d argue back that y o u ’re rarely
going to have to execute 17,000 such
tests in a tight loop. Furtherm ore, w hat
about this:

IF Incom ingChar IN W hiteSpaceSet
T H E N .. .

There’s simply nothing like sets for char
acter filters such as this. It w as just
possibly possible in som e cases to pull
tricks w ith subranges of few er than 16
characters, but the w hole no tion of
fended me: Niklaus Wirth threw char
acter sets out the w indow to m ake it
easier to im plem ent Modula-2. There
are m aybe two or th ree hund red p o
tential Modula-2 com piler im plem en
tors in this world. There are hundreds
of thousands of potential Modula-2 pro
gramm ers. O ne suspects he skipped
M arketing 101 as an undergrad.

About then Turbo Pascal happened ,
and Modula-2 slipped into eclipse for
som e years. Logitech held the torch
alight all that time, but their product,
w hile solid, w as com plex and slow
and adm ittedly in tended for internal
use. It w asn ’t until JPI in troduced
TopSpeed Modula-2 that the language
show ed any serious life. Soon after
w ard, the Stony Brook com piler m ade

its debut, and I’ve begun to do som e
serious w ork in Modula again.

The reason is pretty simple: TopSpeed
and Stony Brook have done the Awful
Thing: Extended Modula-2 by allowing
sets to have as m any as 65,536 ele
m ents. Horrors. You might not be able
to port your dog kennel m anagem ent
package to the Lilith operating system.
It is to cry real tears.

Niklaus Wirth threw
character sets

out the window

Duntemann's One Law of Portability
Rem em ber this, chilluns: For any plat
form w ith I/O m ore com plex than a
batch system, sem antic differences b e
tw een platforms m akes portability im
possible. In o ther w ords, even if you
w rote your character-based PC kennel
m anager in absolutely standard M odu
la-2, could you port it to the Macintosh?
If you had w ritten it for m ultiple termi
nals under Unix, could you port it to
DOS? Get real — the effort spent re
solving sem antic conflicts w ould far
outw eigh trifles like the shape of an IF
statement.

So let’s quit arguing about som e
thing that’s never been w orth a plugged
nickel outside of academ e anyway.

Watch the Corral, Not the Cows!
A set is an abstraction of a group of
values, indicating w hether one or more
of those values are present or not p re
sent. It’s like a corral on a farm with
seven cows; at any given time a cow is
either in the corral o r not. The cow s are
in no particular o rder within the corral.
They’re either there or else out m aking
things for the unw ary to step in.

It’s im portant to rem em ber that the
set is not the cows; the set is the corral.
It’s still a set even w hen it is empty.

In Modula-2, a set is defined in terms
of som e ordinal type or subrange of
an ordinal type, including enum era
tions such as the insufferable list of
colors that every w riter on the subject
(myself included) has used in books
explaining the concept:

TYPE
Colors = (Red, Orange,
Yellow, Green, Blue, Indigo,

Violet);
WarmColors = [Red . . Yellow];
ColorSet = SET OF Colors;

WarmSet = SET OF WarmColors;
CardSet = {0..655351
CharSet = SET OF CHAR; (* Yay! *)

B eneath it all, in physical memory, a
set is a bitm ap. There is one bit in the
set for each value that may legally be
present in the set. Each bit carries one
Boolean fact: W hether the value that
the bit stands for is present or not p re
sent in the set. Adding a value to the
set is done by raising that value’s bit to
binary 1. Removing a value from the
set is done by changing that value’s bit
back to a binary 0.

A “full” set (that is, one having all
values present) is not one bit larger
than an em pty set. Again, the set is the
corral, not the cows!

Set Operators
There are a num ber of operators and
standard procedures that w ork on sets
in Modula-2. The tw o m ost obvious are
INCL, w hich places a value in a set, and
EXCL, w hich rem oves a value from a
set. These are not present in Pascal. IN
is still there, doing exactly w hat it does
in Pascal: Return a Boolean value indi
cating w hether the value on the left is
p resent in the set on the right. Ditto
>= (set inclusion, right in left), and <=
(set exclusion, left in right) w hich do
m uch the sam e but for w hole sets: >=
returns TRUE if all values of the set on
its right are present in the set on its left;
and <= returns TRUE if all values in the
set on its left are present in the set on
its right.

There are actually only four opera
tors that are true set operators in that
they act on sets and return sets: + (set
union) - (Set difference) * (set intersec
tion) and / (set symm etric difference).
O f these, only the first three are present
in Pascal.

Set union of tw o sets returns the set
that contains all the elem ents present
in both of the sets taken as one. Set
intersection of tw o sets returns the set
o f values that are present in both sets,
but none of those values that m ay be
present in one or the o ther but not
both.

Set difference is a little trickier; my
Pascal p rof explained it badly (getting
it m ixed up w ith symmetric difference,
see below) and I m isunderstood it
through ten years and tw o editions of
my book. Set difference of two sets
returns the set that consists o f the ele
m ents in the set on the left once those
in the set on the right have been re
m oved from it.

Basically, set difference is a way of
pulling several elem ents out of a set
w ithout using EXCL to do it one ele
m ent at a time:

136
27 6

Dr. D o b b ’s Journal, M arch 1990

S T R U C J U R E D P R O G R A M M I N G

(continued from page 136)

This set exp ression retu rns the set
/ ‘A ’..‘L’I. (Keep in m ind that Modula-2
uses curly brackets for set constructors
rather than straight brackets.)

Finally, set sym m etric difference
(which is not in any Pascal im plem en-

Remember that the set
is not the cows; the set

is the corral

tation I’m aw are of) is rather like set
union tu rned inside out. The sym m et
ric difference of tw o sets is the set of
all elem ents that are present in one or
the o ther set, but not in both sets. In a
sense, the symmetric difference of two
sets is w hat the tw o sets d o n ’t have in
com m on; for exam ple, w hat rem ains
once their intersection (overlap) has
been rem oved.

Among them , these operators allow
you to do just about anything w ith a
set that y o u ’d ever w ant to do. And
now that sets can have up to 65,535
elem ents in Modula-2, that’s a lot.

The Naked Set
W irth’s original language definition did
not hard-code 16 as the num ber of
elem ents in a set. The num ber of ele
m ents in a Modula-2 set w as originally
defined as the num ber of elem ents in
the m achine w ord used by the system
for w hich the com piler w as im ple
m ented. In o ther w ords, in a system
with a 32-bit w ord there w ould be 32
possible elem ents in a Modula-2 set.

This m akes those limited set opera
tions very easy to im plem ent, and very
fast, because they can be done using
the native bit-m anipulation instructions
present in all m odern-day CPUs. Re
m em ber that sets are bitm aps. Further
m ore, the four true set operators bear
a certain uncanny functional resem
blance to certain logical operators such
as AND, OR, and XOR.

OR the bits o f tw o sets together and
w ham m o, suddenly you have the un
ion of the tw o sets. AND the bits o f two
sets together, and w hat rem ains is the
intersection of the tw o sets. AND the
bits o f one set w ith the com plem ent
(reversed) bits o f another set, and you
rem ove the bits o f the com plem ented
set from the other set, that is, set differ
ence. Finally, XOR the bits in tw o sets

together and w hat’s left are the bits
that are present in one set or the other
but not in both sets, since XOR drives
identical bit pairs to 0. Voila: Symmetric
set difference.

This is, of course, exactly w hat Wirth
intended, and he in tended for it all to
h appen w ithin the accum ulator o f the
host CPU, ensuring speed and minimal
fussing. H appily, in this brave new
w orld of fast global optim izing com pil
ers (Stony Brook’s is fabulous) w e can
have it both ways: W hen w e ’re fiddling
small sets we can do it fast at one shot
inside the accumulator; w hen w e’re fid
dling big sets w e can do it a w ord at a
time and take the perform ance hit.

Now, Wirth defined a specific kind
of set that has no true analog in Pascal:
BITSET, a standard type supported in
all Modula-2 com pilers. A BITSET is a
m achine w ord used as a bitm ap. All o f
the set operators operate on BITSET
values. A BITSETs nom inal values are
0 . . 15, but these are bit num bers m ore
than values. A BITSET is thus a sort of
naked set, in w hich the bitm ap nature
of the set is laid bare and can be m a
n ipulated directly. A bit in a BITSET
does not abstract a color, o r a charac
ter, or a cardinal number, or a cow; a
bit in a BITSET represents a bit, period.

Twiddling Bits in Other Types
With very little futzing, this fills an ap
paren t gap in Modula-2: The lack of
explicit bit-manipulation facilities. Turbo
Pascal has explicit bitwise AND, OR,
NOT, and XOR operators for num eric
ordinal types, and it can also shift bits
in num eric ordinal values w ith its SHR
and SHL operators. Modula-2 has none
of these . . . or does it?

It does . . . but they only operate on
values of type BITSET.

No problem — just ask Pizza Terra.
(For those unfamiliar w ith the refer
ence, see my May 1989 colum n.)
M odula-2 has explicit type casting
(w hich Wirth calls type coercion), so
if you w ant to fiddle bits in type CHAR,
cast type CHAR on to type BITSET, and
fiddle away! Any type can be cast onto
any other type of identical size, and
there are transfer functions such as Ord
to cast 8-bit types like CHAR and
BOOLEAN onto 16-bit types like CAR
DINAL.

For exam ple, to AND a CARDINAL
variable MyCard w ith the value 128,
you could do this:

NewCard :=
CARDINAL(BITSET

(MyCard) * BITSET(128));

Here, MyCard and the value 128 are
(continued on page 141)

138 Dr. D obb’s Journal, M arch 1990
277

S T R U C T U R E D P R O G R A M M I N G

(continued from page 138)
both cast onto BITSETs, w hich are then
ANDed together by using the set inter
section operator, w hich is equivalent
(on a bit level) to AND. Finally, the
result of the set intersection operation
is cast back onto a CARDINAL for as
signm ent to the CARDINAL variable
NewCard.

This w orks . . . but it sure as hell isn’t
obvious. Unfortunately, in M odula this
is how the gam e is played. Better to
disguise all this arm-twisting of types
(coercion is such a lovely word!) be
hind som e procedures w ith m ore m ne
m onic nam es. This is w hat I’ve done
in the listings for this column, w hich
present a Modula-2 m odule called Bit
wise. Listing O ne, page 150, is the defi
nition m odule for Bitwise, and Listing
Two, page 150, is the im plem entation
m odule.

Bitwise provides function procedures
to perform bitwise AND, OR, XOR, and
NOT operations. (See Table 1.) Note
that the capitalization is different from
that used here in the descriptive text,
in o rder to differentiate my procedure
And from the existing (and incom pat
ible) Boolean logical operator AND.
(Case is significant in Modula-2, and
this is the first time in my career I’ve
caught myself being glad. Crazy world,
a in ’t it?) Additionally, Bitwise contains
procedures to set, clear, and test indi
vidual bits, and also to shift values right
o r left by up to 16 bits. This suite of
routines provides roughly the sam e bit-
banging pow er you get stock in Turbo
Pascal. This seem s to be the lot of
Modula-2 program m ers: To perpe tu
ally build w hat those Turbo guys have
com e to take for granted!

The formal param eters for all o f the
routines in Bitwise are type CARDINAL,
because CARDINAL is the unsigned 16-
bit num eric type in Modula-2, equiva-
alent to Word in Turbo Pascal. It’s a
good basic foundation upon w hich to
cast all other ordinal types in Modula-2.
(And it’s used quite a bit by itself.) If
you w ant to set bit num ber 3 in a char
acter, for exam ple, you could do this:

NewChar :=
CHAR(SetBit(ORD(‘A’),3));

The ORD transfer function casts the
character value onto a CARDINAL value
for passing to the SetBit function p ro
cedure, and finally the CARDINAL value
returned by SetBit is cast back on to a
character for assignm ent to NewChar.

Read over the code im plem enting
Bitwise and it all m akes sense to you.
Again, understand type casting/coer-
cion and you ’ve got it in your hip
pocket.

When Words Runneth Over
There is som ething a little bit hazard
ous about Bitwise. The SHR and SHL
routines can cause overflow errors if
you shift bits to the extent that 1-bits
roll out of either side of the 1 6-bit w ord
in which they exist. Stony Brook M odu
la-2 code checks for overflow errors
and will crash your program w hen you
shift bits out o f the w ord they live in.

Now, shifting bits off the edge of
their w ord is not necessarily a bad thing.
Sometimes you do it deliberately to get
rid of the bits in question. There's n o th
ing inherently dam aging about it, b e
cause on a m achine level the bits get
shunted first into the carry flag and
then off into nothingness. (W hat w e
affectionately call “the bit bucket.”) Ad
jacent data is never overwritten, no
m atter if w e try to shift a bit by (a
m eaningless) 245 positions.

The way out is to turn off overflow
error checking. Enter here one of my

Table 1: Relating bitwise operators to set

m ajor argum ents w ith Modula-2: For
portability’s sake (gakkh!) there are no
com piler toggles. Turbo Pascal has a
w hole raft of them, things like l$R-l
and so on. The situation w ould seem
to call for bracketing the SHR and SHL
routines betw een com piler toggles that
switch overflow checking off only for
the duration of the routine, then on
again once the routine terminates.

Sorry, Charlie. As every good tuna
fish know s, com piler toggles are im
plem entation dependen t and destroy
the p rospec ts for portability. Lord
know s, w e can ’t have that, now, can
we? The best that can be done w ith the
Stony Brook com piler is to turn off
overflow checking entirely w ithin the
Bitwise m odule by changing the com
pile options on a by-m odule basis. Be
sure to do this w hen you com pile and
use Bitwise. If you ’re using a Modula
com piler in w hich overflow checking
cannot be tu rned off, you ’d better add

operations

Bitwise operators Set operation

AND * Intersection
OR + Union
XOR / Symmetric difference
NOT {0..15} - BITSET “Full" set - target set

Dr. D obb’s Journal, M arch 1990
278

141

S I R U C T U R E D P R O G R A M M I N G

safety belts to any code that uses SHL
and SHR.

The Boss DOS Book
There is a certain type of book I call a
“category killer;” it’s the book on a
certain subject and tends to keep other
books of its type from being published.
O ne of these is Ray D uncan’s Advanced
MS-DOS (Microsoft Press), a book that
has never been very far from my left
hand while sitting in this particular chair.
I’m p leased to report that Ray has com
pany, in the form of Q ue C orporation’s
DOS Programmer’s Reference, by Terry
Dettmann. On 892 pages Terry has m an
aged to sum m arize every BIOS func
tion th rough PS/2, every DOS call
through V4.0, all m ouse function calls,
all EMS function calls, and a blizzard
of o ther inform ation including low-
level disk structure, device driver and
interrupt program m ing, serial port p ro
gramming, and lots more.

The very best part about this book,
however, may well be its index. Hav
ing 892 pages of inform ation is small
comfort if you can’t find anything w hen

you need it in a hurry. The index occu
pies 33 pages, w ith about 100 citations
per page, set small in tw o columns.
Everything I tried to look up w as either
indexed or not covered in the book.
(And things that w eren ’t covered really
shou ldn’t have been anyway, like VGA
hardw are architecture details.)

Altogether, the best hacker’s book
to cross my desk in a good long while.
Get it.

Dredging the Channel
There are millions — nay, tens of mil
lions — of DOS m achines out there,
and various research reports I’ve seen
indicate that the greatest grow th p o ten
tial lies in m achines of m odest cost and
capabilities: The “bare b o n e” 88 and
286 clones that fill Computer Shopper
to a dep th of 800+ pages every m onth.
There are already 30 million of them
(conservative estim ate) and in another
few years there could be as m any as
100 million of them out there, plugging
away. This is an utterly unbelievable
m arket for software products, and yet
the distribution channel has closed up
to the point that a small-time operator
(like most of us) has no chance to make
those millions of peop le even aware
o f the existence of their products.

There has got to be a way. Any ideas?
Pass them by me. I’ll be talking about
this subject in future m onths, and I’ll
share som e guerrilla m arketing con
cepts I’ve devised, and will discuss how
the little guys can shove som e veiy big
rear ends out of their m onopoly posi
tion in the retail channel.

Write to Jeff Duntemann on MCI Mail
as JDuntemann, or on CompuServe to
ID 76117,1426.

Availability
All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif, residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves
ton Dr., Redw ood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue num ber and
form at (MS-DOS, Macintosh, Kaypro).
Source code is also available online
th rough the DDJ Forum on C om pu
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR w hen the
system answers, type: listings (low er
case) at the log-in prom pt.

D DJ

(Listings begin on page 150.)

Products Mentioned

Memory Com m ander
V Com m unications
3031 Tisch Way, Ste. 802
San Jose, CA 95128
408-296-4224
$129.95

Invisible RAM
Invisible Software
1165 Chess Drive, Ste. D
Foster City, CA 94404
415-570-5967
$39.95

Unibind
Unibind Systems
7900 Capwell Drive
O akland, CA 94621
415-638-1060
Various configurations and prices
Contact the vendor for specifics

D esktop Stereo
O ptronics Technology
P.O. Box 3239
Ashland, OR 97520
503-488-5040
S199

DOS Programmer’s Reference,
2nd edition
Terry Dettm ann. revised by Jim Kyle
Q ue Corporation. 1989
ISBN 0-88022-458-4
Softcover, 892 pages, $27.95

Vote for your favorite feature/article.
Circle Reader Service No. 12.

1 42 Dr. D obb’s Journal, M arch 1990
279

C P R O G R A M M I N G

Listing O ne (Text begins on page 127.)
/ * -------------- d i r . h -------------- */

/* Substitute Lattice directory functions for
* Turbo C directory functions

*/

♦include <dos.h>

♦define ffblk FILEINFO

♦define ff_name name

♦define findfirst(path,ff,attr) dfind(ff,path,attr)
♦define findnext(ff) dnext(ff)

End listin g One

Listing Two
/ * ------------search, c -------------- */

/*
* the TEXTSRCH retrieval process
*/

finclude <stdio.h>
♦include <string.h>
♦include <curses.h>
♦include "textsrch.h"

static char fnames[MAXFILES] [65];
static int fctr;

static void select_text(void);
static void display_page(WINDOW *file_selector, int pg) ;
void display_text(char *fname);

/* ---- process the result of a query expression search ---- */
void process_result(struct bitmap mapl)

{
int i;
extern int file_count;
for (i = 0; i < file_count; i++)

if (getbit(Smapl, i))
strncpy(fnames[fctr++], text_filename(i), 64);

initscr(); /* initialize curses */
select_text(); /* select a file to view */
endwinf); /* turn off curses */
fctr = 0;

/ * --------search the data base for a word m a t c h -----------*/
struct bitmap search(char *word)

{
struct bitmap mapl;

memset(&mapl, Oxff, sizeof (struct bitmap));
if (srchtree(word) != 0)

mapl = search_index(word);
return mapl;

♦define HEIGHT 8
♦define WIDTH 70
♦define HOMEY 3
♦define HOMEX 3

♦define ESC 27

/* --- select text file from those satisfying the query ---- */
static void select_text(void)

{
WINDOW *file_selector;
int selector = 0; /‘selector cursor relative to the table */
int cursor = 0; /‘selector cursor relative to the screen*/
int keystroke = 0;

/* --- use a window with a border to display the files — */
file_selector = newwin(HEIGHT+2, WIDTH+2, HOMEY, HOMEX);

keypad(file_selector, 1); /* turn on keypad mode */
noe c h o (); /* turn off echo mode */
wsetscrreg(file_selector, 1, HEIGHT);/* set scroll limits */

/ * --------- display the first page of the t a b l e ------------*/
display_page(file_selector, 0);

while (keystroke != ESC) {
/ * ----- draw the window f r a m e --------*/
box(file_selector, VERT_DOUBLE, HORIZ_DOUBLE);

/ * -------------- fill the selector w i n d o w --------------- */
mvwaddstr(file_selector, cursor+1, 1, "->");
wrefresh(file_selector);

/ * ----------- -----make a s e l e c t i o n ----------------------- */
keystroke = wgetch(file_selector);/* read a keystroke */
mvwaddstr(file_selector, cursor+1, 1, " ");

switch (keystroke) {

case KEY HOME:
/ * --------- Home key (to top of list) --------- */

selector = cursor = 0;

display_page(file_selector, 0);
break;

case KEY_END:
/ * --------End key (to bottom of list) -------- */
selector = fctr - HEIGHT;
if (selector < 0) {

selector = 0;
cursor = fctr-1;

1
else

cursor = HEIGHT-1;
display_page(file_selector, selector);
break;

case KEY_DOWN:
/* - down arrow (move the selector cursor) — */
/ * ---------- test at bottom of l i s t ------------*/
if (selector < fctr-1) {

selector++;
/ * -------test at bottom of w i n d o w -------- */
if (cursor < HEIGHT-1)

cursor++;
else {

/ * ------ scroll the window up o n e ----*/
scroll(file_selector);
/* — paint the new bottom line ---- */
mvwprintw(file_selector, cursor+1, 3,

fnames[selector]);

break;

case KEYJJP:

/* — up arrow (move the selector cursor) — */
/ * ----- -------test at t0p 0 f]_ist ------------- */

if (selector) {
— selector;
/ * --------- test at top of w i n d o w --------- */
if (cursor)

— cursor;
else {

/* --- scroll the window down one --- */

winsertln(file_selector);
/ * ----- paint the new top l i n e -------*/
mvwprintw(file_selector, 1, 3,

fnames[selector]);

)
}
break;

case '\n ' :
/* — user selected a file, go display it --- */
display_text(fnames[selector]);
break;

case ESC:
/ * ---------- exit from the d i s p l a y -------------*/
break;

default:
/* ------------- invalid keystroke --------------
b e e p ();
break;

}
}
delwin(file_selector); /* delete the selector window */
cl ear(); /* clear the standard window */
refresh();

/ * -------display a page of the file selector w i n d o w --------- */
static void display_page(WINDOW *file selector, int line)

{
int y = 0;

werase(file_selector);
while (line < fctr && y < HEIGHT)

mvwprintw(file_selector, ++y, 3, fnames[line++]);

End listin g Two

Listing T hree
/* -------------------d i s p l a y . c ---------------------- */

/* Display a text file on the screen.
* User may scroll and page the file.
* Highlight key words from the search.
* User may jump to the next and previous key word.

*/

♦include <stdio.h>
♦include <stdlib.h>
♦include <curses.h>

♦include <ctype.h>
♦include <string.h>
♦include "textsrch.h"

♦define ESC 27

/ * -------------header block for a line of text

struct textline { (continued on page 146)

1 4 4
28 0

Dr. D obb’s Journal, M arch 1990

C P R O G R A M M I N G

Listing T h ree (Listing continued, text begins on page 127.)
char k e y s [5]; /* offsets to key words */
struct textline *nextline; /* pointer to next line */
char text; /* first character of text */

} ;

/* ---------- listhead for text line linked l i s t -----------*/
struct textline *firstline;
struct textline *lastline;

int pagemarked(int topline);
static void do_display{FILE *fp);
static void findkeys(struct textline *thisline);
static void display_textpage(WINDOW *text_window, int line);

/ * ----------- display the text in a selected f i l e ------------*/
void display_text(char *filepath)

I
FILE *fp;

fp = fopen(filepath, "r");
if (fp != NULL) {

do_display(fp);
fclose(fp);

}
else {

/ * ----- the selected file does not e x i s t -------*/
char ermsg[80];
sprintf(ermsg, "%s: No such file", filepath);
error_handler(ermsg);

1
I

static void do_display(FILE *fp)

{
char line[120];
WINDOW *text_window;
int keystroke = 0;
int topline = 0;
int linect = 0;
struct textline *thisline;

firstline = lastline = NULL;

/ * ---------- read the text file into the h e a p --------- */
while (fgets(line, sizeof line, fp) != NULL) {

line[78] = '\0';
thisline =

malloc(sizeof(struct textline)+strlen (line)+1);
if (thisline == NULL)

break; /* no more room */

/ * ----- clear the text line record s p a c e -----------*/
memset(thisline, '\0', sizeof(struct textline) +

strlen(line)+1);

/* ---- build the text line linked list entry ---- */
if (lastline != NULL)

lastline->nextline = thisline;
lastline = thisline;
if (firstline == NULL)

firstline = thisline;
thisline->nextline = NULL;
strcpy(&thisline->text, line); ■

/ * -------------- mark the key w o r d s --------------- */
findkeys(thisline);
linect++;

}

/ * --------build a window to display the t e x t --------- */
text_window = newwin(LINES, COLS, 0, 0);
keypad(text_window, 1); /* turn on keypad mode */

while (keystroke != ESC) {
/* --- display the text and draw the window frame --- */
display_textpage(text_window, topline);
box(text_window, VERT_SINGLE, HORIZ_SINGLE);
wrefresh(text_window);

/ * -------------- read a k e y s t r o k e -----------------*/
keystroke = wgetch(text_window);
switch (keystroke) {

case KEY_HOME:
/ * --------Home key (to top of file) --------*/
topline = 0;
break;

case KEY_DOWN:
/* --- down arrow (scroll up) ---- */
if (topline < linect-(LINES-2))

topline++;
break;

case KEY_UP:
/ * ----- up arrow (scroll down) ------*/
if (topline)

— topline;
break;

case KEY_PGUP:
/ * --------- PgUp key (previous page) ---------- */

topline -= LINES-2;
if (topline < 0)

topline = 0;
break;

case KEY_PGDN:
/ * --------- PgDn key (next page) --------------- */
topline += LINES-2;
if (topline <= linect-(LINES-2))

break;

case key_enb : (continued on page 148)

146 Dr. D obb’s Journal, M arch 1990
281

C P R O G R A M M I N G

L is tin g T h r e e (Listing continued, text begins on page 127.)
/ * --------End key (to bottom of file) -------- */
topline = linect-(LINES-2);
if (topline < 0)

topline = 0;
break;

case KEY_RIGHT:
/* - Right arrow. Go to next marked key word */
do (

/* — repeat PGDN until we find a mark — */
topline += LINES-2;
if (topline > linect-(LINES-2)) {

topline = linect-(LINES-2);
if (topline < 0)

topline = 0;

J
if (pagemarked(topline))

break;
} while (topline &&

topline < linect-(LINES-2));
break;

case KEY_LEFT:
/* Left arrow. Go to previous marked key word */
do (

/* — repeat PGUP until we find a mark — */
topline -= LINES-2;
if (topline < 0)

topline = 0;
if (pagemarked(topline))

break;
} while (topline > 0);
break;

case ESC:
break;

default:
b e e p ();
break;

}
}
/ * --------- clean up and e x i t ------------*/
wclear(text_window);
wrefresh(text_window);
delwin(text_window);
thisline = firstline;
while (thisline != NULL) {

free(thisline);
thisline = thisline-> nextline;

)

/* ---- test a page to see if a marked keyword is on it
int pagemarked(int topline)

{
struct textline *tl = firstline;
int line;
while (topline— && tl != NULL)

tl = tl->nextline;

for (line = 0; tl != NULL && line < LINES-2; line++)
if (*tl->keys)

break;
tl = tl->nextline;

)
return *tl->keys;

}

♦define iswhite(c) ((c)==' ' ! ! (c)=='\ t ' !I(c)=='\n')

/* ---- Find the key words in a line of text. Mark their
character positions in the text structure -------- */

static void findkeys(struct textline *thisline)

{
char *cp = &thisline->text;
int ofptr = 0;

while (*cp && ofptr < 5) {

struct postfix *pf = pftokens;/* the query expression */
while (iswhite(*cp)) /* skip the white space */

cp++;
if (*cp) (

/* ---- test this word against each argument in the
query e x p r e s s i o n --------*/

while (pf->pfix != TERM) (
if (pf->pfix == OPERAND &&

strnicmp(cp, pf->pfixop,
strlen(pf->pfixop)) == 0)

break;

pf++;

I
if (pf->pfix != TERM)

/* ----- the word matches a query argument.
Put its offset into the line's header — */

thisline->keys[ofptr++] =
(cp - &thisline->text) & 255;

/* --- skip to the next word in the line --- */
while (*cp && !iswhite(*cp))

cp++;

}
}

}

/* --- display page of text starting with specified line --- */
static void display_textpage(WINDOW *text_window, int line)

{
struct textline *thisline = firstline;
int y = 1;

wclear(text_window);
wmove(text_window, 0, 0);

148 Dr. D obb’s Journal, M arch 1990
282

/* - point to the first line of the page ---------- */
while {line— && thisline != NULL)

thisline = thisline->nextline;

/ * --------- display all the lines on the p a g e ------ */
while (thisline != NULL && y < LINES-1) {

char *cp = &thisline->text;
char *kp = thisline->keys;
char off = 0;
wmove(text_window, y++, 1);

/ * -------a character at a t i m e ---------- */
while (*cp) {

/* --- is this character position a key word? --- */
if (*kp && off == *kp) {

wstandout(text_window); /* highlight key words*/
kp++;

/* ---- is this character white space? ---- */
if (iswhite(*cp))

wstandend(text_window); /* turn off hightlight*/

/* ---- write the character to the window
waddch(text_window, *cp);
off++;
cp++;

}
/ * --------- a line at a t i m e ------------- */
thisline = thisline->nextline;

Listing F our
/ * --------------- e r r o r . c -----------------*/

/* General-purpose error handler */

♦include <curses.h>

Iinclude <string.h>

void error_handler(char *ermsg)

{
int x, y;
WINDOW *error_window;

x = (COLS - (strlen(ermsg)+2)) / 2;

y = LINES/2-1;
error_window = newwin(3, 2+strlen(ermsg), y, x);
box(error_window, VERT_SINGLE, HORIZ_SINGLE);
mvwprintw(error_window, 1, 1, ermsg);
wrefresh(error_window);

b e e p ();
getch ();
wclear(error_window);

wrefresh(error_window);
delwin(error_window);

End Listing Three End Listings

Dr. D obb’s Journal, M arch 1990 149
283

S I RUCTURED P R 0 G RA M MIN G

Listing O ne (Text begins on page 134.)

BITWISE.MOD
Definition Module

Bit-manipulation routines for Modula-2

by Jeff Duntemann
For DDJ : March 1990
Last modified 11/25/89

DEFINITION MODULE Bitwise;

PROCEDURE And(A,B : CARDINAL) : CARDINAL;

PROCEDURE Or(A,B : CARDINAL) : CARDINAL;

PROCEDURE Xor(A,B : CARDINAL) : CARDINAL;

PROCEDURE Not(Target : CARDINAL) : CARDINAL;

PROCEDURE SetBit(Target : CARDINAL; BitNum : CARDINAL) : CARDINAL;

PROCEDURE ClearBit(Target : CARDINAL; BitNum : CARDINAL) : CARDINAL;

PROCEDURE TestBit(Target : CARDINAL; BitNum : CARDINAL) : BOOLEAN;

PROCEDURE SHR(Target : CARDINAL; By : CARDINAL) : CARDINAL;

PROCEDURE SHL(Target : CARDINAL; By : CARDINAL) : CARDINAL;

END Bitwise.

Listing Two
End Listing One

BITWISE.MOD
Implementation Module

Bit-manipulation routines for Modula-2

by Jeff Duntemann
For DDJ : March 1990

Last modified 11/25/89

NOTES ON THE CODE:

In all cases below, BitNum MOD 16 is used as a
means of ensuring that BitNum will be in the
range of 0..15. MOD 16 divides by 16 but returns
the remainder, which cannot be over 15 when you
divide by 16.

IMPLEMENTATION MODULE Bitwise;

VAR

I : CARDINAL;
TempSet : BITSET;

PROCEDURE And(A,B : CARDINAL) : CARDINAL;

BEGIN

RETURN CARDINAL(BITSET(A) * BITSET(B));
END And;

PROCEDURE Or(A,B : CARDINAL) : CARDINAL;

BEGIN
RETURN CARDINAL(BITSET(A) + BITSET(B));

END Or;

PROCEDURE Xor(A,B : CARDINAL) : CARDINAL;

BEGIN

RETURN CARDINAL(BITSET(A) / BITSET(B));
END Xor;

PROCEDURE Not(Target : CARDINAL) : CARDINAL;

BEGIN

RETURN CARDINAL({0..15} - BITSET(Target));
END Not;

PROCEDURE SetBit (Target : CARDINAL; BitNum : CARDINAL) : CARDINAL;

BEGIN

TempSet := BITSET(Target); (* INCL does not operate on expressions! *)
INCL(TempSet,BitNum MOD 16);
RETURN CARDINAL(TempSet); (* Cast the target back to type CARDINAL *)

END SetBit;

PROCEDURE ClearBit(Target : CARDINAL; BitNum : CARDINAL) : CARDINAL;

BEGIN

TempSet := BITSET(Target); (* EXCL does not operate on expressions! *)
EXCL(TempSet,BitNum MOD 16);
RETURN CARDINAL(TempSet); (* Cast the target back to type CARDINAL *)

END ClearBit;

PROCEDURE TestBit(Target : CARDINAL; BitNum : CARDINAL) : BOOLEAN;

BEGIN

IF (BitNum MOD 16) IN BITSET (Target) THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END;

END TestBit;

PROCEDURE SHR(Target : CARDINAL; By : CARDINAL) : CARDINAL;

BEGIN

FOR I := 1 TO By DO
Target := Target DIV 2;

END;
RETURN Target;

END SHR;

PROCEDURE SHL(Target : CARDINAL; By : CARDINAL) : CARDINAL;

BEGIN
FOR I := 1 TO By DO

Target := Target * 2;
END;
RETURN Target;

END SHL;

END Bitwise.

End Listings

284
Dr. D obb’s Journal, M arch 1990

O F I N T E R E S T

Codecheck, a rule-based expert system
that checks C and C++ source code for
maintainability, portability, and com
pliance w ith in-house style, has been
announced by Conley Computing.
C odecheck has the ability to identify
the num ber of operators per expres
sion and lines per statem ent, and it
provides a statistical analysis of code
complexity and style, allowing program
m ers to check for bo th industry stan
dards and those established by their
com pany.

C odecheck also reviews code for its
portability to AJMSIC and K&R C, am ong
others. Com pany president Patrick Con
ley told DDJ that Codecheck can be
beneficial to bo th corporations and in
dividuals, but especially to corpora
tions that use m any program m ers for
single projects. “The problem is getting
program m ers to adhere to standards;
since everyone has their ow n Tow er of
Babel concern ing standards, C ode
check can be program m ed to check
in-house style.”

Codecheck supports all C com pilers
from m ajor vendors, and is available
for PC-DOS and M acintosh at $495, for
OS/2 at $695, and for AIX, PC/IX, and
QNX at $995. Multiple copy and educa
tional d iscounts are also available.
Reader service no 21.
Conley Com puting
7033 SW M acadam Ave.
Portland, OR 97219
503-244-5253

The Paradox Engine, a C library for the
relational database Paradox, has been
announced by Borland International.
The com pany claims that this product
will enable C program m ers to build
applications that create or access Para
dox data because program s that use
the Paradox Engine are standard .EXE
files. The benefit is in teroperab ility
am ong B orland’s major business appli
cations and languages, w hich theoreti
cally allows the building of custom ized
com puting environm ents.

A program w ritten w ith the Paradox
Engine is com piled in C and linked
with the Paradox Engine library to build
an executable application that can dy
namically access Paradox data. The PAL
language can also access Paradox ta
bles.

The engine provides an API of m ore
than 70 funcitons, w hich allows the
m anipulation of Paradox tables in sin
gle and multiuser environm ents. The
C version should be shipping this quar
ter, and will cost $495. A Pascal version
is scheduled for release som etim e in
the m iddle of the year, and OS/2 and
W indows versions are also under de
velopm ent. During the first 90 days of
availability, registered Borland users can
purchase the product for $195. Reader
service no. 22.
Borland International
P.O. Box 660001
Scotts Valley, CA 95066-0001
408-439-1622

VRTX-PC, a real-time environm ent for
the PC/XT/AT com patibles that allows
these m achines to be used as bo th d e
velopm ent platform s and em bedded
com puters, has b ee n in troduced by
Ready Systems. Time-critical applica
tions in w hich determ inistic .operating
system perform ance is necessary can
now be controlled by PCs. The com
pany is excited that the VRTX-PC al
lows sim ultaneous developm ent and
execution of real-time multitasking ap
plications, eliminating the need for low-
level hardw are control on the PC. They
believe that this technology will reduce
developm ent costs and get products
on the shelf faster.

The VRTX-PC real-time operating sys
tem supports MS-DOS functions, in
cluding all MS-DOS file and device
I/O , and can be executed as a DOS
resident program.

VRTX-PC includes a real-time ker
nel, a real-time debugger, an inpu t/
output file executive, a run-time library,
a PC support executive, and a w indow
m anager that provides a user interface.
For application developm ent, VRTX-
PC supports Microsoft C and Borland
Turbo C. The price for a single user is
$7600. Reader service no. 23.
Ready Systems
P.O. Box 60217
Sunnyvale, CA 94086
408-736-2600

The Sierra C toolset for the M68000 is
available from Sierra Systems. The
toolset includes an optim izing C com
piler and com plete C run-tim e library,
tw o assemblers, linker, librarian, code
m anagem ent and debugging utilities,
a serial dow nloader, a h igh-speed par
allel dow nloader, and a source-level
debugger. The com pany claims that
the code p roduced is position inde
pendent, ROMable, and re-entrant.

The Sierra C com piler that is included
in the toolset is ANSI com patible and
supports the keyw ords and functional

ity required for em bedded systems p ro
gramming.

Compiler flags control individual sup
pression of optim ization techniques,
generation of floating point code (in
line or for the 68881), form atting and
contents o f the listing and assem bler
ou tpu t files, generation of source level
debugger inform ation, IEEE floating
point operation m odes, and register
usage, am ong others. Reader service
no. 24.
Sierra Systems
6728 Evergreen Ave.
Oakland, CA 94611
415-339-8200

PC Techniques, a new m agazine for
program m ers, has been announced by
The Coriolis G roup. The first b i
m onthly issue will be published with
a March/April 1990 cover date. The
m agazine will becom e a m onthly p u b
lication in January of 1991.

PC Techniques will cover the DOS,
W indows, OS/2, and Presentation Man
ager platforms. C, Pascal, Basic, and
assem bly language will be covered in
every issue. Specialty languages like
C++, Object Pascal, Smalltalk, and Ac
tor will also find coverage.

The Coriolis G roup was founded by
DDJ colum nist Jeff D untem ann and by
Keith W eiskam p, occcasional DDJ
author. PC Techniques is available for
$21.95 for one year and $37.95 for two.
Reader service no. 25.
Coriolis G roup
3202 E. Greenway, Ste. 1307-302
Phoenix, AZ 85032
602-493-3070

Two new journals, Inside Turbo C and
Inside Turbo Pascal, w hich offer p ro
grammers ongoing support of these two
B orland languages, have b ee n a n
nounced by The Cobb Group. The
purpose of the tw o journals is to ex
plore new algorithms, system tricks,
and product updates, including com
plete source code. They will also con
tain tips, programming techniques, prod
uct new s and reviews, as w ell as ad
vice. And Inside Turbo Pascal covers
OOP w ith Turbo Pascal.

Each journal costs $59 for 12 issues;
sample issues are available. Source code
in both issues can be dow nloaded from
C obb’s BBS, for a yearly fee of $30.
Reader service no. 26.
The Cobb Group
P.O. Box 24480
Louisville, KY 40224
800-223-8720

The original developer o f Turbo Prolog,
the Prolog D evelopm ent Center

(continued on page 157)

152 Dr. D obb’s Journal, M arch 1990
285

O F I N T E R E S T

(continued from page 152)
(P D C), has b een granted the rights to
the product by Borland International.
The PDC will publish and m arket new
versions u nder the nam e PDC Prolog.
According to Michael Alexander at PDC,
“The new version is a superset of the
current Turbo Prolog. W ith the excep
tion of the turtle graphics predicates, it
is source-compatible with Turbo Prolog,
so existing T urbo Prolog program s can
be com piled ‘as is’ w ith PDC Prolog.”
And PDC Prolog supports the Borland
BGI graphics interface.

A new DOS version should be avail
able by now , and registered users of
the DOS version of Turbo Prolog will
be able to upgrade for $79- The OS/2
version should also be available, and
will cost $599- N etw ork support and a
SCO 386 Unix version is scheduled for
release in the second quarter of this
year. Reader service no. 27.
Prolog D evelopm ent Center
568 14th Street N.W.
Atlanta, GA 30318
404-873-1366

Intek C++ 2.0 is now available from
In te k In te g ra tio n T e c h n o lo g ie s . The
com pany claims the product has as
m uch pow er as AT&T’s C++ 2.0 in an
80386 MS-DOS or Unix environm ent.
Intek C++ 2.0 translates C++ code into
C code. It supports m ost DOS C com
pilers, including Microsoft C, Turbo C,
MetaWare High C and High C 386, Wat
com C and W atcom C 386, and Novell
N etw ork C and Netw ork C 386.

This support also includes the C ex
tended keyw ords near, far, huge, cdel,
pascal, and fortran, w hich m akes it
useful w ith Microsoft W indows and
OS/2.

The Intek C++ translator uses 386
protected m em ory m ode, and can com
pile large program s — up to 4 giga
bytes. It supports multiple inheritance,
type-safe linkage, new and delete o p
erators as class m em bers, overloading
o f the ->, ->*, and, operators, const and
static m em ber functions, and static in
itialization. It requires 1 Mbyte of m em
ory, MS-DOS 3-1 or later o r Unix Sys
tem V/386, and costs $495- Reader ser
vice no. 28.
Intek
1400 112th Ave. SE, Ste. 202
Bellevue, WA 98004
206-455-9935

A C++ com piler for 80386/486 Unix-
based systems has been released by
P e ritu s In te rn a tio n a l. In addition to
AT&T C++ 2.0, the highly-optim ized
C++ com piler also provides support
for K&R C and ANSI C; program m ers
select the appropriate C dialect by set

ting a com piler switch.
The com piler supports an extensive

set of data types, including 8-, 16-, 32-,
and 64-bit integers, IEEE-compatible 32-,
64-, and 80-bit floating point, user-
defined aggregate types, and C++ class
data types. The optim izations include
global register allocation, constant propa
gation and folding, backw ard code m o
tion w ith loop invariant removal, in
duction variable elimination, redundant
store and dead code removal, and con
stant elevation.

Com pany president Ron Price told
DDJ that Peritus intends on providing
class libraries and developm ent tools
within the near future, including a pack
age to provide a graphical interface to
the X W indow s system. He also said
that the C++ is com pliant to the AT&T
2.0 spec, except for m ultiple inheri
tance, w hich will also be supported in
the near future.

The Peritus C++ compiler, which runs
on 386/486 systems un d er SVR3 Unix
and SunOS 4.0 Unix, sells for $1000.
Reader service no. 29.
Peritus International
10201 Torre Ave., Ste. 295
Cupertino, CA 95014
408-725-0882

A few new assem bly tools are now
available. An assembly language library
w ritten entirely in assem bly language
has been released by Q u a n ta s m C o r
p o ra tio n . Q uantasm Pow er Lib (QPL)
contains over 256 routines, provides
high-level functionality, and has the
ability to be customized.

QPL can be used by bo th novice and
expert program m ers. The docum enta
tion is coordinated w ith exam ple pro
grams on disk. The com pany claims
that the com pactness of QPL m akes it
convenient for program m ing m em ory
resident program s or TSRs.

The product includes a m enu and
w indow ing system, over 75 string han
dling functions, ex ten d ed precision
m ath functions, a set o f date/tim e func
tions, encryption/decryption algorithms,
file nam e parsing, and sound control.
The com pany intends to have high-
level language interface routines avail
able in the first quarter of this year.
QPL requires MS- or PC-DOS 2.1 or
above; 256K RAM; IBM PC/XT/AT,
PS/2 or com patible; Microsoft MASM,
Borland TASM, or SLR OPTASM. This
p roduct is not copy protected, nor has
run-tim e royalties. The price is $99.95
w ithou t source code, $299-95 w ith.
Reader service no. 30.
Q uantasm Corporation
19855 Stevens Creek Blvd.
Cupertino, CA 95014
408-244-6826

157

286

0 F I N T E R F S T

From Base Two Developm ent com es
Spontaneous Assembly, an assembly-
language library that contains over 600
functions and macros, including string
and m em ory m anipulation, nea r/fa r/
relative heap management, doubleword/
quadw ord integer m ath, date and time
m anipulation, and m ore. The com pany
claims that every routine is hand-coded
and optim ized, and are easy to use
because of the register-oriented param e
ter-passing convention . C om pany
spokesm an Alan Collins told DDJ that
“this product does for 8088-family as
sem bly language program m ing w hat
Borland did for high-level language pro
gram m ing.”

Spontaneous Assembly supports all
M icrosoft/Borland standard m em ory
models, as well as custom m odels and
m ixed-m odel program m ing. The tool
sports a full-overlapping w indow ing
system w ith custom shadow ing that al
lows direct m em ory via screen access
or BIOS. DOS 2.0 or higher is required,
and MASM 5.1 or TASM 1.0 are recom
m ended . It costs $199, includes all
source code, and com es w ith a m oney
back, 60-day guarantee. Reader service
no. 3-
Base Two D evelopm ent
11 East 200 North
Orem, UT 84057
800-277-3625

A nother is DASM, a disassem bler for
the 8086, 8088, and 80286, available
from JBSoftware. DASM is able to dis
assem ble an d m odify program s for
w hich the source code is unavailable.
It takes binary run files for DOS and
com patible operating systems as input,

and creates an assem bly language file
suitable for m odification and reassem
bly as output. It acts as a virtual m a
chine and m aps the program being dis
assem bled. It tracks register usage and
determ ines the code, data, and labels,
allowing the user to then edit the ou t
put and change the program.

DASM w orks by viewing com m ands
and procedures in their real-time pro
cessing order, rather than in the se
quence they appear in the program ,
which JBSoftware claims makes the pro
grams easier to interpret and edit. Some
of DASM’s other features include the
ability to generate appropriate ASSUMES
and segm ent maps, to handle multiple
entry points, transfer vectors, and .EXE,
.COM, and .BIN files up to 200K. It
costs $250. Reader service no. 2.
JBSoftware
701 Cathedral St., Ste. 81
Baltimore, MD 21201
301-752-1348

Two new software products for Mo
torola’s 88000 RISC m icroprocessor are
available from Diab Data. The D-CC/
88K, an optim izing C compiler, com
plies w ith the 88000 object code com
patibility standard (OCS) and the Bi
nary com patibility standard (BCS), and
conform s to the p roposed ANSI C stan
dard. Optimizations include global com
m on subexpression elimination, life
time analysis (color), reaching analy
sis, autom atic register allocation, loop
invariant code m otion, constant p ropa
gation and folding, dead code elim ina
tion, sw itch optim izations, and the abil
ity to pass param eters into registers.

D iab’s MC88000 toolkit is m ade up

of the D-AS/88K Assembler, the D-LD/
88K Linker, and the D-AR/88K Archiver.
This package includes the D-CC/88K
optim izing C compiler. The assem bler
is also OCS and BCS com pliant, p ro
duces COFF object m odules, supports
standard MC88000 m nem onics, p ro
duces standard Unix directives for or
ganizing code, am ong other things. The
linker perform s literal synthesis, gener
ates w arnings for unidentified external
references, and is able to perform in
crem ental links. The archiver maintains
m ultiple files in a single archive file,
and supports Unix System V com mand-
line options. The com piler and toolkit
are available for the Sun3/SunOS, Mac
II/MPW, DECstation/Ultrix, and DEC
VAX/VMS, am ong others. Reader ser
vice no. 33-
Diab Data Inc.
323 Vintage Park Dr.
Foster City, CA 94404
415-573-7562

Books of Interest
A com prehensive treatm ent o f concur
rent program m ing techniques in the
Strand programming language has been
published by Prentice Hall. Strand:
New Concepts in Parallel Programming,
by S tephen Taylor and Ian Foster, cov
ers an introduction to Strand, basic and
advanced programming techniques, and
how to apply Strand, w ith exam ples
from both the academic and real worlds.
The price is $30. ISBN 013-850587-X.
Reader service no. 38.
Prentice Hall
Englew ood Cliffs, NJ 07632
201-767-5937

D D J

158 Dr. D obb’s Journal, M arch 1990
287

S W A i N E' S F L A M E S

Pub Crawler

I read a lot of magazines. I read during meals, while talking to Jon on the phone, and while visiting
the little programmer’s room. I also follow magazine’s fortunes, and I thought I’d pass along the
latest rumors regarding some in which you may be interested.
CD-ROM End User. If you are interested in CD-ROM and haven’t seen this, give it a look. Once

you get past the uninspired name, the amateur editing, and the boring design, you’ll find a
bimonthly packed with information of solid value for both CD-ROM users and developers, written
and compiled by knowledgeable people.

Embedded Systems Program ming. Those whose realm is the other kind of ROM should know
that ESP has gone to controlled circulation. What this means if you’re a subscriber or potential ditto
is that you may get it for free. What it means if you’re an advertiser or potential ditto is that you can
look for increased rates. It’s a zero-sum game.

Micro Cornucopia. Dave Thompson is considering taking his 50-issue-old hacker’s magazine
monthly. He’s looking for a “partner” — one with money to invest, I gather.

Microsoft Systems Journal. MS] has been redesigned, and it’s an improvement, though the
publication still works too hard at being taken seriously. It’s probably too much to expect that MSJs
editors could learn from someone such as Dave Thompson how wit and playfulness can coexist
with solid technical content.

Other captive magazines. Sun’s user magazine is about to be sold — “given” is a better word,
from what I hear of the deal — to IDG, publisher of Computer World, InfoWorld, PC World,
Macworld, etc.; while Aldus has launched a magazine with a surprisingly drab look. The content
is too self-serving, but the first issue contains a few good things, including what may be the most
quick-and-dirty DTP how-to ever written, and an interview with Steve Ballmer on OS/2.

Ziff-Davis. The company that publishes PC Magazine, MacUser, PC Computing, Digital Review,
and others (and that killed off Creative Computing, Popular Electronics, PC Tech Journal, and
others) has been rumored for the past six months to be on the block. The rumors, which are making
ulcers for Z-D employees, have been vehemently denied by Bill Ziff. The rumors are remarkably
detailed: Pat McGovern, chairman of IDG, has perused the perspectus; Cahners, publisher of
Mini-Micro Systems, has tendered an offer; the asking price is in the $800 million range; Goldman
Sachs & Co. is handling the deal. If you believe Ziff’s denials, you are led to believe that the rumors
were started by one of Z-D’s competitors. Whatever the truth, somebody is an awfully big liar.

Buzzwords
“Done deal” is one of those buzzwords that should buzz off, and I apologize for using it. Another
buzzword that I hope won’t catch on in the 90s is “experience,” as in “user experience.” Apparently
the multimedia types within Apple are pushing to use it in the place of “user interface.” I get the
point, but I hope they keep this one in house.

My pick for the buzzword of the 90s is “facilitate." At least it has the right polysyllabic, academic
aura. But I actually think it could be a GOOD buzzword. No, really. Here’s why.

I believe fervently in the value of education, but I don’t buy into the myth of teaching. The
existence of this verb “teach” conveys the erroneous impression that it is possible to force-feed
knowledge. The best teachers seem to understand that there is no such thing: Richard Feynman,
on being given a teaching excellence award by the American Association of Physics Teachers, said,
“I don’t know how to teach. I have nothing to say about teaching,” then went on to deliver a brilliant
and entertaining lecture.

If you can’t teach anyone anything, then all you can do is get out of the way, move any obvious
obstacles aside, and let them learn. Facilitating learning, you might call it. The problem, I guess, is
that it’s hard to do. Clearing the student’s path is one of those subtle acts that succeeds only by
making itself invisible.

Like good writing, and like good user interface design. Good writer Esther Dyson discussed the
desktop metaphor in the January issue of PC Computing, saying that it “is not meant to suggest
that the computer is a desktop, but to provide a sense of recognition and reasonable expectations.
This metaphor, so popular now, suggests tasks the computer can reasonably be expected to do.”
Suggest things. Create an environment the user can explore, letting the user discover things by
recognizing the familiar and following reasonable expectations into the unfamiliar. Get out of the
user’s way. Facilitate. Yeah. I like the word. The trouble is that if it catches on, people will start
ringing the changes on it: facilitator, facilitation, facile. And sooner or later some user is going to
walk into a computer store and ask to be shown the facilities. And be taken to the little
programmer’s room. Might be all right if there are some good magazines in there.

Michael Swaine
editor-at-large

160
2 8 8

Dr. D obb’s Journal, M arch 1990

Dr. Dobb’s Journal Bound Volume 1 5 ■ 1 9 9 0

T he new decade begins and DDJ enters its 15th year of power programming. Every 1990 issue of Dr. Dobb’s Journal
has been collected and bound into this single volume. Included are the popular Annual C and Annual Operating
Systems issues. Featured are well-known contributors such as Michael Swaine, Al Stevens, and Jeff Duntemann.
There’s also the Dr. Dobb’s Journal 1989 index, and all the source code for 1990 (supplied on disk, PC/MS-DOS format).

Some of the 1990 topics include:

□R e a l - T im e D a ta A c q u is i t io n . Valuable information on all the tools you need (both hardware
and software), for your own data acquisition system.

I T h r e e - d im e n s io n a l G r a p h i c s U s in g T h e X W in d o w S y s te m . 3-D graphics are possible
with X Window systems! Here’s what can be expected from porting 3-D graphics to X, plus
solutions to some thorny problems.

6 8 0 4 0 P r o g r a m m i n g . This member of the 680x0 family provides challenges for programmers at all levels.

I N e u r a l N e ts . DDJ presents an environment that dynamically creates neural networks. Also
included are discussions of the similarities and differences of various neural net models.

M e m o r y M a n a g e m e n t . Everything from how to take advantage of “handle pointers” to object swapping.

H y p e r t e x t . A behind-the-scenes look at the DDJ hypertext project.

G r a p h i c s . From Super VGA programming to drawing character shapes with Bezier curves.

I C P r o g r a m m i n g . Porting C programs to 80386 protected mode, encapsulating C memory

allocation, parallel extensions to C, and much more!

f j U n r a v e l in g O p t im iz a t io n . Examined are the practical and theoretical aspects of code
optimization using Microsoft C 6.0.

□ C o m m u n ic a t io n s & C o n n e c t iv i ty . Controlling Unix processes, designing for OSI, and
programming with Mac Comm toolbox.

M&T

M&T Publishing, Inc.
501 Galveston Drive

Redwood City, CA 94063

