
Hitachi
Single-Chip RISC
Microcomputer

SH7000 and SH7600 Series

Programming Manual

Introduction

The SH7000 and SH7600 series are new-generation RISC (Reduced instruction set computer)
microcomputers that integrate a RISC-type CPU and the peripheral functions required for system
configuration onto a single chip to achieve high-performance operation. It can operate in a power-
down state, which is an essential feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

This programming manual describes in detail the instructions for the SH7000 and SH7600 series
and is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH7000 and SH7600 series. For information on the hardware,
refer to the hardware manual for the product in question.

Related Manuals

• SH7032, SH7034 Hardware Manual (Document No. ADE-602-062).

• SH7020, SH7021 Hardware Manual (Document No. ADE-602-074)

• SH7604 Hardware Manual

For development support tools, contact your Hitachi sales office.

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items
and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register
Configuration

Types and configuration of general registers,
control registers and system registers

3. Data Formats Data formats for registers and memory

Introduction to
instructions

4. Instruction
Features

Instruction features, addressing modes, and
instruction formats

5. Instruction Sets Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

6. Instruction
Descriptions

Operation of each instruction in alphabetical order

Architecture (2) 7. Processing States Power-down and other processing states

8. Pipeline Operation Pipeline flow, and pipeline flows with operation for
each instruction

Instruction code Appendixes:
Instruction Code

Operation code map

Table 2 Subjects and Corresponding Sections

Category Topic Section Title

Introduction and CPU features 1. Features
features Instruction features 4.1 RISC-Type Instruction Set

Pipelines 8.1 Basic Configuration of
Pipelines

8.2 Slot and Pipeline Flow

Architecture Register configuration 2. Register Configuration

Data formats 3. Data Formats

Processing states, reset state, exception
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode

7. Processing States

Pipeline operation 8. Pipeline Operation

Introduction to Instruction features 4. Instruction Features
instructions Addressing modes 4.2 Addressing Modes

Instruction formats 4.3 Instruction Formats

List of
instructions

Instruction sets 5.1 Instruction Set by
Classification

5.2 Instruction Set in
Alphabetical Order

Appendix A.1 Instruction Set by
Addressing Mode

Appendix A.2 Instruction Set by
Instruction Format

Instruction code Appendix A.3 Instruction Set in
Order by
Instruction Code

Appendix A.4 Operation Code
Map

Detailed
information on
instructions

Detailed information on instruction
operation

6. Instruction Description

8.7 Instruction Pipeline
Operations

Number of instruction execution states 8.3 Number of Instruction
Execution States

Functions Listed by CPU Type

This manual is common for both the SH7000 and SH7600 series. However, not all CPUs can use
all the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type

Item SH7000 Series SH7600 Series

Instructions BF/S No Yes

BRAF No Yes

BSRF No Yes

BT/S No Yes

DMULS.L No Yes

DMULU.L No Yes

DT No Yes

MAC.L No Yes

MAC.W*1 (MAC)*2 16 x 16 + 42 →
42

16 x 16 + 64 → 64

MUL.L No Yes

All others Yes Yes

States for multiplication
operation

16 x 16 → 32
(MULS.W, MULU.W)*2

Executed in 1–3*3

states
Executed in 1–3*3states

32 x 32 → 32 (MUL.L) No Executed in 2–4 *3states

32 x 32 → 64
(DMULS.L, DMULU.L)

No Executed in 2–4 *3states

States for multiply and
accumulate operation

16 x 16 + 42 → 42
(SH7000, MAC.W)

Executed in
3/(2)*3 states

No

16 x 16 + 64 → 64
(SH7600, MAC.W)

No Executed in states 3/(2)*3

32 x 32 + 64 → 64
(MAC.L)

No Executed in 2–4 states
3/(2~4)*3

Processing status Module stop mode No Yes (Supply of clock to
specified module can be
halted)

Notes: 1. MAC.W works differently on different LSIs.
2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the

same as MULU.W.
3. The normal minimum number of execution cycles (The number in parentheses in the

number in contention with preceding/following instructions).

Contents

Section 1 Features .. 1

Section 2 Register Configuration .. 2
2.1 General Registers... 2
2.2 Control Registers ... 2
2.3 System Registers.. 3
2.4 Initial Values of Registers ... 4

Section 3 Data Formats .. 5
3.1 Data Format in Registers ... 5
3.2 Data Format in Memory .. 5
3.3 Immediate Data Format ... 6

Section 4 Instruction Features .. 7
4.1 RISC-Type Instruction Set .. 7

4.1.1 16-Bit Fixed Length ... 7
4.1.2 One Instruction/Cycle .. 7
4.1.3 Data Length .. 7
4.1.4 Load-Store Architecture... 7
4.1.5 Delayed Branch Instructions .. 7
4.1.6 Multiplication/Accumulation Operation .. 8
4.1.7 T Bit ... 8
4.1.8 Immediate Data .. 8
4.1.9 Absolute Address ... 9
4.1.10 16-Bit/32-Bit Displacement ... 9

4.2 Addressing Modes ... 10
4.3 Instruction Format ... 13

Section 5 Instruction Set .. 16
5.1 Instruction Set by Classification .. 16

5.5.1 Data Transfer Instructions .. 21
5.1.2 Arithmetic Instructions .. 23
5.1.3 Logic Operation Instructions ... 25
5.1.4 Shift Instructions .. 26
5.1.5 Branch Instructions .. 27
5.1.6 System Control Instructions... 28

5.2 Instruction Set in Alphabetical Order .. 29

Section 6 Instruction Descriptions .. 37
6.1 Sample Description (Name): Classification .. 37

6.2 ADD (ADD Binary): Arithmetic Instruction .. 40
6.3 ADDC (ADD with Carry): Arithmetic Instruction.. 41
6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction 42
6.5 AND (AND Logical): Logic Operation Instruction .. 43
6.6 BF (Branch if False): Branch Instruction .. 45
6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600) 46
6.8 BRA (Branch): Branch Instruction .. 48
6.9 BRAF (Branch Far): Branch Instruction (SH7600) .. 49
6.10 BSR (Branch to Subroutine): Branch Instruction .. 50
6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600) 52
6.12 BT (Branch if True): Branch Instruction ... 53
6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)............................. 54
6.14 CLRMAC (Clear MAC Register): System Control Instruction .. 56
6.15 CLRT (Clear T Bit): System Control Instruction .. 57
6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction... 58
6.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction .. 62
6.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction ... 63
6.19 DIV1 (Divide Step 1): Arithmetic Instruction... 64
6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH7600) 69
6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction (SH7600)... 71
6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600).. 73
6.23 EXTS (Extend as Signed): Arithmetic Instruction .. 74
6.24 EXTU (Extend as Unsigned): Arithmetic Instruction ... 75
6.25 JMP (Jump): Branch Instruction.. 76
6.26 JSR (Jump to Subroutine): Branch Instruction .. 77
6.27 LDC (Load to Control Register): System Control Instruction .. 79
6.28 LDS (Load to System Register): System Control Instruction ... 81
6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH7600) 83
6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)............................... 86
6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction (SH7600) 87
6.32 MOV (Move Data): Data Transfer Instruction .. 90
6.33 MOV (Move Immediate Data): Data Transfer Instruction .. 95
6.34 MOV (Move Peripheral Data): Data Transfer Instruction .. 97
6.35 MOV (Move Structure Data): Data Transfer Instruction .. 100
6.36 MOVA (Move Effective Address): Data Transfer Instruction .. 103
6.37 MOVT (Move T Bit): Data Transfer Instruction .. 104
6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600) ... 105
6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction ... 106
6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 107
6.41 NEG (Negate): Arithmetic Instruction .. 108
6.42 NEGC (Negate with Carry): Arithmetic Instruction ... 109
6.43 NOP (No Operation): System Control Instruction .. 110
6.44 NOT (NOT—Logical Complement): Logic Operation Instruction 111

6.45 OR (OR Logical) Logic Operation Instruction.. 112
6.46 ROTCL (Rotate with Carry Left): Shift Instruction .. 114
6.47 ROTCR (Rotate with Carry Right): Shift Instruction.. 115
6.48 ROTL (Rotate Left): Shift Instruction... 116
6.49 ROTR (Rotate Right): Shift Instruction .. 117
6.50 RTE (Return from Exception): System Control Instruction .. 118
6.51 RTS (Return from Subroutine): Branch Instruction .. 119
6.52 SETT (Set T Bit): System Control Instruction .. 120
6.53 SHAL (Shift Arithmetic Left): Shift Instruction ... 121
6.54 SHAR (Shift Arithmetic Right): Shift Instruction... 122
6.55 SHLL (Shift Logical Left): Shift Instruction... 123
6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction .. 124
6.57 SHLR (Shift Logical Right): Shift Instruction .. 126
6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction .. 127
6.59 SLEEP (Sleep): System Control Instruction.. 129
6.60 STC (Store Control Register): System Control Instruction... 130
6.61 STS (Store System Register): System Control Instruction .. 132
6.62 SUB (Subtract Binary): Arithmetic Instruction... 134
6.63 SUBC (Subtract with Carry): Arithmetic Instruction .. 135
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction 136
6.65 SWAP (Swap Register Halves): Data Transfer Instruction .. 137
6.66 TAS (Test and Set): Logic Operation Instruction.. 138
6.67 TRAPA (Trap Always): System Control Instruction .. 139
6.68 TST (Test Logical): Logic Operation Instruction.. 140
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction... 142
6.70 XTRCT (Extract): Data Transfer Instruction .. 144

Section 7 Processing States .. 145
7.1 State Transitions .. 145

7.1.1 Reset State .. 147
7.1.2 Exception Processing State .. 147
7.1.3 Program Execution State .. 147
7.1.4 Power-Down State ... 147
7.1.5 Bus Release State ... 147

7.2 Power-Down State ... 148
7.2.1 Sleep Mode .. 148
7.2.2 Software Standby Mode... 148
7.2.3 Module Standby Function (SH7600 Only) .. 148

7.3 Master Mode and Slave Mode (SH7600 Series Only) .. 150

Section 8 Pipeline Operation .. 151
8.1 Basic Configuration of Pipelines ... 151
8.2 Slot and Pipeline Flow... 152

8.2.1 Instruction Execution ... 152
8.2.2 Slot Sharing .. 152
8.2.3 Slot Length ... 153

8.3 Number of Instruction Execution States .. 154
8.4 Contention Between Instruction Fetch (IF) and Memory Access (MA) 155

8.4.1 Basic Operation When IF and MA are in Contention .. 155
8.4.2 The Relationship Between IF and the Location of Instructions in On-Chip

ROM/RAM or On-Chip Memory .. 156
8.4.3 Relationship Between Position of Instructions Located in On-Chip

ROM/RAM or On-Chip Memory and Contention Between IF and MA 157
8.5 Effects of Memory Load Instructions on Pipelines ... 158
8.6 Programming Guide .. 159
8.7 Operation of Instruction Pipelines ... 160

8.7.1 Data Transfer Instructions .. 167
8.7.2 Arithmetic Instructions .. 170
8.7.3 Logic Operation Instructions ... 225
8.7.4 Shift Instructions .. 228
8.7.5 Branch Instructions .. 229
8.7.6 System Control Instructions... 232
8.7.7 Exception Processing ... 244

Appendix A Instruction Code.. 247
A.1 Instruction Set by Addressing Mode ... 247

A.1.1 No Operand .. 249
A.1.2 Direct Register Addressing .. 250
A.1.3 Indirect Register Addressing .. 253
A.1.4 Post Increment Indirect Register Addressing .. 253
A.1.5 Pre Decrement Indirect Register Addressing... 254
A.1.6 Indirect Register Addressing with Displacement .. 255
A.1.7 Indirect Indexed Register Addressing .. 255
A.1.8 Indirect GBR Addressing with Displacement .. 256
A.1.9 Indirect Indexed GBR Addressing ... 256
A.1.10 PC Relative Addressing with Displacement .. 256
A.1.11 PC Relative Addressing with Rn ... 257
A.1.12 PC Relative Addressing ... 257
A.1.13 Immediate .. 258

A.2 Instruction Sets by Instruction Format .. 258
A.2.1 0 Format ... 260
A.2.2 n Format ... 261
A.2.3 m Format .. 263
A.2.4 nm Format .. 264
A.2.5 md Format .. 267
A.2.6 nd4 Format ... 267

A.2.7 nmd Format .. 267
A.2.8 d Format ... 268
A.2.9 d12 Format ... 269
A.2.10 nd8 Format ... 269
A.2.11 i Format .. 269
A.2.12 ni Format .. 270

A.3 Instruction Set in Order by Instruction Code .. 270
A.4 Operation Code Map.. 278

Appendix B Pipeline Operation and Contention ... 281

1

Section 1 Features

The SH7000 and SH7600 series have RISC-type instruction sets. Basic instructions are executed
in one clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH7000 and
SH7600-series CPU features.

Table 1.1 SH7000 and SH7600-Series CPU Features

Item Feature

Architecture • Original Hitachi architecture

• 32-bit internal data paths

General-register machine • Sixteen 32-bit general registers

• Three 32-bit control registers

• Four 32-bit system registers

Instruction set • Instruction length: 16-bit fixed length for improved code efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language

Instruction execution time • One instruction/cycle for basic instructions

Address space • Architecture makes 4 Gbytes available

On-chip multiplier
(SH7000)

• Multiplication operations (16 bits × 16 bits → 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits × 16
bits + 42 bits → 42 bits) executed in 3/(2)* cycles

On-chip multiplier
(SH7600)

• Multiplication operations executed in 1 to 2 cycles (16 bits × 16 bits
→ 32 bits) or 2 to 4 cycles (32 bits × 32 bits → 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits × 16 bits + 64 bits → 64 bits) or 3/(2 to 4)* cycles (32 bits × 32
bits + 64 bits → 64 bits)

Pipeline • Five-stage pipeline

Processing states • Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

Power-down states • Sleep mode

• Standby mode

• Module stop mode (SH7600 only)

Note: The normal minimum number of execution cycles (The number in parentheses in the
mumber in contention with preceding/following instructions).

2

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered R0–R15, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. R0 is also used as an index
register. Several instructions use R0 as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

R0

R1

R2

R3

R4

R5
R6

R7
R8

R9

R10

R11

R12

R13

R14
R15, SP

31 0
R0 functions as an index register in the
indirect indexed register addressing
mode and indirect indexed GBR
addressing mode. In some instructions,
R0 functions as a fixed source register
or destination register.

R15 functions as a hardware stack
pointer (SP) during exception
processing.

1.*1

(hardware stack pointer) 2.*2

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

3

data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

9 8 7 6 5 4 3 2 1 0

M Q I3 I2 I1 I0 S T

0

031

31

GBR

VBR

SR

31

S bit: Used by the multiply/accumulate
 instruction.

Reserved bits: Always reads as 0, and should
always be written with 0.
Bits I3–I0: Interrupt mask bits.

M and Q bits: Used by the DIV0U/S and
DIV1 instructions.

Global base register (GBR):
Indicates the base address of the indirect
GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

Vector base register (VBR):
Indicates the base address of the exception
processing vector area.

SR: Status register

T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIV0U/S, DIV1, NEGC,
SHAR/L, SHLR/L, ROTR/L, and
ROTCR/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The
multiply and accumulate registers store the results of multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
stores program addresses to control the flow of the processing.

4

MACL

PR

PC

MACH(SH7600)

0

0

31

31

Multiply and accumulate (MAC)
registers high and low (MACH/L):
Store the results of multiply and
accumulate operations. In the
SH7000, MACH is sign-extended
to 32 bits when read because only
the lowest 10 bits are valid. In the
SH7600, all 32 bits of MACH are
valid.

Procedure register (PR): Stores a
return address from a subroutine
procedure.

Program counter (PC): Indicates the
fourth byte (second instruction) after
the current instruction.

SW J05

MACL

(sign extended) MACH(SH7000)

31 9 0

31 0

Figure 2.3 System Registers

2.4 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1 Initial Values of Registers

Classification Register Initial Value

General register R0–R14 Undefined

R15 (SP) Value of the stack pointer in the vector address table

Control register SR Bits I3–I0 are 1111 (H'F), reserved bits are 0, and
other bits are undefined

GBR Undefined

VBR H'00000000

System register MACH, MACL, PR Undefined

PC Value of the program counter in the vector address
table

5

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only a
byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0

Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because
this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

31 01523 7

Byte Byte Byte Byte

Word

Big endian

Word

Longword

Address 2n

Address 4n

Address m Address m + 2

Address m + 1 Address m + 3

Figure 3.2 Byte, Word, and Longword Alignment

6

SH7604 has a function that allows access of CS2 space (area 2) in little endian format, which
enables memory to be shared with processors that access memory in little endian format (figure
3.3). Byte data is arranged differently for little endian and the usual big endian.

Address 2n

Address 4n

01523 7

Byte Byte Byte Byte

Word

Little endian

Word

Longword

Address m + 3 Address m + 1

Address m + 2 Address m

31

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and calculated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a
memory table. The memory table is accessed by an immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

7

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with
longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zero-
extended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH7000/SH7600-Series CPU Description Example for Other CPU

MOV.W @(disp,PC),R1

ADD R1,R0

.DATA.W H'1234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction.

ADD.W #H'1234,R0

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

8

Table 4.2 Delayed Branch Instructions

SH7000/7600-Series CPU Description Example for Other CPU

BRA TRGET

ADD R1,R0

Executes an ADD before
branching to TRGET.

ADD.W R1,R0

BRA TRGET

4.1.6 Multiplication/Accumulation Operation

SH7000: 16bit × 16bit → 32-bit multiplication operations are executed in one to three cycles.
16bit × 16bit + 42bit → 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH7600: 16bit × 16bit → 32-bit multiplication operations are executed in one to two cycles. 16bit
× 16bit + 64bit → 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit × 32bit → 64-bit multiplication and 32bit × 32bit + 64bit → 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 4.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table 4.3 T Bit

SH7000/7600-Series CPU Description Example for Other CPU

CMP/GE R1,R0

BT TRGET0

BF TRGET1

T bit is set when R0 ≥ R1. The
program branches to TRGET0
when R0 ≥ R1 and to TRGET1
when R0 < R1.

CMP.W R1,R0

BGE TRGET0

BLT TRGET1

ADD #–1,R0

CMP/EQ #0,R0

BT TRGET

T bit is not changed by ADD. T
bit is set when R0 = 0. The
program branches if R0 = 0.

SUB.W #1,R0

BEQ TRGET

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

9

Table 4.4 Immediate Data Accessing

Classification SH7000/7600-Series CPU Example for Other CPU

8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0

16-bit immediate MOV.W @(disp,PC),R0

.DATA.W H'1234

MOV.W #H'1234,R0

32-bit immediate MOV.L @(disp,PC),R0

.DATA.L H'12345678

MOV.L #H'12345678,R0

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 4.5 Absolute Address

Classification SH7000/7600 Series CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1

MOV.B @R1,R0

.DATA.L H'12345678

MOV.B @H'12345678,R0

4.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

10

Table 4.6 Displacement Accessing

Classification SH7000/7600 Series CPU Example for Other CPU

16-bit displacement MOV.W @(disp,PC),R0

MOV.W @(R0,R1),R2

.DATA.W H'1234

MOV.W @(H'1234,R1),R2

4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Direct
register
addressing

Rn The effective address is register Rn. (The operand is
the contents of register Rn.)

—

Indirect
register
addressing

@Rn The effective address is the content of register Rn.

Rn Rn

Rn

Post-
increment
indirect
register
addressing

@Rn + The effective address is the content of register Rn. A
constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, or 4 for a longword
operation.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn

(After the
instruction is
executed)

Byte: Rn + 1
→ Rn

Word: Rn + 2
→ Rn

Longword:
Rn + 4 → Rn

Pre-
decrement
indirect
register
addressing

@–Rn The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a word operation, or 4 for a
longword operation.

Rn

1/2/4

Rn – 1/2/4–Rn – 1/2/4

Byte: Rn – 1
→ Rn

Word: Rn – 2
→ Rn

Longword:
Rn – 4 → Rn
(Instruction
executed with
Rn after
calculation)

11

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

Indirect
register
addressing
with
displace-
ment

@(disp:4,
Rn)

The effective address is Rn plus a 4-bit displacement
(disp). The value of disp is zero-extended, and
remains the same for a byte operation, is doubled for
a word operation, or is quadrupled for a longword
operation.

Rn

1/2/4

Rn
+ disp × 1/2/4

+

×

SW J12d

disp
(zero-extended)

Byte: Rn +
disp

Word: Rn +
disp × 2

Longword:
Rn + disp × 4

Indirect
indexed
register
addressing

@(R0, Rn) The effective address is the Rn value plus R0.

Rn

R0

Rn + R0+

Rn + R0

Indirect
GBR
addressing
with
displace-
ment

@(disp:8,
GBR)

The effective address is the GBR value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, or is
quadrupled for a longword operation.

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: GBR +
disp

Word: GBR +
disp × 2

Longword:
GBR + disp ×
4

Indirect
indexed
GBR
addressing

@(R0,
GBR)

The effective address is the GBR value plus R0.

GBR

R0

GBR + R0+

GBR + R0

12

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
with
displace-
ment

@(disp:8,
PC)

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and disp is doubled for a word operation,
or is quadrupled for a longword operation. For a
longword operation, the lowest two bits of the PC are
masked.

PC

H'FFFFFFFC
PC + disp × 2

or
PC&H'FFFFFFFC

+ disp × 4

+

2/4

x

&
(for longword)

disp
(zero-extended)

Word: PC +
disp × 2

Longword:
PC &
H'FFFFFFFC
+ disp × 4

PC relative
addressing

disp:8 The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

disp:12 The effective address is the PC value sign-extended
with a 12-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

13

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Formula

PC relative
addressing
(cont)

Rn The effective address is the register PC plus Rn.

PC

R0

PC + R0+

PC + Rn

Immediate
addressing

#imm:8 The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

—

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

—

#imm:8 Immediate data (imm) for the TRAPA instruction is
zero-extended and is quadrupled.

—

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

• xxxx: Instruction code

• mmmm: Source register

• nnnn: Destination register

• iiii: Immediate data

• dddd: Displacement

Table 4.8 Instruction Formats

Instruction Formats
Source
Operand

Destination
Operand Example

0 format

xxxx xxxx xxxxxxxx
15 0

— — NOP

n format — nnnn: Direct
register

MOVT Rn

xxxx xxxx xxxxnnnn
15 0 Control register

or system
register

nnnn: Direct
register

STS MACH,Rn

14

Table 4.8 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

n format (cont) — nnnn: Direct
register

JMP @Rn

Control register
or system
register

nnnn: Indirect pre-
decrement
register

STC.L SR,@-Rn

— nnnn: PC relative
using Rn

BRAF Rn

m format mmmm: Direct
register

Control register or
system register

LDC Rm,SR

xxxxmmmmxxxx xxxx
15 0 mmmm: Indirect

post-increment
register

Control register or
system register

LDC.L @Rm+,SR

nm format mmmm: Direct
register

nnnn: Direct
register

ADD Rm,Rn

nnnnxxxx xxxx
15 0

mmmm
mmmm: Direct
register

nnnn: Indirect
register

MOV.L Rm,@Rn

mmmm: Indirect
post-increment
register (multiply/
accumulate)

nnnn*: Indirect
post-increment
register (multiply/
accumulate)

MACH, MACL MAC.W
@Rm+,@Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L @Rm+,Rn

mmmm: Direct
register

nnnn: Indirect pre-
decrement
register

MOV.L Rm,@-Rn

mmmm: Direct
register

nnnn: Indirect
indexed register

MOV.L
Rm,@(R0,Rn)

md format

xxxx dddd
15 0

mmmmxxxx

mmmmdddd:
indirect register
with
displacement

R0 (Direct
register)

MOV.B
@(disp,Rm),R0

nd4 format

ddddnnnnxxxx
15 0

xxxx

R0 (Direct
register)

nnnndddd:
Indirect register
with displacement

MOV.B
R0,@(disp,Rn)

Note: In multiply/accumulate instructions, nnnn is the source register.

15

Table 4.8 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

nmd format

nnnnxxxx dddd
15 0

mmmm

mmmm: Direct
register

nnnndddd: Indirect
register with
displacement

MOV.L
Rm,@(disp,Rn)

mmmmdddd:
Indirect register
with
displacement

nnnn: Direct
register

MOV.L
@(disp,Rm),Rn

d format

ddddxxxx
15 0

xxxx dddd

dddddddd:
Indirect GBR
with
displacement

R0 (Direct register) MOV.L
@(disp,GBR),R0

R0(Direct
register)

dddddddd: Indirect
GBR with
displacement

MOV.L
R0,@(disp,GBR)

dddddddd: PC
relative with
displacement

R0 (Direct register) MOVA
@(disp,PC),R0

— dddddddd: PC
relative

BF label

d12 format

ddddxxxx
15 0

dddd dddd

— dddddddddddd:
PC relative

BRA label

(label = disp +
PC)

nd8 format

ddddnnnnxxxx
15 0

dddd

dddddddd: PC
relative with
displacement

nnnn: Direct
register

MOV.L
@(disp,PC),Rn

i format iiiiiiii: Immediate Indirect indexed
GBR

AND.B
#imm,@(R0,GBR)

i i i ixxxx
15 0

xxxx i i i i
iiiiiiii: Immediate R0 (Direct register) AND #imm,R0

iiiiiiii: Immediate — TRAPA #imm

ni format

nnnn i i i ixxxx
15 0

i i i i

iiiiiiii: Immediate nnnn: Direct
register

ADD #imm,Rn

16

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

17

Table 5.1 Classification of Instructions

Applicable
Instructions

Classification Types
Operation
Code Function

SH
7600

SH
7000

No. of
Instructions

Data transfer 5 MOV Data transfer
Immediate data transfer
Peripheral module data transfer
Structure data transfer

✔ ✔ 39

MOVA Effective address transfer ✔ ✔

MOVT T-bit transfer ✔ ✔

SWAP Swap of upper and lower bytes ✔ ✔

XTRCT Extraction of the middle of
registers connected

✔ ✔

Arithmetic 21 ADD Binary addition ✔ ✔ 33
operations ADDC Binary addition with carry ✔ ✔

ADDV Binary addition with overflow
check

✔ ✔

CMP/cond Comparison ✔ ✔

DIV1 Division ✔ ✔

DIV0S Initialization of signed division ✔ ✔

DIV0U Initialization of unsigned
division

✔ ✔

DMULS Signed double-length
multiplication

✔

DMULU Unsigned double-length
multiplication

✔

DT Decrement and test ✔

EXTS Sign extension ✔ ✔

EXTU Zero extension ✔ ✔

MAC Multiply/accumulate, double-
length multiply/accumulate
operation*1

✔ ✔

MUL Double-length multiplication ✔ ✔

MULS Signed multiplication ✔ ✔

MULU Unsigned multiplication ✔ ✔

NEG Negation ✔ ✔

NEGC Negation with borrow ✔ ✔

SUB Binary subtraction ✔ ✔

SUBC Binary subtraction with borrow ✔ ✔

SUBV Binary subtraction with
underflow check

✔ ✔

Notes 1. Double-length multiply/accumulate is an SH7600 function.

18

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function

SH
7600

SH
7000

No. of
Instructions

Logic 6 AND Logical AND ✔ ✔ 14
operations NOT Bit inversion ✔ ✔

OR Logical OR ✔ ✔

TAS Memory test and bit set ✔ ✔

TST Logical AND and T-bit set ✔ ✔

XOR Exclusive OR ✔ ✔

Shift 10 ROTL One-bit left rotation ✔ ✔ 14

ROTR One-bit right rotation ✔ ✔

ROTCL One-bit left rotation with T bit ✔ ✔

ROTCR One-bit right rotation with T bit ✔ ✔

SHAL One-bit arithmetic left shift ✔ ✔

SHAR One-bit arithmetic right shift ✔ ✔

SHLL One-bit logical left shift ✔ ✔

SHLLn n-bit logical left shift ✔ ✔

SHLR One-bit logical right shift ✔ ✔

SHLRn n-bit logical right shift ✔ ✔

Branch 9 BF Conditional branch, conditional
branch with delay*2 (T = 0)

✔ ✔ 11

BT Conditional branch, conditional
branch with delay*2 (T = 1)

✔ ✔

BRA Unconditional branch ✔ ✔

BRAF Unconditional branch ✔

BSR Branch to subroutine procedure ✔ ✔

BSRF Branch to subroutine procedure ✔

JMP Unconditional branch ✔ ✔

JSR Branch to subroutine procedure ✔ ✔

RTS Return from subroutine
procedure

✔ ✔

Notes 2. Conditional branch with delay is an SH7600 function.

19

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions

Classification Types
Operation
Code Function

SH
7600

SH
7000

No. of
Instructions

System 11 CLRT T-bit clear ✔ ✔ 31
control CLRMAC MAC register clear ✔ ✔

LDC Load to control register ✔ ✔

LDS Load to system register ✔ ✔

NOP No operation ✔ ✔

RTE Return from exception
processing

✔ ✔

SETT T-bit set ✔ ✔

SLEEP Shift into power-down mode ✔ ✔

STC Storing control register data ✔ ✔

STS Storing system register data ✔ ✔

TRAPA Trap exception processing ✔ ✔

Total: 62 142

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

20

Table 5.2 Instruction Code Format

Item Format Explanation

Instruction
mnemonic

OP.Sz SRC,DEST OP: Operation code
Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction
code

MSB ↔ LSB mmmm: Source register
nnnn: Destination register

0000: R0
0001: R1

1111: R15

iiii: Immediate data
dddd: Displacement

Operation
summary

→, ←
(xx)
M/Q/T
&
|
^
~
<<n, >>n

Direction of transfer
Memory operand
Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit left/right shift

Execution
cycle

Value when no wait states are inserted

Instruction
execution
cycles

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory → register) and the register used by the next
instruction are the same.

T bit Value of T bit after instruction is executed

— No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

21

5.1.1 Data Transfer Instructions

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Table 5.3 Data Transfer Instructions

Instruction Instruction Code Operation

Execu-
tion
State

T
Bit

MOV #imm,Rn 1110nnnniiiiiiii imm → Sign extension →
Rn

1 —

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → Sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → Sign extension →
Rn

1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → Sign extension →
Rn

1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn–1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn–2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn–4 → Rn, Rm → (Rn) 1 —

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → Sign extension →
Rn,Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → Sign extension →
Rn,Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn,Rm + 4 → Rm 1 —

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 + Rn) 1 —

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → Sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) → Sign
extension → R0

1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) → Rn 1 —

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

22

Table 5.3 Data Transfer Instructions (cont)

Instruction Instruction Code Operation

Execu-
tion
State

T
Bit

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 + GBR) 1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4+ GBR) 1 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → Sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) → Sign
extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) → R0 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

MOVT Rn 0000nnnn00101001 T → Rn 1 —

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper and
lower 2 bytes→ Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper and
lower word → Rn

1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm and
Rn→ Rn

1 —

23

5. 1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Instruction Instruction Code Operation
Execution
State T Bit

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 —

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn,
Carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
Overflow → T

1 Overflow

CMP/EQ #imm,R0 10001000iiiiiiii If R0 = imm, 1 → T 1 Compariso
n result

CMP/EQ Rm,Rn 0011nnnnmmmm0000 If Rn = Rm, 1 → T 1 Compariso
n result

CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn≥Rm with
unsigned data, 1 → T

1 Compariso
n result

CMP/GE Rm,Rn 0011nnnnmmmm0011 If Rn ≥ Rm with
signed data, 1 → T

1 Compariso
n result

CMP/HI Rm,Rn 0011nnnnmmmm0110 If Rn > Rm with
unsigned data, 1 → T

1 Compariso
n result

CMP/GT Rm,Rn 0011nnnnmmmm0111 If Rn > Rm with
signed data, 1 → T

1 Compariso
n result

CMP/PL R

n

0100nnnn00010101 If Rn > 0, 1 → T 1 Compariso
n result

CMP/PZ R

n

0100nnnn00010001 If Rn ≥ 0, 1 → T 1 Compariso
n result

CMP/STR Rm,Rn 0010nnnnmmmm1100 If Rn and Rm have an
equivalent byte, 1 →
T

1 Compariso
n result

DIV1 Rm,Rn 0011nnnnmmmm0100 Single-step division
(Rn/Rm)

1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q,
MSB of Rm → M, M ^
Q → T

1 Calculation
result

DIV0U 0000000000011001 0 → M/Q/T 1 0

24

Table 5.4 Arithmetic Instructions (cont)

Instruction Instruction Code Operation
Execution
State T Bit

DMULS.L Rm,Rn*2 0011nnnnmmmm1101 Signed operation of
Rn x Rm → MACH,
MACL

32 x 32 → 64 bits

2 to 4*1 —

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned operation of
Rn x Rm → MACH,
MACL

32 x 32 → 64 bits

2 to 4*1 —

DT Rn*2 0100nnnn00010000 Rn - 1 → Rn, when
Rn is 0, 1 → T. When
Rn is nonzero, 0 → T

1 Compariso
n result

EXTS.B Rm,Rn 0110nnnnmmmm1110 A byte in Rm is sign-
extended → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 A word in Rm is sign-
extended → Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 A byte in Rm is zero-
extended → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 A word in Rm is zero-
extended → Rn

1 —

MAC.L @Rm+,@Rn+

 *2

0000nnnnmmmm1111 Signed operation of
(Rn) x (Rm) + MAC
→ MAC

32 x 32 + 64→ 64 bits

3/(2 to 4)*1 —

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed operation of
(Rn) × (Rm) + MAC
→ MAC

(SH7600) 16 x 16 +
64 → 64 bits

(SH7000) 16 x 16 +
42 → 42 bits

3/(2)*1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn x Rm → MACL,
32 x 32 → 32 bits

2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of
Rn × Rm → MAC

16 x 16 → 32 bits

1 to 3*1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

25

Table 5.4 Arithmetic Instructions (cont)

Instruction Instruction Code Operation
Execution
State T Bit

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation of
Rn × Rm → MAC

16 x 16 → 32 bits

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0–Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0–Rm–T → Rn,
Borrow → T

1 Borrow

SUB Rm,Rn 0011nnnnmmmm1000 Rn–Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn–Rm–T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn–Rm → Rn,
Underflow → T

1 Underflow

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Instruction Instruction Code Operation
Execution
State T Bit

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm →
(R0 + GBR)

3 —

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

OR #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm →
(R0 + GBR)

3 —

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 → T; 1 →
MSB of (Rn)

4 Test
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm; if the result is
0, 1 → T

1 Test
result

TST #imm,R0 11001000iiiiiiii R0 & imm; if the result
is 0, 1 → T

1 Test
result

26

Table 5.5 Logic Operation Instructions (cont)

Instruction Instruction Code Operation
Execution
State T Bit

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm; if
the result is 0, 1 → T

3 Test
result

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm →
(R0 + GBR)

3 —

5.1.4 Shift Instructions

Table 5.6 Shift Instructions

Instruction Instruction Code Operation Execution State T Bit

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

27

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Instruction Instruction Code Operation
Execution
State T Bit

BF label 10001011dddddddd If T = 0, disp × 2 + PC → PC; if T =
1, nop (where label is disp × 2 + PC)

3/1*3 —

BF/S label*2 10001111dddddddd Delayed branch, if T = 0, disp × 2 +
PC → PC; if T = 1, nop

2/1*3 —

B

T

label 10001001dddddddd If T = 1, disp × 2 + PC → PC; if T =
0, nop (where label is disp + PC)

3/1*3 —

BT/S label*2 10001101dddddddd Delayed branch, if T = 1, disp × 2 +
PC → PC; if T = 0, nop

2/1*3 —

BRA label 1010dddddddddddd Delayed branch, disp × 2 + PC →
PC

2 —

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + PC → PC 2 —

BSR label 1011dddddddddddd Delayed branch, PC → PR, disp × 2
+ PC → PC

2 —

BSRF Rn*2 0000nnnn00000011 Delayed branch, PC → PR, Rn +
PC → PC

2 —

JMP @Rn 0100nnnn00101011 Delayed branch, Rn → PC 2 —

JSR @Rn 0100nnnn00001011 Delayed branch, PC → PR, Rn →
PC

2 —

RTS 0000000000001011 Delayed branch, PR → PC 2 —

Notes: 2. SH7600 instruction
3. One state when it does not branch

28

5.1.6 System Control Instructions

Table 5.8 System Control Instructions

Instruction Instruction Code Operation
Execution
State

T
Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 →
Rm

1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 —

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branch, stack area →
PC/SR

4 LSB

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3*4 —

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STC.L SR,@–Rn 0100nnnn00000011 Rn–4 → Rn, SR → (Rn) 2 —

STC.L GBR,@–Rn 0100nnnn00010011 Rn–4 → Rn, GBR → (Rn) 2 —

STC.L VBR,@–Rn 0100nnnn00100011 Rn–4 → Rn, VBR → (Rn) 2 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

29

Table 5.8 System Control Instructions (cont)

Instruction Instruction Code Operation
Execution
State

T
Bit

STS.L MACH,@–Rn 0100nnnn00000010 Rn–4 → Rn, MACH → (Rn) 1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn–4 → Rn, MACL → (Rn) 1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn–4 → Rn, PR → (Rn) 1 —

TRAPA #imm 11000011iiiiiiii PC/SR → stack area, (imm ×
4 + VBR) → PC

8 —

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory → register) is the same as the register
used by the next instruction.

5.2 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.

Table 5.9 Instruction Set

Instruction Instruction Code Operation

Execu-
tion
State T Bit

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn,
Carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
Overflow → T

1 Overflow

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm
→ (R0 + GBR)

3 —

B

F

label 10001011dddddddd If T = 0, disp × 2 +
PC → PC; if T = 1,
nop

3/1*3 —

BF/S label*2 10001111dddddddd If T = 0, disp × 2+
PC → PC; if T = 1,
nop

2/1*3 —

30

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

BRA label 1010dddddddddddd Delayed branch,
disp × 2 + PC →
PC

2 —

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn
+ PC → PC

2 —

BSR label 1011dddddddddddd Delayed branch,
PC → PR, disp × 2
+ PC → PC

2 —

BSRF Rn*2 0000nnnn00000011 Delayed branch,
PC → PR, Rn + PC
→ PC

2 —

BT label 10001001dddddddd If T = 1, disp × 2+
PC → PC; if T = 0,
nop

3/1*3 —

BT/S label*2 10001101dddddddd If T = 1, disp × 2 +
PC → PC; if T = 0,
nop

2/1*3 —

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

CLRT 0000000000001000 0 → T 1 0

CMP/EQ #imm,R0 10001000iiiiiiii If R0 = imm, 1 → T 1 Comparison
result

CMP/EQ Rm,Rn 0011nnnnmmmm0000 If Rn = Rm, 1 → T 1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 If Rn ≥ Rm with
signed data, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 If Rn > Rm with
signed data, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 If Rn > Rm with
unsigned data, 1 →
T

1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 If Rn ≥ Rm with
unsigned data, 1 →
T

1 Comparison
result

CMP/PL Rn 0100nnnn00010101 If Rn>0, 1 → T 1 Comparison
result

CMP/PZ Rn 0100nnnn00010001 If Rn ≥ 0, 1 → T 1 Comparison
result

Notes: 2. SH7600 instructions
3. One state when it does not branch

31

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

CMP/STR Rm,Rn 0010nnnnmmmm1100 If Rn and Rm have
an equivalent byte,
1 → T

1 Comparison
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q,
MSB of Rm → M, M
^ Q → T

1 Calculation
result

DIV0U 0000000000011001 0 → M/Q/T 1 0

DIV1 Rm,Rn 0011nnnnmmmm0100 Single-step division
(Rn/Rm)

1 Calculation
result

DMULS.L Rm,Rn*2 0011nnnnmmmm1101 Signed operation of
Rn x Rm → MACH,
MACL

2 to 4*1 —

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned operation
of Rn x Rm →
MACH, MACL

2 to 4*1 —

DT Rn*2 0100nnnn00010000 Rn - 1 → Rn, when
Rn is 0, 1 → T.
When Rn is
nonzero, 0 → T

1 Comparison
result

EXTS.B Rm,Rn 0110nnnnmmmm1110 A byte in Rm is
sign-extended →
Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 A word in Rm is
sign-extended →
Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 A byte in Rm is
zero-extended →
Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 A word in Rm is
zero-extended →
Rn

1 —

JMP @Rn 0100nnnn00101011 Delayed branch, Rn
→ PC

2 —

Notes: 1. The normal minimum number of execution states
2. SH7600 instructions

32

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

JSR @Rn 0100nnnn00001011 Delayed branch,
PC → PR, Rn →
PC

2 —

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm
+ 4 → Rm

3 —

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm +
4 → Rm

3 LSB

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm
+ 4 → Rm

3 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH,
Rm + 4 → Rm

1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm
+ 4 → Rm

1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm +
4 → Rm

1 —

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed operation of
(Rn) × (Rm) + MAC
→ MAC

3/(2 to
4)*1

—

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed operation of
(Rn) × (Rm) + MAC
→ MAC

3/(2)*1 —

MOV #imm,Rn 1110nnnniiiiiiii imm → Sign
extension → Rn

1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

Notes: 1. The normal minimum number of execution states (the number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

33

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) →
Sign extension →
R0

1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → Sign
extension → R0

1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → Sign
extension → Rn,
Rm + 1 → Rm

1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → Sign
extension → Rn

1 —

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn–1 → Rn, Rm →
(Rn)

1 —

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) →
R0

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) →
Rn

1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) →
Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4
→ Rm

1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 +
GBR)

1 —

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 +
Rn)

1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn–4 → Rn, Rm →
(Rn)

1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) →
Sign extension →
R0

1 —

34

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) →
Sign extension →
Rn

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) →
Sign extension →
R0

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → Sign
extension → Rn

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → Sign
extension → Rn,
Rm + 2 → Rm

1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → Sign
extension → Rn

1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2+
GBR)

1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 +
Rn)

1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn–2 → Rn, Rm →
(Rn)

1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

MOVT Rn 0000nnnn00101001 T → Rn 1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn × Rm → MACL 2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of
Rn × Rm → MAC

1 to 3*1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation
of Rn × Rm → MAC

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0–Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0–Rm–T → Rn,
Borrow → T

1 Borrow

NOP 0000000000001001 No operation 1 —

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

OR #imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —
Notes: 1. The normal minimum number of execution states

2. SH7600 instructions

35

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm
→ (R0 + GBR)

3 —

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

RTE 0000000000101011 Delayed branch,
stack area →
PC/SR

4 LSB

RTS 0000000000001011 Delayed branch,
PR → PC

2 —

SETT 0000000000011000 1 → T 1 1

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

SLEEP 0000000000011011 Sleep 3 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STC.L GBR,@–Rn 0100nnnn00010011 Rn–4 → Rn, GBR
→ (Rn)

2 —

STC.L SR,@–Rn 0100nnnn00000011 Rn–4 → Rn, SR →
(Rn)

2 —

STC.L VBR,@–Rn 0100nnnn00100011 Rn–4 → Rn, VBR
→ (Rn)

2 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

36

Table 5.9 Instruction Set (cont)

Instruction Instruction Code Operation

Execu-
tion
State T Bit

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

STS.L MACH,@–Rn 0100nnnn00000010 Rn–4 → Rn,
MACH → (Rn)

1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn–4 → Rn, MACL
→ (Rn)

1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn–4 → Rn, PR →
(Rn)

1 —

SUB Rm,Rn 0011nnnnmmmm1000 Rn–Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn–Rm–T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn–Rm → Rn,
Underflow → T

1 U

n

d

e

r

f

l

o

w

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper
and lower 2 bytes→
Rn

1 —

S

W

A

P

.

W

Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper
and lower word→
Rn

1 —

TAS.B @Rn 0100nnnn00011011 If (Rn) is 0, 1 → T;
1 → MSB of (Rn)

4 Test
result

TRAPA #imm 11000011iiiiiiii PC/SR → stack
area, (imm × 4 +
VBR) → PC

8 —

TST #imm,R0 11001000iiiiiiii R0 & imm; if the
result is 0, 1 → T

1 Test
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm; if the
result is 0, 1 → T

1 Test
result

T

S

T

.

B

#

i

m

m

,

@

(

R

0

,

G

B

R

)

11001100iiiiiiii (R0 + GBR) & imm;
if the result is 0, 1
→ T

3 Test
result

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

X

O

R

.

B

#

i

m

m

,

@

(

R

0

,

G

B

R

)

11001110iiiiiiii (R0 + GBR) ^ imm
→ (R0 + GBR)

3 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of
Rm and Rn → Rn

1 —

37

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code State T Bit

Assembler input format;
imm and disp are
numbers, expressions,
or symbols

A brief description of
operation

Displayed in
order MSB ´ LSB

Number of
states when
there is no
wait state

The value of
T bit after the
instruction is
executed

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

• Writes data of each length to address Addr. An address error will occur if word data is written to
an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

• Starts execution from the slot instruction located at an address (Addr – 4). For Delay_Slot (4);,
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot(unsigned long Addr);

38

• List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

• Definition of SR structures:

struct SR0 {

unsigned long dummy0:22;

unsigned long M0:1;

unsigned long Q0:1;

unsigned long I0:4;

unsigned long dummy1:2;

unsigned long S0:1;

unsigned long T0:1;

};

• Definition of bits in SR:

#define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

• Error display function:

Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

39

.org Location counter set

.data.w Securing integer word data

.data.l Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Note: The SH-series cross assembler version 1.0 does not support the conditional assembler
functions.

Notes: 1. In the assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (x1, x2, x4) according to the
operand size is written. This is done to show clearly the operation of the LSI; see the
assembler notation rules for the actural assembler descriptions.

@(disp:4, Rn): Register indirect with displacement
@(disp:8, GBR): GBR indirect with displacement
@(disp 8, PC): PC relative with displacement
disp:8, disp:12: PC relative

2. Among the 16 bits of the instruction code, a code not assigned as an instruction is
treated as a general illegal instruction, and will result in illegal instruction exception
processing, This includes the case where an instruction code for the SH7600 series
only is executed on the SH7000 series.

Example 1: H'FFF [General illegal instruction in both SH7000 and
SH 7600]

Example 2: H'3105 (=DMUL.L R0, R1)[Illegal instruction in SH7000]

3. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example 1
BRA Label
. data. W H'FFFF ← Slot illegal instruction
.... [H'FFF is fundamentally a general illegal

 instruction]

Example 2 RTE
BT/S Label ← Slot illegal instruction

40

6.2 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit

ADD Rm,Rn

ADD #imm,Rn

Rm + Rn → Rn

Rn + imm → Rn

0011nnnnmmmm1100

0111nnnniiiiiiii

1

1

—

—

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The contents
of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn */

{

R[n]+=R[m];

PC+=2;

}

ADDI(long i,long n) /* ADD #imm,Rn */

{

if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);

else R[n]+=(0xFFFFFF00 | (long)i);

PC+=2;

}

Examples:

ADD R0,R1 Before execution R0 = H'7FFFFFFF, R1 = H'00000001

After execution R1 = H'80000000

ADD #H'01,R2 Before execution R2 = H'00000000

After execution R2 = H'00000001

ADD #H'FE,R3 Before execution R3 = H'00000001

After execution R3 = H'FFFFFFFF

41

6.3 ADDC (ADD with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];

tmp0=R[n];

R[n]=tmp1+T;

if (tmp0>tmp1) T=1;

else T=0;

if (tmp1>R[n]) T=1;

PC+=2;

}

Examples:

CLRT R0:R1 (64 bits) + R2:R3 (64 bits) = R0:R1 (64 bits)

ADDC R3,R1 Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

After execution T = 1, R1 = H'0000000

ADDC R2,R0 Before execution T = 1, R0 = H'00000000, R2 = H'00000000

After execution T = 0, R0 = H'00000001

42

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code State T Bit

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) /*ADDV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV R0,R1 Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

After execution R1 = H'7FFFFFFF, T = 0

ADDV R0,R1 Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T = 0

After execution R1 = H'80000000, T = 1

43

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T Bit

AND Rm,Rn

AND #imm,R0

AND.B #imm,@(R0,GBR)

Rn & Rm → Rn

R0 & imm → R0

(R0 + GBR) & imm → (R0 +
GBR)

0010nnnnmmmm1001

11001001iiiiiiii

11001101iiiiiiii

1

1

3

—

—

—

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0.

Operation:

AND(long m,long n) /* AND Rm,Rn */

{

R[n]&=R[m]

PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

R[0]&=(0x000000FF & (long)i);

PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

44

Examples:

AND R0,R1 Before execution R0 = H'AAAAAAAA, R1 = H'55555555

After execution R1 = H'00000000

AND #H'0F,R0 Before execution R0 = H'FFFFFFFF

After execution R0 = H'0000000F

AND.B #H'80,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'80

45

6.6 BF (Branch if False): Branch Instruction

Format Abstract Code State T Bit

BF label When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001011dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

BF(long d) /* BF disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) PC=PC+(disp<<1)+4;

else PC+=2;

}

Example:

CLRT T is always cleared to 0

B

T

TRGET_T Does not branch, because T = 0
B

F

TRGET_F Branches to TRGET_F, because T = 0

NOP

NOP ← The PC location is used to calculate
the
branch destination address of the BF
instruction

 TRGET_F: ← Branch destination of the BF instruction

46

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BF/S
label

When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001111dddddddd 2/1 —

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF executes the
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is –256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF/S with the BRA instruction or the
like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after is a
branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.

Operation:

BFS(long d) /* BFS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

else PC+=2;

}

47

Example:

CLRT T is always 0

BT/S TRGET_T Does not branch, because T = 0

NOP

BF/S TRGET_F Branches to TRGET, because T = 0

ADD R0,R1 Executed before branch

NOP ← The PC location is used to calculate the branch destination
address of the BF/S instruction

TRGET_F: ← Branch destination of the BF/S instruction

48

6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRA label disp × 2 + PC → PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is
–4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(long d) /* BRA disp */

{

unsigned long temp;

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

temp=PC;

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

Example:

BRA TRGET Branches to TRGET

ADD R0,R1 Executes ADD before branching

NOP ← The PC location is used to calculate the branch destination address
of the BRA instruction

 TRGET: ← Branch destination of the BRA instruction

49

6.9 BRAF (Branch Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRAF Rn Rn + PC → PC 0000nnnn00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRAF(long n) /* BRAF Rn */

{

unsigned long temp;

temp=PC;

PC+=R[n];

Delay_Slot(temp+2);

}

Example:

MOV.L #(TRGET-BSRF_PC),R0 Sets displacement

BRAF @R0 Branches to TRGET

ADD R0,R1 Executes ADD before branching

 BRAF_PC: ← The PC location is used to calculate
the branch destination address of
the BRAF instruction

NOP

 TRGET: ← Branch destination of the BRAF instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

50

6.10 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSR label PC → PR, disp × 2 + PC → PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is –4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */

{

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

PR=PC;

PC=PC+(disp<<1)+4;

Delay_Slot(PR+2);

}

51

Example:

BSR TRGET Branches to TRGET

MOV R3,R4 Executes the MOV instruction before branching

ADD R0,R1 ← The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

.......

.......

TRGET: ← Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #1,R0 Executes MOV before branching

52

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSRF Rn PC → PR, Rn + PC → PC 0000nnnn00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSRF(long n) /* BSRF Rn */

{

PR=PC;

PC+=R[n];

Delay_Slot(PR+2);

}

Example:

MOV.L #(TRGET-BSRF_PC),R0 Sets displacement
BRSF @R0 Branches to TRGET
MOV R3,R4 Executes the MOV instruction before

branching
BSRF_PC: ← The PC location is used to

calculate the branch destination
with BSRF

ADD R0,R1

.....

.....
TRGET: ← Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction
MOV #1,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

53

6.12 BT (Branch if True): Branch Instruction

Format Abstract Code State T Bit

BT label When T = 1, disp × 2 + PC →
PC;
When T = 0, nop

10001001dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC + displacement.
The PC points to the starting address of the second instruction after the branch instruction. The 8-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is –256 to +254 bytes. If the displacement is too short to reach the branch destination,
use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

BT(long d) /* BT disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) PC=PC+(disp<<1)+4;

else PC+=2;

}

Example:

SETT T is always 1

B

F

TRGET_F Does not branch, because T = 1

B

T

TRGET_T Branches to TRGET_T, because T = 1

NOP

NOP ← The PC location is used to calculate the branch destination
address of the BT instruction

TRGET_T: ← Branch destination of the BT instruction

54

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)

Format Abstract Code State T Bit

BT/S label When T = 1, disp × 2 + PC →
PC;
When T = 0, nop

10001101dddddddd 2/1 —

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is –256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles;
when not branching, one cycle.

Operation:

BTS(long d) /* BTS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

else PC+=2;

}

55

Example:

SETT T is always 1

BF/S TRGET_F Does not branch, because T = 1

NOP

BT/S TRGET_T Branches to TRGET, because T = 1

ADD R0,R1 Executes before branching.

NOP ← The PC location is used to calculate the branch destination
address of the BT/S instruction

TRGET_T: ← Branch destination of the BT/S instruction

56

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code State T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

Description: Clears the MACH and MACL registers.

Operation:

CLRMAC() /* CLRMAC */

{

MACH=0;

MACL=0;

PC+=2;

}

Example:

CLRMAC Initializes the MAC register

MAC.W @R0+,@R1+ Multiply and accumulate operation

MAC.W @R0+,@R1+

57

6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract Code State T Bit

CLRT 0 → T 0000000000001000 1 0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

{

T=0;

PC+=2;

}

Example:

CLRT Before execution T = 1

After execution T = 0

58

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code State T Bit

CMP/EQ Rm,Rn

CMP/GE Rm,Rn

CMP/GT Rm,Rn

CMP/HI Rm,Rn

CMP/HS Rm,Rn

CMP/PL Rn

CMP/PZ Rn

CMP/STR Rm,Rn

CMP/EQ #imm,R0

When Rn = Rm, 1 → T

When signed and Rn ≥
Rm, 1 → T

When signed and Rn >
Rm, 1 → T

When unsigned and Rn >
Rm, 1 → T

When unsigned and Rn ≥
Rm, 1 → T

When Rn > 0, 1 → T

When Rn ≥ 0, 1 → T

When a byte in Rn equals
a byte in Rm, 1 → T

When R0 = imm, 1 → T

0011nnnnmmmm0000

0011nnnnmmmm0011

0011nnnnmmmm0111

0011nnnnmmmm0110

0011nnnnmmmm0010

0100nnnn00010101

0100nnnn00010001

0010nnnnmmmm1100

10001000iiiiiiii

1

1

1

1

1

1

1

1

1

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with R0 by using condition EQ. Here, R0 data does not change. Table 6.1 shows the
mnemonics for the conditions.

59

Table 6.1 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm with signed data, T = 1

CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

{

if (R[n]==R[m]) T=1;

else T=0;

PC+=2;

}

CMPGE(long m,long n) /* CMP_GE Rm,Rn */

{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPGT(long m,long n) /* CMP_GT Rm,Rn */

{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

}

60

CMPHI(long m,long n) /* CMP_HI Rm,Rn */

{

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPHS(long m,long n) /* CMP_HS Rm,Rn */

{

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPPL(long n) /* CMP_PL Rn */

{

if ((long)R[n]>0) T=1;

else T=0;

PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

if ((long)R[n]>=0) T=1;

else T=0;

PC+=2;

}

61

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]^R[m];

HH=(temp&0xFF000000)>>12;

HL=(temp&0x00FF0000)>>8;

LH=(temp&0x0000FF00)>>4;

LL=temp&0x000000FF;

HH=HH&&HL&&LH&&LL;

if (HH==0) T=1;

else T=0;

PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));

else imm=(0xFFFFFF00 | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Example:

CMP/GE R0,R1 R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T Does not branch because T = 0

CMP/HS R0,R1 R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T Branches because T = 1

CMP/STR R2,R3 R2 = “ABCD”, R3 = “XYCZ”

BT TRGET_T Branches because T = 1

62

6.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State T Bit

DIV0S Rm,Rn MSB of Rn → Q, MSB of Rm →
M, M^Q → T

0010nnnnmmmm0111 1 Calculation
result

Description: DIV0S is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0S(long m,long n) /* DIV0S Rm,Rn */

{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q);

PC+=2;

}

Example: See DIV1.

63

6.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description: DIV0U is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0U() /* DIV0U */

{

M=Q=T=0;

PC+=2;

}

Example: See DIV1.

64

6.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code State T Bit

DIV1 Rm,Rn 1-step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(Dividend) – (divisor)] (quotient) = (remainder)
with the SH7600 series in which a divider is installed as a peripheral function, the remainder can
be found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

65

Operation:

DIV1(long m,long n) /* DIV1 Rm,Rn */

{

unsigned long tmp0;

unsigned char old_q,tmp1;

old_q=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

R[n]<<=1;

R[n]|=(unsigned long)T;

switch(old_q){

case 0:switch(M){

case 0:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

66

case 1:switch(M){

case 0:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

}

T=(Q==M);

PC+=2;

}

67

Example 1:

R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 Zero division check

BT ZERO_DIV

CMP/HS R0,R1 Overflow check

BT OVER_DIV

DIV0U Flag initialization

.arepeat 16

DIV1 R0,R1 Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 R1 = Quotient

Example 2:

R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits):Unsigned

TST R0,R0 Zero division check

BT ZERO_DIV

CMP/HS R0,R1 Overflow check

BT OVER_DIV

DIV0U Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 R2 = Quotient

68

Example 3:

R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed

SHLL16 R0 Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 Sign-extends the dividend to 32 bits

XOR R2,R2 R2 = 0

MOV R1,R3

ROTCL R3

SUBC R2,R1 Decrements if the dividend is negative

DIV0S R0,R1 Flag initialization

.arepeat 16

DIV1 R0,R1 Repeat 16 times

.aendr

EXTS.W R1,R1

ROTCL R1 R1 = quotient (one’s complement)

ADDC R2,R1 Increments and takes the two’s complement if the MSB of the
quotient is 1

EXTS.W R1,R1 R1 = quotient (two’s complement)

Example 4:

R2 (32 bits) / R0 (32 bits) = R2 (32 bits):Signed

MOV R2,R3

ROTCL R3

SUBC R1,R1 Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 R3 = 0

SUBC R3,R2 Decrements and takes the one’s complement if the dividend is
negative

DIV0S R0,R1 Flag initialization

.arepeat 32

ROTCL R2 Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 R2 = Quotient (one’s complement)

ADDC R3,R2 Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’s complement)

69

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH7600)

Format Abstract Code State T Bit

DMULS.L Rm,Rn With signed, Rn × Rm →
MACH, MACL

0011nnnnmmmm1101 2 to 4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,long n) /* DMULS.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)R[n];

tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]^R[m])<0) fnLmL=-1;

else fnLmL=0;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

70

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {

Res2=~Res2;

if (Res0==0)

Res2++;

else

Res0=(~Res0)+1;

}

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULS R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 Operation result (top)

STS MACL,R0 Operation result (bottom)

71

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH7600)

Format Abstract Code State T Bit

DMULU.L Rm,Rn Without signed, Rn × Rm →
MACH, MACL

0011nnnnmmmm0101 2 to 4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU(long m,long n) /* DMULU.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

RnL=R[n]&0x0000FFFF;

RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0x0000FFFF;

RmH=(R[m]>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

72

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example:

DMULU R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH,R0 Operation result (top)

STS MACL,R0 Operation result (bottom)

73

6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600)

Format Abstract Code State T Bit

DT Rn Rn - 1 → Rn;
When Rn is 0, 1 → T,
when Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

Description: The contents of general register Rn is decremented by 1 and the result is compared to
0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n) /* DT Rn */

{

R[n]--;

if (R[n]==0) T=1;

else T=0;

PC+=2;

}

Example:

MOV #4,R5 Sets the number of loops.

LOOP:

ADD R0,R1

DT R

S

Decrements the R5 value and checks whether it has become 0.

B

F

LOOP Branches to LOOP if T=0. (In this example, loops 4 times.)

74

6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code State T Bit

EXTS.B Rm,Rn

EXTS.W Rm,Rn

Sign-extended Rm from byte →
Rn

Sign-extended Rm from word →
Rn

0110nnnnmmmm1110

0110nnnnmmmm1111

1

1

—

—

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is specified, the
bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

Examples:

E

X

T

S

.

B

R0,R1 Before execution R0 = H'00000080

After execution R1 = H'FFFFFF80

E

X

T

S

.

W

R0,R1 Before execution R0 = H'00008000

After execution R1 = H'FFFF8000

75

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit

EXTU.B Rm,Rn

EXTU.W Rm,Rn

Zero-extend Rm from byte → Rn

Zero-extend Rm from word → Rn

0110nnnnmmmm1100

0110nnnnmmmm1101

1

1

—

—

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0 is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to bits
16 to 31 of Rn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */

{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

}

EXTUW(long m,long n) /* EXTU.W Rm,Rn */

{

R[n]=R[m];

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

E

X

T

U

.

B

R0,R1 Before execution R0 = H'FFFFFF80

After execution R1 = H'00000080

E

X

T

U

.

W

R0,R1 Before execution R0 = H'FFFF8000

After execution R1 = H'00008000

76

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rn Rn → PC 0100nnnn00101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit data in general register Rn.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP(long n) /* JMP @Rn */

{

unsigned long temp;

temp=PC;

PC=R[n]+4;

Delay_Slot(temp+2);

}

Example:

MOV.L JMP_TABLE,R0 Address of R0 = TRGET

JMP @R0 Branches to TRGET

MOV R0,R1 Executes MOV before branching

.align 4

JMP_TABLE: .data.l TRGET Jump table

.................

TRGET: ADD #1,R1 ← Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will still
be made using the value of the register prior to the change as the branch destination address.

77

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rn PC → PR, Rn → PC 0100nnnn00001011 2 —

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PR. The jump
destination is an address specified by the 32-bit data in general register Rn. The PC points to the
starting address of the second instruction after JSR. The JSR instruction and RTS instruction are
used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long n) /* JSR @Rn */

{

PR=PC;

PC=R[n]+4;

Delay_Slot(PR+2);

}

78

Example:

MOV.L JSR_TABLE,R0 R0 = Address of TRGET

JSR @R0 Branches to TRGET

XOR R1,R1 Executes XOR before branching

ADD R0,R1 ← Return address for when the
subroutine procedure is completed
(PR data)

...........

.align 4

JSR_TABLE: .data.l TRGET Jump table

TRGET: NOP ← Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #70,R1 Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

79

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDC.L @Rm+,SR

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

Rm → SR

Rm → GBR

Rm → VBR

(Rm) → SR, Rm + 4 → Rm

(Rm) → GBR, Rm + 4 → Rm

(Rm) → VBR, Rm + 4 → Rm

0100mmmm00001110

0100mmmm00011110

0100mmmm00101110

0100mmmm00000111

0100mmmm00010111

0100mmmm00100111

1

1

1

3

3

3

LSB

—

—

LSB

—

—

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR(long m) /* LDC Rm,SR */

{

SR=R[m]&0x000003F3;

PC+=2;

}

LDCGBR(long m) /* LDC Rm,GBR */

{

GBR=R[m];

PC+=2;

}

LDCVBR(long m) /* LDC Rm,VBR */

{

VBR=R[m];

PC+=2;

}

80

LDCMSR(long m) /* LDC.L @Rm+,SR */

{

SR=Read_Long(R[m])&0x000003F3;

R[m]+=4;

PC+=2;

}

LDCMGBR(long m) /* LDC.L @Rm+,GBR */

{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMVBR(long m) /* LDC.L @Rm+,VBR */

{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDC R0,SR Before execution R0 = H'FFFFFFFF, SR = H'00000000

After execution SR = H'000003F3

LDC.L @R15+,GBR Before execution R15 = H'10000000

After execution R15 = H'10000004, GBR = @H'10000000

81

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

LDS Rm,MACH

LDS Rm,MACL

LDS Rm,PR

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

LDS.L @Rm+,PR

Rm → MACH

Rm → MACL

Rm → PR

(Rm) → MACH, Rm + 4 → Rm

(Rm) → MACL, Rm + 4 → Rm

(Rm) → PR, Rm + 4 → Rm

0100mmmm00001010

0100mmmm00011010

0100mmmm00101010

0100mmmm00000110

0100mmmm00010110

0100mmmm00100110

1

1

1

1

1

1

—

—

—

—

—

—

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH7000, the lower 10 bits are stored in MACH. For the SH7600, 32 bits are stored in
MACH.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

MACH=R[m];

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH7000 (these 2 lines

else MACH|=0xFFFFFC00; not needed for SH7600)

PC+=2;

}

LDSMACL(long m) /* LDS Rm,MACL */

{

MACL=R[m];

PC+=2;

}

LDSPR(long m) /* LDS Rm,PR */

{

PR=R[m];

PC+=2;

}

82

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{

MACH=Read_Long(R[m]);

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH7000 (these 2 lines

else MACH|=0xFFFFFC00; not needed for SH7600)

R[m]+=4;

PC+=2;

}

LDSMMACL(long m) /* LDS.L @Rm+,MACL */

{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMPR(long m) /* LDS.L @Rm+,PR */

{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDS R0,PR Before execution R0 = H'12345678, PR = H'00000000

After execution PR = H'12345678

LDS.L @R15+,MACL Before execution R15 = H'10000000

After execution R15 = H'10000004, MACL = @H'10000000

83

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
(SH7600)

Format Abstract Code State T Bit

MAC.L @Rm+,@Rn+ Signed operation, (Rn) × (Rm) +
MAC → MAC

0000nnnnmmmm1111 3/(2 to
4)

—

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);

R[n]+=4;

tempm=(long)Read_Long(R[m]);

R[m]+=4;

if ((long)(tempn^tempm)<0) fnLmL=-1;

else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

84

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0;

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0){

Res2=~Res2;

if (Res0==0) Res2++;

else Res0=(~Res0)+1;

}

if(S==1){

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=(MACH&0x0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){

Res2=0x00008000;

Res0=0x00000000;

}

if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;

Res0=0xFFFFFFFF;

};

85

MACH=Res2;

MACL=Res0;

}

else {

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=MACH

MACH=Res2;

MACL=Res0;

}

PC+=2;

}

Example:

MOVA TBLM,R0 Table address

MOV R0,R1

MOVA TBLN,R0 Table address

CLRMAC MAC register initialization

MAC.L @R0+,@R1+

MAC.L @R0+,@R1+

STS MACL,R0 Store result into R0

...............

.align 2

TBLM .data.l H'1234ABCD

.data.l H'5678EF01

TBLN .data.l H'0123ABCD

.data.l H'4567DEF0

86

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)

Format Abstract Code State T Bit

MAC.W @Rm+,@Rn+ With signed, (Rn) × (Rm) + MAC
→ MAC

0100nnnnmmmm1111 3/(2) —

Description (SH7000): Multiplies 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by
two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

87

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
(SH7600)

Format Abstract Code State T Bit

MAC.W @Rm+,@Rn+
MAC @Rm+,@Rn+

Signed operation, (Rn) × (Rm) +
MAC → MAC

0100nnnnmmmm1111 3/(2) —

Description (SH7600): Signed-multiplicates 16-bit operands obtained using the contents of
general registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC
register, and the final result is stored in the MAC register. Everytime an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to 0, the operation is 16 × 16 + 64 → 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operation is 16 × 16 + 32 → 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH7600 series performs a 16 × 16 + 64 → 64 bit multiply and
accumulate operation and the SH7000 series performs a 16 × 16 + 42 → 42 bit multiply and
accumulate operation.

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

{

long tempm,tempn,dest,src,ans;

unsigned long templ;

tempn=(long)Read_Word(R[n]);

R[n]+=2;

tempm=(long)Read_Word(R[m]);

R[m]+=2;

templ=MACL;

tempm=((long)(short)tempn*(long)(short)tempm);

88

if ((long)MACL>=0) dest=0;

else dest=1;

if ((long)tempm>=0 {

src=0;

tempn=0;

}

else {

src=1;

tempn=0xFFFFFFFF;

}

src+=dest;

MACL+=tempm;

if ((long)MACL>=0) ans=0;

else ans=1;

ans+=dest;

if (S==1) {

if (ans==1) {

if (src==0 || src==2) For SH7000 (these 2 lines

 MACH|=0x00000001; not needed for SH7600)

if (src==0) MACL=0x7FFFFFFF;

if (src==2) MACL=0x80000000;

}

}

else {

MACH+=tempn;

if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0) For SH7000 (these 3 lines

 MACH&=0x000003FF; not needed for SH7600)

else MACH|=0xFFFFFC00;

}

PC+=2;

}

89

Example:

MOVA TBLM,R0 Table address

MOV R0,R1

MOVA TBLN,R0 Table address

CLRMAC MAC register initialization

MAC.W @R0+,@R1+

MAC.W @R0+,@R1+

STS MACL,R0 Store result into R0

...............

.align 2

TBLM .data.w H'1234

.data.w H'5678

TBLN .data.w H'0123

.data.w H'4567

90

6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV Rm,Rn

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B Rm,@–Rn

MOV.W Rm,@–Rn

MOV.L Rm,@–Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

Rm → Rn

Rm → (Rn)

Rm → (Rn)

Rm → (Rn)

(Rm) → sign extension → Rn

(Rm) → sign extension → Rn

(Rm) → Rn

Rn – 1 → Rn, Rm → (Rn)

Rn – 2 → Rn, Rm → (Rn)

Rn – 4 → Rn, Rm → (Rn)

(Rm) → sign extension → Rn, Rm
+ 1 → Rm

(Rm) → sign extension → Rn, Rm
+ 2 → Rm

(Rm) → Rn, Rm + 4 → Rm

Rm → (R0 + Rn)

Rm → (R0 + Rn)

Rm → (R0 + Rn)

(R0 + Rm) → sign extension →
Rn

(R0 + Rm) → sign extension →
Rn

(R0 + Rm) → Rn

0110nnnnmmmm0011

0010nnnnmmmm0000

0010nnnnmmmm0001

0010nnnnmmmm0010

0110nnnnmmmm0000

0110nnnnmmmm0001

0110nnnnmmmm0010

0010nnnnmmmm0100

0010nnnnmmmm0101

0010nnnnmmmm0110

0110nnnnmmmm0100

0110nnnnmmmm0101

0110nnnnmmmm0110

0000nnnnmmmm0100

0000nnnnmmmm0101

0000nnnnmmmm0110

0000nnnnmmmm1100

0000nnnnmmmm1101

0000nnnnmmmm1110

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. When the source operand is in
memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

MOV(long m,long n) /* MOV Rm,Rn */

{

R[n]=R[m];

PC+=2;

}

91

MOVBS(long m,long n) /* MOV.B Rm,@Rn */

{

Write_Byte(R[n],R[m]);

PC+=2;

}

MOVWS(long m,long n) /* MOV.W Rm,@Rn */

{

Write_Word(R[n],R[m]);

PC+=2;

}

MOVLS(long m,long n) /* MOV.L Rm,@Rn */

{

Write_Long(R[n],R[m]);

PC+=2;

}

MOVBL(long m,long n) /* MOV.B @Rm,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL(long m,long n) /* MOV.W @Rm,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL(long m,long n) /* MOV.L @Rm,Rn */

{

R[n]=Read_Long(R[m]);

PC+=2;

}

92

MOVBM(long m,long n) /* MOV.B Rm,@–Rn */

{

Write_Byte(R[n]–1,R[m]);

R[n]–=1;

PC+=2;

}

MOVWM(long m,long n) /* MOV.W Rm,@–Rn */

{

Write_Word(R[n]–2,R[m]);

R[n]–=2;

PC+=2;

}

MOVLM(long m,long n) /* MOV.L Rm,@–Rn */

{

Write_Long(R[n]–4,R[m]);

R[n]–=4;

PC+=2;

}

MOVBP(long m,long n) /* MOV.B @Rm+,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

if (n!=m) R[m]+=1;

PC+=2;

}

MOVWP(long m,long n) /* MOV.W @Rm+,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

if (n!=m) R[m]+=2;

PC+=2;

}

93

MOVLP(long m,long n) /* MOV.L @Rm+,Rn */

{

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;

}

MOVBS0(long m,long n) /* MOV.B Rm,@(R0,Rn) */

{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

}

MOVWS0(long m,long n) /* MOV.W Rm,@(R0,Rn) */

{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

}

MOVLS0(long m,long n) /* MOV.L Rm,@(R0,Rn) */

{

Write_Long(R[n]+R[0],R[m]);

PC+=2;

}

MOVBL0(long m,long n) /* MOV.B @(R0,Rm),Rn */

{

R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL0(long m,long n) /* MOV.W @(R0,Rm),Rn */

{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

94

MOVLL0(long m,long n) /* MOV.L @(R0,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;

}

Example:

MOV R0,R1 Before execution R0 = H'FFFFFFFF, R1 = H'00000000

After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 Before execution R0 = H'FFFF7F80

After execution @R1 = H'7F80

MOV.B @R0,R1 Before execution @R0 = H'80, R1 = H'00000000

After execution R1 = H'FFFFFF80

MOV.W R0,@–R1 Before execution R0 = H'AAAAAAAA, R1 = H'FFFF7F80

After execution R1 = H'FFFF7F7E, @R1 = H'AAAA

MOV.L @R0+,R1 Before execution R0 = H'12345670

After execution R0 = H'12345674, R1 = @H'12345670

MOV.B R1,@(R0,R2) Before execution R2 = H'00000004, R0 = H'10000000

After execution R1 = @H'10000004

MOV.W @(R0,R2),R1 Before execution R2 = H'00000004, R0 = H'10000000

After execution R1 = @H'10000004

95

6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV #imm,Rn

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

imm → sign extension → Rn

(disp × 2 + PC) → sign
extension → Rn

(disp × 4 + PC) → Rn

1110nnnniiiiiiii

1001nnnndddddddd

1101nnnndddddddd

1

1

1

—

—

—

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVI(long i,long n) /* MOV #imm,Rn */

{

if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);

else R[n]=(0xFFFFFF00 | (long)i);

PC+=2;

}

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

{

long disp;

96

disp=(0x000000FF & (long)d);

R[n]=(long)Read_Word(PC+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=Read_Long((PC&0xFFFFFFFC)+(disp<<2));

PC+=2;

}

Example:

Address

1000 MOV #H'80,R1 R1 = H'FFFFFF80

1002 MOV.W IMM,R2 R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #–1,R0

1006 TST R0,R0 ← PC location used for address calculation for the
MOV.W instruction

1008 MOVT R13

100A BRA NEXT Delayed branch instruction

100C MOV.L @(4,PC),R3 R3 = H'12345678

100E IMM .data.w H'9ABC

1010 .data.w H'1234

1012 NEXT JMP @R3 Branch destination of the BRA instruction

1014 CMP/EQ #0,R0 ← PC location used for address calculation for the
MOV.L instruction

.align 4

1018 .data.l H'12345678

97

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

(disp + GBR) → sign
extension → R0

(disp × 2 + GBR) →
sign extension → R0

(disp × 4+ GBR) → R0

R0 → (disp + GBR)

R0 → (disp × 2 + GBR)

R0 → (disp × 4 + GBR)

11000100dddddddd

11000101dddddddd

11000110dddddddd

11000000dddddddd

11000001dddddddd

11000010dddddddd

1

1

1

1

1

1

—

—

—

—

—

—

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but the
register is fixed to R0.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is a longword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within +1020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(R0,Rn) mode must be used after the GBR data is
transferred to a general register. When the source operand is in memory, the loaded data is stored
in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. R0 cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B

AND

ADD

@(12, GBR), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(12, GBR), R0

#20, R1

#80, R0

Figure 6.1 Using R0 after MOV

98

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=Read_Long(GBR+(disp<<2));

PC+=2;

}

MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */

{

long disp;

99

disp=(0x000000FF & (long)d);

Write_Byte(GBR+disp,R[0]);

PC+=2;

}

MOVWSG(long d) /* MOV.W R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Word(GBR+(disp<<1),R[0]);

PC+=2;

}

MOVLSG(long d) /* MOV.L R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Long(GBR+(disp<<2),R[0]);

PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 Before execution @(GBR + 8) = H'12345670

After execution R0 = @H'12345670

MOV.B R0,@(1,GBR) Before execution R0 = H'FFFF7F80

After execution @(GBR + 1) = H'FFFF7F80

100

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

R0 → (disp + Rn)

R0 → (disp × 2 + Rn)

Rm → (disp × 4 + Rn)

(disp + Rm) → sign
extension → R0

(disp × 2 + Rm) → sign
extension → R0

(disp × 4 + Rm) → Rn

10000000nnnndddd

10000001nnnndddd

0001nnnnmmmmdddd

10000100mmmmdddd

10000101mmmmdddd

0101nnnnmmmmdddd

1

1

1

1

1

1

—

—

—

—

—

—

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the R0 register is fixed. When the data is a byte, the 4-bit displacement is
zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the data is a longword, the 4-bit displacement is zero-extended and
quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too
short to reach the memory operand, the aforementioned @(R0,Rn) mode must be used. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to a
longword.

Note: When byte or word data is loaded, the destination register is always R0. R0 cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B

AND

ADD

@(2, R1), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(2, R1), R0

#20, R1

#80, R0

Figure 6.2 Using R0 after MOV

101

Operation:

MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Byte(R[n]+disp,R[0]);

PC+=2;

}

MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Word(R[n]+(disp<<1),R[0]);

PC+=2;

}

MOVLS4(long m,long d,long n)

/* MOV.L Rm,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Long(R[n]+(disp<<2),R[m]);

PC+=2;

}

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

102

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

{

long disp;

disp=(0x0000000F & (long)d);

R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;

}

Examples:

MOV.L @(2,R0),R1 Before execution @(R0 + 8) = H'12345670

After execution R1 = @H'12345670

MOV.L R0,@(H'F,R1) Before execution R0 = H'FFFF7F80

After execution @(R1 + 60) = H'FFFF7F80

103

6.36 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code State T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOVA instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(PC&0xFFFFFFFC)+(disp<<2);

PC+=2;

}

Example:

Address .org H'1006

1006 MOVA STR,R0 Address of STR → R0

1008 MOV.B @R0,R1 R1 = “X” ← PC location after correcting the lowest
two bits

100A ADD R4,R5 ← Original PC location for address calculation for the
MOVA instruction

.align 4

100C STR: .sdata “XYZP12”

...............

2002 BRA TRGET Delayed branch instruction

2004 MOVA @(0,PC),R0 Address of TRGET + 2 Æ R0

2006 NOP

104

6.37 MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code State T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

{

R[n]=(0x00000001 & SR);

PC+=2;

}

Example:

XOR R2,R2 R2 = 0

CMP/PZ R2 T = 1

MOVT R0 R0 = 1

CLRT T = 0

MOVT R1 R1 = 0

105

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600)

Format Abstract Code State T Bit

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 to 4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL(long m,long n) /* MUL.L Rm,Rn */

{

MACL=R[n]*R[m];

PC+=2;

}

Example:

MULL R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACL = H'FFFF5556

STS MACL,R0 Operation result

106

6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code State T Bit

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn × Rm →
MACL

0010nnnnmmmm1111 1 to 3 —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn */

{

MACL=((long)(short)R[n]*(long)(short)R[m]);

PC+=2;

}

Example:

MULS R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACL = H'FFFF5556

STS MACL,R0 Operation result

107

6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code State T Bit

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned, Rn × Rm → MAC 0010nnnnmmmm1110 1 to 3 —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */

{

MACL=((unsigned long)(unsigned short)R[n]

*(unsigned long)(unsigned short)R[m]);

PC+=2;

}

Example:

MULU R0,R1 Before execution R0 = H'00000002, R1 = H'FFFFAAAA

After execution MACL = H'00015554

STS MACL,R0 Operation result

108

6.41 NEG (Negate): Arithmetic Instruction

Format Abstract Code State T Bit

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rm,Rn */

{

R[n]=0-R[m];

PC+=2;

}

Example:

NEG R0,R1 Before execution R0 = H'00000001

After execution R1 = H'FFFFFFFF

109

6.42 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

NEGC Rm,Rn 0 – Rm – T → Rn, Borrow → T 0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */

{

unsigned long temp;

temp=0-R[m];

R[n]=temp-T;

if (0<temp) T=1;

else T=0;

if (temp<R[n]) T=1;

PC+=2;

}

Examples:

CLRT Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 Before execution R1 = H'00000001, T = 0

After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 Before execution R0 = H'00000000, T = 1

After execution R0 = H'FFFFFFFF, T = 1

110

6.43 NOP (No Operation): System Control Instruction

Format Abstract Code State T Bit

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

}

Example:

NOP Executes in one cycle

111

6.44 NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code State T Bit

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

{

R[n]=~R[m];

PC+=2;

}

Example:

NOT R0,R1 Before execution R0 = H'AAAAAAAA

After execution R1 = H'55555555

112

6.45 OR (OR Logical) Logic Operation Instruction

Format Abstract Code State T Bit

OR Rm,Rn

OR #imm,R0

OR.B #imm,@(R0,GBR)

Rn | Rm → Rn

R0 | imm → R0

(R0 + GBR) | imm → (R0 +
GBR)

0010nnnnmmmm1011

11001011iiiiiiii

11001111iiiiiiii

1

1

3

—

—

—

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

{

R[n]|=R[m];

PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{

R[0]|=(0x000000FF & (long)i);

PC+=2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp|=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

113

Examples:

OR R0,R1 Before execution R0 = H'AAAA5555, R1 = H'55550000

After execution R1 = H'FFFF5555

OR #H'F0,R0 Before execution R0 = H'00000008

After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'F5

114

6.46 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code State T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

LSBMSB

T
ROTCL

Figure 6.3 Rotate with Carry Left

Operation:

ROTCL(long n) /* ROTCL Rn */

{

long temp;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Example:

ROTCL R0 Before execution R0 = H'80000000, T = 0

After execution R0 = H'00000000, T = 1

115

6.47 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code State T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

LSBMSB

T
ROTCR

Figure 6.4 Rotate with Carry Right

Operation:

ROTCR(long n) /* ROTCR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) temp=0;

else temp=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Examples:

ROTCR R0 Before execution R0 = H'00000001, T = 1

After execution R0 = H'80000000, T = 1

116

6.48 ROTL (Rotate Left): Shift Instruction

Format Abstract Code State T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

TROTL

Figure 6.5 Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

PC+=2;

}

Examples:

ROTL R0 Before execution R0 = H'80000000, T = 0

After execution R0 = H'00000001, T = 1

117

6.49 ROTR (Rotate Right): Shift Instruction

Format Abstract Code State T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

T
ROTR

Figure 6.6 Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

ROTR R0 Before execution R0 = H'00000001, T = 0

After execution R0 = H'80000000, T = 1

118

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area → PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTE() /* RTE */

{

unsigned long temp;

temp=PC;

PC=Read_Long(R[15])+4;

R[15]+=4;

SR=Read_Long(R[15])&0x000003F3;

R[15]+=4;

Delay_Slot(temp+2);

}

Example:

RTE Returns to the original routine

ADD #8,R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

119

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR → PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTS() /* RTS */

{

unsigned long temp;

temp=PC;

PC=PR+4;

Delay_Slot(temp+2);

}

Example:

MOV.L TABLE,R3 R3 = Address of TRGET
JSR @R3 Branches to TRGET
NOP Executes NOP before JSR
ADD R0,R1 ← Return address for when the subroutine procedure is

completed (PR data)

TABLE: .data.l TRGET Jump table

TRGET: MOV R1,R0 ← Procedure entrance

RTS PR data → PC
MOV #12,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

120

6.52 SETT (Set T Bit): System Control Instruction

Format Abstract Code State T Bit

SETT 1 → T 0000000000011000 1 1

Description: Sets the T bit to 1.

Operation:

SETT() /* SETT */

{

T=1;

PC+=2;

}

Example:

SETT Before execution T = 0

After execution T = 1

121

6.53 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code State T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

LSBMSB

T 0SHAL

Figure 6.7 Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Example:

SHAL R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'00000002, T = 1

122

6.54 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code State T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.8).

LSBMSB

T
SHAR

Figure 6.8 Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) T=0;

else T=1;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Example:

SHAR R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'C0000000, T = 1

123

6.55 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code State T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

LSBMSB

T 0SHLL

Figure 6.9 Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHLL R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'00000002, T = 1

124

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code State T Bit

SHLL2 Rn

SHLL8 Rn

SHLL16 Rn

Rn << 2 → Rn

Rn << 8 → Rn

Rn << 16 → Rn

0100nnnn00001000

0100nnnn00011000

0100nnnn00101000

1

1

1

—

—

—

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLL2

SHLL8

SHLL16

Figure 6.10 Shift Logical Left n Bits

Operation:

SHLL2(long n) /* SHLL2 Rn */

{

R[n]<<=2;

PC+=2;

}

125

SHLL8(long n) /* SHLL8 Rn */

{

R[n]<<=8;

PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{

R[n]<<=16;

PC+=2;

}

Examples:

SHLL2 R0 Before execution R0 = H'12345678

After execution R0 = H'48D159E0

SHLL8 R0 Before execution R0 = H'12345678

After execution R0 = H'34567800

SHLL16 R0 Before execution R0 = H'12345678

After execution R0 = H'56780000

126

6.57 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code State T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

LSBMSB

T0SHLR

Figure 6.11 Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples

SHLR R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'40000000, T = 1

127

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit

SHLR2 Rn

SHLR8 Rn

SHLR16 Rn

Rn>>2 → Rn

Rn>>8 → Rn

Rn>>16 → Rn

0100nnnn00001001

0100nnnn00011001

0100nnnn00101001

1

1

1

—

—

—

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLR2

SHLR8

SHLR16

Figure 6.12 Shift Logical Right n Bits

Operation:

SHLR2(long n) /* SHLR2 Rn */

{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;

}

128

SHLR8(long n) /* SHLR8 Rn */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */

{

R[n]>>=16;

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

SHLR2 R0 Before execution R0 = H'12345678

After execution R0 = H'048D159E

SHLR8 R0 Before execution R0 = H'12345678

After execution R0 = H'00123456

SHLR16 R0 Before execution R0 = H'12345678

After execution R0 = H'00001234

129

6.59 SLEEP (Sleep): System Control Instruction

Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP() /* SLEEP */

{

PC-=2;

Error(“Sleep Mode.”);

}

Example:

SLEEP Transits power-down mode

130

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC.L SR,@-Rn

STC.L GBR,@-Rn

STC.L VBR,@-Rn

SR → Rn

GBR → Rn

VBR → Rn

Rn – 4 → Rn, SR → (Rn)

Rn – 4 → Rn, GBR → (Rn)

Rn – 4 → Rn, VBR → (Rn)

0000nnnn00000010

0000nnnn00010010

0000nnnn00100010

0100nnnn00000011

0100nnnn00010011

0100nnnn00100011

1

1

1

2

2

2

—

—

—

—

—

—

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR(long n) /* STC SR,Rn */

{

R[n]=SR;

PC+=2;

}

STCGBR(long n) /* STC GBR,Rn */

{

R[n]=GBR;

PC+=2;

}

STCVBR(long n) /* STC VBR,Rn */

{

R[n]=VBR;

PC+=2;

}

131

STCMSR(long n) /* STC.L SR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

STCMGBR(long n) /* STC.L GBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

}

Examples

STC SR,R0 Before execution R0 = H'FFFFFFFF, SR = H'00000000

After execution R0 = H'00000000

STC.L GBR,@-R15 Before execution R15 = H'10000004

After execution R15 = H'10000000, @R15 = GBR

132

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit

STS MACH,Rn

STS MACL,Rn

STS PR,Rn

STS.L MACH,@–Rn

STS.L MACL,@–Rn

STS.L PR,@–Rn

MACH → Rn

MACL → Rn

PR → Rn

Rn – 4 → Rn, MACH → (Rn)

Rn – 4 → Rn, MACL → (Rn)

Rn – 4 → Rn, PR → (Rn)

0000nnnn00001010

0000nnnn00011010

0000nnnn00101010

0100nnnn00000010

0100nnnn00010010

0100nnnn00100010

1

1

1

1

1

1

—

—

—

—

—

—

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

If the system register is MACH in the SH7000 series, the value of bit 9 is transferred to and stored
in the higher 22 bits (bits 31 to 10) of the destination. With the SH7600 series, the 32 bits of
MACH are stored directly.

Operation:

STSMACH(long n) /* STS MACH,Rn */

{

R[n]=MACH;

if ((R[n]&0x00000200)==0) For SH7000 (these 2 lines

R[n]&=0x000003FF; not needed for SH7600)

else R[n]|=0xFFFFFC00;

PC+=2;

}

STSMACL(long n) /* STS MACL,Rn */

{

R[n]=MACL;

PC+=2;

}

133

STSPR(long n) /* STS PR,Rn */

{

R[n]=PR;

PC+=2;

}

STSMMACH(long n) /* STS.L MACH,@–Rn */

{

R[n]–=4;

if ((MACH&0x00000200)==0)

Write_Long(R[n],MACH&0x000003FF); For SH7000

else Write_Long
(R[n],MACH|0xFFFFFC00)

Write_Long(R[n], MACH); For SH7600

PC+=2;

}

STSMMACL(long n) /* STS.L MACL,@–Rn */

{

R[n]–=4;

Write_Long(R[n],MACL);

PC+=2;

}

STSMPR(long n) /* STS.L PR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],PR);

PC+=2;

}

Example:

STS MACH,R0 Before execution R0 = H'FFFFFFFF, MACH = H'00000000

After execution R0 = H'00000000

STS.L PR,@–R15 Before execution R15 = H'10000004

After execution R15 = H'10000000, @R15 = PR

134

6.62 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code State T Bit

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */

{

R[n]-=R[m];

PC+=2;

}

Example:

SUB R0,R1 Before execution R0 = H'00000001, R1 = H'80000000

After execution R1 = H'7FFFFFFF

135

 6.63 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code State T Bit

SUBC Rm,Rn Rn – Rm– T → Rn, Borrow → T 0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. This instruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];

tmp0=R[n];

R[n]=tmp1-T;

if (tmp0<tmp1) T=1;

else T=0;

if (tmp1<R[n]) T=1;

PC+=2;

}

Examples:

CLRT R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 Before execution T = 0, R1 = H'00000000, R3 = H'00000001

After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 Before execution T = 1, R0 = H'00000000, R2 = H'00000000

After execution T = 1, R0 = H'FFFFFFFF

136

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic
Instruction

Format Abstract Code State T Bit

SUBV Rm,Rn Rn – Rm → Rn, Underflow → T 0011nnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]-=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV R0,R1 Before execution R0 = H'00000002, R1 = H'80000001

After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

After execution R3 = H'80000000, T = 1

137

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit

SWAP.B Rm,Rn

SWAP.W Rm,Rn

Rm → Swap upper and lower
halves of lower 2 bytes → Rn

Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1000

0110nnnnmmmm1001

1

1

—

—

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

{

unsigned long temp0,temp1;

temp0=R[m]&0xffff0000;

temp1=(R[m]&0x000000ff)<<8;

R[n]=(R[m]&0x0000ff00)>>8;

R[n]=R[n]|temp1|temp0;

PC+=2;

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;

R[n]=R[m]<<16;

R[n]|=temp;

PC+=2;

}

Examples

SWAP.B R0,R1 Before execution R0 = H'12345678

After execution R1 = H'12347856

SWAP.W R0,R1 Before execution R0 = H'12345678

After execution R1 = H'56781234

138

6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit

TAS.B @Rn When (Rn) is 0, 1 → T, 1 → MSB of (Rn) 0100nnnn00011011 4 Test
results

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

TAS(long n) /* TAS.B @Rn */

{

long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */

if (temp==0) T=1;

else T=0;

temp|=0x00000080;

Write_Byte(R[n],temp); /* Bus Lock disable */

PC+=2;

}

Example:

_LOOP TAS.B @R7 R7 = 1000

BF _LOOP Loops until data in address 1000 is 0

139

6.67 TRAPA (Trap Always): System Control Instruction

Format Abstract Code State T Bit

TRAPA #imm PC/SR → Stack area, (imm × 4 +
VBR) → PC

11000011iiiiiiii 8 —

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the
starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

TRAPA(long i) /* TRAPA #imm */

{

long imm;

imm=(0x000000FF & i);

R[15]-=4;

Write_Long(R[15],SR);

R[15]-=4;

Write_Long(R[15],PC–2);

PC=Read_Long(VBR+(imm<<2))+4;

}

Example:

Address

VBR+H'80 .data.l 10000000

TRAPA #H'20 Branches to an address specified by data in address VBR +
H'80

TST #0,R0 ← Return address from the trap routine (stacked PC value)

100000000 XOR R0,R0 ← Trap routine entrance

100000002 RTE Returns to the TST instruction

100000004 NOP Executes NOP before RTE

140

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State T Bit

TST Rm,Rn

TST #imm,R0

TST.B #imm,@(R0,GBR)

Rn & Rm, when result is
0, 1 → T

R0 & imm, when result is
0, 1 → T

(R0 + GBR) & imm, when
result is 0, 1 → T

0010nnnnmmmm1000

11001000iiiiiiii

11001100iiiiiiii

1

1

3

Test
results

Test
results

Test
results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register R0 can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The R0 and memory data do not change.

Operation:

TST(long m,long n) /* TST Rm,Rn */

{

if ((R[n]&R[m])==0) T=1;

else T=0;

PC+=2;

}

TSTI(long i) /* TEST #imm,R0 */

{

long temp;

temp=R[0]&(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

long temp;

141

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

Examples:

TST R0,R0 Before execution R0 = H'00000000

After execution T = 1

TST #H'80,R0 Before execution R0 = H'FFFFFF7F

After execution T = 1

TST.B #H'A5,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution T = 0

142

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit

XOR Rm,Rn

XOR #imm,R0

XOR.B #imm,@(R0,GBR)

Rn ^ Rm → Rn

R0 ^ imm → R0

(R0 + GBR) ^ imm → (R0
+ GBR)

0010nnnnmmmm1010

11001010iiiiiiii

11001110iiiiiiii

1

1

3

—

—

—

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rm,Rn */

{

R[n]^=R[m];

PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{

R[0]^=(0x000000FF & (long)i);

PC+=2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp^=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}

143

Examples:

XOR R0,R1 Before execution R0 = H'AAAAAAAA, R1 = H'55555555

After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 Before execution R0 = H'FFFFFFFF

After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'00

144

6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit

XTRCT Rm,Rn Center 32 bits of Rm and Rn →
Rn

0010nnnnmmmm1101 1 —

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13).

Rm Rn

Rn

MSB MSBLSB LSB

Figure 6.13 Extract

Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */

{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;

R[n]=(R[n]>>16)&0x0000FFFF;

R[n]|=temp;

PC+=2;

}

Example:

XTRCT R0,R1 Before execution R0 = H'01234567, R1 = H'89ABCDEF

After execution R1 = H'456789AB

145

Section 7 Processing States

7.1 State Transitions

The CPU has five processing states: reset, exception processing, bus release, program execution
and power-down. The transitions between the states are shown in figure 7.1. In the SH7600 series,
the transitions in the bus release state are indicated for master mode. For more information, see the
SH Hardware Manual.

146

RES = 0, NMI = 1

RES = 0, NMI = 0

Power-on reset state Manual reset state

Sleep mode

Module standby
(SH7600 only)

Standby mode

Program execution state

Bus release state

Exception processing state

RES = 1,
NMI = 0

RES = 1,
NMI = 1When an interrupt source

or DMA address error occurs

NMI interrupt
source error

Exception
processing

ends

Bus request
generated

Exception
processing

source occurs

Bus request
cleared

Bus request
generated

Bus request
cleared

SBY bit
cleared for

SLEEP
 instruction

SBY bit set
for SLEEP
instructionMSTP

bit set
MSTP

bit cleared

From any state when
RES = 0 and NMI = 1

From any state when
RES = 0 and NMI = 0

Reset states

Power-down state

Bus request
generated

Bus request
cleared

Figure 7.1 Transitions Between Processing States

147

7.1.1 Reset State

In the reset state, the CPU is reset. This occurs when the RES pin level goes low. When the NMI
pin is high, the result is a power-on reset; when it is low, a manual reset will occur.

In the power-on reset, all CPU internal states and on-chip peripheral module registers are
initialized. During manual reset, all on-chip peripheral module registers and CPU internal states,
with the exception of the bus state controller (BSC) and pin function controller (PFC), are
initialized. During manual reset the BSC is not initialized, allowing the refresh operation to
continue.

7.1.2 Exception Processing State

The exception processing state is a transient state that occurs when the CPU’s processing state
flow is altered by exception processing sources such as resets or interrupts.

For a reset, the initial values of the program counter PC (execution start address) and stack pointer
SP are fetched from the exception processing vector table and stored; the CPU then branches to
the execution start address and execution of the program begins.

For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and status
register (SR) are saved to the stack area. The exception service routine start address is fetched
from the exception processing vector table; the CPU then branches to that address and the program
starts executing, thereby entering the program execution state.

7.1.3 Program Execution State

In the program execution state, the CPU sequentially executes the program.

7.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has two modes: sleep mode and
standby mode. See section 7.2 for more details. The SH7600 also has a module standby function.

7.1.5 Bus Release State

In the bus release state, the CPU releases access rights to the bus to the device that has requested
them.

148

7.2 Power-Down State

In addition to the ordinary program execution states, the CPU also has a power-down state in
which CPU operation halts and power consumption is lowered (table 7.1). There are two power-
down state modes: sleep mode and standby mode.

7.2.1 Sleep Mode

When standby bit SBY (in the standby control register SBYCR) is cleared to 0 and a SLEEP
instruction executed, the CPU moves from the program execution state to sleep mode. In the sleep
mode, the CPU halts and the contents of its internal registers and the data in on-chip cache (RAM)
are maintained. The on-chip peripheral modules other than the CPU do not halt in the sleep mode.

To return from sleep mode, use a reset, any interrupt, or a DMA address error; the CPU returns to
the ordinary program execution state through the exception processing state.

7.2.2 Software Standby Mode

To enter the standby mode, set the standby bit SBY (in the standby control register SBYCR) to 1
and execute a SLEEP instruction. In standby mode, all CPU, on-chip peripheral module and
oscillator functions are halted. CPU internal register contents and on-chip cache(RAM) data are
held.

To return from standby mode, use a reset or an external NMI interrupt. For resets, the CPU returns
to the ordinary program execution state through the exception processing state when placed in a
reset state after the oscillator stabilization time has elapsed. For NMI interrupts, the CPU returns to
the ordinary program execution state through the exception processing state after the oscillator
stabilization time has elapsed. In this mode, power consumption declines markedly, since the
oscillator stops.

7.2.3 Module Standby Function (SH7600 Only)

The module standby function is available for the multiplier (MULT), divider (DIVU), 16-bit free-
running timer (FRT), serial communication interface (SCI), and the DMA controller (DMAC) for
the on-chip peripheral modules.

The supply of the clock to these on-chip peripheral modules can be halted by setting the
corresponding bits 4–0 (MSTP4–MSTP0) in the standby control register (SBYCR). Using this
function can reduce the power consumption in sleep mode.

149

The external pins of the on-chip peripheral modules in module standby are reset and all registers
except DMAC, MULT, and DIVU are initialized. (The master enable bit (bit 0) of the DMAC's
DMA operation register (DMAOR) is initialized to 0.)

Module standby function is cleared by clearing the MSTP4–MSTP0 bits to 0.

Table 7.1 Power-Down State

State

Mode Condition Clock CPU

On-Chip
Peripheral
Module

CPU
Register RAM

I/O
Port Canceling

Sleep
mode

Executes
SLEEP
instruction
with SBY bit
cleared to 0
in SBYCR

Run Halt Run Held Held Held 1. Interrupt

2. DMA
address
error

3. Power-
on reset

4. Manual
reset

Standby
mode

Executes
SLEEP
instruction
with SBY bit
set to 1 in
SBYCR

Halt Halt Halt and
initialize*1

Held Held Held or
high-
Z*1

1. NMI

2. Power-
on reset

3. Manual
reset

Module
standby
function
(SH7600
only)

Sets
MSTP4–
MSTP0 bits
of SBYCR
to 1

Run Halt Supply of
clock to
affected
module is
halted and
module is
initialized.*2

Held Held Held Clears
MSTP4–
MSTP0 bits
of SBYCR
to 0

Notes: 1. Depends on the peripheral module and pin. For details, see the Hardware Manual.
2. Interrupt vectors maintain their settings.

150

7.3 Master Mode and Slave Mode (SH7600 Series Only)

The SH7600 series has two master modes and a slave mode for bus rights that can be selected with
the MD5 pin. The master modes consist of a total master mode and a partial-share naster mode,
which are specified using the MD5 pin and the partial-share space specification bit (PSHR) in bus
control register 1 (BCR1). When the slave mode is selected with the MD5 pin, the device enters
total slave mode. When the master mode is selected with the MD5 pin and partial space share is
specified with the PSHR bit, the device enters the partial-share master mode. When partial space
share is not specified with the PSHR bit, the device enters the total master mode.

The master mode has rights to bus use. External devices can be accessed freely. When a slave
CPU requests the bus right, the master CPU can give the bus right to the slave CPU.

The total slave mode does not have rights to bus use. To access an external device, bus rights have
to be requested to the master CPU, permission to use the bus gained, and then the external device
accessed.

The partial-share master mode lacks bus rights only for CS2 space. To access the CS2 space, bus
rights have to be requested to the master CPU, permission granted and then the CS2 space can be
accessed. This mode has bus rights for all other space and does not need to request the bus when
accessing them.

Table 7.2 Master Modes and Slave Mode (SH7600)

Mode

MD5 (Total Slave Mode
Specification Pin)

PSHR
(Partial-Share
Bit) Function

Total slave
mode

1 (Not used) Has no bus rights. To use a bus,
requests the bus and receive
permission from the master CPU to
access.

Partial-share
master
mode

0 1 Has bus rights to CS0, CS1, and CS3
spaces. Lacks continuing bus rights
only to CS2. To access CS2, first
requests and be granted bus rights.

Total master
mode

0 0 Always has bus rights. Gives bus rights
to slave CPUs.

151

Section 8 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

• IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.

• ID (Instruction decode) Decodes the instruction fetched.

• EX (Instruction execution) Performs data operations and address calculations according to the
results of decoding.

• MA (Memory access) Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

• WB (Write back) Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some
exceptions.

As shown in figure 8.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultaneously. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is
as shown in figure 8.1; some pipelines differ, however, because of contention between IF and MA.
In figure 8.1, the period in which a single stage is operating is called a slot.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

Time

: Slot

Instruction
stream

Figure 8.1 Basic Structure of Pipeline Flow

152

8.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

8.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 8.2), with exception of WB and MA. Since WB
is executed immediately after MA, however, some instructions may execute MA and WB within
the same slot.

Instruction 1

Instruction 2

IF ID

IF

EX

ID

MA

EX

WB

MA WB

: Slot

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 8.2 Impossible Pipeline Flow 1

8.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 8.3).

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

: Slot

Note: Same stage of another instruction is being executed in same slot.

Figure 8.3 Impossible Pipeline Flow 2

153

8.2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

• S = (the cycles of the stage with the highest number of cycles of all instruction stages contained
in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

• The number of execution cycles for each stage:

— IF The number of memory access cycles for instruction fetch

— ID Always one cycle

— EX Always one cycle

— MA The number of memory access cycles for data access

— WB Always one cycle

As an example, figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

Instruction 1

Instruction 2

(2)

IF

(2)

ID

IF

—

IF

(1)

EX

ID

MA

EX —

: Slot

(3)

MA

—

(1)

WB

MA

(1)

WB

MAIF

Number of
cycles

Figure 8.4 Slots Requiring Multiple Cycles

154

8.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 8.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using an MOV Rm, Rn that follows instruction 3. (In the case of figure 8.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 8.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 8.5 is seven states (5 + 1 + 1).

Instruction 1

Instruction 2

Instruction 3

(Instruction 4

(2)

IF

(2)

ID

IF

—

IF

(2)

EX

ID

IF

—

—

IF

—

— —

: Slot

IF MA MA MA WB

— — EX

— ID

IF

(1)

EX

ID

(1)

MA

EX

(4)

: MOV Rm, Rn)

Figure 8.5 How Instruction Execution States Are Counted

155

8.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

8.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF
and MA stages both try to access memory within the same slot, the slot splits as shown in figure
8.6. When there is a WB, it is executed immediately after the MA ends.

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

ID

WB

MA

EX

ID

WB

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

MA of instruction 1 and IF of instruction 4
contend at D

MA of instruction 2 and IF of instruction 5
contend at E

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF

IF

EX

ID

IF

EX

—

WB

MA

ID

ID

WB

EX

: Slot

Instruction 1 ID MA

IF

ID EXIF

B C D E FA G

Split at D

Split at E

When MA and IF are in contention, the following occurs:

—

— EX

—

Figure 8.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first half
(when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed
simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is executed in
slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

156

8.4.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the SH
microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a
single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and A0 = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as ‘if’. These ‘if’s always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is A1 = 1, A0 = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 8.7 illustrates
these operations.

157

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID EX

ID EX

... Instruction 1 ID

if

ID EXIF

: Slot

Instruction 6

Instruc-
tion 1

Instruc-
tion 2

Instruc-
tion 3

Instruc-
tion 4

Instruc-
tion 5

Instruc-
tion 6 ID EXif

32 bits

(On-chip memory
 or on-chip cache)

... Instruction 2

... Instruction 3

Instruction 4
... Instruction 5

IF EX

IF ID EX

ID EX

ID

if

ID EXIF

: Slot

Instruction 6 ID EXif

Instruc-
tion 2

Instruc-
tion 3

Instruc-
tion 4

Instruc-
tion 5

Instruc-
tion 6

Fetching from an instruction (instruction 1) located on a longword boundary

Fetching from an instruction (instruction 2) located on a word boundary

IF

if

: Bus cycle generated
: No bus cycle

IF

if

: Bus cycle generated
: No bus cycle

Figure 8.7 Relationship Between IF and Location of Instructions in On-Chip Memory

8.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM or
On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages (‘if’ written in lower case) that do not generate bus cycles as explained in
section 8.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when
an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such
slots execute in the number of states the MA requires for memory access, as illustrated in figure
8.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the

158

position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0) because the
MA of the instruction falls in the same slot as ifs that follow.

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID —

— ID

... Instruction 1 ID

if

IF ID

: Slot

Instruction 6

Instruc-
tion 1

Instruc-
tion 2

Instruc-
tion 3

Instruc-
tion 4

Instruc-
tion 5

Instruc-
tion 6 ID EXif

IF

if

: Splits

: Does not split

32 bits

(On-chip memory
 or on-chip cache)

MA WB

MA WB

EX

EX

EX

A B

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 8.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

8.5 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus come after the EX stage of the instruction that immediately follows it
(instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. The destination register of load instruction 1 is the same as the destination (not the
source) of instruction 2, so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

• When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1.

• When instruction 2 is Mac @Rm+ , @Rn+, and the destination of load instruction 1 are the
same.

159

The number of states in the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, as illustrated in figure 8.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

Instruction 2 (ADD R1, R2)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

—

—

WB

EX

ID

IF ID

: Slot

Load instruction 1 (MOV.W @R0, R1) ID MA

EX

.....

Figure 8.9 Effects of Memory Load Instructions on the Pipeline

8.6 Programming Guide

To improve instruction execution speed, consider the following when programming:

• To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and A0 = 0) wherever possible.

• The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

• Locate instructions that use the multiplier nonconsecutively.

160

8.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with a few exceptions. When a slot has split, see section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 8.1 lists the format for number of instruction stages and execution states:

Table 8.1 Format for the Number of Stages and Execution States for Instructions

Type Category Stage State Contention Instruction

Functional
types

Instructions
are catego-
rized
based on
operations

Number
of
stages
in an
instruc-
tion

Number
of
execu-
tion
states
when
no
conten-
tion
occurs

Contention that
occurs

Corresponding instructions
represented by mnemonic

Table 8.2 Number of Instruction Stages and Execution States

Type Category Stage State Contention Instruction

Data
transfer
instructions

Register-
register
transfer
instructions

3 1 — MOV #imm,Rn

MOV Rm,Rn

MOVA @(disp,PC),R0

MOVT Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

161

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Data
transfer
instructions
(cont)

Memory
load
instructions

5 1 • Contention occurs
if the instruction
placed
immediately after
this one uses the
same destination
register

• MA contends with
IF

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

Memory
store
instructions

4 1 • MA contends with
IF

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B Rm,@–Rn

MOV.W Rm,@–Rn

MOV.L Rm,@–Rn

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

162

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic
instructions

Arithmetic
instructions
between
registers
(except
multiplic-
ation
instruc-
tions)

3 1 — ADD Rm,Rn

ADD #imm,Rn

ADDC Rm,Rn

ADDV Rm,Rn

CMP/EQ #imm,R0

CMP/EQ Rm,Rn

CMP/HS Rm,Rn

CMP/GE Rm,Rn

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm,Rn

DIV1 Rm,Rn

DIV0S Rm,Rn

DIV0U

DT Rn*3

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

NEGC Rm,Rn

SUB Rm,Rn

SUBC Rm,Rn

SUBV Rm,Rn

Multiply/
accumulate
instructions

7/8*1 3/(2)*2 • Multiplier contention
occurs when an
instruction that uses the
multiplier follows a
MAC instruction

• MA contends with IF

MAC.W @Rm+,@Rn+

Notes 1. In the SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

3. SH7600 instructions

163

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic
instructions
(cont)

Double-
length
multiply/
accumulate
instruction
(SH7600
only)

9 3/(2 to
4)*2

• Multiplier
contention occurs
when an
instruction that
uses the multiplier
follows a MAC
instruction

• MA contends with
IF

MAC.L @Rm+,@Rn+*3

Multiplic-
ation
instructions

6/7*1 1 to 3*2 • Multiplier
contention occurs
when an instruc-
tion that uses the
multiplier follows a
MUL instruction

• MA contends with
IF

MULS.W Rm,Rn

MULU.W Rm,Rn

Double-
length
multiply/
accumulate
instruction
(SH7600
only)

9 2 to 4*2 • Multiplier
contention occurs
when an
instruction that
uses the multiplier
follows a MAC
instruction

• MA contends with
IF

DMULS.L Rm,Rn*3

DMULU.L Rm,Rn*3

MUL.L Rm,Rn*3

Logic
operation
instructions

Register-
register
logic
operation
instructions

3 1 — AND Rm,Rn

AND #imm,R0

NOT Rm,Rn

O

R

Rm,Rn

O

R

#imm,R0

TST Rm,Rn

TST #imm,R0

XOR Rm,Rn

XOR #imm,R0

Notes 1. In the SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

3. SH7600 instructions

164

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Logic
operation
instructions
(cont)

Memory logic
operations
instructions

6 3 • MA contends
with IF

AND.B #imm,@(R0,GBR)

OR.B #imm,@(R0,GBR)

TST.B #imm,@(R0,GBR)

XOR.B #imm,@(R0,GBR)

TAS
instruction

6 4 • MA contends
with IF

TAS.B @Rn

Shift
instructions

Shift
instructions

3 1 — ROTL Rn

ROTR Rn

ROTCL Rn

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

Branch
instructions

Conditional
branch
instructions

3 3/1*4 — B

F

label

B

T

label

Delayed
conditional
branch
instructions
(SH7600 only)

3 2/1*4 — BF/S label*3

BT/S label*3

Unconditional
branch
instructions

3 2 — BRA label

BRAF Rn*3

BSR label

BSRF Rn*3

JMP @Rn

JSR @Rn

RTS

Notes 3. SH7600 instruction
4. One state when there is no branch

165

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System
control
instructions

System
control
ALU
instructions

3 1 — CLRT

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDS Rm,PR

NOP

SETT

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STS PR,Rn

STC.L
instructions

4 2 • MA contends with
IF

STC.L SR,@–Rn

STC.L GBR,@–Rn

STC.L VBR,@–Rn

LDS.L
instructions
(PR)

5 1 • Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

LDS.L @Rm+,PR

STS.L
instruction
(PR)

4 1 • MA contends with
IF

STS.L PR,@–Rn

166

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

System
control
instructions
(cont)

Register →
MAC
transfer
instruction

4 1 • Contention occurs
with multiplier

• MA contends with
IF

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

Memory →
MAC
transfer
instructions

4 1 •

C

o

n

t

e

n

t

i

o

n

o

c

c

u

r

s

w

i

t

h

m

u

l

t

i

p

l

i

e

r

•

M

A

c

o

n

t

e

n

d

s

w

i

t

h

I

F

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

MAC →
register
transfer
instruction

5 1 •

C

o

n

t

e

n

t

i

o

n

o

c

c

u

r

s

w

i

t

h

m

u

l

t

i

p

l

i

e

r

•

C

o

n

t

e

n

t

i

o

n

o

c

c

u

r

s

w

h

e

n

a

n

i

n

s

t

r

u

c

t

i

o

n

t

h

a

t

u

s

e

s

t

h

e

s

a

m

e

d

e

s

t

i

n

a

t

i

o

n

r

e

g

i

s

t

e

r

i

s

p

l

a

c

e

d

i

m

m

e

d

i

a

t

e

l

y

a

f

t

e

r

t

h

i

s

i

n

s

t

r

u

c

t

i

o

n

•

M

A

c

o

n

t

e

n

d

s

w

i

t

h

I

F

STS MACH,Rn

STS MACL,Rn

MAC →
memory
transfer
instruction

4 1 •

C

o

n

t

e

n

t

i

o

n

o

c

c

u

r

s

w

i

t

h

m

u

l

t

i

p

l

i

e

r

•

M

A

c

o

n

t

e

n

d

s

w

i

t

h

I

F

STS.L MACH,@–Rn

STS.L MACL,@–Rn

RTE
instruction

5 4 — RTE

TRAP
instruction

9 8 — TRAPA #imm

SLEEP
instruction

3 3 — SLEEP

167

8.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

• MOV #imm, Rn

• MOV Rm, Rn

• MOVA @(disp, PC), R0

• MOVT Rn

• SWAP.B Rm, Rn

• SWAP.W Rm, Rn

• XTRCT Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID

......

......

......

Figure 8.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

168

Memory Load Instructions: Include the following instruction types:

• MOV.W @(disp, PC), Rn

• MOV.L @(disp, PC), Rn

• MOV.B @Rm, Rn

• MOV.W @Rm, Rn

• MOV.L @Rm, Rn

• MOV.B @Rm+, Rn

• MOV.W @Rm+, Rn

• MOV.L @Rm+, Rn

• MOV.B @(disp, Rm), R0

• MOV.W @(disp, Rm), R0

• MOV.L @(disp, Rm), Rn

• MOV.B @(R0, Rm), Rn

• MOV.W @(R0, Rm), Rn

• MOV.L @(R0, Rm), Rn

• MOV.B @(disp, GBR), R0

• MOV.W @(disp, GBR), R0

• MOV.L @(disp, GBR), R0

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MB
.....

.....

WB

......

Figure 8.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.11). If an instruction
that uses the same destination register as this instruction is placed immediately after it, contention
will occur. (See Section 8.5, Effects of Memory Load Instructions on Pipelines.)

169

Memory Store Instructions: Include the following instruction types:

• MOV.B Rm, @Rn

• MOV.W Rm, @Rn

• MOV.L Rm, @Rn

• MOV.B Rm, @–Rn

• MOV.W Rm, @–Rn

• MOV.L Rm, @–Rn

• MOV.B R0, @(disp, Rn)

• MOV.W R0, @(disp, Rn)

• MOV.L Rm, @(disp, Rn)

• MOV.B Rm, @(R0, Rn)

• MOV.W Rm, @(R0, Rn)

• MOV.L Rm, @(R0, Rn)

• MOV.B R0, @(disp, GBR)

• MOV.W R0, @(disp, GBR)

• MOV.L R0, @(disp, GBR)

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 8.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.12). Data is not returned to
the register so there is no WB stage.

170

8.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

• ADD Rm, Rn

• ADD #imm, Rn

• ADDC Rm, Rn

• ADDV Rm, Rn

• CMP/EQ #imm, R0

• CMP/EQ Rm, Rn

• CMP/HS Rm, Rn

• CMP/GE Rm, Rn

• CMP/HI Rm, Rn

• CMP/GT Rm, Rn

• CMP/PZ Rn

• CMP/PL Rn

• CMP/STR Rm, Rn

• DIV1 Rm, Rn

• DIV0S Rm, Rn

• DIV0U

• DT Rn (SH7600 only)

• EXTS.B Rm, Rn

• EXTS.W Rm, Rn

• EXTU.B Rm, Rn

• EXTU.W Rm, Rn

• NEG Rm, Rn

• NEGC Rm, Rn

• SUB Rm, Rn

• SUBC Rm, Rn

• SUBV Rm, Rn

171

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID MA
.....

.....

......

Figure 8.13 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage via the ALU.

172

Multiply/Accumulate Instruction (SH7000): Includes the following instruction type:

• MAC.W @Rm+, @Rn+

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA

MA

: Slot

WB

WB

MA mmMA mmmm

......

Figure 8.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of
the MAC.W instruction, when they contend with IF, split the slots as described in section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MULS.W instruction is located immediately after a MAC.W instruction

3. When an STS (register) instruction is located immediately after a MAC.W instruction

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

173

1. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
8.15).

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA

MA MA

MA mmMA mmmm

MAC.W

Other instruction

mm mm

IF

IF

EX

— ID

IF —

MAC.W ID

EX

ID

MA

EX

: Slot

M——A

—

MA mmMA mmmm

Third instruction

MAC.W mm mmmm

MA

WB

mm

: Slot

......

......

.....

SW J-148a

Figure 8.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 8.16 illustrates a case of this
type. This figure assumes MA and IF contention.

SW J-151a

MAC.W

MAC.W

MAC.W
.....

if

IF

EX

— ID

if —

MAC.W ID

ID EX

MA mmMA mmmm

MA

IF ID EX

: Slot

EX

—

M——A

mm mmmm

MA mm mmmm

— MA M——A mm

—

MA —

Figure 8.16 Consecutive MAC.Ws without Misalignment

174

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 8.17 illustrates a case of this type. This
figure assumes MA and IF contention.

IF

if

EX

— — ID

IF —

SW J-148b

MAC.W ID

EX

ID

MA

— —

MA MA mm— mmmm

Other instruction

MAC.W

EX

Other instruction

mm mm mm

: Slot

— — ID EX

M——A

MA

if

Other instruction IF
......

Figure 8.17 MA and IF Contention

175

2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

SW J-149

MAC.W ID

EX

EX — —

MA mmMA mmmm

Other instruction

MULS.W

MA
......

mm mm mm

: Slot

M————A
.....

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA mmMA mmmm

MULS.W

Other instruction

mm

Other instruction

: Slot

mm mmM——A

IF ID EX — MA

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA mmMA mmmm

Other instruction

Other instruction

MULS.W

: Slot

IF ID

MA WB

mm mm

Other instruction IF ID EX MA

MA WB

EX MA mm

......

......

Figure 8.18 MULS.W Instruction Immediately After a MAC.W Instruction

176

3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.19) to create a single slot. The MA of the STS contends with the IF. Figure 8.19
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

SW J-150a

MAC.W ID

EX

— — —

MA mm mmmm

Other instruction

STS

EX

WB

: Slot

M————A

MA

Other instruction if — — — ID EX

IF ID EX

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

STS WB

: Slot

M——A

Other instruction IF ID — EX

ID EX

EX

if —

.....

if

.....

Other instruction

Other instruction

......

......

—

— MA

Figure 8.19 STS (Register) Instruction Immediately After a MAC.W Instruction

177

4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 8.20) to create a single slot. The MA of the STS contends with the IF.
Figure 8.20 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

SW J-150b

MAC.W ID

EX

—

— —

MA mmMA mmmm

Other instruction

STS.L

—

Other instruction

M——————A

EX MA

Other instruction

if — — — ID EX

IF ID EX

: Slot

if

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

STS.L

Other instruction

M————A

Other instruction

IF ID — — EX

— ID EX

: Slot

EX

.....if —

......

......

......

— WB

—

—

Figure 8.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

178

5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.21) to create a single slot. The MA of this LDS contends with IF. Figure 8.21
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

SW J-151a

MAC.W ID

EX

— — —

MA mmMA mmmm

Other instruction

LDS

EX

Other instruction

M————A

MA

Other instruction

if — — — ID EX

IF ID EX

: Slot

if

IF

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

LDS

Other instruction

M——A

Other instruction

IF ID — EX

ID EX

: Slot

EX

if —

.....

......

......

—

—

Figure 8.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

179

6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.22) to create a
single slot. The MA of the LDS contends with IF. Figure 8.22 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

— ID

IF ID

SW J-151b

MAC.W ID

EX

— — —

MA mmMA mmmm

Other instruction

LDS.L

EX

Other instruction

M————A

if — — — ID EX

IF ID EX

: Slot

if

if

EX

— ID

if —

MAC.W ID

—

ID EX

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

M——A

Other instruction

IF ID — EX MA

ID EX

: Slot

EX

if —

.....Other instruction
......

......

—

—

Figure 8.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

180

Multiply/Accumulate Instruction (SH7600): Includes the following instruction type:

• MAC.W @Rm+, @Rn+

IF

IF

EX

ID EX

ID EX

MAC.W ID

MA

MA WB

MA MA mmmm

Third instruction

Next instruction

: Slot

WB

IF
......

—

Figure 8.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 8.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the slots as described in Section 8.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction

2. When a MAC.L instruction is located immediately after a MAC.W instruction

3. When a MULS.W instruction is located immediately after a MAC.W instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

5. When an STS (register) instruction is located immediately after a MAC.W instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

181

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

IF

IF

EX

— ID

IF —

ID

EX

ID

MA

EX

MA mmMA mm

Third instruction

MAC.W

MA

: Slot

......

MAC.W

MA mm mm

Figure 8.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by
MA and IF contention. Figure 8.25 illustrates a case of this type. This figure assumes MA and
IF contention.

if

IF

EX

— ID

if —

MAC.W ID

EX

— ID EX

MA mmMA mm

MAC.W

MAC.W

MA

MAC.W

—MA

mmMA mm

IF — ID EX MA MA mm

: Slot

......

MA mm mm

Figure 8.25 Consecutive MAC.Ws with Misalignment

182

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual.
Figure 8.26 illustrates a case of this type. This figure assumes MA and IF contention.

IF

if

EX

— —

IF

IF

SW J-153c

MAC.W ID

ID

— ID —

MA mm— MA mm

Other instruction

MAC.W

EX MA

Other instruction

MAEX
....

if — ID EX

: Slot

Other instruction
......

MA mm mm

Figure 8.26 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 8.27).

IF

IF

EX

— ID

IF —

ID

EX

ID

MA

EX

MA mmMA mm

Third instruction

MAC.L

MA

: Slot

......

MAC.W

MA mm mm mm mm

Figure 8.27 MAC.L Instructions Immediately After a MAC.W Instruction

183

3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.28) to
create a single slot. When one or more instructions not related to the multiplier come between
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX — MA

MA mmMA mm

Other instruction

MULS.W
....

......

M——A

: Slot

mm mm

IF EX

ID

IF ID

MAC.W ID

EXIF —

EX MA mm

MA mmMA mm

MULS.W

Other instruction

mm

: Slot

IF ID EX MAOther instruction
......

Figure 8.28 MULS.W Instruction Immediately After a MAC.W Instruction

4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 8.29).

IF EX

ID

MAC.W ID

EXIF —

MA mmMA mm

Other instruction

DMULS.L

: Slot

—IF ID EX MA

......

MA MA mm mm mm mm

Figure 8.29 DMULS.L Instructions Immediately After a MAC.W Instruction

184

5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.30) to create a single slot. The MA of the STS contends with the IF. Figure 8.30
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

SW J-155a

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

STS

EX MA

Other instruction

Other instruction
......

M——A

: Slot

WB

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

STS

Other instruction

Other instruction
......

MA

: Slot

WB

IF ID EX MA

if ID EX

Figure 8.30 STS (Register) Instruction Immediately After a MAC.W Instruction

185

6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled.
Figure 8.31 illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

SW J-155b

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

STS.L

EX MA

Other instruction

Other instruction
......

: Slot

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

STS.L

Other instruction

Other instruction
......

M——A

: Slot

IF ID EX

if ID EX

MA

Figure 8.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

186

7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.32) to create a single slot. The MA of this LDS contends with IF. Figure 8.32
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— —

IF

MAC.W ID

EXID

ID — —

MA — mmMA mm

Other instruction

LDS

EX MA

Other instruction

Other instruction
......

M——A

: Slot

if — — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

LDS

Other instruction

Other instruction
......

MA

: Slot

IF ID EX

if ID EX

Figure 8.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

187

8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.33) to create a
single slot. The MA of the LDS contends with IF. Figure 8.33 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

—

IDIF

MAC.W ID

EXID

— — EX

MA MA mm mm

Other instruction

LDS.L

Other instruction

Other instruction
......

M——A

: Slot

—if — ID EX

IF ID EX

if

IF

EX

— ID

if —

MAC.W ID

EX—

ID EX

MA mmMA mm

Other instruction

LDS.L

Other instruction

Other instruction
......

MA

: Slot

IF ID EX

if ID EX

—

—

Figure 8.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

188

Double-Length Multiply/Accumulate Instruction (SH7600): Includes the following instruction
type:

• MAC.L @Rm+, @Rn+ (SH7600 only)

IF

IF

EX

— ID

ID EX

MAC.L ID

MA WB

MA mmmm

Third instruction

Next instruction

......

: Slot

mm

IF

MA mm

EX MA WB

Figure 8.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
8.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

1. When a MAC.L instruction is located immediately after another MAC.L instruction

2. When a MAC.W instruction is located immediately after a MAC.L instruction

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

4. When a MULS.W instruction is located immediately after a MAC.L instruction

5. When an STS (register) instruction is located immediately after a MAC.L instruction

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

189

1. When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 8.35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Third instruction

MAC.L

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA WB

MA mmMA mmmm

Other instruction

Other instruction

MAC.L
......

ID EX MA MA mm mm

EX

mm

M————A mm mm

mm

MA WB

IF

mm mm

: Slot

mm mm

Figure 8.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 8.36 illustrates
a case of this type, assuming MA and IF contention.

if

IF

EX

— ID

if —

MAC.L ID

EX

— ID EX

MA mmMA mmmm

MAC.L

MAC.L

—

MA

MA

: Slot

mm

M——A mm mm mm

MAC.L
......

— mm

M————A mm mm mm

IF — ID EX MA— — —
mm

Figure 8.36 Consecutive MAC.Ls with Misalignment

190

When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 8.37 illustrates a case of
this type, assuming MA and IF contention.

IF

if

EX

— —

IF —

MAC.L ID

ID

ID — —

MA MA— mmmm

Other intruction

MAC.L

—

EX

EX

: Slot

mm

M————A mm mm

Other intruction

Other intruction

MA mm

if — — — ID

......

mm

mm

IF

Figure 8.37 MA and IF Contention

191

2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 8.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

IF

IF

EX

— ID

IF —

SW J-159

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Third instruction

MAC.W

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA WB

MA mmMA mmmm

Other instruction

Other instruction

MAC.W
......

ID EX MA MA mm mm

: Slot

EX

mm

MA————A mm mm

mm

MA WB

IF

Figure 8.38 MAC.W Instruction Immediately After a MAC.L Instruction

192

3. When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.39) to
create a single slot. When two or more instructions not related to the multiplier come between
the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not cause
stalling. When the DMULS.L MA and IF contend, the slot is split.

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID — —

MA mmMA mmmm

Other instruction

DMULS.L

EX
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

DMULS.L

Other instruction

Other instruction
......

— ID — EX MA

EX

mm

M————A mm mm

mm

IF

mm mm

: Slot

mm mm mm mmM——A

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

DMULS.L

Other instruction

ID EX MA MA

EX

mm

IF

: Slot

mm mm mm mm

WB

......

MA WB

— ID EX MAIF

Figure 8.39 DMULS.L Instruction Immediately After a MAC.L Instruction

193

4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 8.40) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

194

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

MULS.W

Other instruction

ID EX

EX

mm

IF

: Slot

WB

......

ID EX MAIF

IF

IF

EX

— ID

IF ID

MAC.L ID

EX MA

MA mmMA mmmm

Other instruction

Other instruction

Other instruction

MULS.W

ID EX

EX

mm

IF

: Slot

mm mm

WB

MA WB

ID EX MA
......

IF

MA

Other instruction
......

WB

M——A mm mm

MA

MA WB

ID EX —IF

IF

IF

EX

— ID

IF —

MAC.L ID

EX

ID EX —

MA mmMA mmmm

Other instruction

MULS.W

—
......

MA

MA

: Slot

IF

IF

EX

— ID

IF ID

MAC.L ID

EX

MA mmMA mmmm

MULS.W

Other instruction

Other instruction
......

ID EX — — MA

EX

mm

M————A mm mm

mm

IF

: Slot

mm mmM————A

Figure 8.40 MULS.W Instruction Immediately After a MAC.L Instruction

195

5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.41) to create a single slot. The MA of the STS contends with the IF. Figure 8.41
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

STS

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M———————A WB

SW J-162

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

STS

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A WB

— — EX

ID EX

EX

if

if — —

—

— —

Figure 8.41 STS (Register) Instruction Immediately After a MAC.L Instruction

196

6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.42 illustrates how this occurs, assuming MA and IF
contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

STS.L

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M———————A

SW J-162b

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

STS.L

Other instruction

Other instruction

IF ID

—

mm
: Slot

—

......

M————A

—

— — EX

ID EX

EX

if

if — —

—

—

Figure 8.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

197

7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.43) to create a single slot. The MA of this LDS contends with IF. Figure 8.43
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

LDS

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M—————–—A

SW J-163a

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

LDS

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

......

......

—

—

Figure 8.43 LDS (Register) Instruction Immediately After a MAC.L Instruction

198

8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.44) to create a
single slot. The MA of the LDS contends with IF. Figure 8.44 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

— ID

IF ID

MAC.L ID

— —

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

Other instruction

— —

EX

mm

if

: Slot

—

......

M—————–—A

SW J-163b

—

— —

EX MA

ID EX

IF ID EX

if

IF

EX

— ID

—

MAC.L ID

ID EX

MA mmMA mmmm

Other instruction

LDS.L

Other instruction

Other instruction

IF ID

—

mm

: Slot

......

M————A

— — EX

ID EX

EX

if

if — —

......

......

—

—

Figure 8.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

199

Multiplication Instructions (SH7000): Include the following instruction types:

• MULS.W Rm, Rn

• MULU.W Rm, Rn

IF

IF

EX

ID EX

ID EX

MULS.W ID

MA

MA WB

MA mm mmmm

Third instruction

Next instruction

: Slot

WB

IF
......

Figure 8.45 Multiplication Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when
it contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MULS.W instruction is located immediately after another MULS.W instruction

3. When an STS (register) instruction is located immediately after a MULS.W instruction

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

200

1. When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions
does not cause stalls (figure 8.46).

IF

IF

EX

ID EX

—

MULS.W ID

MA

ID EX —

MA mm mmmm

Third instruction

MAC.W

MA

M——A

: Slot

IF

IF

EX

ID EX

IF ID

MULS.W ID

MA

EX MA MA

MA mm mmmm

Other instruction

mm mm

: Slot

WB

 mm mm mm

mm

.....

.....

IF
......

......
MAC.W

Figure 8.46 MAC.W Instruction Immediately After a MULS.W Instruction

201

2. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

mm mm mm

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX —

MA mm mmmm

Other instruction

MULS.W

—

M————A mm mm mm

MA

: Slot

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX

MA mm mmmm

MULS.W

Other instruction

M——A

: Slot

Other instruction IF ID EX — MA

IF

IF

EX

ID EX

IF

MULS.W ID

ID EX MA

MA mm mmmm

Other instruction

Other instruction

mm mm mm

: Slot

MULS.W

Other instruction

MA WB

IF ID EX MA WB

IF ID EX MA

......

......

......

Figure 8.47 MULS.W Instruction Immediately After Another MULS.W Instruction

202

When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the slot, as is normal. Figure 8.48 illustrates a case of this type, assuming
MA and IF contention.

IF

if

EX

ID EX

IF

MULS.W ID

ID — —

MA mm mmmm

Other instruction

MULS.W

EX

M————A mm mm mm

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID

......

Figure 8.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention)

203

3. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.49) to create a single slot. The MA of the STS contends with the IF. Figure 8.49
illustrates how this occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

J-167a

MULS.W ID

ID — —

MA mm mmmm

Other instruction

STS

EX

M————A WB

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

STS M——A WB

: Slot

Other instruction

Other instruction

EX

 IF —ID

if — ID EX

EX

......

......

Figure 8.49 STS (Register) Instruction Immediately After a MULS.W Instruction

204

4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 8.50) to create a single slot. The MA of the STS contends with the IF.
Figure 8.50 illustrates how this occurs, assuming MA and IF contention.

EX
EX

IF

if

EX

ID EX

IF

J-167b

MULS.W ID

ID — —

MA mm mmmm

Other instruction

STS.L

—

M——————A

EX MA
Other instruction
Other instruction

—
 if — — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

STS.L M————A

: Slot

Other instruction
Other instruction

EX
 IF — —ID

if — — ID

EX

.....

......

......

: Slot

Figure 8.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

205

5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 8.51 illustrates how this
occurs, assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

J-168a

MULS.W ID

ID — —

MA mm mmmm

Other instruction

LDS

EX

M————A

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

LDS M——A

: Slot

Other instruction

Other instruction

EX

 IF — EXID

if — ID EX

EX

......

......

Figure 8.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

206

6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.52) to create a
single slot. The MA of the LDS contends with IF. Figure 8.52 illustrates how this occurs,
assuming MA and IF contention.

.....

IF

if

EX

ID EX

IF

J-168b

MULS.W ID

ID — —

MA mm mmmm

Other instruction

LDS.L

EX

M————A

MA

: Slot

Other instruction

Other instruction

—

 if — — ID EX—

IF ID EX

if

IF

EX

ID —

if

MULS.W ID

— ID

MA mm mmmm

Other instruction

LDS.L M——A

: Slot

Other instruction

Other instruction

EX

 IF — EXID

if — ID EX

EX

......

......

Figure 8.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

207

Multiplication Instructions (SH7600): Include the following instruction types:

• MULS.W Rm, Rn

• MULU.W Rm, Rn

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

MULS.W ID

MA

MA

: Slot

.....

MA mm mm

WB

WB

Figure 8.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

3. When a MULS.W instruction is located immediately after another MULS.W instruction

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

5. When an STS (register) instruction is located immediately after a MULS.W instruction

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

208

1. When a MAC.W instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

IF

IF

EX

ID EX

— ID

MULS.W ID

MA

EX MA

MA mmmm

Third instruction

MAC.W

......

MA

: Slot

mm mm

IF

Figure 8.54 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a
preceding multiplication instruction.

IF

IF

EX

ID EX

— ID

MULS.W ID

MA

EX MA

MA mmmm

Third instruction

MAC.L

......

MA

: Slot

mm mm

IF

mm mm

Figure 8.55 MAC.L Instruction Immediately After a MULS.W Instruction

209

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.56) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS.Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

IF

IF

EX

ID EX

IF ID

MULS.W ID

EX — MA

MA mmmm

Other instruction

MULS.W
......

......

: Slot

mm mmM——A

IF

IF

EX

ID EX

IF ID

MULS.W ID

EX MA mm

MA mmmm

MULS.W

Other instruction

mm

Other instruction

: Slot

......
IF ID EX MA

Figure 8.56 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 8.57 illustrates a case of this type,
assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

MULS.W ID

— — EX

MA mmmm

Other instruction

MULS.W

MA

Other instruction

: Slot

mm mmM——A

Other instruction
......

......

if — — ID EX

IF ID

Figure 8.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA contention)

210

4. When a DMULS.L instruction is located immediately after a MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. The MA of the
MULS.W instruction does not contend with the operating multiplier (mm) of the DMULS.L
instruction.

IF

IF

EX

ID EX

IF —

MULS.W ID

ID EX MA

MA mmmm

Other instruction

DMULS.L
......

......

: Slot

mm mmMA MA mm mm

Figure 8.58 DMULS.L Instruction Immediately After a MULS.W Instruction

211

5. When an STS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.59) to create a single slot. The MA of the STS contends with the IF. Figure 8.59
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

SW J-172a

MULS.W ID

— — EX

MA mmmm

Other instruction

STS

MA

Other instruction

: Slot

WBM——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

STS

Other instruction

: Slot

WBMA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 8.59 STS (Register) Instruction Immediately After a MULS.W Instruction

212

6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.60 illustrates how this occurs, assuming MA and IF
contention.

IF

if

EX

ID EX

IF ID

SW J-172b

MULS.W ID

— — EX

MA mmmm

Other instruction

STS.L

MA

Other instruction

: Slot

M———A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

STS.L

Other instruction

MA

Other instruction
......

IF ID EX

if ID EX

EX

......

: Slot

Figure 8.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

213

7. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

SW J-173a

MULS.W ID

— — EX

MA mmmm

Other instruction

LDS

MA

Other instruction

: Slot

M——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

LDS

Other instruction

: Slot

MA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 8.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

214

8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.62) to create a
single slot. The MA of the LDS contends with IF. Figure 8.62 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

ID EX

IF ID

SW J-173b

MULS.W ID

— — EX

MA mmmm

Other instruction

LDS.L

MA

Other instruction

: Slot

M——A

Other instruction
......

if — — ID EX

IF ID EX

if

IF

EX

ID —

if —

MULS.W ID

ID EX

MA mmmm

Other instruction

LDS.L

Other instruction

: Slot

MA

Other instruction
......

IF ID EX

if ID EX

EX

Figure 8.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

215

Double-Length Multiplication Instructions (SH7600): Include the following instruction types:

• DMULS.L Rm, Rn (SH7600 only)

• DMULU.L Rm, Rn (SH7600 only)

• MUL.L Rm, Rn (SH7600 only)

IF

IF

EX

— ID

ID EX

DMULS.L ID

EX

MA WB

MA mmMA

Third instruction

Next instruction

......

MA

: Slot

WB

IF

mm mm mm

Figure 8.63 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
four cycles after the MA ends, regardless of a slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 8.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

216

1. When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a preceding
multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M—A
shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 8.64).

IF

IF

EX

— ID

— ID

DMULS.L ID

EX —

mm

MA mmmm

Third instruction

MAC.L mm

......

: Slot

M————A

MA—

mm

IF

mm mm

MA mm

EX MA

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

MAC.L

: Slot

mm

IF

MA mm

EX MA

......

WB

ID EX MA MAIF mm mm mm mm

Figure 8.64 MAC.L Instruction Immediately After a DMULS.L Instruction

217

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 8.65).

IF

IF

EX

— ID

— ID

SW J-176

DMULS.L ID

EX —

mm

MA mmmm

Third instruction

MAC.W mm

......

: Slot

M————A

MA—

mm

IF

MA mm

EX MA

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

MAC.W

: Slot

mm

IF

MA mm

EX MA

......

WB

ID EX MA MAIF mm mm

Figure 8.65 MAC.W Instruction Immediately After a DMULS.L Instruction

218

3. When a DMULS.L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.L MA and IF contend, the slot is split.

IF

IF

EX

— ID

— ID

DMULS.L ID

EX —

mm

MA mmmm

Other instruction

DMULS.L mm

......

: Slot

M————A

MA—

mm

IF

MA mm

EX MA mm mm

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA mm

MA mmmm

DMULS.L

Other instruction

mm

Other instruction

: Slot

M——A

mm

IF

MA mm

EX

......

— ID EX MAIF —

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA

mm

MA mmmm

Other instruction

Other instruction

mmDMULS.L

: Slot

mm

IF

MA mm

EX MA

mm mm

Other instruction

ID EX MAIF MA

WB

mm mm

......

WB

MAIF — ID EX

Figure 8.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

219

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.67 illustrates a case of
this type, assuming MA and IF contention.

IF

if

EX

— EX —

ID

SW J-177b

DMULS.L ID

— —

mm

MA mmmm

Other instruction

DMULS.L mm

Other instruction

: Slot

M—————A

EX—

mmMA —

MA mm mm

if — — ID EX—

Other instruction
......

IF ID

mm

ID

IF

Figure 8.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

220

4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L instruction,
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULS.L instruction and the MULS.W instruction, contention between the
DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and IF contend,
the slot is split..

IF

IF

EX

— ID

ID EX

SW J-178a

DMULS.L ID

— —

mm

MA mmmm

Other instruction

MULS.W mm

......

: Slot

M———————A

MA—

mm

IF

MA mm

EX

IF

IF

EX

— ID

ID EX

DMULS.L ID

MA WB

MA mmmm

Other instruction

Other instruction

Other instruction

: Slot

mm

IF

MA mm

EX MA

ID EX MA WB

MULS.W

Other instruction
......

WB

IF

IF

IF

ID EX MA MA mm mm

ID EX MA

Figure 8.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.69 illustrates a case of
this type, assuming MA and IF contention.

IF

if

EX

— ID

ID —

SW J-178b

DMULS.L ID

— —

mm

MA mmmm

Other instruction

MULS.W mm

Other instruction

: Slot

M———————A

EX MA—

mm

IF

MA mm

EX
......

— — — ID EX—

Other instruction
......

IF ID
if

—

—

Figure 8.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and MA
Contention)

221

5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.70) to create a single slot. The MA of the STS contends with the IF. Figure 8.70
illustrates how this occurs, assuming MA and IF contention.

IF

if

EX

—

IDIF

DMULS.L ID

EX WBID

— — —

MA MA mm mm mm mm

Other instruction

STS

— EX

Other instruction

Other instruction
......

M——————A

: Slot

—if — — — ID EX

IF ID EX

if

IF

EX

—

—if

DMULS.L ID

— EX WBID

ID EX

MA MA mm mm mm mm

Other instruction

STS

Other instruction

Other instruction
......

M————A

: Slot

IF ID — — EX

if — — ID EX

—

—

MA

Figure 8.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

222

6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.71 illustrates how this occurs, assuming MA and IF
contention.

IF

if

EX

—

IDIF

DMULS.L ID

EXID

— — —

MA MA mm mm mm mm

Other instruction

STS.L

— EX MA

Other instruction

Other instruction
......

M——————A

: Slot

—if — — — ID EX

IF ID EX

if

IF

EX

—

—if

DMULS.L ID

— EXID

ID EX

MA MA mm mm mm mm

Other instruction

STS.L

Other instruction

Other instruction
......

M—————A

: Slot

IF ID — — EX

if — — ID EX

—

—

Figure 8.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

223

7. When an LDS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figure illustrates
how this occurs, assuming MA and IF contention.

IF

if

EX

—

IDIF

DMULS.L ID

EXID

— — —

MA MA mm mm mm mm

Other instruction

LDS

EX MA

Other instruction

Other instruction
......

M——————A

: Slot

—if — — ID EX

IDIF EX

if

IF

EX

—

—if

DMULS.L ID

— EXID

ID EX

MA MA mm mm mm mm

Other instruction

LDS

Other instruction

Other instruction
......

M————A

: Slot

IF ID — — EX

if — — ID EX

—

—

—

—

Figure 8.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

224

8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.73) to create a
single slot. The MA of the LDS contends with IF. Figure 8.73 illustrates how this occurs,
assuming MA and IF contention.

IF

if

EX

—

IDIF

DMULS.L ID

EXID

— — —

MA MA mm mm mm mm

Other instruction

LDS.L

— EX MA

Other instruction

Other instruction
......

M——————A

: Slot

—if — — — ID EX

IF ID EX

if

IF

EX

—

—if

DMULS.L ID

— EXID

ID EX

MA MA mm mm mm mm

Other instruction

LDS.L

Other instruction

Other instruction
......

M————A

: Slot

IF ID — — EX

if — — IDEX

—

—

Figure 8.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

225

8.7.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

• AND Rm, Rn

• AND #imm, R0

• NOT Rm, Rn

• OR Rm, Rn

• OR #imm, R0

• TST Rm, Rn

• TST #imm, R0

• XOR Rm, Rn

• XOR #imm, R0

Next instruction

Third instruction

IF

IF

EX

ID

IF

EX

ID EX

: Slot

Instruction A ID
.....

.....

......

Figure 8.74 Register-Register Logic Operation Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

226

Memory Logic Operation Instructions: Include the following instruction types:

• AND.B #imm, @(R0, GBR)

• OR.B #imm, @(R0, GBR)

• TST.B #imm, @(R0, GBR)

• XOR.B #imm, @(R0, GBR)

Next instruction

Third instruction

IF

IF

EX

— —

IF

Instruction A ID

ID

ID

EX

EX

: Slot

.....

.....

MA MAEX

......

Figure 8.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

227

TAS Instruction: Includes the following instruction type:

• TAS.B @Rn

Next instruction

Third instruction

IF

IF

EX

— —

Instruction A ID

—

IF

ID

ID

: Slot

EX

EX

MA MAEX

......

Figure 8.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.76). The ID of the
next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

228

8.7.4 Shift Instructions

Shift Instructions: Include the following instruction types:

• ROTL Rn

• ROTR Rn

• ROTCL Rn

• ROTCR Rn

• SHAL Rn

• SHAR Rn

• SHLL Rn

• SHLR Rn

• SHLL2 Rn

• SHLR2 Rn

• SHLL8 Rn

• SHLR8 Rn

• SHLL16 Rn

• SHLR16 Rn

Next instruction

Third instruction

IF

IF

EX

ID EX

Instruction A ID
.....

IF ID

: Slot

EX

......

Figure 8.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.77). The data operation is
completed in the EX stage via the ALU.

229

8.7.5 Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

• BF label

• BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 8.78).

Next instruction

Third instruction

IF

IF

EX

—

Instruction A ID

IF

(Fetched but discarded)

(Fetched but discarded)—

: Slot

— IF ID EX

IF ID EX

Branch destination
......

......

Figure 8.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.79).

Next instruction

Third instruction

IF

IF EX

EX

ID
Instruction A ID

IF ID EX

: Slot

IF ID EX

......

Figure 8.79 Branch Instruction When Condition is Not Satisfied

230

Delayed Conditional Branch Instructions (SH7600 only): Include the following instruction
types:

• BF/S label (SH7600 only)

• BT/S label (SH7600 only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.80).

Next instruction

Third instruction

IF

IF

EX

ID — EX MA WB

Instruction A ID

IF (Fetched but discarded)—

: Slot

IF ID EX

IF ID EX

Branch destination
......

Figure 8.80 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.81).

Next instruction

Third instruction

IF

IF EX

EX

ID
Instruction A ID

IF ID EX

: Slot

IF ID EX

......

Figure 8.81 Branch Instruction When Condition is Not Satisfied

231

Unconditional Branch Instructions: Include the following instruction types:

• BRA label

• BRAF Rn (SH7600 only)

• BSR label

• BSRF Rn (SH7600 only)

• JMP @Rn

• JSR @Rn

• RTS

Delay slot

Branch destination

IF

IF

EX

IF ID

Instruction A ID

—

: Slot

..... IF ID EX

ID

EX
EX MA WB

.....

Figure 8.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of instruction
A.

232

8.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

• CLRT

• LDC Rm, SR

• LDC Rm, GBR

• LDC Rm, VBR

• LDS Rm, PR

• NOP

• SETT

• STC SR, Rn

• STC GBR, Rn

• STC VBR, Rn

• STS PR, Rn

Next instruction

Third instruction

IF

IF EX

EX

ID
Instruction A ID

IF ID EX

: Slot

......

Figure 8.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.83). The data operation is
completed in the EX stage via the ALU.

233

LDC.L Instructions: Include the following instruction types:

• LDC.L @Rm+, SR

• LDC.L @Rm+, GBR

• LDC.L @Rm+, VBR

Next instruction

Third instruction

IF

IF —

EX

— EXID
Instruction A ID EXMA

IF ID EX

: Slot

......

Figure 8.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 8.84). The ID of the
following instruction is stalled for two slots.

234

STC.L Instructions: Include the following instruction types:

• STC.L SR, @–Rn

• STC.L GBR, @–Rn

• STC.L VBR, @–Rn

Next instruction

Third instruction

IF

IF

EX MA

— EXID
Instruction A ID

IF ID EX

: Slot

......

Figure 8.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.85). The ID of the next
instruction is stalled for one slot.

235

LDS.L Instruction (PR): Includes the following instruction type:

• LDS.L @Rm+, PR

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID WBMA

IF ID EX

: Slot

......

Figure 8.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.86). It is the same as
an ordinary load instruction.

236

STS.L Instruction (PR): Includes the following instruction type:

• STS.L PR, @–Rn

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF ID EX

: Slot

......

Figure 8.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.87). It is the same as an
ordinary store instruction.

237

Register → MAC Transfer Instructions: Include the following instruction types:

• CLRMAC

• LDS Rm, MACH

• LDS Rm, MACL

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF ID EX

: Slot

......

Figure 8.88 Register → MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store
instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

238

Memory → MAC Transfer Instructions: Include the following instruction types:

• LDS.L @Rm+, MACH

• LDS.L @Rm+, MACL

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA

IF ID EX

: Slot

......

Figure 8.89 Memory → MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

239

MAC → Register Transfer Instructions: Include the following instruction types:

• STS MACH, Rn

• STS MACL, Rn

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA WB

IF ID EX

: Slot

......

Figure 8.90 MAC → Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as
ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

240

MAC → Memory Transfer Instructions: Include the following instruction types:

• STS.L MACH, @–Rn

• STS.L MACL, @–Rn

Next instruction

Third instruction

IF

IF

EX

IDEX

Instruction A ID MA WB

IF ID EX

: Slot

......

Figure 8.91 MAC → Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.91). The MA is a stage for
accessing the multiplier. The MA contends with IF. This makes it the same as ordinary store
instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

241

RTE Instruction: Includes the following instruction type:

• RTE

Delay slot

Branch destination

IF

IF

EX

IF ID

RTE ID

: Slot

EX
—

MA

— —

MA

ID EX

.....

Figure 8.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 8.92). The MAs contend with the
IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3
slots. The IF of the branch destination instruction starts from the slot following the MA of the
RTE.

242

TRAP Instruction: Includes the following instruction type:

• TRAPA #imm

Next instruction

Third instruction

IF

IF

EXTRAPA ID EX EX EXMA MA MA

IF

IF ID EX

IF ID EX

: Slot

Branch destination
......

Figure 8.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.93). The MAs
contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

243

SLEEP Instruction: Includes the following instruction type:

• SLEEP

Next instruction

IF

IF

EXSLEEP ID

: Slot

.....

Figure 8.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 8.94). It is issued until the IF of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

244

8.7.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

• Interrupt exception processing

EX
Next instruction

Branch destination

IF EXInterrupt ID EX MA

IF ID

EXMA MA EX

.....IF ID

: Slot

EX

IF

......

Figure 8.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

245

Address Error Exception Processing: Includes the following instruction type:

• Address error exception processing

EX
Next instruction

Branch destination

IF EXInterrupt ID EX MA

IF ID

EXMA MA EX

.....IF ID

: Slot

EX

IF

.......

Figure 8.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the
address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on-chip peripheral register
causes an instruction fetch address error. Accessing word data from other than a word boundary,
accessing longword data from other than a longword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause a read or write address error.

246

Illegal Instruction Exception Processing: Includes the following instruction type:

• Illegal instruction exception processing

Next instruction

IF

IF

EXIllegal instruction ID EX EX EXMA MA MA

IF

IF)

ID EX

IF ID

: Slot

(Third instruction

Branch destination
......

Figure 8.97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.97). Illegal instruction
exception processing is not a delayed branch. In illegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
as well depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot directly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction
occurs.

247

Appendix A Instruction Code

See “6. Instruction Descriptions” for details.

A.1 Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

248

Table A.1 Instruction Set by Addressing Mode

Types

Addressing Mode Category Sample Instruction SH
7600

SH
7000

No operand — NOP 8 8

Direct register
addressing

Destination operand only MOVT Rn 18 17

Source and destination
operand

ADD Rm,Rn 34 31

Load and store with control
register or system register

LDC Rm,SR

STS MACH,Rn

12 12

Indirect register Destination operand only JMP @Rn 3 3
addressing Data transfer with direct

register addressing
MOV.L Rm,@Rn 6 6

Post increment indirect
register addressing

Multiply/accumulate
operation

MAC.W @Rm+,@Rn+ 2 1

Data transfer from direct
register addressing

MOV.L @Rm+,Rn 3 3

Load to control register or
system register

LDC.L @Rm+,SR 6 6

Pre decrement indirect
register addressing

Data transfer from direct
register addressing

MOV.L Rm,@–Rn 3 3

Store from control register
or system register

STC.L SR,@–Rn 6 6

Indirect register
addressing with
displacement

Data transfer with direct
register addressing

MOV.L Rm,@(disp,Rn) 6 6

Indirect indexed register
addressing

Data transfer with direct
register addressing

MOV.L Rm,@(R0,Rn) 6 6

Indirect GBR addressing
with displacement

Data transfer with direct
register addressing

MOV.L R,@(disp,GBR) 6 6

Indirect indexed GBR
addressing

Immediate data transfer A

N

D

.

B

#

i

m

m

,

@

(

R

0

,

G

B

R

)

4 4

PC relative addressing
with displacement

Data transfer to direct
register addressing

MOV.L @(disp,PC),Rn 3 3

PC relative addressing
with Rn

Branch instruction BRAF Rn 2 0

PC relative addressing Branch instruction BRA label 6 4

Immediate addressing Arithmetic logical
operations with direct
register addressing

ADD #imm,Rn 7 7

Specify exception
processing vector

T

R

A

P

A

#imm 1 1

249

Total: 142 133

A.1.1 No Operand

Table A.2 No Operand

Instruction Code Operation State T Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

DIV0U 0000000000011001 0 → M/Q/T 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branch, Stack area
→ PC/SR

4 LSB

RTS 0000000000001011 Delayed branch, PR → PC 2 —

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3 —

250

A.1.2 Direct Register Addressing

Table A.3 Destination Operand Only

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn > 0, 1 → T 1 Comparison result

CMP/PZ Rn 0

1

0

0

n

n

n

n

0

0

0

1

0

0

0

1

Rn ≥ 0, 1 → T 1 Comparison result

DT Rn* 0

1

0

0

n

n

n

n

0

0

0

1

0

0

0

0

Rn – 1 → Rn
When Rn is 0, 1 → T,
when Rn is nonzero,
0 → T

1 Comparison result

MOVT Rn 0

0

0

0

n

n

n

n

0

0

1

0

1

0

0

1

T → Rn 1 —

ROTL Rn 0

1

0

0

n

n

n

n

0

0

0

0

0

1

0

0

T ← Rn ← MSB 1 MSB

ROTR Rn 0

1

0

0

n

n

n

n

0

0

0

0

0

1

0

1

LSB → Rn → T 1 LSB

ROTCL Rn 0

1

0

0

n

n

n

n

0

0

1

0

0

1

0

0

T ← Rn ← T 1 MSB

ROTCR Rn 0

1

0

0

n

n

n

n

0

0

1

0

0

1

0

1

T → Rn → T 1 LSB

SHAL Rn 0

1

0

0

n

n

n

n

0

0

1

0

0

0

0

0

T ← Rn ← 0 1 MSB

SHAR Rn 0

1

0

0

n

n

n

n

0

0

1

0

0

0

0

1

MSB → Rn → T 1 LSB

SHLL Rn 0

1

0

0

n

n

n

n

0

0

0

0

0

0

0

0

T ← Rn ← 0 1 MSB

SHLR Rn 0

1

0

0

n

n

n

n

0

0

0

0

0

0

0

1

0 → Rn → T 1 LSB

SHLL2 Rn 0

1

0

0

n

n

n

n

0

0

0

0

1

0

0

0

Rn<<2 → Rn 1 —

SHLR2 Rn 0

1

0

0

n

n

n

n

0

0

0

0

1

0

0

1

Rn>>2 → Rn 1 —

SHLL8 Rn 0

1

0

0

n

n

n

n

0

0

0

1

1

0

0

0

Rn<<8 → Rn 1 —

SHLR8 Rn 0

1

0

0

n

n

n

n

0

0

0

1

1

0

0

1

Rn>>8 → Rn 1 —

SHLL16 Rn 0

1

0

0

n

n

n

n

0

0

1

0

1

0

0

0

Rn<<16 → Rn 1 —

SHLR16 Rn 0

1

0

0

n

n

n

n

0

0

1

0

1

0

0

1

Rn>>16 → Rn 1 —

Note: SH7600 instruction

Table A.4 Source and Destination Operand

Instruction Code Operation State T Bit

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn,
carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
overflow → T

1 Overflow

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

251

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit

CMP/EQ Rm,Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and Rn
≥ Rm, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ≥
Rm, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn
> Rm, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and Rn >
Rm, 1 → T

1 Comparison
result

CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn
equals bytes in Rm, 1
→ T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn ÷
Rm)

1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB
of Rm → M, M ^ Q → T

1 Calculation
result

DMULS.L Rm,Rn*2 0011nnnnmmmm1101 Signed, Rn × Rm →
MACH, MACL

2 to 4*1 —

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned, Rn × Rm →
MACH, MACL

2 to 4*1 —

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign – extends Rm
from byte → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign – extends Rm
from word → Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero – extends Rm
from byte → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero – extends Rm
from word → Rn

1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn × Rm → MACL 2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn × Rm →
MAC

1 to 3*1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm →
MAC

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0 – Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0 – Rm – T → Rn,
Borrow → T

1 Borrow

Notes: 1. The normal minimum number of execution states
2. SH7600 instruction

252

Table A.4 Source and Destination Operand (cont)

Instruction Code Operation State T Bit

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

OR Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

SUB Rm,Rn 0011nnnnmmmm1000 Rn – Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn – Rm – T → Rn,
Borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn – Rm → Rn,
Underflow → T

1 Underflow

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper and
lower halves of lower 2
bytes → Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper and
lower word → Rn

1 —

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result is
0, 1 → T

1 Test results

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm and
Rn → Rn

1 —

Table A.5 Load and Store with Control Register or System Register

Instruction Code Operation State T Bit

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

253

A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code Operation State T Bit

JMP @Rn 0100nnnn00101011 Delayed branch, Rn → PC 2 —

JSR @Rn 0100nnnn00001011 Delayed branch, PC → PR,
Rn → PC

2 —

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 → T, 1 →
MSB of (Rn)

4 Test results

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → sign extension → Rn 1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → sign extension → Rn 1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

A.1.4 Post Increment Indirect Register Addressing

Table A.8 Multiply/Accumulate Operation

Instruction Code Operation State T Bit

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed, (Rn) × (Rm) + MAC
→ MAC

3

/

(

2

t

o

4

)

*

1

—

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed, (Rn) × (Rm) + MAC
→ MAC

3/(2)*1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH7600 instruction

254

Table A.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → sign extension →
Rn, Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → sign extension →
Rn, Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 → Rm 1 —

Table A.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 → Rm 1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 —

A.1.5 Pre Decrement Indirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn – 1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn – 2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn – 4 → Rn, Rm → (Rn) 1 —

255

Table A.12 Store from Control Register or System Register

Instruction Code Operation State T Bit

STC.L SR,@-Rn 0100nnnn00000011 Rn – 4 → Rn, SR → (Rn) 2 —

STC.L GBR,@-Rn 0100nnnn00010011 Rn – 4 → Rn, GBR → (Rn) 2 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn – 4 → Rn, VBR → (Rn) 2 —

STS.L MACH,@–Rn 0100nnnn00000010 Rn – 4 → Rn, MACH → (Rn) 1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn – 4 → Rn, MACL → (Rn) 1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn – 4 → Rn, PR → (Rn) 1 —

A.1.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation State T Bit

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 + Rn) 1 —

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) → sign
extension → R0

1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4 + Rm) → Rn 1 —

A.1.7 Indirect Indexed Register Addressing

Table A.14 Indirect Indexed Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → sign extension
→ Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → sign extension
→ Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

256

A.1.8 Indirect GBR Addressing with Displacement

Table A.15 Indirect GBR Addressing with Displacement

Instruction Code Operation State T Bit

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 +
GBR)

1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 +
GBR)

1 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) →
sign extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) →
R0

1 —

A.1.9 Indirect Indexed GBR Addressing

Table A.16 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm →
(R0 + GBR)

3 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm → (R0
+ GBR)

3 —

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm, when
result is 0, 1 → T

3 Test
results

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm → (R0
+ GBR)

3 —

A.1.10 PC Relative Addressing with Displacement

Table A.17 PC Relative Addressing with Displacement

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

257

A.1.11 PC Relative Addressing with Rn

Table A.18 PC Relative Addressing with Rn

Instruction Code Operation State T Bit

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + PC → PC 2 —

BSRF Rn*2 0000nnnn00000011 Delayed branch, PC → PR, Rn + PC
→ PC

2 —

Notes: 2. SH7600 instruction

A.1.12 PC Relative Addressing

Table A.19 PC Relative Addressing

Instruction Code Operation State T Bit

B

F

label 10001011dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

3/1*3 —

BF/S label*2 10001111dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

2/1*3 —

B

T

label 10001001dddddddd When T = 1, disp × 2+ PC → PC;
When T = 0, nop

3/1*3 —

BT/S label*2 10001101dddddddd When T = 1, disp × 2 + PC → PC;
When T = 0, nop

2/1*3 —

BRA label 1010dddddddddddd Delayed branch, disp × 2 + PC →
PC

2 —

BSR label 1011dddddddddddd Delayed branch, PC → PR, disp ×
2 + PC → PC

2 —

Notes: 2. SH7600 instruction
3. One state when it does not branch

258

A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State T Bit

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

CMP/EQ #imm,R0 10001000iiiiiiii When R0 = imm, 1 → T 1 Comparison
result

MOV #imm,Rn 1110nnnniiiiiiii imm → sign extension → Rn 1 —

O

R

#imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

TST #imm,R0 11001000iiiiiiii R0 & imm, when result is 0,
1 → T

1 Test results

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR → Stack area, (imm × 4 +
VBR) → PC

8 —

A.2 Instruction Sets by Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

259

Table A.22 Instruction Sets by Format

Types

Format Category Sample Instruction SH
7600

SH
7000

0 — NOP 8 8

n Direct register addressing MOVT Rn 18 17

Direct register addressing (store with control
or system registers)

STS MACH,Rn 6 6

Direct register addressing JMP @Rn 3 3

Pre decrement indirect register addressing STC.L SR,@–Rn 6 6

PC relative addressing with Rn BRAF Rn 2 0

m Direct register addressing (load with control
or system registers)

LDC Rm,SR 6 6

Post increment indirect register addressing LDC.L @Rm+,SR 6 6

nm Direct register addressing ADD Rm,Rn 34 31

Indirect register addressing MOV.L Rm,@Rn 6 6

Post increment indirect register addressing
(multiply/accumulate operation)

MAC.W @Rm+,@Rn+ 2 1

Post increment indirect register addressing MOV.L @Rm+,Rn 3 3

Pre decrement indirect register addressing MOV.L Rm,@–Rn 3 3

Indirect indexed register addressing MOV.L Rm,@(R0,Rn) 6 6

md Indirect register addressing with
displacement

MOV.B @(disp,Rm),R0 2 2

nd4 Indirect register addressing with
displacement

MOV.B R0,@(disp,Rn) 2 2

nmd Indirect register addressing with
displacement

MOV.L Rm,@(disp,Rn) 2 2

d Indirect GBR addressing with displacement MOV.L R0,@(disp,GBR) 6 6

Indirect PC addressing with displacement MOVA @(disp,PC),R0 1 1

PC relative addressing BF label 4 2

d12 PC relative addressing BRA label 2 2

nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2

i Indirect indexed GBR addressing AND.B #imm,@(R0,GBR) 4 4

Immediate addressing (arithmetic and logical
operations with direct register)

AND #imm,R0 5 5

Immediate addressing (specify exception
processing vector)

TRAPA #imm 1 1

ni Immediate addressing (direct register
arithmetic operations and data transfers)

ADD #imm,Rn 2 2

Total: 142 133

260

A.2.1 0 Format

Table A.23 0 Format

Instruction Code Operation State T Bit

CLRT 0000000000001000 0 → T 1 0

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

DIV0U 0000000000011001 0 → M/Q/T 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack
area → PC/SR

4 LSB

RTS 0000000000001011 Delayed branching, PR →
PC

2 —

SETT 0000000000011000 1 → T 1 1

SLEEP 0000000000011011 Sleep 3*4 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

261

A.2.2 n Format

Table A.24 Direct Register Addressing

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn > 0, 1 → T 1 Comparison result

CMP/PZ Rn 0100nnnn00010001 Rn ≥ 0, 1 → T 1 Comparison result

DT Rn*2 0100nnnn00010000 Rn - 1 → Rn;
If Rn is 0, 1 → T, if Rn
is nonzero, 0 → T

1 Comparison result

MOVT Rn 0000nnnn00101001 T → Rn 1 —

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 Rn 0100nnnn00101001 Rn>>16 → Rn 1 —

Notes: 2. SH7600 instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

262

Table A.26 Indirect Register Addressing

Instruction Code Operation State T Bit

JMP @Rn 0100nnnn00101011 Delayed branch, Rn → PC 2 —

JSR @Rn 0100nnnn00001011 Delayed branch, PC → PR,
Rn → PC

2 —

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 → T, 1 →
MSB of (Rn)

4 Test results

Table A.27 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

STC.L SR,@-Rn 0100nnnn00000011 Rn – 4 → Rn, SR → (Rn) 2 —

STC.L GBR,@-Rn 0100nnnn00010011 Rn – 4 → Rn, GBR → (Rn) 2 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn – 4 → Rn, VBR → (Rn) 2 —

STS.L MACH,@–Rn 0100nnnn00000010 Rn – 4 → Rn, MACH → (Rn) 1 —

STS.L MACL,@–Rn 0100nnnn00010010 Rn – 4 → Rn, MACL → (Rn) 1 —

STS.L PR,@–Rn 0100nnnn00100010 Rn – 4 → Rn, PR → (Rn) 1 —

Table A.28 PC Relative Addressing With Rn

Instruction Code Operation State T Bit

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + PC → PC 2 —

BSRF Rn*2 0000nnnn00000011 Delayed branch, PC → PR, Rn + PC
→ PC

2 —

Notes: 2. SH7600 instruction

263

A.2.3 m Format

Table A.29 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

Table A.30 Post Increment Indirect Register

Instruction Code Operation State T Bit

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm + 4 → Rm 3 LSB

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4 → Rm 3 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4 → Rm 3 —

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH, Rm + 4 → Rm 1 —

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm + 4 → Rm 1 —

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4 → Rm 1 —

264

A.2.4 nm Format

Table A.31 Direct Register Addressing

Instruction Code Operation State T Bit

ADD Rm,Rn 0011nnnnmmmm1100 Rn + Rm → Rn 1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T → Rn, carry
→ T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn, overflow
→ T

1 Overflow

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

CMP/EQ Rm,Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and Rn ≥
Rm, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ≥
Rm, 1 → T

1 Comparison
result

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn >
Rm, 1 → T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and Rn >
Rm, 1 → T

1 Comparison
result

CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn equals
a byte in Rm, 1 → T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn ÷ Rm) 1 Calculation
result

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB of
Rm → M, M ^ Q → T

1 Calculation
result

DMULS.L Rm,Rn*2 0011nnnnmmmm1101 Signed, Rn x Rm →
MACH, MACL

2 to 4*1 —

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned, Rn x Rm →
MACH, MACL

2 to 4*1 —

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign-extends Rm from
byte → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign-extends Rm from
word → Rn

1 —

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero-extends Rm from
byte → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero-extends Rm from
word → Rn

1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

Notes: 1. The normal minimum number of execution states
2. SH7600 instruction

265

Table A.31 Direct Register Addressing (cont)

Instruction Code Operation State T Bit

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn × Rm → MACL 2 to 4*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn × Rm → MAC 1 to 3*1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm →
MAC

1 to 3*1 —

NEG Rm,Rn 0110nnnnmmmm1011 0 – Rm → Rn 1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0 – Rm – T → Rn, borrow
→ T

1 Borrow

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

O

R

Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

SUB Rm,Rn 0011nnnnmmmm1000 Rn – Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn – Rm – T → Rn,
borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn – Rm → Rn, underflow
→ T

1 Underflow

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper and
lower halves of lower 2
bytes → Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper and
lower word → Rn

1 —

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result is
0, 1 → T

1 Test results

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm and
Rn → Rn

1 —

Notes: 1. The normal minimum number of execution cycles.
2. SH7600 instructions

Table A.32 Indirect Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → sign extension → Rn 1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → sign extension → Rn 1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

266

Table A.33 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed, (Rn) × (Rm) +
MAC → MAC

3/(2 to
4)*1

—

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed, (Rn) × (Rm) +
MAC → MAC

3/(2)*1 —

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH7600 instruction.

Table A.34 Post Increment Indirect Register

Instruction Code Operation State T Bit

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → sign extension →
Rn, Rm + 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → sign extension →
Rn, Rm + 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4 → Rm 1 —

Table A.35 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

MOV.B Rm,@–Rn 0010nnnnmmmm0100 Rn – 1 → Rn, Rm → (Rn) 1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn – 2 → Rn, Rm → (Rn) 1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn – 4 → Rn, Rm → (Rn) 1 —

Table A.36 Indirect Indexed Register

Instruction Code Operation Cycles T Bit

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → sign extension
→ Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → sign extension
→ Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

267

A.2.5 md Format

Table A.37 md Format

Instruction Code Operation State T Bit

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) →
sign extension →
R0

1 —

A.2.6 nd4 Format

Table A.38 nd4 Format

Instruction Code Operation State T Bit

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2+ Rn) 1 —

A.2.7 nmd Format

Table A.39 nmd Format

Instruction Code Operation State T Bit

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp × 4+ Rm) → Rn 1 —

268

A.2.8 d Format

Table A.40 Indirect GBR with Displacement

Instruction Code Operation State T Bit

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 +
GBR)

1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 +
GBR)

1 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) →
sign extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) →
R0

1 —

Table A.41 PC Relative with Displacement

Instruction Code Operation State T Bit

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

Table A.42 PC Relative Addressing

Instruction Code Operation State T Bit

BF label 10001011dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

3/1*3 —

BF/S label*2 10001111dddddddd When T = 0, disp × 2 + PC → PC;
When T = 1, nop

2/1*3 —

BT label 10001001dddddddd When T = 1, disp × 2 + PC → PC;
When T = 0, nop

3/1*3 —

BT/S label*2 10001101dddddddd When T = 1, disp × 2 + PC → PC;
When T = 0, nop

2/1*3 —

Notes: 2. SH7600 instruction
3. One state when it does not branch

269

A.2.9 d12 Format

Table A.43 d12 Format

Instruction Code Operation State T Bit

BRA label 1010dddddddddddd Delayed branch, disp × 2+ PC → PC 2 —

BSR label 1011dddddddddddd Delayed branching, PC → PR, disp × 2
+ PC → PC

2 —

A.2.10 nd8 Format

Table A.44 nd8 Format

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) → sign
extension → Rn

1 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

A.2.11 i Format

Table A.45 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm →
(R0 + GBR)

3 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm →
(R0 + GBR)

3 —

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm,
when result is 0, 1 → T

3 Test
results

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm →
(R0 + GBR)

3 —

270

Table A.46 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

CMP/EQ #imm,R0 10001000iiiiiiii When R0 = imm, 1 → T 1 Comparison
results

O

R

#imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

TST #imm,R0 11001000iiiiiiii R0 & imm, when result
is 0, 1 → T

1 Test results

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

Table A.47 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR → Stack area, (imm × 4 +
VBR) → PC

8 —

A.2.12 ni Format

Table A.48 ni Format

Instruction Code Operation State T Bit

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

MOV #imm,Rn 1110nnnniiiiiiii imm → sign extension → Rn 1 —

A.3 Instruction Set in Order by Instruction Code

Table A.49 lists instruction codes and execution states in order by instruction code.

Table A.49 Instruction Set by Instruction Code

Instruction Code Operation State T Bit

CLRT 0000000000001000 0 → T 1 0

NOP 0000000000001001 No operation 1 —

RTS 0000000000001011 Delayed branch, PR →
PC

2 —

SETT 0000000000011000 1 → T 1 1

DIV0U 0000000000011001 0 → M/Q/T 1 0

271

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

SLEEP 0000000000011011 Sleep 3 —

CLRMAC 0000000000101000 0 → MACH, MACL 1 —

RTE 0000000000101011 Delayed branch, stack
area → PC/SR

4 LSB

STC SR,Rn 0000nnnn00000010 SR → Rn 1 —

BSRF Rn*2 0000nnnn00000011 Delayed branch, PC →
PR, Rn + PC → PC

2 —

STS MACH,Rn 0000nnnn00001010 MACH → Rn 1 —

STC GBR,Rn 0000nnnn00010010 GBR → Rn 1 —

STS MACL,Rn 0000nnnn00011010 MACL → Rn 1 —

STC VBR,Rn 0000nnnn00100010 VBR → Rn 1 —

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn +
PC → PC

2 —

MOVT Rn 0000nnnn00101001 T → Rn 1 —

STS PR,Rn 0000nnnn00101010 PR → Rn 1 —

MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100 Rm → (R0 + Rn) 1 —

MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101 Rm → (R0 + Rn) 1 —

MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110 Rm → (R0 + Rn) 1 —

MUL.L Rm,Rn*2 0000nnnnmmmm0111 Rn x Rm → MACL 2
(to 4)*1

—

MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100 (R0 + Rm) → sign
extension → Rn

1 —

MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101 (R0 + Rm) → sign
extension → Rn

1 —

MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110 (R0 + Rm) → Rn 1 —

MAC.L @Rm+,@Rn+*2 0000nnnnmmmm1111 Signed, (Rn) x (Rm) +
MAC → MAC

3/ (2
to 4)*1

—

MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd Rm → (disp × 4 + Rn) 1 —

MOV.B Rm,@Rn 0010nnnnmmmm0000 Rm → (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm → (Rn) 1 —

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
 number of states when there is contention with preceding/following instructions)
2. SH7600 instruction

272

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

MOV.L Rm,@Rn 0010nnnnmmmm0010 Rm → (Rn) 1 —

MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn – 1 → Rn, Rm →
(Rn)

1 —

MOV.W Rm,@–Rn 0010nnnnmmmm0101 Rn – 2 → Rn, Rm →
(Rn)

1 —

MOV.L Rm,@–Rn 0010nnnnmmmm0110 Rn – 4 → Rn, Rm →
(Rn)

1 —

DIV0S Rm,Rn 0010nnnnmmmm0111 MSB of Rn → Q, MSB
of Rm → M, M ^ Q →
T

1 Calculation
result

TST Rm,Rn 0010nnnnmmmm1000 Rn & Rm, when result
is 0, 1 → T

1 Test results

AND Rm,Rn 0010nnnnmmmm1001 Rn & Rm → Rn 1 —

XOR Rm,Rn 0010nnnnmmmm1010 Rn ^ Rm → Rn 1 —

O

R

Rm,Rn 0010nnnnmmmm1011 Rn | Rm → Rn 1 —

CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn
equals a byte in Rm, 1
→ T

1 Comparison
result

XTRCT Rm,Rn 0010nnnnmmmm1101 Center 32 bits of Rm
and Rn → Rn

1 —

MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn × Rm →
MAC

1 to 3*1 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Signed, Rn × Rm →
MAC

1 to 3*1 —

CMP/EQ Rm,Rn 0011nnnnmmmm0000 When Rn = Rm, 1 → T 1 Comparison
result

CMP/HS Rm,Rn 0011nnnnmmmm0010 When unsigned and
Rn ≥ Rm, 1 → T

1 Comparison
result

CMP/GE Rm,Rn 0011nnnnmmmm0011 When signed and Rn ≥
Rm, 1 → T

1 Comparison
result

DIV1 Rm,Rn 0011nnnnmmmm0100 1-step division (Rn ÷
Rm)

1 Calculation
result

DMULU.L Rm,Rn*2 0011nnnnmmmm0101 Unsigned, Rn x Rm →
MACH, MACL

2 to 4*1 —

Notes: 1. The normal minimum number of execution states
2. SH7600 instruction

273

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned
and Rn > Rm, 1
→ T

1 Comparison
result

CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and
Rn > Rm, 1 → T

1 Comparison
result

SUB Rm,Rn 0011nnnnmmmm1000 Rn – Rm → Rn 1 —

SUBC Rm,Rn 0011nnnnmmmm1010 Rn – Rm – T →
Rn, borrow → T

1 Borrow

SUBV Rm,Rn 0011nnnnmmmm1011 Rn – Rm → Rn,
underflow → T

1 Underflow

ADD Rm,Rn 0011nnnnmmmm1100 Rm + Rn → Rn 1 —

DMULS.L Rm,Rn*2 0011nnnnmmmm1101 Signed, Rn x Rm
→ MACH, MACL

2 to 4*1 —

ADDC Rm,Rn 0011nnnnmmmm1110 Rn + Rm + T →
Rn, carry → T

1 Carry

ADDV Rm,Rn 0011nnnnmmmm1111 Rn + Rm → Rn,
overflow → T

1 Overflow

SHLL Rn 0100nnnn00000000 T ← Rn ← 0 1 MSB

SHLR Rn 0100nnnn00000001 0 → Rn → T 1 LSB

STS.L MACH,@–Rn 0100nnnn00000010 Rn – 4 → Rn,
MACH → (Rn)

1 —

STC.L SR,@-Rn 0100nnnn00000011 Rn – 4 → Rn, SR
→ (Rn)

2 —

ROTL Rn 0100nnnn00000100 T ← Rn ← MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB → Rn → T 1 LSB

LDS.L @Rm+,MACH 0100mmmm00000110 (Rm) → MACH,
Rm + 4 → Rm

1 —

LDC.L @Rm+,SR 0100mmmm00000111 (Rm) → SR, Rm
+ 4 → Rm

3 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 → Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 → Rn 1 —

LDS Rm,MACH 0100mmmm00001010 Rm → MACH 1 —

Notes: 1. The normal minimum number of execution states
2. SH7600 instruction

274

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

JSR @Rn 0100nnnn00001011 Delayed branch, PC
→ PR, Rn → PC

2 —

LDC Rm,SR 0100mmmm00001110 Rm → SR 1 LSB

D

T

Rn*2 0100nnnn00010000 Rn - 1 → Rn; if Rn is
0, 1 → T, if Rn is
nonzero, 0 → T

1 Comparison
result

CMP/PZ Rn 0100nnnn00010001 Rn ≥ 0, 1 → T 1 Comparison
result

STS.L MACL,@–Rn 0100nnnn00010010 Rn – 4 → Rn, MACL
→ (Rn)

1 —

STC.L GBR,@-Rn 0100nnnn00010011 Rn – 4 → Rn, GBR →
(Rn)

2 —

CMP/PL Rn 0100nnnn00010101 Rn > 0, 1 → T 1 Comparison
result

LDS.L @Rm+,MACL 0100mmmm00010110 (Rm) → MACL, Rm +
4 → Rm

1 —

LDC.L @Rm+,GBR 0100mmmm00010111 (Rm) → GBR, Rm + 4
→ Rm

3 —

SHLL8 Rn 0100nnnn00011000 Rn<<8 → Rn 1 —

SHLR8 Rn 0100nnnn00011001 Rn>>8 → Rn 1 —

LDS Rm,MACL 0100mmmm00011010 Rm → MACL 1 —

TAS.B @Rn 0100nnnn00011011 When (Rn) is 0, 1 →
T, 1 → MSB of (Rn)

4 Test results

LDC Rm,GBR 0100mmmm00011110 Rm → GBR 1 —

SHAL Rn 0100nnnn00100000 T ← Rn ← 0 1 MSB

SHAR Rn 0100nnnn00100001 MSB → Rn → T 1 LSB

STS.L PR,@–Rn 0100nnnn00100010 Rn – 4 → Rn, PR →
(Rn)

1 —

STC.L VBR,@-Rn 0100nnnn00100011 Rn – 4 → Rn, VBR →
(Rn)

2 —

ROTCL Rn 0100nnnn00100100 T ← Rn ← T 1 MSB

ROTCR Rn 0100nnnn00100101 T → Rn → T 1 LSB

LDS.L @Rm+,PR 0100mmmm00100110 (Rm) → PR, Rm + 4
→ Rm

1 —

LDC.L @Rm+,VBR 0100mmmm00100111 (Rm) → VBR, Rm + 4
→ Rm

3 —

Notes: 2. SH7600 instruction

275

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

SHLL16 Rn 0100nnnn00101000 Rn<<16 → Rn 1 —

SHLR16 R

n

0100nnnn00101001 Rn>>16 → Rn 1 —

LDS Rm,PR 0100mmmm00101010 Rm → PR 1 —

JMP @Rn 0100nnnn00101011 Delayed branch, Rn
→ PC

2 —

LDC Rm,VBR 0100mmmm00101110 Rm → VBR 1 —

MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111 Signed, (Rn) × (Rm)
+ MAC → MAC

3/(2)*1 —

MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd (disp + Rm) → Rn 1 —

MOV.B @Rm,Rn 0110nnnnmmmm0000 (Rm) → sign
extension → Rn

1 —

MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) → sign
extension → Rn

1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) → Rn 1 —

MOV Rm,Rn 0110nnnnmmmm0011 Rm → Rn 1 —

MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) → sign
extension → Rn, Rm
+ 1 → Rm

1 —

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) → sign
extension → Rn, Rm
+ 2 → Rm

1 —

MOV.L @Rm+,Rn 0110nnnnmmmm0110 (Rm) → Rn, Rm + 4
→ Rm

1 —

NOT Rm,Rn 0110nnnnmmmm0111 ~Rm → Rn 1 —

SWAP.B Rm,Rn 0110nnnnmmmm1000 Rm → Swap upper
and lower halves of
lower 2 bytes → Rn

1 —

SWAP.W Rm,Rn 0110nnnnmmmm1001 Rm → Swap upper
and lower word → Rn

1 —

NEGC Rm,Rn 0110nnnnmmmm1010 0 – Rm – T → Rn,
borrow → T

1 Borrow

NEG Rm,Rn 0110nnnnmmmm1011 0 – Rm → Rn 1 —

Notes: 1 The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions)

276

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTU.B Rm,Rn 0110nnnnmmmm1100 Zero-extends Rm
from byte → Rn

1 —

EXTU.W Rm,Rn 0110nnnnmmmm1101 Zero-extends Rm
from word → Rn

1 —

EXTS.B Rm,Rn 0110nnnnmmmm1110 Sign-extends Rm
from byte → Rn

1 —

EXTS.W Rm,Rn 0110nnnnmmmm1111 Sign-extends Rm
from word → Rn

1 —

ADD #imm,Rn 0111nnnniiiiiiii Rn + imm → Rn 1 —

MOV.B R0,@(disp,Rn) 10000000nnnndddd R0 → (disp + Rn) 1 —

MOV.W R0,@(disp,Rn) 10000001nnnndddd R0 → (disp × 2 +
Rn)

1 —

MOV.B @(disp,Rm),R0 10000100mmmmdddd (disp + Rm) → sign
extension → R0

1 —

MOV.W @(disp,Rm),R0 10000101mmmmdddd (disp × 2 + Rm) →
sign extension → R0

1 —

CMP/EQ #imm,R0 10001000iiiiiiii When R0 = imm, 1
→ T

1 Compariso
n results

B

T

label 10001001dddddddd When T = 1, disp × 2
+ PC → PC;
When T = 0, nop.

3/1*3 —

BT/S label* 10001101dddddddd When T = 1, disp × 2
+ PC → PC;
When T = 1, nop.

2/1*3 —

B

F

label 10001011dddddddd When T = 0, disp × 2
+ PC → PC;
When T = 0, nop

3/1*3 —

BF/S label* 10001111dddddddd When T = 0, disp × 2
+ PC → PC;
When T = 1, nop

2/1*3 —

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp × 2 + PC) →
sign extension → Rn

1 —

BRA label 1010dddddddddddd Delayed branch,
disp × 2 + PC → PC

2 —

Notes: 2. SH7600 instruction
3. One state when it does not branch

277

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

BSR label 1011dddddddddddd Delayed branch, PC
→ PR, disp × 2 + PC
→ PC

2 —

MOV.B R0,@(disp,GBR) 11000000dddddddd R0 → (disp + GBR) 1 —

MOV.W R0,@(disp,GBR) 11000001dddddddd R0 → (disp × 2 +
GBR)

1 —

MOV.L R0,@(disp,GBR) 11000010dddddddd R0 → (disp × 4 +
GBR)

1 —

TRAPA #imm 11000011iiiiiiii PC/SR → Stack
area, (imm × 4 +
VBR) → PC

8 —

MOV.B @(disp,GBR),R0 11000100dddddddd (disp + GBR) → sign
extension → R0

1 —

MOV.W @(disp,GBR),R0 11000101dddddddd (disp × 2 + GBR) →
sign extension → R0

1 —

MOV.L @(disp,GBR),R0 11000110dddddddd (disp × 4 + GBR) →
R0

1 —

MOVA @(disp,PC),R0 11000111dddddddd disp × 4 + PC → R0 1 —

TST #imm,R0 11001000iiiiiiii R0 & imm, when
result is 0, 1 → T

1 Test results

AND #imm,R0 11001001iiiiiiii R0 & imm → R0 1 —

XOR #imm,R0 11001010iiiiiiii R0 ^ imm → R0 1 —

O

R

#imm,R0 11001011iiiiiiii R0 | imm → R0 1 —

TST.B #imm,@(R0,GBR) 11001100iiiiiiii (R0 + GBR) & imm,
when result is 0, 1 →
T

3 Test results

AND.B #imm,@(R0,GBR) 11001101iiiiiiii (R0 + GBR) & imm
→ (R0 + GBR)

3 —

XOR.B #imm,@(R0,GBR) 11001110iiiiiiii (R0 + GBR) ^ imm →
(R0 + GBR)

3 —

OR.B #imm,@(R0,GBR) 11001111iiiiiiii (R0 + GBR) | imm →
(R0 + GBR)

3 —

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp × 4 + PC) → Rn 1 —

MOV #imm,Rn 1110nnnniiiiiiii imm → sign
extension → Rn

1 —

278

A.4 Operation Code Map

Table A.50 is an operation code map.

Table A.50 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0000 Rn Fx 0000

0000 Rn Fx 0001

0000 Rn Fx 0010 STC SR,Rn* STC GBR,Rn STC VBR,Rn

0000 Rn Fx 0011 BSRF Rn* BRAF Rn*

0000 Rn Rm 01MD MOV.B
Rm,@(R0,Rn)

MOV.W
Rm,@(R0,Rn)

MOV.L
Rm,@(R0,Rn)

MUL.L
Rm,Rn*

0000 0000 Fx 1000 CLRT SETT CLRMAC

0000 0000 Fx 1001 NOP DIV0U

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS SLEEP RTE

0000 Rn Fx 1000

0000 Rn Fx 1001 MOVT Rn

0000 Rn Fx 1010 STS MACH,Rn STS MACL,Rn STS PR,Rn

0000 Rn Fx 1011

0000 Rn Fx 11MD MOV.B
@(R0,Rm),Rn

MOV.W
@(R0,Rm),Rn

MOV.L
@(R0,Rm),Rn

MAC.L
@Rm+,@Rn+*

0001 Rn Rm disp MOV.L Rm,@(disp:4,Rn)

0010 Rn Rm 00MD MOV.B Rm,@Rn MOV.W Rm,@Rn MOV.L Rm,@Rn

0010 Rn Rm 01MD MOV.B
Rm,@-Rn

MOV.W
Rm,@-Rn

MOV.L
Rm,@-Rn

DIV0S Rm,Rn

0010 Rn Rm 10MD TST Rm,Rn AND Rm,Rn XOR Rm,Rn O

R

Rm,Rn

0010 Rn Rm 11MD CMP/STR
Rm,Rn

XTRCT Rm,Rn MULU.W Rm,Rn MULS.W Rm,Rn

0011 Rn Rm 00MD CMP/EQ Rm,Rn CMP/HS Rm,Rn CMP/GE Rm,Rn

0011 Rn Rm 01MD DIV1 Rm,Rn DMULU.L
Rm,Rn*

CMP/HI Rm,Rn CMP/GT Rm,Rn

0011 Rn Rm 10MD SUB Rm,Rn SUBC Rm,Rn SUBV Rm,Rn

0011 Rn Rm 11MD ADD Rm,Rn DMULS.L
Rm,Rn*

ADDC Rm,Rn ADDV Rm,Rn

0100 Rn Fx 0000 SHLL Rn DT Rn* SHAL Rn

0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn

279

Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0100 Rn Fx 0010 STS.L
MACH,@–Rn

STS.L
MACL,@–Rn

STS.L
PR,@–Rn

0100 Rn Fx 0011 STC.L
SR,@–Rn

STC.L
GBR,@–Rn

STC.L
VBR,@–Rn

0100 Rn Fx 0100 ROTL Rn ROTCL Rn

0100 Rn Fx 0101 ROTR Rn CMP/PL Rn ROTCR Rn

0100 Rm Fx 0110 LDS.L
@Rm+,MACH

LDS.L
@Rm+,MACL

LDS.L
@Rm+,PR

0100 Rm Fx 0111 LDC.L
@Rm+,SR

LDC.L
@Rm+,GBR

LDC.L
@Rm+,VBR

0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn

0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16 Rn

0100 Rm Fx 1010 LDS Rm,MACH LDS Rm,MACL LDS Rm,PR

0100 Rn Fx 1011 JSR @Rn TAS.B @Rn JMP @Rn

0100 Rm Fx 1100

0100 Rm Fx 1101

0100 Rn Fx 1110 LDC Rm,SR LDC Rm,GBR LDC Rm,VBR

0100 Rn Rm 1111 MAC.W @Rm+,@Rn+

0101 Rn Rm disp MOV.L @(disp:4,Rm),Rn

0110 Rn Rm 00MD MOV.B Rm,Rn MOV.W @Rm,Rn MOV.L @Rm,Rn MOV Rm,Rn

0110 Rn Rm 01MD MOV.B Rm+,Rn M

O

V

.

W

@

R

m

+

,

R

n

M

O

V

.

L

@

R

m

+

,

R

n

NOT Rm,Rn

0110 Rn Rm 10MD SWAP.B
Rm,Rn

SWAP.W
Rm,Rn

NEGC Rm,Rn NEG Rm,Rn

0110 Rn Rm 11MD EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn

0111 Rn imm ADD #imm:8,Rn

1000 00MD Rn disp M

O

V

.

B

R

0

,

@

(

d

i

s

p

:

4

,

R

n

)

M

O

V

.

W

R

0

,

@

(

d

i

s

p

:

4

,

R

n

)

1000 01MD Rm disp MOV.B
@(disp:4,
Rm),R0

MOV.W
@(disp:4,
Rm),R0

1000 10MD imm/disp CMP/EQ
#imm:8,R0

BT label:8 BF label:8

1000 11MD imm/disp BT/S
label:8*

BF/S
label:8*

280

Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

1001 Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label:12

1011 disp BSR label:12

1100 00MD imm/disp MOV.B R0,
@(disp:8,
GBR)

MOV.W R0,
@(disp:8,
GBR)

MOV.L R0,
@(disp:8,
GBR)

TRAPA #imm:8

1100 01MD disp MOV.B
@(disp:8,
GBR),R0

MOV.W
@(disp:8,
GBR),R0

MOV.L
@(disp:8,
GBR),R0

MOVA
@(disp:8,
PC),R0

1100 10MD imm TST
#imm:8,R0

AND
#imm:8,R0

XOR
#imm:8,R0

O

R

#imm:8,R0

1100 11MD imm TST.B
#imm:8,
@(R0,GBR)

AND.B
#imm:8,
@(R0,GBR)

XOR.B
#imm:8,
@(R0,GBR)

OR.B
#imm:8,
@(R0,GBR)

1101 Rn disp MOV.L @(disp:8,PC),R0

1110 Rn imm MOV #imm:8,Rn

1111 ...

Note: SH7600 instructions

281

Appendix B Pipeline Operation and Contention

The SH7000 series is designed so that basic instructions are executed in one state. Two or more
states are required for instructions when, for example, the branch destination address is changed by
a branch instruction or when the number of states is increased by contention between MA and IF.
Table B.1 gives the number of execution states and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions experience contention in the following ways:

• Operations and transfers between registers are executed in one state with no contention.

• No contention occurs, but the instruction still requires 2 or more cycles.

• Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

— MA contends with IF

— MA contends with IF and sometimes with memory loads as well

— MA contends with IF and sometimes with the multiplier as well

— MA contends with IF and sometimes with memory loads and sometimes with the multiplier

282

Table B.1 Instructions and Their Contention Patterns

Contention State Stage Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers

Shift instruction

System control ALU instruction

2 3 Unconditional branche

3/1*3 3 Conditional branche

3 3 SLEEP instruction

4 5 RTE instruction

8 9 TRAP instruction

MA contends with IF 1 4 Memory store instruction and STS.L
instruction (PR)

2 4 STC.L instruction

3 6 Memory logic operations

4 6 TAS instruction

MA contends with IF and
sometimes with memory loads as

1 5 Memory load instructions and LDS.L
instruction (PR)

well 3 5 LDC.L instruction

MA contends with IF and
sometimes with the multiplier as
well

1 4 Register to MAC transfer instruction,
memory to MAC transfer instruction and
MAC to memory transfer instruction

1 to 3 *2 6/7*1 Multiplication instruction

3/(2)*2 7/8*1 Multiply/accumulate instruction

3/(2 to
4)*2

9 Double-length multiply/accumulate
instruction (SH7600 only)

2 to 4*2 9 Double-length multiplication instruction
(SH7600 only)

MA contends with IF and
sometimes with memory loads
and sometimes with the multiplier

1 5 MAC to register transfer instruction

Notes: 1. With the SH7600, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH7000, multiply/accumulate instructions are 8
stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

