Hitac
Single-Chi

NI
0 RISC

Microcomputer

SH 7000 and SH

7600 Series

Programming M anual

| ntroduction

The SH7000 and SH7600 series are new-generation RISC (Reduced instruction set computer)
microcomputers that integrate a RISC-type CPU and the peripheral functions required for system
configuration onto a single chip to achieve high-performance operation. It can operate in a power -
down state, which is an essential feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

This programming manual describesin detail the instructions for the SH7000 and SH7600 series
and isintended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is afeature of the SH7000 and SH7600 series. For information on the hardware,
refer to the hardware manual for the product in question.

Related Manuals
e SH7032, SH7034 Hardware Manual (Document No. ADE-602-062).

» SH7020, SH7021 Hardware Manual (Document No. ADE-602-074)
* SH7604 Hardware Manual

For development support tools, contact your Hitachi sales office.

Organization of ThisManual

Table 1 describes how this manual is organized. Table 2 lists the rel ationships between the items
and the sections listed within this manual that cover those items.

Tablel Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register Types and configuration of general registers,
Configuration control registers and system registers

3. Data Formats

Data formats for registers and memory

Introduction to
instructions

4. Instruction
Features

Instruction features, addressing modes, and
instruction formats

5. Instruction Sets

Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

6. Instruction
Descriptions

Operation of each instruction in alphabetical order

Architecture (2)

7. Processing States

Power-down and other processing states

8. Pipeline Operation

Pipeline flow, and pipeline flows with operation for
each instruction

Instruction code

Appendixes:
Instruction Code

Operation code map

Table2

Category

Subjects and Corresponding Sections

Topic

Section Title

Introduction and
features

CPU features

1. Features

Instruction features

4.1 RISC-Type Instruction Set

Pipelines

8.1 Basic Configuration of
Pipelines

8.2 Slot and Pipeline Flow

Architecture

Register configuration

Register Configuration

Data formats

3. Data Formats

Processing states, reset state, exception

processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode

7. Processing States

Pipeline operation

8. Pipeline Operation

Introduction to

Instruction features

4. Instruction Features

Instructions Addressing modes 4.2 Addressing Modes
Instruction formats 4.3 Instruction Formats
List of Instruction sets 5.1 Instruction Set by
instructions Classification
5.2 Instruction Set in
Alphabetical Order
Appendix A.1 Instruction Set by
Addressing Mode
Appendix A.2 Instruction Set by
Instruction Format
Instruction code Appendix A.3 Instruction Set in
Order by
Instruction Code
Appendix A.4 Operation Code
Map
Detailed Detailed information on instruction Instruction Description
information on operation 8.7 Instruction Pipeline
instructions

Operations

Number of instruction execution states

8.3 Number of Instruction
Execution States

FunctionsListed by CPU Type

This manual is common for both the SH7000 and SH7600 series. However, not all CPUs can use
all the instructions and functions. Table 3 lists the usable functions by CPU type.

Table3 Functionsby CPU Type
Item SH7000 Series SH7600 Series
Instructions BF/S No Yes
BRAF No Yes
BSRF No Yes
BT/S No Yes
DMULS.L No Yes
DMULU.L No Yes
DT No Yes
MAC.L No Yes
MAC.W*L (MAC)*2 16 x 16 + 42 16 X 16 + 64 — 64
42
MUL.L No Yes
All others Yes Yes
States for multiplication 16 x 16 — 32 Executed in 1-3*3 Executed in 1-3*3states

operation

(MULS.W, MULU.W)*2

states

32x32 - 32(MUL.L) No Executed in 2—4 *3states
32x32 - 64 No Executed in 2—4 *3states
(DMULS.L, DMULU.L)

States for multiply and 16 x 16 + 42 - 42 Executed in No

accumulate operation (SH7000, MAC.W) 3/(2)*3 states
16 x16 + 64 - 64 No Executed in states 3/(2)*3
(SH7600, MAC.W)
32x32+64 - 64 No Executed in 2—4 states
(MAC.L) 3/(2~4)*3

Processing status Module stop mode No Yes (Supply of clock to

specified module can be
halted)

Notes: 1.

MAC.W works differently on different LSIs.

2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the

number in contention with preceding/following instructions).

SECHON L FEAIUMES] ...ttt 1
[Section2 Register CoNfIQUIaion |.........coooooovvrrmrissnicrrnssssisnnnssseesssssesssnn 2
21 GENEIAl REJISIEIS......coeiieeieterieriiere ettt ettt ene s 2
22 CONrOl REGISIEIS ..ottt bbb bbb 2
23 SYSEEM REGISLEIS....cueieiee it st st se s e et se e et e e s te e sre st e s beseesae et e e e e enee e eneenens 3
24 Initial ValueS Of REQISLEIScecviieiiiiiie ettt sttt sa e a e e eneens 4
[SECtion 3 DAt@ FOMMALS).........ccccocuvvvvericivrensscneesssscsensssseess oo 5
31 DataFormat iN REJISIEIS . ..ottt b e s eb e e eb e ene e 5
32 DataFormat iN MEMOKYccoeiiiiiiiiniisieee ettt 5
33 IMMediate Data FOMMELcceviiererrereiresrre st 6
[Section 4 INSIrUCHON FEBIUTES]........oocccccccerrresieeereeiesssieseescssssissenssesssessessssssesseeees 7
41 RISC-TYPEINSITUCLION SELooiiiiieirieieetesie ettt e s e e eneas 7
411 16-Bit FiXEA LENGN ...eeeieeeee et 7

412 ONE INSITUCHTION/CYCIE ... 7

4.1.3 [1 = 0o |1 SR 7

414 Load-Store ArChitECLUIe..........c.ceirerereterre et 7

415 Delayed Branch INStrUCHiONS............ooireierieieeeeeeere e s 7

4.1.6 Multiplication/Accumulation OPErationccceeeeereerereresiesese e seeseeseeeeaeas 8

O O A N =1 ST 8

4.1.8 Faal0 (S o 1= 1= L - SR 8

419 ADSOIULE AQAIESS......ccieciererceerer e 9

4110 16-Bit/32-Bit DiSplaCementcocveeireriereiirnieee e 9

42 AJJressiNg MOOEScouiiuiiieieieeeieei ettt bbb sttt s be b b e et eae s 10
43 INSFUCLION FOMMELcctiiiieiieieeee ettt sttt bbb e e e e e e e eneeae s 13
[Secion S INSITUCHION SEL.........o e 16
51 Instruction Set by ClassifiCationccccevereereieeieeiecerese s e enens 16
551 Data Transfer INSIUCIONSc.vivieeieeeriresier et 21

512 ATItNMELIC INSIIUCLIONS ... 23

513 Logic Operation INSITUCLIONScociiirieriereeieninese e eaea 25

514 Shift INSEIUCLIONS ... e 26

515 Branch INSITUCLIONSccuvviiicice e s eneas 27

5.1.6 System Control INSEUCLIONS.cievererereeeeeere e e e e eneas 28

52 Instruction Set in Alphabetical Ordercoveveieeececeesesec e 29
[Section 6 INStruction DESCIIPLONSccccccevicicverricnverssscsensssssessscnsenssnees 37

6.1 Sample Description (Name): ClassifiCationcoeoreirieninininenesee e 37

6.2

6.3

64

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44

ADD (ADD Binary): ArithmetiC INSIrUCLIONccocoiiiiriiiiisiere e 40

ADDC (ADD with Carry): Arithmetic INSErUCLION..........cocoiiiiiiie e 41
ADDV (ADD with V Flag Overflow Check): Arithmetic Instructionccccccceveennee 42
AND (AND Logical): Logic Operation INSIrUCLIONcccovererrernenineneeesee e 43
BF (Branch if False): Branch INSrUCLIONc.ocveeeieeeeccse e 45
BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600)ccccceevveuennee. 46
BRA (Branch): BranCh INSIIUCLIONcoueieriiieicieeeeenese e 48
BRAF (Branch Far): Branch Instruction (SH7600)ccccrerereienenieniereeeee e 49
BSR (Branch to Subrouting): Branch INSIrUCHioN ..o 50
BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)c.ccccocvvvinniennenes 52
BT (Branch if True): BranCh INStrUCHIONccceveveeeeeriere et 53
BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)..........ccccccevvveenene. 54
CLRMAC (Clear MAC Register): System Control INStructionccocceeeereeieecenicniennens 56
CLRT (Clear T Bit): System Control INSIrUCLIONccccoerireiirinene e 57
CMP/cond (Compare Conditionally): Arithmetic INStruction............cccoeeveeerccnncneneenes 58
DIVOS (Divide Step 0 as Signed): Arithmetic INStrUCtionoceovveerennenneneeneeenes 62
DIVOU (Divide Step 0 as Unsigned): Arithmetic INStructionccoceveeeveeveevvneseeiennenn 63
DIV1 (Divide Step 1): Arithmetic INSIrUCLION..........ccueveeeicece e 64
DMULSL.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH7600) 69
DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction (SH7600)... 71
DT (Decrement and Test): Arithmetic Instruction (SH7600)...........ccoeeerererenneneieneeenens 73
EXTS (Extend as Signed): Arithmetic INSIrUCLIONcocoiveirieiniirereseeeeseee e 74
EXTU (Extend as Unsigned): Arithmetic INStrUCtionccovverevereriereereeeeeee e 75
JMP (Jump): BranCh INSITUCION........cvoieieeeecececesc et 76
JSR (Jump to Subrouting): Branch INSEIUCLIONcocooireriiinese e 77
LDC (Load to Control Register): System Control INStructionccooeveieieieniencnene 79
LDS (Load to System Register): System Control INStructionccoceeeeeeevceveseseneenene 81
MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH7600) 83
MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)........cccccvevrereereenene 86
MAC.W (Multiply and Accumulate Word): Arithmetic Instruction (SH7600) 87
MOV (Move Data): Data Transfer INSIIUCLIONccceirirenenine e 90
MOV (Move Immediate Data): Data Transfer INSruCtionccoevereveneeneseeienenceene 95
MOV (Move Peripheral Data): Data Transfer INStrUCtionoccceveeevenenenneneeneeienens 97
MOV (Move Structure Data): Data Transfer INStructionccoceevvcvrieveveneseeseereeenens 100
MOVA (Move Effective Address): Data Transfer INStructionccocevevereereereeseeennenns 103
MOVT (Move T Bit): Data Transfer INSIrUCtiONccccccvvvvicenevesese e 104
MUL.L (Multiply Long): Arithmetic Instruction (SH7600)ccccoeereerereererieneneneneene 105
MULS.W (Multiply as Signed Word): Arithmetic INStructionccccceeveieneienicnene 106
MULU.W (Multiply as Unsigned Word): Arithmetic INStructioncccoovvenevencennns 107
NEG (Negate): Arithmetic INSIrUCIONcooveiiriiereiereere e 108
NEGC (Negate with Carry): Arithmetic INStruCtionccccvevvevererccecese e 109
NOP (No Operation): System Control INSIrUCLIONcccccvvvveeive e 110

NOT (NOT—Logical Complement): Logic Operation INStructionccccceeeeeeerennne 111

6.45 OR (OR Logical) Logic Operation INSFUCHION........ccovrerirererisiesie e 112
6.46 ROTCL (Rotate with Carry Left): Shift INSEUCHIONccoiereiiniie e 114
6.47 ROTCR (Rotate with Carry Right): Shift INStrUCtion............coccovirninsiineieeees e 115
6.48 ROTL (Rotate Left): Shift INSEUCHION.......ccoiviiieereereereere e 116
6.49 ROTR (Rotate Right): Shift INSLUCHION ...c..cveeeeeeceeicesecere e e 117
6.50 RTE (Return from Exception): System Control INStructioncccceveveeeveveeseeieeseeeennns 118
6.51 RTS (Return from Subrouting): Branch INStructionc.ccocevevenenenenene e 119
6.52 SETT (Set T Bit): System Control INSIFUCLIONccccoeiiiininiiinese e 120
6.53 SHAL (Shift Arithmetic Left): Shift INStrUCtioNcocoeveiiniiinniee e 121
6.54 SHAR (Shift Arithmetic Right): Shift INSIrUCHION........coeiviiriree e 122
6.55 SHLL (Shift Logical Left): Shift INSrUCLION.......cocveieeeecece e 123
6.56 SHLLn (Shift Logical Left n Bits): Shift INSIrUCIONccccoveveiiie e 124
6.57 SHLR (Shift Logical Right): Shift INSIIUCHIONcoeiiriiiiiniiisee e 126
6.58 SHLRn (Shift Logical Right n Bits): Shift INSIrUCLIONccoeiiiiiiiiieee e, 127
6.59 SLEEP (Sleep): System Control INSIIUCHION.........ccoiveirieirieirieinieesieesesee e 129
6.60 STC (Store Control Register): System Control INStrUCtioN.........ccccvverereeeeiesiesesereereenens 130
6.61 STS (Store System Register): System Control INStrUCtioNcovvvvevencerereereeeeseeeeeens 132
6.62 SUB (Subtract Binary): ArithmetiC INStrUCtiON........ccccoveiiiieces e 134
6.63 SUBC (Subtract with Carry): Arithmetic INSErUCHIONccccveriiinevereee e 135
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instructionc........ 136
6.65 SWAP (Swap Register Halves): Data Transfer INStruCtioncccoceevereieneccneccnenennene 137
6.66 TAS(Test and Set): Logic Operation INSIUCHION........cceceveirieriniineseie e 138
6.67 TRAPA (Trap Always): System Control INSIrUCLIONcccovveveverie e 139
6.68 TST (Test Logical): Logic Operation INStrUCLiON...........cccveeveienese e eseseeeeeeseeeenens 140
6.69 XOR (Exclusive OR Logical): Logic Operation INStruction..........coceveeereneeseeieeneecenennes 142
6.70 XTRCT (Extract): Data Transfer INSIUCLIONccocerereiirerenesiese e 144
[Section 7 ProCessing StAES |.......coooovvvrrvrrrrereceeeeeceeecevssesssssssssssssssssssssssssssssssese s 145
71 S TIANSITIONS ..eoeeeeereierer et n e 145
7.11 RESEL SEALE ...t 147

712 EXCEPLioN ProCeSSING SEALEcoeiviriirieriereeieee st s 147

7.13 Program EXECULION SEALEccueiuiieiriisie ettt e 147

714 POWEr-DOWN SEALE ... 147

7.15 BUS REEESE SLALEveivieeeierie ettt s 147

7.2 POWE-DOWN SEBLEcooeeiecireee ettt 148
721 S L= o 1AV oo (TSP 148

7.2.2 Software Standby MOGE.........cooiiiiiircer e e 148

7.2.3 Module Standby Function (SH7600 ONlY)cccccrreriinenenenese e 148

7.3 Master Mode and Slave Mode (SH7600 SerieS ONlY)cccvverereninenesineesees e 150
[Section 8 Pipeling OPEXation]...........ccceeeeeevecceeeesseeeessseeeessseeesssseeesssseees oo 151
81 Basic Configuration of PIPEIINES........ccccvieiiirieicieese et s enea 151
82 Slot and PIPEliNE FIOW.......coeiiiiiiie e e 152

8.2.1 INSEFUCTION EXECULION ...ttt sve s sve e s s e e s sre e s s 152

8.2.2 S Lo 1S 7= T oo USSR 152
8.2.3 FOLLENGN ..o 153
83 Number of INStruction EXECULION SEALESccccveeeeeieere et enens 154
84 Contention Between Instruction Fetch (IF) and Memory Access (MA) .ovvevveeveveeieennns 155
8.4.1 Basic Operation When IF and MA arein Contentioncccceveveeveeeeceeeenene. 155

8.4.2 The Relationship Between IF and the Location of Instructionsin On-Chip
ROM/RAM 0F ON-Chip MEMOIYcccoieiiiirereeierese e 156

843 Relationship Between Position of Instructions Located in On-Chip

ROM/RAM or On-Chip Memory and Contention Between IF and MA 157
85 Effectsof Memory Load Instructions on Pipelings..........cccoovveveveneeienennseseseeseseenens 158
8.6 Programming GUIEccceieiuiiieiesieieiteeese ettt s st st sa e e a e e s ene e e eneenens 159
8.7 Operation of INStruction PIPEIINESoo.iieiieeieir e 160
8.7.1 Data Transfer INSIIUCLIONSco.oiviieieeeeeeeeee e e 167
8.7.2 Arithmetic INSTUCLIONScoeiieeeieee e 170
8.7.3 Logic Operation INSIIUCHIONSc.ooiviirieirieirieerie e 225
8.74 Shift INSIFUCHIONS ...t 228
8.75 Branch INSIUCLIONSouevieiiriiiriicres e 229
8.7.6 System Control INSEIUCHIONS.coveriiieieeeenere et s 232
8.7.7 EXCEPLION PrOCESSINGceueriieieiie ettt st 244
[Appendix A INSITUCEON COUEL............crrmiisssssssssesseeeeeeeesesesssssssssssssssssssssssssssssssns 247
Al Instruction Set by Addressing MOGEoveveiririerene e 247
N 0 N[0 @ o= oo ST 249
A.12 Direct Register AQAreSSINGccooeriireririreeere e 250
A.13 Indirect Register AQArESSINGc.cooeroeeererereeerie et 253
A.14 Post Increment Indirect Register AAressingcoocoeeveeneencieneieseeseeee 253
A.15 PreDecrement Indirect Register ADressing.......cocoeveveinieenenienenenseneseeee 254
A.1.6 Indirect Register Addressing with Displacementccccocevevevecicreerenenennenns 255
A.17 Indirect Indexed Register ADAreSSINgccceeeveveresesesiesesieseesee e 255
A.1.8 Indirect GBR Addressing with Displacementcocovevenerenenecicieeeeencee 256
A.19 Indirect Indexed GBR AdAreSSINGccccoerererereniinierie et saens 256
A.110 PC Relative Addressing with Displacementcocooeeveenniencieneesee e 256
A.111 PCReative Addressing With RN ..o 257
A.112 PC RE@iVE AAArESSING ...ccveiveieeeeeeeeeetesese st e eee e e sre e s e sae e seeneeseesessesns 257
ALL3 TMMEUIBLE ..o.evveeiieieeee et 258
A.2 Instruction Sets by INSrUCtion FOMMAELccoooiiieiiiireeeeee e 258
A2 L D FOMMAL ceeieiiiesteteeeres ettt ettt et b bbb b s 260
A2.2 NMFOMMEL ..ot ettt et e e et e e s aeestesaeebesbe et e sneenes 261
R T 1 (1 e 1 7= S PSP 263
A.24 NIMFOMMEL ..ot s e e e ene b 264
N ST 1110 01 7= OSSR 267

A.2.6 00 20 o 1= | TR 267

A.2.7 (10010 o 117 R 267

A28 A FOMMEL ... ettt b e et b e n e e 268
F A B o i 2 o 14T ST 269
2 0 T oo I o - S 269
AN I o 117 SRR 269
A212 NEFOMMAL ..t 270
A.3 Instruction Set in Order by INSruction COdecccocveieeririeniiere e 270
Al OpEration COUE MEP.......courirerterierie ettt sttt b et ae b e b e st beseese e b e s e e e e eneens 278

Appendix B Pipeline Operation and CONtENtION |[...........c.ovweereenmreneerneeerneenneeeees 281

Section 1 Features

The SH7000 and SH7600 series have RISC-type instruction sets. Basic instructions are executed
in one clock cycle, which dramatically improves instruction execution speed. The CPU aso hasan
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH7000 and

SH7600-series CPU features.

Tablel.1

Item

SH7000 and SH7600-Series CPU Features

Feature

Architecture

Original Hitachi architecture
32-bit internal data paths

General-register machine

Sixteen 32-bit general registers
Three 32-bit control registers
Four 32-bit system registers

Instruction set

Instruction length: 16-bit fixed length for improved code efficiency

Load-store architecture (basic arithmetic and logic operations are
executed between registers)

Delayed branch system used for reduced pipeline disruption
Instruction set optimized for C language

Instruction execution time

One instruction/cycle for basic instructions

Address space

Architecture makes 4 Ghytes available

On-chip multiplier
(SH7000)

Multiplication operations (16 bits x 16 bits — 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits + 42 bits - 42 bits) executed in 3/(2)* cycles

On-chip multiplier

Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits

(SH7600) - 32 bits) or 2 to 4 cycles (32 bits x 32 bits - 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits x 16 bits + 64 bits — 64 bits) or 3/(2 to 4)* cycles (32 bits x 32
bits + 64 bits - 64 bits)

Pipeline » Five-stage pipeline

Processing states

Reset state

Exception processing state
Program execution state
Power-down state

Bus release state

Power-down states

Sleep mode
Standby mode
Module stop mode (SH7600 only)

Note:

The normal minimum number of execution cycles (The number in parentheses in the

mumber in contention with preceding/following instructions).

Section 2 Register Configuration

The register set consists of sixteen 32-hit general registers, three 32-hit control registers and four
32-hit system registers.

21 General Registers

There are 16 general registers (Rn) numbered RO-R15, which are 32 bitsin length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an index
register. Several instructions use RO as a fixed source or destination register. R15 isused as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

31 0
RO*! 1. RO functions as an index register in the
R1 indirect indexed register addressing
mode and indirect indexed GBR
addressing mode. In some instructions,
R3 RO functions as a fixed source register
R4 or destination register.

R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer) ¥2| 2. R15 functions as a hardware stack

pointer (SP) during exception

processing.

R2

Figure2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

31 98 76543210
SR| - _ MQI3 21110 -- ST | SR: Status register

S _ |_>T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHARI/L, SHLR/L, ROTR/L, and
ROTCRI/L instructions also use bit T
to indicate carry/borrow or overflow/
underflow

— S bit: Used by the multiply/accumulate
instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.
——» Bits 13-10: Interrupt mask bits.

»M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
31 0 Indicates the base address of the indirect
GBR GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

31 0 Vector base register (VBR):
VBR Indicates the base address of the exception
processing vector area.

Figure2.2 Control Registers

23 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The
multiply and accumulate registers store the results of multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
stores program addresses to control the flow of the processing.

31 9
(SH7000) (sign extended) MACH
MACL
31
(SH7600) MACH
MACL
31
| PR
31
| PC

Multiply and accumulate (MAC)
registers high and low (MACH/L):
Store the results of multiply and
accumulate operations. In the
SH7000, MACH is sign-extended
to 32 bits when read because only
the lowest 10 bits are valid. In the
SH7600, all 32 bits of MACH are
valid.

Procedure register (PR): Stores a
return address from a subroutine
procedure.

Program counter (PC): Indicates the
fourth byte (second instruction) after
the current instruction.

Figure2.3 System Registers

2.4 Initial Valuesof Registers
Table 2.1 lists the values of the registers after reset.

Table2.1 Initial Valuesof Registers
Classification Register Initial Value
General register RO-R14 Undefined
R15 (SP) Value of the stack pointer in the vector address table
Control register SR Bits 13—10 are 1111 (H'F), reserved bits are 0, and
other bits are undefined
GBR Undefined
VBR H'00000000
System register MACH, MACL, PR Undefined
PC Value of the program counter in the vector address
table

Section 3 Data Formats

3.1 DataFormatin Registers

Register operands are always longwords (32 hits) (figure 3.1). When the memory operand isonly a
byte (8 bits) or aword (16 bits), it is sign-extended into alongword when loaded into aregister.

| Longword

Figure3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which isreferred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because
this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

Addressm +1 Address m + 3
Address m | Address m + 2
31y 23 154 7 yO
Byte | Byte | Byte | Byte
Address 2n—» Word Word
Address 4n-» Longword

L Big endian L

Figure3.2 Byte, Word, and Longword Alignment

SH7604 has afunction that allows access of CS2 space (area 2) in little endian format, which
enables memory to be shared with processors that access memory in little endian format (figure
3.3). Byte datais arranged differently for little endian and the usual big endian.

Addressm+2 Address m
Address m + 3 | Address m + 1
31y 23 15 ¢ 7 y0)
Byte | Byte | Byte | Byte

Word Word < Address 2n
Longword < Address 4n

{

L Little endian L

Figure3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data For mat

Byte immediate datais |ocated in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and cal culated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register.

Word or longword immediate datais not located in the instruction code. Rather, it isstored ina
memory table. The memory table is accessed by an immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

Section 4 Instruction Features

4.1 RISC-Typelnstruction Set
All instructions are RISC type. Their features are detailed in this section.

411 16-Bit Fixed Length

All instructions are 16 bitslong, increasing program coding efficiency.

4.1.2 Onelnstruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz.

41.3 Datalength

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and cal cul ated with
longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zero-
extended for logic operations. It also is cal culated with longword data.

Table4.1l Sign Extension of Word Data

SH7000/SH7600-Series CPU Description Example for Other CPU
MOV. W @disp, PO, RL Data is sign-extended to 32 ADD. W #H 1234, RO
ADD RL, RO bits, and R1 becomes

H'00001234. It is next
""""" operated upon by an ADD
.DATA W H 1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

414 Load-StoreArchitecture

Basic operations are executed between registers. For operations that involve memory access, data
isloaded to the registers and executed (Ioad-store architecture). Instructions such as AND that
manipul ate bits, however, are executed directly in memory.

415 Deayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the dot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

Table4.2 Delayed Branch Instructions

SH7000/7600-Series CPU Description Example for Other CPU
BRA TRCGET Executes an ADD before ADD. W Rl, RO
ADD RL, RO branching to TRGET. BRA TRGET

41.6 Multiplication/Accumulation Operation

SH7000: 16bit x 16bit — 32-bit multiplication operations are executed in one to three cycles.
16hit x 16bit + 42bit - 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH7600: 16bit x 16bit — 32-bit multiplication operations are executed in one to two cycles. 16bit
x 16hit + 64bit - 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit x 32bit - 64-bit multiplication and 32bit x 32bit + 64bit — 64-bit
multiplication/accumul ation operations are executed in two to four cycles.

417 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn isthe
condition (true/false) that determinesif the program will branch (table 4.3). The number of
instructions after T hit in the status register is kept to a minimum to improve the processing speed.

Table4.3 T Bit

SH7000/7600-Series CPU Description Example for Other CPU

OWCGE R,R T bit is set when RO = R1. The awp. W Rl, RO

BT TRGETO program branches to TRGETO BCE TRCETO
when RO = R1 and to TRGET1

BF TRCGET1 when RO < R1. BLT TRGET1

ADD #-1, RO T bit is not changed by ADD. T SUB. W #1, R0

CW EQ #0, RO bit is set when RO = 0. The BEQ TRCET

program branches if RO = 0.
BT TRCGET

418 Immediate Data

Byte immediate datais located in instruction code. Word or longword immediate data is not input
viainstruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

Table4.4 Immediate Data Accessing

Classification SH7000/7600-Series CPU Example for Other CPU
8-bit immediate MOV #H 12, RO MV.B #H 12, R0
16-bit immediate MOV. W @di sp, PO, RO MOV. W #H 1234, RO

.DATA' W H 1234

32-bit immediate MOV. L @di sp, PO, RO MOV. L #H 12345678, RO

.DATA L H 12345678

Note: The address of the immediate data is accessed by @(disp, PC).

419 Absolute Address

When datais accessed by absolute address, the value already in the absolute addressis placed in
the memory table. L oading the immediate data when the instruction is executed transfers that
valueto the register and the datais accessed in the indirect register addressing mode.

Table45 Absolute Address

Classification SH7000/7600 Series CPU Example for Other CPU

Absolute address MOV. L @di sp, PO, RL MOV. B @H 12345678, RO
MOV. B @1, R

.DATA L H 12345678

4.1.10 16-Bit/32-Bit Displacement

When datais accessed by 16-bit or 32-bit displacement, the pre-existing displacement valueis
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the datais accessed in the indirect indexed register addressing mode.

Table4.6 Displacement Accessing

Classification SH7000/7600 Series CPU

Example for Other CPU

MOV. W
MV, W

16-bit displacement
@RO,R1),R2

.DATA W H 1234

@di sp, PO, RO

MV. W @H 1234, Rl), R

4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table4.7 Addressing Modes and Effective Addresses
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. (The operandis —
register the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
register _
addressing Rn > Rn
Post- @Rn + The effective address is the content of register Rn. A Rn
increment constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a longword executed)
addressing operation.
Byte: Rn + 1
- Rn
Word: Rn + 2
- Rn
Longword:
Rn+4 - Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn— 1
decrement subtracting a constant from Rn. 1 is subtracted fora - Rn
indirect byte operation, 2 for a word operation, or 4 for a Word: Rn — 2
register longword operation. ~ RN
addressing
Longword:
Rn-4 - Rn

Rn - 1/2/4

(Instruction
executed with
Rn after
calculation)

10

Table4.7

Addressing Instruction

Addressing Modes and Effective Addr esses (cont)

Mode Format Effective Addresses Calculation Formula

Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +

register Rn) (disp). The value of disp is zero-extended, and disp

addressing remains the same for a byte operation, is doubled for

with a word operation, or is quadrupled for a longword Word: Rn +

displace- operation. disp x 2

ment Longword:
Rn + disp x4

disp Rn
(zero-extended) + disp x 1/2/4

Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO

indexed

regiser R |

addressing

Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +

GBR GBR) displacement (disp). The value of disp is zero- disp

addressing extended, and remains the same for a byte

with operation, is doubled for a word operation, or is Word: GBR +

displace- quadrupled for a longword operation. disp x 2

ment Longword:
GBR + disp x

disp GBR 4
(zero-extended) + disp x 1/2/4

Indirect @(RO, The effective address is the GBR value plus RO. GBR + RO

indexed GBR)

GBR

addressing

GBR + RO

11

Table4.7

Addressing M odes and Effective Addresses (cont)

Addressing Instruction
Mode Format Effective Addresses Calculation Formula
PC relative @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
with extended, and disp is doubled for a word operation, Longword:
displace- or is quadrupled for a longword operation. For a PC &
ment longword operation, the lowest two bits of the PC are H'EEEEEEEC
masked. +disp x 4
(for longword)
PC + disp x 2
H'FFFFFFFC or
. PC&H'FFFFFFFC
disp + disp x 4
(zero-extended)
PC relative disp:8 The effective address is the PC value sign-extended PC +disp x 2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
~disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp x 2

with a 12-bit displacement (disp), doubled, and
added to the PC.

disp
(sign-extended)

PC +disp x 2

12

Table4.7

Addressing Modes and Effective Addr esses (cont)

Addressing Instruction
Mode Format Effective Addresses Calculation Formula
PC relative Rn The effective address is the register PC plus Rn. PC +Rn
addressing
(con)
(+) PC + R0

Immediate #imm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD, —

and CMP/EQ instructions are sign-extended.

#imm:8 Immediate data (imm) for the TRAPA instruction is

zero-extended and is quadrupled.

4.3 Instruction For mat

Theinstruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

* Xxxx: Instruction code

e mmmm: Source register
* nnnn: Destination register
o iiii: Immediate data

* dddd: Displacement

Table4.8 Instruction Formats
Source Destination
Instruction Formats Operand Operand Example
0 format — — NCP
15 0
| XXXX XXXX XXXX XXXX
n format — nnnn; Direct MOVT Rn
register
15 0 Control register nnnn: Direct STS MACH Rn
| XXXX | nnnn | XXXX XXXX or system register
register

13

Table4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
n format (cont) — nnnn: Direct JW @
register
Control register nnnn: Indirect pre- STC L SR @Rn
or system decrement
register register
— nnnn: PC relative BRAF Rn
using Rn
m format mmmm: Direct Control register or LDC Rm SR
register system register
15 0 mmmm: Indirect Control register or LDC. L @, SR
YXXX Immmml Xxxx Xxxx post-increment system register
register
nm format mmmm: Direct nnnn: Direct ADD Rm Rn
register register
15 mmmm: Direct nnnn; Indirect MOV.L Rm @
| XXXX | nnnn |mmmm| XXXX register register
mmmm: Indirect MACH, MACL MAC. W
post-increment @R+, @+
register (multiply/
accumulate)
nnnn*: Indirect
post-increment
register (multiply/
accumulate)
mmmm: Indirect nnnn: Direct MOV.L @Rmt, Rn
post-increment register
register
mmmm: Direct nnnn: Indirect pre- MOV.L Rm @Rn
register decrement
register
mmmm; Direct nnnn; Indirect MOV. L
register indexed register Rm @RO, R1)
md format mmmmdddd: RO (Direct MOV. B
15 0 indirect register register) @di sp, R, RO
XXXX XXXX |mmmm)| dddd with
displacement
nd4 format RO (Direct nnnndddd: MOV. B
15 0 register) Indirect register RO, @di sp, Rn)
XXXX XXXX | nnnn | dddd with displacement

Note:

In multiply/accumulate instructions, nnnn is the source register.

14

Table4.8

Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm; Direct nnnndddd: Indirect MOV. L
15 register register with Rm @di sp, Rn)
XXXX | nnnn |[mmmm| dddd displacement
mmmmdddd: nnnn: Direct MOV. L
Indirect register register @di sp, R, R
with
displacement
d format dddddddd: RO (Direct register) MOV. L
15 Indirect GBR @di sp, BR, R0
XXXX XxxX | dddd dddd W.'th
displacement
RO(Direct dddddddd: Indirect MOV. L
register) GBR with RO, @di sp, BR
displacement
dddddddd: PC RO (Direct register) MWVA
relative with @di sp, PO, RO
displacement
— dddddddd: PC BF | abel
relative
d12 format — dddddddddddd: BRA | abel
15 PC relative (label = disp +
xxxx | dddd dddd dddd PO
nd8 format dddddddd: PC nnnn: Direct MOV. L
relative with register @di sp, PO, Rn
| XXXX | nnnn | dddd dddd displacement
i format iiiiiiii: Immediate Indirect indexed AND. B
GBR #i mm @ R0, GBR)
15 iiiiiiii: Immediate RO (Direct register) AND #i nm RO
XXXX XXXX | iiii iQiii
iiiiiiii; Immediate — TRAPA #i mm
ni format iiiiiiii; Immediate nnnn: Direct ADD #i mm Rn
15 register
| XXXX | nnnn| PP i

15

Section 5 Instruction Set

5.1 Instruction Set by Classification
Table 5.1 listsinstructions by classification.

16

Table5.1 Classfication of Instructions

Applicable
Instructions
Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions
Data transfer 5 MOV Data transfer ad d 39

Immediate data transfer
Peripheral module data transfer
Structure data transfer

MOVA Effective address transfer O O

MOVT T-bit transfer O ad

SWAP Swap of upper and lower bytes [ad

XTRCT Extraction of the middle of O O
registers connected

Arithmetic 21 ADD Binary addition O ad 33
operations ADDC Binary addition with carry O ad

ADDV Binary addition with overflow a g
check

CMP/cond Comparison ad ad

DIV1 Division O O

DIVOS Initialization of signed division O ad

DIVOU Initialization of unsigned 0 a
division

DMULS Signed double-length ad
multiplication

DMULU Unsigned double-length ad
multiplication

DT Decrement and test ad

EXTS Sign extension O ad

EXTU Zero extension O ad

MAC Multiply/accumulate, double- ad ad
length multiply/accumulate
operation*1

MUL Double-length multiplication O ad

MULS Signed multiplication ad ad

MULU Unsigned multiplication d d

NEG Negation O ad

NEGC Negation with borrow 0 a

SuUB Binary subtraction O ad

SUBC Binary subtraction with borrow O ad

SUBV Binary subtraction with ad ad

underflow check

Notes 1. Double-length multiply/accumulate is an SH7600 function.

17

Table5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions
Logic 6 AND Logical AND O O 14
operations NOT Bit inversion g O
OR Logical OR O O
TAS Memory test and bit set O O
TST Logical AND and T-bit set g O
XOR Exclusive OR O O
Shift 10 ROTL One-bit left rotation O O 14
ROTR One-bit right rotation g O
ROTCL One-bit left rotation with T bit O O
ROTCR One-bit right rotation with T bit O O
SHAL One-bit arithmetic left shift O O
SHAR One-bit arithmetic right shift O O
SHLL One-bit logical left shift O O
SHLLn n-bit logical left shift O O
SHLR One-bit logical right shift O O
SHLRn n-bit logical right shift O O
Branch 9 BF Conditional branch, conditional 0O O 11
branch with delay*?2 (T = 0)
BT Conditional branch, conditional O O
branch with delay*2 (T = 1)
BRA Unconditional branch g O
BRAF Unconditional branch O
BSR Branch to subroutine procedure 0O O
BSRF Branch to subroutine procedure 0O
JMP Unconditional branch O O
JSR Branch to subroutine procedure 0O O
RTS Return from subroutine O O
procedure

Notes 2. Conditional branch with delay is an SH7600 function.

18

Table5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions
System 11 CLRT T-bit clear O ad 31
control CLRMAC MAC register clear o O
LDC Load to control register O ad
LDS Load to system register O ad
NOP No operation O g
RTE Return from exception O ad
processing
SETT T-bit set O d
SLEEP Shift into power-down mode O ad
STC Storing control register data O ad
STS Storing system register data O ad
TRAPA Trap exception processing O ad
Total: 62 142

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

19

Table5.2 Instruction Code Format

Item Format

Explanation

Instruction OP.Sz SRC,DEST
mnemonic

OP: Operation code

Sz: Size

SRC: Source

DEST: Destination

Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction MSB ~ LSB
code

mmmm: Source register
nnnn: Destination register
0000: RO
0001: R1
1111: R15
iiii: Immediate data
dddd: Displacement

Operation S,
summary (xx)

<<n, >>n

Direction of transfer
Memory operand

Flag bits in the SR
Logical AND of each bit
Logical OR of each bhit
Exclusive OR of each bit
Logical NOT of each bit
n-bit left/right shift

Execution
cycle

Value when no wait states are inserted

Instruction
execution
cycles

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches
and data access, or

2. When the destination register of the load instruction
(memory - register) and the register used by the next
instruction are the same.

T bit

Value of T bit after instruction is executed

No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

20

511

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Data Transfer Instructions

Table5.3 Data Transfer Instructions
Execu-
tion T
Instruction Instruction Code Operation State Bit
MOV #i mm Rn 1110nnnniiiiiiii imm - Sign extension - 1 —
Rn
MV. W @disp, PO, R 1001nnnndddddddd (disp x2 + PC) - Sign 1 —
extension - Rn
MOV. L @disp, PO, R 1101nnnndddddddd (disp x4 +PC) - Rn 1 —
MOV Rm R 0110nnnnmmm®0011 Rm - Rn 1 —
MDV. B Rm @n 0010nnnNMMmMTO000 Rm - (Rn) 1 —
MV. W Rm @n 0010nnnnnMmMm0001 Rm - (Rn) 1 —
MOV.L Rm@n 0010nnnnmMMmMT0010 Rm - (Rn) 1 —
MV.B @R 0110nnnnnmmm0000 (Rm) - Sign extension - 1 —
Rn
MOV. W @M Rn 0110nnnnmMmm®©001 (Rm) - Sign extension — 1 —
Rn
MOV.L @mRn 0110nnnnmMmm®©010 (Rm) - Rn 1 —
MOV. B Rm @R 0010nnnnmmm0100 Rn-1 -~ Rn,Rm - (Rn) 1 —
MV. W Rm @R 0010nnnnnMmm0101 Rn-2 - Rn,Rm - (Rn) 1 —_
MOV.L Rm @R 0010nnnnmmm®0110 Rn—4 - Rn,Rm - (Rn) 1 —
MDV. B @+, Rn 0110nnnnmmr0100 (Rm) - Sign extension — 1 —
Rn,Rm+1 - Rm
MV. W @Rm+, Rn 0110nnnnmmmmr0101 (Rm) - Sign extension - 1 —
Rn,Rm+2 - Rm
MOV.L @m Rh 0110nnnnnmm®©110 (Rm) - Rn,Rm+4 - Rm 1 —
MV.B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —
MOV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x 2 + Rn) 1 —
MOV.L Rm @disp, Rn) 0001nnnnmmmuddd Rm - (disp x 4 + Rn) 1 —
MOV. B @disp, R, RO 10000100mmmdddd (disp + Rm) - Sign 1 —
extension - RO
MOV. W @disp, R, R0 10000101mrmmdddd (disp x 2 + Rm) - Sign 1 —
extension —» RO
MOV.L @disp, RM, R 0101nnnnmmmmuddd (disp x4 +Rm) - Rn —
MDV. B Rm @RO, Rn) 0000NNNNMMIT0100 Rm - (RO + Rn) 1 —
MV. W Rm @RO, Rn) 0000nNNNMM©101 Rm - (RO + Rn) 1 —

21

Table5.3

Data Transfer Instructions (cont)

Execu-
tion T
Instruction Instruction Code Operation State Bit
MOV.L Rm @RO, Rn) 0000NNNNMMI0110 Rm - (RO + Rn) 1 —
MV.B @RO,R), R 0000nnNNMMMM.100 (RO +Rm) - Sign 1 —
extension —» Rn
MV. W @RO, R, R 0000nnnnNMMM1101 (RO + Rm) - Sign 1 —
extension — Rn
MV.L @RO,RM),Rn 0000nnNNMMM1.110 (RO+Rm) - Rn 1 —
MOV.B RO, @di sp, GBBR 11000000dddddddd RO - (disp + GBR) 1 —
MOV. W RO, @di sp, BR 11000001dddddddd RO - (disp x 2 + GBR) 1 —
MOV.L RO, @di sp, BR 11000010dddddddd RO - (disp x 4+ GBR) 1 —
MOV. B @disp, 3BR, R0 11000100dddddddd (disp + GBR) - Sign 1 —
extension — RO
MOV. W @disp, 8BR,R0 11000101dddddddd (disp x2+GBR) - Sign 1 —
extension - RO
MOV.L @disp, 3BR,R0 11000110dddddddd (disp x4 + GBR) - RO 1 —
MOVA @di sp, PO , RO 11000111dddddddd dispx 4+PC - RO 1 —
MOVT R 0000nnnn00101001 T > Rn 1 —
SWAP.B Rm Rn 0110nnnnnmm1000 Rm - Swap upper and 1 —
lower 2 bytes -~ Rn
SWAP. W Rm Rn 0110nnnnmmmm 1001 Rm - Swap upper and 1 —
lower word — Rn
XTRCT RmRn 0010nnnnmmmil101 Center 32 bitsof Rmand 1 —

Rn - Rn

22

5.1.2 ArithmeticInstructions

Table5.4 Arithmetic Instructions

Execution
Instruction Instruction Code Operation State T Bit
ADD Rm R 0011nnnnnmmil100 Rn+Rm - Rn 1 —
ACD #i nm R O11lnnnniiiiiiii Rn +imm - Rn 1 —
ADDC Rm R 0011nnnnmml110 Rn+Rm+T - Rn, 1 Carry
Carry - T
ADDV Rm R 0011nnnnmmmil11l Rn+Rm - Rn, 1 Overflow
Overflow - T
QW EQ #immRO 10001000 iiiiiii IfRO=imm,1 - T 1 Compariso
n result
OWEQ RmRn 0011nnnnmmm©O000 fRn=Rm,1 - T 1 Compariso
n result
QW HS R R 0011nnnnmmm®o010 If Rn=Rm with 1 Compariso
unsigned data, 1 - T n result
aw &= Rm R 0011nnnnmmm0011 If Rn = Rm with 1 Compariso
signeddata,1 - T n result
oW/ H R R 0011nnnnmmm®o110 If Rn > Rm with 1 Compariso
unsigned data, 1 - T n result
QW GI Rm R 0011nnnnmmmo0111 If Rn > Rm with 1 Compariso
signeddata,1 - T n result
QW PL Rn 0100nnnn00010101 IfRNn>0,1 - T 1 Compariso
n result
QW PZ Rn 0100nnnn00010001 IfRn=0,1-T 1 Compariso
n result
OW/ STR Rn R 0010nnnnnmml100 If Rnand Rm have an 1 Compariso
equivalent byte, 1 — n result
T
D vi Rm R 0011nnnnmmm0100 Single-step division 1 Calculation
(Rn/Rm) result
D VOS Rm R 0010nnnnnmmm©0111 MSBof Rn - Q, 1 Calculation
MSB of Rm - M, M ~* result
Q-T
D VouU 0000000000011001 0O - M/Q/T 1 0

23

Table5.4 Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit

DMLS.L RmRn*2 0011lnnnnmmmrl101 Signed operation of 2 to 4*1 —
Rnx Rm - MACH,
MACL

32x32 - 64 bits

DMULU. L Rm Rn*2 0011nnnnmmm0101 Unsigned operation of 2 to 4*1 —
Rnx Rm - MACH,
MACL

32x32 - 64 bits

Dr Rn* 2 0100nnnN00010000 Rn-1 - Rn, when 1 Compariso
Rnis 0,1 - T.When n result
Rnis nonzero,0 - T

EXTS B RmRn 0110nnnnmmmrl110 Abyte in Rmissign- 1 —
extended - Rn

EXTS W RmRn 0110nnnnmmmi111 Aword in Rmissign- 1 —
extended - Rn

EXTUB RMR 0110nnnnmmmil100 A bytein Rmis zero- 1 —
extended - Rn

EXTUW RmRn 0110nnnnnmMmi101 Awordin Rmis zero- 1 —
extended - Rn

NMAC. L @, @+ 0000nnnnnmmml 111 Signed operation of 3/2to4*1 —
*2 (Rn) x (Rm) + MAC
- MAC

32x 32+ 64 - 64 bits

MC W @, @+ 0100nnnnmmnilll Signed operation of 3/(2)*! —
(Rn) x (Rm) + MAC
- MAC

(SH7600) 16 x 16 +
64 — 64 bits

(SH7000) 16 x 16 +
42 _ 42 bits

ML. L Rm Rn*?2 0000nnnnMMMO111 RnxRm - MACL, 2to 4*1 —
32 x 32 - 32 bits

MLS. W RmRn 0010nnnnnmmi111 Signed operation of 1to 3+ —
Rnx Rm - MAC

16 x 16 — 32 bits

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

2. SH7600 instructions

24

Table5.4 Arithmetic Instructions (cont)

Execution
Instruction Instruction Code Operation State T Bit
MLU W RmRn 0010nnnnmmm1110 Unsigned operation of 1 to 3*! —
Rnx Rm - MAC
16 x 16 - 32 bits
NEG RM R 0110nnnnnmmil011 0-Rm - Rn 1 —
NEQC Rm R 0110nnnnmmm1010 0-Rm-T - Rn, 1 Borrow
Borrow - T
SUB Rm R 0011nnnnnmMmm1000 Rn—-Rm - Rn 1 —
SUBC Rm R 0011nnnnnmmil010 Rn—-Rm-T - Rn, 1 Borrow
Borrow - T
SUBV Rm R 0011nnnnnmmm1011 Rn-Rm - Rn, 1 Underflow
Underflow - T
Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)
5.1.3 Logic Operation Instructions
Table5.5 Logic Operation Instructions
Execution
Instruction Instruction Code Operation State T Bit
AND Rm R 0010nnnnmmm 001 Rn&RmM - Rn 1 —
AND # nm RO 1100100%iiiiiiii RO & imm - RO 1 —
AND. B #i nm @R0, GBBR 110011020 iiiiiii (RO + GBR) & imm - 3 —
(RO + GBR)
NOT Rm 0110nnnnmmmo111 ~Rm - Rn 1 —
R Rm R 0010nnnnmmm1011 Rn|Rm - Rn 1 —
xR #i nmm RO 110010120 iiiiiii RO | imm - RO 1 —
RB #imm @R, BR 1100211220 iiiiiii (RO + GBR) | imm - 3 —
(RO + GBR)
TAS. B @ 0100nnnn00011011 If(Rn)is0,1 - T;1 - 4 Test
MSB of (Rn) result
TST Rm R 0010nnnnmmmi000 Rn & Rm; if the resultis 1 Test
0,1 -T result
TST # mm RO 11001000iiiiiiii RO & imm; if the result 1 Test
is0,1 -T result

25

Table5.5

L ogic Operation I nstructions (cont)

Execution

Instruction Instruction Code Operation State T Bit
TST.B #inmm @RO, @R 11001100iiiiiiii (RO+ GBR)&imm;if 3 Test

theresultis0,1 - T result
XCR Rm R 0010nnnnmmm1010 Rn”~Rm - Rn 1 —
XCR # mm RO 11001010iiiiiiii RO~ imm - RO —
XOR B #inmm @RO, BR) 11001110iiiiiiii (RO+GBR)~imm - 3 —

(RO + GBR)
5.1.4 Shift Instructions
Table5.6 Shift Instructions
Instruction Instruction Code Operation Execution State T Bit
ROTL R 0100nnnNn00000100 T « Rn — MSB 1 MSB
ROTR R 0100nnnn00000101 LSB - Rn - T 1 LSB
ROTCL R 0100nnnn00100100 T « RN « T 1 MSB
ROTCR R 0100nnnn00100101 T - Rn - T 1 LSB
SHAL R 0100nnnNn00100000 T ~ Rn < 0O 1 MSB
SHAR R 0100nnnn00100001 MSB - Rn - T 1 LSB
SHL R 0100nnnNn00000000 T « Rn ~ 0 1 MSB
SHR R 0100nnnn00000001 O - Rn - T 1 LSB
SHL2 R 0100nnnNN00001000 Rn<<2 - Rn 1 —
SHR2 R 0100nnnn00001001 Rn>>2 - Rn 1 —
SHL8 R 0100nnnn00011000 Rn<<8 - Rn 1 —
SHRB R 0100nnnn00011001 Rn>>8 - Rn 1 —
SHL16 R 0100nnnn00101000 Rn<<16 - Rn 1 —
SHRI6 R 0100nnnn00101001 Rn>>16 - Rn 1 —

26

5.1.5 Branch Instructions
Table5.7 Branch Instructions

Execution
Instruction Instruction Code Operation State T Bit
BF | abel 10001011dddddddd IfT=0,dispx2+PC - PC; if T = 3/1%3 —

1, nop (where label is disp x 2 + PC)

BF/ S | abel *2 10001111dddddddd Delayed branch, if T=0, disp x2 + 2/1*3 —
PC - PC; ifT=1, nop

BT | abel 10001001dddddddd IfT=1,dispx2+PC - PC; ifT= 3/1%3 —
0, nop (where label is disp + PC)

BT/S | abel *2 10001101dddddddd Delayed branch, if T=1, disp x2 + 2/1*3 —
PC - PC; ifT=0, nop

BRA | abel 1010dddddddddddd Delayed branch, disp x2+PC - 2 —
PC

BRAF Rn*2 0000nNNN00100011 Delayed branch, Rn + PC - PC 2 —

BSR | abel 1011dddddddddddd Delayed branch, PC - PR, dispx2 2 —

+PC - PC

BSRF Rn*2 0000nNNNN00000011 Delayed branch, PC - PR, Rn + 2 —
PC - PC

JWP @ 0100nnnn00101011 Delayed branch, Rn - PC 2 —

JSR @n 0100nnnn00001011 Delayed branch, PC - PR, Rn - 2 —
PC

RTS 0000000000001011 Delayed branch, PR - PC 2 —

Notes: 2. SH7600 instruction
3. One state when it does not branch

27

516 System Control Instructions

Table5.8 System Control Instructions

Execution T
Instruction Instruction Code Operation State Bit
CLRT 0000000000001000 0-T 1 0
QLRWAC 0000000000101000 0 - MACH, MACL 1 —
LDC Rm SR 0100mmm©O0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mmmM®D0011110 Rm - GBR 1 —
LDC Rm VBR 0100mmm©0101110 Rm - VBR 1 —
LDC L @Rm, SR 0100mmMO0000111 (Rm) - SR, Rm+4 - Rm 3 LSB
LDC L @m, GBR 0100mmMmM®D0010111 (Rm) - GBR, Rm+4 - Rm 3 —
LDC L @, VBR 0100mmm©0100111 (Rm) - VBR, Rm+4 - Rm 3 —
LDs Rm MACH 0100nmmm©0001010 Rm - MACH 1 —
LDS Rm MACL 0100mmmM®D0011010 Rm - MACL 1 —
LDs Rm PR 0100mmm©0101010 Rm - PR 1 —
LDS.L @m, MACH 0100mmm©0000110 (Rm) - MACH, Rm+4 - 1 —

Rm
LDS.L @Rm+, MACL 0100mmMmM®0010110 (Rm) - MACL, Rm+4 -~ Rm 1 —
LDS.L @m, PR 0100mmm©0100110 (Rm) - PR,Rm+4 - Rm 1 —
NCP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, stack area - 4 LSB
PC/SR

SETT 0000000000011000 1 -T 1 1
SLEEP 0000000000011011 Sleep 3r4 —
STC SR Rn 0000nnNN00000010 SR - Rn 1 —
STC &BR R 0000nnNn00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnNN00100010 VBR - Rn 1 —
STCL SR @R 0100nnnn0O0000011 Rn-4 - Rn, SR - (Rn) 2 —
STCL GBR @R 0100nnnn00010011 Rn-4 - Rn, GBR - (Rn) 2 —
STCL VBR @R 0100nnnn00100011 Rn-4 - Rn, VBR - (Rn) 2 —
STS MACH, Rn 0000nnNnN00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STS PR Rn 0000nnnNn00101010 PR - Rn 1 —

28

Table5.8 System Control Instructions (cont)

Execution T
Instruction Instruction Code Operation State Bit

STS. L MNMACH @Rn 0100nnnn00000010 Rn-4 - Rn, MACH - (Rn) 1 —

STS. L MACL, @Rn 0100nnnn00010010 Rn-4 - Rn, MACL - (Rn) 1 —
STS.L PR @R 0100nnnn00100010 Rn—4 - Rn, PR - (Rn) 1 —
TRAPA #i nm 1100001Liiiiiiii PC/SR - stack area, (immx 8 —

4 +VBR) - PC

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory - register) is the same as the register

used by the next instruction.

5.2 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.

Table5.9 Instruction Set

Execu-
tion
Instruction Instruction Code Operation State T Bit
ADD #i mm Rn Ollinnnniiiiiiii Rn +imm - Rn 1 —
ADD Rm R 0011nnnnmmml100 Rn+Rm - Rn 1 —
ADDC RmRn 001lnnnnmmmml110 Rn+Rm+T - Rn, 1 Carry
Carry - T
ADDV RmRn 0011nnnnmmmil1l Rn+Rm - Rn, 1 Overflow
Overflow - T
AND #i mm RO 1100100%iiiiiiii RO & imm - RO 1 —
AND Rm 0010nnNnnnnMmm 1001 Rn&Rm - Rn 1 —
AND. B #i mm @R0, BR 1100110%iiiiiiii (RO +GBR) & imm 3 —
- (RO + GBR)
BF | abel 10001011dddddddd If T=0, disp x 2 + 3/1%3 —
PC - PC; ifT=1,
nop
BF/S | abel *2 10001111dddddddd IfT=0,disp x2+ 2/1%3 —
PC - PC; ifT=1,
nop

29

Table5.9

Instruction Set (cont)

Execu-
tion
Instruction Instruction Code Operation State T Bit
BRA | abel 1010dddddddddddd Delayed branch, 2 —
dispx 2+PC -
PC
BRAF Rn*? 0000nNNN00100011 Delayed branch, Rn 2 —
+PC - PC
BSR | abel 1011dddddddddddd Delayed branch, 2 —
PC - PR, disp x 2
+PC - PC
BSRF Rn*? 0000nNNN00000011 Delayed branch, 2 —
PC - PR,Rn+PC
-~ PC
BT | abel 10001001dddddddd IfT=1,disp x2+ 3/1%3 —
PC - PC; if T=0,
nop
BT/S |abel *2 10001101dddddddd FT=1,dispx2+ 2/1% —
PC - PC; if T=0,
nop
CLRVAC 0000000000101000 0 - MACH, MACL —
CLRT 0000000000001000 0-T 0
QW EQ #i mmRO 10001000iiiiiiii IfRO=imm,1 - T 1 Comparison
result
OW EQ RmRn 0011nnnnmmm©000 fRN=Rm,1 - T 1 Comparison
result
OW/ CE RmR 0011nnnnmmmoO011 If Rn = Rm with 1 Comparison
signed data, 1 - T result
OW/ GI' RmRn 0011nnnnnmmm0111 If Rn > Rm with 1 Comparison
signed data, 1 - T result
OWH RnR 0011nnnnnmmm0110 If Rn > Rm with 1 Comparison
unsigned data, 1 — result
T
CW/ HS RmRn 0011nnnnnmmm©010 If Rn = Rm with 1 Comparison
unsigned data, 1 - result
T
OW/ PL R 0100nnnn00010101 fRn>0,1 - T 1 Comparison
result
CW/ PZ Rn 0100nnnn00010001 fRn=20,1-T 1 Comparison
result

Notes: 2. SH7600 instructions
3. One state when it does not branch

30

Table5.9

Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State T Bit

OW/ STR Rm R 0010nnnnnmmmi.100 If Rnand Rm have 1 Comparison
an equivalent byte, result
1-T

D VOS Rm R 0010nnnnmmm®D111 MSB of Rn - Q, 1 Calculation
MSB of Rm - M, M result
"Q T

D VouU 0000000000011001 0 - MIQIT 1 0

D vi Rm R 0011nnnnmmm©100 Single-step division 1 Calculation
(Rn/Rm) result

DMLS.L Rm Rn*2 0011nnnnmm101 Signed operation of 2to4*1 —
RnxRm - MACH,
MACL

DMULU. L RmRn*2 0011nnnnmmmm0101 Unsigned operation 2to4*1 —
of Rn X Rm -
MACH, MACL

Dr Rn*2 0100nnnn00010000 Rn-1 - Rn,when 1 Comparison
Rnis0,1 - T. result
When Rn is
nonzero,0 - T

EXTS. B Rm R 0110nnnnmmm 1110 A byte in Rmis 1 —
sign-extended -
Rn

EXTS. W Rm R 0110nnnnnmmmi111 A word in Rm is 1 —
sign-extended —
Rn

EXTU. B Rm R 0110nnnnmmm1100 A byte in Rm is 1 —
zero-extended -
Rn

EXTU. W Rm R 0110nnnnmmmi101 A word in Rmis 1 —
zero-extended -
Rn

JMP @ 0100nnnn00101011 Delayed branch, Rn 2 —

. PC

Notes: 1. The normal minimum number of execution states
2. SH7600 instructions

Table5.9

Instruction Set (cont)

Execu -
tion
Instruction Instruction Code Operation State T Bit
JSR @ 0100nnnn00001011 Delayed branch, 2 —
PC - PR,Rn -
PC
LDC Rm GBR 0100nMmmMM©0011110 Rm - GBR 1 —
LDC Rm SR 0100nMmmMM©O0001110 Rm - SR 1 LSB
LDC Rm VBR 0100mMmMmM©00101110 Rm - VBR 1 —
LDC L @m-, GBR 0100nMmmMM©00010111 (Rm) - GBR, Rm 3 —
+4 - Rm
LDC L @m, SR 0100mMmMMO0000111 (Rm) - SR, Rm+ 3 LSB
4 - Rm
LDC L @, VBR 0100nMmmMM©00100111 (Rm) - VBR, Rm 3 —
+4 - Rm
LDS Rm MACH 0100mMmMM©00001010 Rm - MACH 1 —
LDS Rm MACL 0100nMmmMM©0011010 Rm - MACL 1 —
LDS Rm PR 0100nmmMmM©0101010 Rm - PR 1 —
LDS.L @ m+, MACH 0100mMmMM©O0000110 (Rm) - MACH, 1 —
Rm+4 - Rm
LDS. L @m, MACL 0100nMmmMmM©0010110 (Rm) - MACL, Rm 1 —
+4 - Rm
LDS.L @m, PR 0100mMmMmM©00100110 (Rm) - PR,Rm+ 1 —
4 - Rm
MC L @m, @nt+*2 0000nnnnNMMM1111 Signed operation of 3/(2to —
(Rn) x (Rm) + MAC 4)!
- MAC
MAC W @Rmt, @+ 0100nnnnmmmm 1111 Signed operation of 3/(2)*! —
(Rn) x (Rm) + MAC
- MAC
MOV #i mm Rn 1210nnnni i iiiiii imm - Sign 1 —
extension —» Rn
MOV Rm R 0110nnnnPMmMmMO011 Rm - Rn 1 —

Notes: 1. The normal minimum number of execution states (the number in parentheses is the

number of states when there is contention with preceding/following instructions)
2. SH7600 instructions

32

Table5.9

Instruction Set (cont)

Execu -
tion

Instruction Instruction Code Operation State T Bit

MOV. B @disp, BBR,R0 11000100dddddddd (disp + GBR) - 1 —
Sign extension —
RO

MV.B @disp,R), R0 10000100mmmdddd (disp+Rm) - Sign 1 —
extension - RO

MV.B @RO,RM, R 0000nnNNNMMM1100 (RO+Rm) - Sign 1 —
extension — Rn

MV.B @Rm+, Rn 0110nnnnmmm®©100 (Rm) - Sign 1 —
extension - Rn,
Rm+1 - Rm

MV.B @mm 0110nnnnNMmMMO000 (Rm) - Sign 1 —
extension — Rn

MOV.B RO, @di sp, 3BR 11000000dddddddd RO - (disp+ GBR) 1 —

MOV. B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —

MDV.B Rm @RO, Rn) 0000NNNNMMM0100 Rm - (RO + Rn) 1 —

MV.B Rm @R 0010nnnnMMM0100 Rn-1 -~ Rn, Rm - 1 —_
(Rn)

MDV. B Rm @n 0010nnNNnNmMmMmMO000 Rm - (Rn) 1 —

MOV.L @disp, BBR,R0 11000110dddddddd (disp x4+ GBR) » 1 —
RO

MOV. L @di sp, PO, Rn 1101nnnndddddddd (disp x4+ PC) - 1 —
Rn

MOV.L @disp, R, R 0101nnnnmmmdddd (disp x4+ Rm) - 1 —
Rn

MV.L @RO,RM, R 0000nNNNMM1110 (RO+Rm) - Rn 1 —

MOV.L @ Rn 0110nnnnnMmm®©110 (Rm) - Rn,Rm+4 1 —
- Rm

MOV.L @mRn 0110nnnnmmmd010 (Rm) - Rn —

MOV.L RO, @disp, BBR 11000010dddddddd RO - (disp x 4 + 1 —
GBR)

MOV.L Rm @di sp, Rn) 00021nnnnmmmuddd Rm - (disp x4 + 1 —
Rn)

MOV.L Rm @RO, Rn) 0000NNNNMMM0110 Rm - (RO + Rn) 1 —

MOV. L R @R 0010nnnnMMM0110 Rn-4 - Rn, Rm - 1 —
(Rn)

MOV. L Rm @ 0010nnnnMMMO010 Rm - (Rn) —

MOV. W @disp, BBR), R0 11000101dddddddd (disp x2+GBR) - 1 —

Sign extension —
RO

33

Table5.9

Instruction Set (cont)

Execu -
tion
Instruction Instruction Code Operation State T Bit
MOV. W @di sp, PO, Rn 1001nnnndddddddd (disp x 2+ PC) - 1 —
Sign extension —
Rn
MOV. W @disp, Ry, RO 10000101nmmmuddd (disp x 2+ Rm) - 1 —
Sign extension -
RO
MV.W @R0,R1), R 0000nnNNMMMML101 (RO+Rm) - Sign 1 —
extension —» Rn
MV. W @, Rn 0110nnnnnmm®©101 (Rm) - Sign 1 —
extension - Rn,
Rm+2 - Rm
MOV. W @mRn 0110nnnnnmmm®©001 (Rm) - Sign 1 —
extension —» Rn
MOV. W RO, @di sp, BBR) 11000001dddddddd RO - (disp x 2+ 1 —
GBR)
MV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x 2 + 1 —
Rn)
MOV. W Rm @RO, Rn) 0000NnnNNNMMMO101 Rm - (RO + Rn) 1 —
MV.W Rm @R 0010nnnnnmmm0101 Rn-2 -~ Rn, Rm - 1 —
(Rn)
MOV. W Rm @n 0010nnnnmmmO001 Rm - (Rn) 1 —
MOVA @di sp, PO, RO 11000111dddddddd dispx4+PC - RO 1 —
MOVT R 0000nnnn00101001 T - Rn 1 —
ML.L RmRn*? 0000nNNNMMMO111 RnxRm - MACL 2to4 —
MLS. W RmRn 0010nnnnMMMMi111 Signed operation of 1to3*1 —
Rnx Rm - MAC
MLU W RmRn 0010nnnnmmm 1110 Unsigned operation 1to3*1 —
of Rn x Rm - MAC
NEG Rm 0110nnnnmmmm 011 0-Rm - Rn 1 —
NECC Rm R 0110nnnnmmmil010 0-Rm-T - Rn, 1 Borrow
Borrow - T
NCP 0000000000001001 No operation 1 —
NOT Rm R 0110nnnnmmm®o©111 ~Rm - Rn 1 —
R #i mm RO 1100101%iiiiiiii RO | imm - RO 1 —
R Rm R 0010nnnnmmrl011 Rn|Rm - Rn 1 —

Notes: 1. The normal minimum number of execution states
2. SH7600 instructions

34

Table5.9

Instruction Set (cont)

Execu-
tion

Instruction Instruction Code Operation State T Bit
R B #i mm @R, BR 1100121%iiiiiiii (RO + GBR) | imm 3 —

- (RO + GBR)
ROTCL R 0100nnnn00100100 T<«RnNT 1 MSB
ROTCR R 0100nnnn00100101 ToRnoT 1 LSB
ROTL R 0100nnnNn00000100 T « Rn « MSB 1 MSB
ROTR R 0100nnnn00000101 LSB - Rn - T 1 LSB
RTE 0000000000101011 Delayed branch, 4 LSB

stack area —

PC/SR
RTS 0000000000001011 Delayed branch, 2 —

PR - PC
SETT 0000000000011000 1T 1 1
SHAL R 0100nnNn00100000 T<Rn<O0 1 MSB
SHAR R 0100nnnn00100001 MSB - Rn - T 1 LSB
SHL R 0100nnnNn00000000 T<Rn<O 1 MSB
SHL2 Rn 0100nnnn00001000 Rn<<2 - Rn 1 —
SHL8 R 0100nnnn00011000 Rn<<8 - Rn 1 —
SHL16 Rn 0100nnnn00101000 Rn<<16 - Rn 1 —
SHR R 0100nnnn00000001 0O-Rn T 1 LSB
SHRR R’ 0100nnnn00001001 Rn>>2 - Rn 1 —
SHRB R 0100nnnn00011001 Rn>>8 - Rn 1 —
SHRI6 Rn 0100nnnn00101001 Rn>>16 - Rn 1 —
SLEEP 0000000000011011 Sleep 3 —
STC GBR R 0000nnNN00010010 GBR - Rn 1 —
STC SR R 0000nNNN00000010 SR - Rn 1 —
STC VBR R 0000nnnNn00100010 VBR - Rn 1 —
STCL GBR @R 0100nnnn00010011 Rn-4 - Rn, GBR 2 —

- (Rn)
STCL SR @R 0100nnnn00000011 Rn—4 - Rn, SR - 2 —

(Rn)
STCL VBR @R 0100nnnNn00100011 Rn-4 - Rn, VBR 2 —

- (Rn)
STS MACH, Rn 0000nnNn00001010 MACH - Rn 1 —

35

Table5.9

Instruction Set (cont)

Execu-
tion
Instruction Instruction Code Operation State T Bit
STS MACL, Rn 0000nnNnn00011010 MACL - Rn 1 —
STS PR Rn 0000nnnn00101010 PR - Rn 1 —
STS. L MACH @R 0100nnnNN00000010 Rn—4 - Rn, 1 —
MACH - (Rn)
STS. L MACL, @R 0100nnnNn00010010 Rn—4 - Rn, MACL 1 —
- (Rn)
STS. L PR @R 0100nnnNn00100010 Rn—4 - Rn, PR - 1 —
(Rn)
SUB Rm R 0011nnnnmmmil000 Rn-Rm - Rn 1 —
SUBC Rm R 0011nnnnmmmi010 Rn-RmM-T - Rn, 1 Borrow
Borrow - T
SuBV Rm R 0011nnnnmmmi011 Rn-Rm - Rn, 1 Underflow
Underflow - T
SWP.B RN Rn 0110nnnnnMMMm1000 Rm - Swap upper 1 —
and lower 2 bytes -
Rn
SMPW RRn 0110nnnnMMMM1001 Rm - Swap upper 1 —
and lower word -
Rn
TAS. B @ 0100nnnn00011011 If(Rn)is0,1 - T; 4 Test
1 - MSB of (Rn) result
TRAPA #imm 1100001%iiiiiiii PC/SR - stack 8 —
area, (imm x 4 +
VBR) - PC
TST #i nm RO 11001000i iiiiiii RO & imm; if the 1 Test
resultis0,1 - T result
TST Rm R 0010nnnnmmmi000 Rn & Rm; if the 1 Test
resultis0,1 - T result
TSI.B # nm @R, &R 11001100iiiiiiii (RO + GBR) & imm; 3 Test
if the resultis 0, 1 result
-T
XCR #i mm RO 11001010iiiiiiii RO~ imm - RO 1 —
XR RMm R 0010nnnnmmmmiL010 Rn~*Rm - Rn 1 —
XRB # nm @R, &R 11001110iiiiiiii (RO +GBR)"imm 3 —
- (RO + GBR)
XTRCT Rm R 0010nnnnmmmil101 Center 32 bits of 1 —

Rmand Rn - Rn

36

Section 6 Instruction Descriptions

This section describes instructions in al phabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicatesif the instruction is adelayed branch instruction or interrupt disabled instruction

Format Abstract Code State T Bit
Assembler input format; A brief description of Displayed in Number of The value of
imm and disp are operation order MSB “ LSB states when T bit after the
numbers, expressions, there is no instruction is
or symbols wait state executed

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part isjust areference to help understanding of
an operation. The following resources should be used.

Reads data of each length from address Addr. An address error will occur if word dataiis read
from an address other than 2n or if longword datais read from an address other than 4n:

unsi gned char Read_Byt e(unsi gned | ong Addr);
unsi gned short Read Wrd(unsi gned | ong Addr);
unsi gned | ong Read_Long(unsi gned | ong Addr);

Writes data of each length to address Addr. An address error will occur if word datais written to
an address other than 2n or if longword data is written to an address other than 4n:

unsi gned char Wite_Byte(unsigned | ong Addr, unsigned |ong Data);
unsi gned short Wite Wrd(unsigned | ong Addr, unsigned |ong Data);
unsigned long Wite_Long(unsigned | ong Addr, unsigned |ong Data);

Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4);,
execution starts from an instruction at address O rather than address 4. The following
instructions are detected before execution asillegal dot instruction (they becomeillegal slot
instructions when used as delay dot instructions):

BF, BT, BRA, BSR, IMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Del ay_Sl ot (unsi gned | ong Addr);

37

o Listregisters:

unsi gned | ong R 16];

unsi gned | ong SR GBR, VBR
unsi gned | ong MACH MACL, PR,
unsi gned | ong PC

» Definition of SR structures:

struct SRO {

unsi gned | ong dunmyO: 22;
unsi gned long M:1;

unsi gned | ong Q: 1;

unsi gned long 10:4;

unsi gned | ong dummyl: 2;
unsi gned | ong S0:1;

unsi gned | ong TO: 1;

b
» Definition of bitsin SR:

#define M ((*(struct SRO *)(&SR)). M)

#define Q ((*(struct SRO *)(&SR)). Q)
#define S ((*(struct SRO *)(&SR)). S0)

#define T ((*(struct SRO *)(&SR)). TO)
* Error display function:
Error(char *er);

The PC should paint to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; meanstheinstruction starts execution from address 0, not address 4.

Examples. Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Charactersin italics such as.align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

38

.org
.data. w
.data.l

. sdat a
.align 2
.align 4
.arepeat 16
.arepeat 32

. aendr

Location counter set

Securing integer word data

Securing integer longword data
Securing string data

2-byte boundary alignment

2-byte boundary alignment

16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Note: The SH-series cross assembler version 1.0 does not support the conditional assembler

functions.

Notes. 1. Intheassembler descriptionsin this manual for addressing modes that involve the

following displacements (disp), the value prior to scaling (x1, x2, x4) according to the
operand size iswritten. Thisis done to show clearly the operation of the LSI; seethe
assembl er notation rules for the actural assembler descriptions.

@(disp:4, Rn): Register indirect with displacement

@(disp:8, GBR): GBR indirect with displacement

@(disp 8, PC): PC relative with displacement

disp:8, disp:12: PCrelative

. Among the 16 bits of the instruction code, a code not assigned as an instruction is
treated as ageneral illegal instruction, and will result in illegal instruction exception
processing, Thisincludes the case where an instruction code for the SH7600 series
only is executed on the SH7000 series.
Example 1: H'FFF [Generadl illegal instruction in both SH7000 and
SH 7600]
Example 2: H'3105 (=DMUL.L RO, R1)[lllegal instruction in SH7000]

. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., isa
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example1
BRA Label
data. WH FFFF ~ Slotillegal instruction
[H'FFF is fundamentally a general illegal
instruction]
Example 2 RTE

BT/ S Label ~ Slotillegal instruction

39

6.2 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit
ADD Rm R Rm+Rn - Rn 0011nnnnmmmi100 1 —
ADD #i mm Rn Rn +imm - Rn Olldlnnnniiiiiiii 1 —

Description: Adds general register Rn datato Rm data, and stores the result in Rn. The contents
of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 hits, thisinstruction can add and subtract immediate data.

Operation:

ADD(l ong m1ong n) /* ADD RmRn */

{
Rin] +=Rn};
PC+=2;

}

ADDI (long i,long n) /* ADD #i mmRn */

{
if ((i&x80)==0) R n]+=(0x000000FF & (long)i);
el se R n] +=(OxFFFFFFOO | (long)i);
PC+=2;

}

Examples:
ADD RO, RL Before execution RO = H'7FFFFFFF, R1 = H'00000001

After execution R1 = H'80000000

ADD #H 01, R2 Beforeexecution R2 = H'00000000
After execution R2 = H'00000001

ADD #H FE, R3 Beforeexecution R3=H'00000001
After execution R3 = H'FFFFFFFF

40

6.3 ADDC (ADD with Carry): Arithmetic I nstruction

Format Abstract Code State T Bit

ADDC RmRn Rn+Rm+T - Rn,carry - T 0011nnnnmmm1110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long mlong n) /* ADDC RmRn */

{
unsi gned | ong tnpoO, t npl;

tnpl=R n] +Rnj;
tnpO=R n] ;
R n] =t np1+T;
if (tnpO>tnpl) T=1;
el se T=0;
if (tnpl>Rn]) T=1;
PC+=2;
}
Examples:
QRT RO:R1 (64 bits) + R2:R3 (64 bits) = R0:R1 (64 hits)
ADDC R3,RL Before execution T =0, R1 = H'00000001, R3 = H'FFFFFFFF
After execution T =1, R1=H'0000000
ADDC R, RO Before execution T =1, RO = H'00000000, R2 = H'00000000
After execution T =0, RO = H'00000001

41

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code State T Bit

ADDV Rm R Rn+Rm - Rn, overflow - T 0011nnnnmmmll1l 1 Overflow

Description: Adds general register Rn datato Rm data, and stores the result in Rn. If an overflow
occurs, the T bitisset to 1.

Operation:

ADDV(1 ong m | ong n) /*ADDV Rm Rn */
{

| ong dest, src, ans;

if ((long) R n]>=0) dest=0;

el se dest =1;

if ((long) R nj>=0) src=0;

el se src=1;

src+=dest ;

REn] +=R{nj;

if ((long) R n]>=0) ans=0;

el se ans=1,;

ans+=dest ;

if (src==0 || src==2) {
if (ans==1) T=1;

el se T=0;
}
el se T=0;
PC+=2;
}
Examples:

ADDV RO, RL Before execution RO = H'00000001, R1 = H'7FFFFFFE, T =0
After execution R1=H'7FFFFFFF, T=0

ADDV RO, RL Before execution RO = H'00000002, R1 = H'7FFFFFFE, T =0
After execution R1=H'80000000, T =1

42

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State TBit

AND Rm R Rn&Rm - Rn 0010nnnnmmmi001 1 —

AND # mfm R0 RO &imm - RO 1100100%iiiiiiii 1 —

AND. B #i mm @R)0, BR) (RO + GBR) &imm - (RO+ 1100110%iiiiiiii 3 —
GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.
Operation:

AND(l ong mlong n) /* AND RmRn */

{
R n] &R nj
PC+=2;

}

ANDI(long i) /* AND # mm RO */

{
R 0] &=(0x000000FF & (long)i);
PC+=2;

}

ANDMlong i) /* AND B #imm @R0, @BBR */

{
| ong tenp;
t enp=(| ong) Read_Byt e(BR+R 0]) ;
t enp&=(0xO00000FF & (long)i);
Wite Byte(@BR+R 0], tenp);
PC+=2;

}

43

Examples:

AND #H OF, RO

AND B #H 80, @R0, GBR)

Before execution
After execution

Before execution
After execution

Before execution
After execution

44

RO = HAAAAAAAA, R1 = H'55555555
R1 = H'00000000

RO = HFFFFFFFF
RO = H'0000000F

@(RO,GBR) = H'A5
@(RO,GBR) = H'80

6.6 BF (Branch if False): Branch Instruction
Format Abstract Code State T Bit

BF label WhenT=0,disp x2+PC - PC; 10001011dddddddd 31 —
When T =1, nop

Description: Readsthe T hit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is—256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles, when not branching, one cycle.
Operation:

BF(1 ong d) [* BF disp */

{
| ong di sp;
i f ((d&x80)==0) di sp=(0x000000FF & (Iong)d);
el se di sp=(OxFFFFFFOO | (long)d);
if (T==0) PC=PCH(di sp<<1) +4;
el se PC+=2;
}
Example:
QLRT Tis always cleared to O

BT TRET. T Does not branch, because T =0
BF TRE&ET_F Branches to TRGET_F, because T = 0

NCP
NCP —~ The PC location is used to cal cul ate
t he
branch destinati on address of the BF
i nstruction
TRCET_F: ~ Branch destination of the BF instruction

45

6.7 BF/S(Branch if Falsewith Delay Slot): Branch Instruction (SH7600)
Class. Delayed branch instruction

Format Abstract Code State T Bit
BF/ S When T =0, disp x 2+ PC - PC; 10001111dddddddd 2/1 —
| abel When T =1, nop

Description: Readsthe T bit, and conditionally branches with delay slot. If T = 1, BF executesthe
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubl ed.
Consequently, the relative interval from the branch destination is—256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF/S with the BRA instruction or the
like.

Note: Sincethisisadelayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after isa
branch instruction, it isrecognized as an illegal slot instruction.

When branching, thisis atwo-cycle instruction; when not branching, one cycle.
Operation:

BFS(long d) /* BFS disp */

{
| ong di sp;
unsi gned | ong tenp;
t enp=PC,
i f ((d&x80)==0) di sp=(0x000000FF & (Iong)d);
el se di sp=(OxFFFFFFO0 | (1 ong)d);
if (T==0) {
PC=PCH(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;
}
el se PC+=2;
}

46

Example:

CLRT

BT/S TRGET T
NCP

BF/ S TRGET F
ADD RO, RL
NCP

TRGET_F:

Tisaways0
Does not branch, because T =0

Branches to TRGET, because T = 0
Executed before branch

~ The PC location is used to calculate the branch destination
address of the BF/S instruction

~ Branch destination of the BF/S instruction

a7

6.8 BRA (Branch): Branch Instruction
Class. Delayed branch instruction

Format Abstract Code State T Bit

BRA | abel dispx 2 +PC - PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC pointsto
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is
—4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the IMP instruction. Here, aMQV instruction must be used to
transfer the destination address to a register.

Note: Sincethisisadelayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as anillegal slot
instruction.

Operation:

BRA(I ong d) /* BRA disp */
{

unsi gned | ong tenp;

| ong di sp;
if ((d&0x800)==0) di sp=(0x00000FFF & d);
el se di sp=(OxFFFFFO00 | d);
tenp=PC
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;
}

Example:

BRA TRGET Branchesto TRGET
ADD RO, Rl Executes ADD before branching

NCP ~ The PC location is used to calculate the branch destination address
of the BRA instruction
TRGET: ~ Branch destination of the BRA instruction

48

6.9 BRAF (Branch Far): Branch Instruction (SH7600)
Class: Delayed branch instruction

Format Abstract Code State T Bit
BRAF R Rn+PC - PC 0000nnnNn00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC isthe start address of the second instruction after this instruction.

Note: Sincethisisadelayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as anillegal slot
instruction.

Operation:

BRAF(long n) /* BRAF Rn */

{
unsi gned | ong t enp;
tenp=PC
PC+=R n] ;
Del ay_Sl ot (t enp+2) ;
}
Example:

MOV. L #(TRGET-BSRF_PC), RO Sets displacement

BRAF @0 Branchesto TRGET
ADD RO, RL Executes ADD before branching
BRAF_PC. — ThePC location is used to calculate

the branch destination address of
the BRAF instruction

NCP
TRGET: ~ Branch destination of the BRAF instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay dot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay dlot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

49

6.10 BSR (Branch to Subroutine): Branch Instruction
Class. Delayed branch instruction

Format Abstract Code State T Bit

BSR | abel PC - PR, dispx 2+ PC - PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC valueis stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to aregister by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Sincethisis adelayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged asanillegal slot
instruction.

Operation:

BSR(I ong d) /* BSR disp */

{
| ong di sp;

i f ((d&x800)==0) di sp=(0x00000FFF & d);
el se di sp=(O0xFFFFFO00 | d);

PR=PC

PC=PCH(di sp<<1) +4;

Del ay_Sl ot (PR+2) ;

50

Example:

TRCET:

BSR TRCGET
MV R3, R4
ADD RO,RL
MV R,R3
RTS

MV #1,R0

Branchesto TRGET
Executes the MOV instruction before branching

~ The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

~ Procedure entrance

Returns to the above ADD instruction
Executes MOV before branching

51

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)
Class. Delayed branch instruction

Format Abstract Code State T Bit

BSRF R PC - PR,Rn+PC - PC 0000nnNNN00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC valueis stored in the PR. The branch
destination is PC + the 32-hit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS.

Note: Sincethisisadelayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged asan illegal slot
instruction.

Operation:
BSRF(long n) /* BSRF Rn */
{
PR=PC,
PC+=R n] ;
Del ay_9l ot (PR+2) ;
}
Example:
MWV.L #(TRGET-BSRF_PC), RO Sets displacement
BRSF @0 Branchesto TRGET
MYV R3, R4 Executes the MOV instruction before
branching
BSRF_PC ~ ThePC location is used to
calculate the branch destination
with BSRF
ADD RO, RL
TRGET: « Procedure entrance
MV R,R3
RTS Returns to the above ADD instruction
MV #1, R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
till be made using the value of the register prior to the change as the branch destination
address.

52

6.12 BT (Branch if True): Branch Instruction

Format Abstract Code State T Bit
BT | abel When T =1, disp x2+PC - 10001001dddddddd 3/1 —
PC;

When T =0, nop

Description: Readsthe T bit, and conditionally branches. If T =1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC + displacement.
The PC pointsto the starting address of the second instruction after the branch instruction. The 8-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is —256 to +254 bytes. If the displacement istoo short to reach the branch destination,
use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.
Operation:

BT(I ong d) [* BT disp */

{
| ong di sp;
i f ((d&x80)==0) di sp=(0x000000FF & (Iong)d);
el se di sp=(OxFFFFFFOO | (long)d);
if (T==1) PC=PCH(di sp<<1) +4;
el se PC+=2;
}
Example:
SETT Tisawaysl
BF TRGET_F Doesnot branch, because T =1
BT TR&ET_T Branchesto TRGET T, because T =1
NCP
NCP — The PC location is used to calculate the branch destination
address of the BT instruction
TRGET_T: ~ Branch destination of the BT instruction

53

6.13 BT/S(Branchif Truewith Delay Slot): Branch Instruction (SH7600)

Format Abstract Code State T Bit
BT/ S | abel When T =1, disp x2+PC - 10001101dddddddd 21 —
PC;

When T =0, nop

Description: Readsthe T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is—256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
thelike.

Note: Sincethisisadelay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles,
when not branching, one cycle.

Operation:

BTS(I ong d) /* BTS disp */

{
| ong di sp;
unsigned long tenp;
tenp=PC
i f ((d&0x80)==0) di sp=(0x000000FF & (I ong)d);
el se di sp=(OxFFFFFFOO | (long)d);
if (T==1) {
PC=PCH(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;
}
el se PG+=2;
}

54

Example:

TRGET_T:

SETT

BF/ S TRGET F
NCP

BT/S TRGET T
ADD RO, RL
NCP

Tisadwaysl
Does not branch, because T = 1

Branchesto TRGET, because T = 1
Executes before branching.

— The PC location is used to calcul ate the branch destination
address of the BT/S instruction

~ Branch destination of the BT/S instruction

55

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code State T Bit

CLRVAC 0 - MACH, MACL 0000000000101000 1 —

Description: Clearsthe MACH and MACL registers.
Operation:

ARVAC) /* GLRWAC */
{

NMACH=0;

MACL=0;

PC+=2;

}
Example:

QLRVAC Initializes the MAC register
MC W @0+ @+ Multiply and accumulate operation

MAC. W @R+, @1+

56

6.15 CLRT (Clear T Bit)

Format Abstract

: System Control Instruction

Code

State

T Bit

CLRT 0-T

0000000000001000

1

0

Description: Clearsthe T bit.
Operation:

CLRT() /* CLRT */
{

T=0;
PC+=2;
}
Example:

CLRT Before execution
After execution

T

57

6.16 CMP/cond (Compare Conditionally): Arithmetic I nstruction

Format Abstract Code State T Bit

OW EQ RmRn WhenRn=Rm,1 - T 0011nnnnNnmmm©000 1 Comparison
result

OW/ G RmR When signed and Rn = 0011nnnnmmMm®©011 1 Comparison
Rm,1-T result

OW/ GI' RmRn When signed and Rn > 0011nnnnmmmmoO111 1 Comparison
Rm,1-T result

Qw/ H Rm R When unsigned and Rn > 0011nnnnmmmm0110 1 Comparison
Rm,1-T result

OWHS RmRn When unsigned and Rn= 0011nnnnmmm0010 1 Comparison
Rm,1-T result

OW/PL Rn WhenRn>0,1 - T 0100nnnn00010101 1 Comparison
result

QW PZ Rn WhenRn=0,1 - T 0100nnnn00010001 1 Comparison
result

CW/ STR RmRn When a byte in Rn equals 0010nnnnmmmi1100 1 Comparison
abyteinRm,1 - T result

OWEQ # mmR) WhenRO=imm,1 - T 10001000i iiiiiii 1 Comparison
result

Description: Compares general register Rn datawith Rm data, and setsthe T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to O if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.1 shows the
mnemonics for the conditions.

58

Table6.1 CMP Mnemonics

Mnemonics Condition
CW/ EQ Rm Rn IfRN=Rm, T=1
oW/ GE Rm R If Rn = Rm with signed data, T =1
CW/ GT Rm Rn If Rn > Rm with signed data, T=1
OW/H RmRn If Rn > Rm with unsigned data, T=1
OW/ HS Rm R If Rn = Rm with unsigned data, T =1
OW/ PL R IfRN>0,T=1
OW/ PZ R IfRN=0,T=1
CW/ STR Rm Rn If a byte in Rn equals a byteinRm, T=1
QW EQ #i mm RO IfRO=imm, T=1
Operation:
OMPEQ(l ong m | ong n) /* OW_EQ RmRn */
{
if (Rnj==Rnj) T=1;
el se T=0;
PC+=2;
}
CVMPCGE(1 ong m | ong n) /* OW_CGE R R */
{
if ((long)Rn]>=(long)Rn]) T=1;
el se T=0;
PC+=2;
}
OMPGI(l ong m1ong n) /* OW_GT RnRn */
{
if ((long)Rn]>(long)Rinj) T=1;
el se T=0;
PC+=2;
}

59

OwWH (1 ong mlong n) /* OW_H RmRn */

{
if ((unsigned | ong) R n]>(unsigned long) i nj) T=1;

el se T=0;
PC+=2;
}
CVWPHS(1 ong m | ong n) /* OQW_HS RmRn */
{
if ((unsigned | ong) R n]>=(unsigned long) R nj) T=1,
el se T=0;
PC+=2;
}
OWPPL(1 ong n) /* OW_PL Rn */
{
if ((long) Rn]>0) T=1,
el se T=0;
PC+=2;
}
CWPZ(long n) /* QW_PZ R */
{
if ((long)Rin]>=0) T=1;
el se T=0;
PC+=2;
}

60

CWPSTR(I ong m 1 ong n) /* OW_STR RmRn */
{

unsi gned | ong tenp;

long HH H,, LH, LL;

tenp=R{n] "R n};
HH=(t enp&0XFFO00000) >>12;
H_=(t enp&x00FFO000) >>8;
LH=(t enp&0x0000FF00) >>4;
LL=t enp&0x000000FF;
HHEHHSEH &8I H&&L L ;
if (HHE=0) T=1;
el se T=0;
PC+=2;

}

OwIMlong i) /* OW_EQ #inm RO */

{
long i mm
if ((i &x80)==0) i mm=(0x000000FF & (long i));
el se i m¥(OxFFFFFFOO | (long i));
if (RO]==imm) T=1;
el se T=0;
PC+=2;

}

Example:

aw/ G RO, RL RO = H'7FFFFFFF, R1 = H'80000000
BT TRET. T Does not branch because T =0
Qw/ HS RO, RL RO = H'7FFFFFFF, R1 = H'80000000
BT TRET. T Branchesbecause T = 1
OQW/STR R, R3 R2=*ABCD”,R3=*“XYCZ"
BT TRET. T Branchesbecause T = 1

61

6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State T Bit
DWS RmR1 MSBofRn - Q,MSB of Rm - 0010nnnnnmm0111 1 Calculation
M, MQ - T result

Description: DIVOSisan initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV 1 or another instruction that divides for each bit
after thisinstruction. See the description given with DIV 1 for more information.

Operation:
D VOS(1 ong m | ong n) /* DIVOS Rm R */
{
i f ((R n] &x80000000) ==0) Q=0;
el se Qr1;
i f ((R nj &x80000000) ==0) M:0;
el se M1,
T=H(M=Q);
PC+=2;

}

Example: SeeDIV1.

62

6.18 DIVOU (Divide Step 0 asUnsigned): Arithmetic Instruction

Format Abstract Code State T Bit

D Vou 0 - MIQIT 0000000000011001 1 0

Description: DIVOU isan initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV 1 or another instruction that divides for each hit
after thisinstruction. See the description given with DIV 1 for more information.

Operation:

DVOU) /* DIVOU */

{
MQ=T=0;
PC+=2;

}
Example: See DIV 1.

63

6.19 DIV1 (Divide Step 1): Arithmetic I nstruction

Format Abstract Code State T Bit
D Vi Rm R 1-step division (Rn + Rm) 0011nnnnnmmm®©100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
ortheM, Q, and T hits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient

bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a

division, first find the quotient using a DIV 1 instruction, then find the remainder as follows:
(Dividend) — (divisor)] (quotient) = (remainder)

with the SH7600 series in which adivider isinstalled as a peripheral function, the remainder can

be found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV 1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV 1. For the division sequence, see the following examples.

64

Operation:

D Vi(long mlong n) /* DV1I RmRn */

{

unsi gned | ong t npO;

unsi gned char ol d_g, tnpl;

ol d_g=Q

Q=(unsi gned char) ((0x80000000 & R n])!=0);
R n] <<=1;

R n]| =(unsi gned | ong) T,
swi tch(ol d_q){
case 0:switch(M{
case 0:tnp0=R n];
Rn]-=Rnj;
tnpl=(R n] >t np0);
switch(Q{
case 0: =t npl;
br eak;
case 1: @=(unsi gned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnp0=R n];
R +=Rnj;
tnpl=(R n] <t np0);
switch(Q{
case 0: @(unsi gned char) (tnpl==0);
br eak;
case 1: tnpl;
br eak;

br eak;

br eak;

65

case 1:switch(M{
case 0:tnpO=R n];
Rin] +=Rnj;
tnpl=(R n] <t np0) ;
switch(Q{
case 0: =t npl;
br eak;
case 1: @=(unsigned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnp0O=R n];

Rn-=Rnj;
tnpl=(R n] >t np0) ;
switch(Q{
case 0: @(unsigned char) (tnpl==0);
br eak;
case 1: tnpl;
br eak;
}
br eak;
}
br eak;
}
T=(&F=N);
PC+=2;

66

Example 1:

R1 (32 bits) / RO (16 bits) = R1 (16 hits):Unsigned

SH L16 R0 Upper 16 bits = divisor, lower 16 bits=0

TST RO, RO Zero division check

BT ZERO DV

aw/ HS RO, RL Overflow check

BT OVER D'V

D VOU Flag initialization

.arepeat 16

D V1 RO, RL Repeat 16 times

. aendr

ROTCL RL

EXTU W RL, R R1 = Quotient
Example 2:

R1:R2 (64 hits)/R0 (32 hits) = R2 (32 hits):Unsigned

TST RO, RO Zero division check
BT ZERO DI V

QW HS RO, RL Overflow check

BT OVER DI V

D VoU Flag initialization
.arepeat 32

ROTCL R Repeat 32 times

D vi RO, RL

. aendr

ROTCL 274 R2 = Quotient

67

Example 3:

SH L16
EXTS. W
XCR
MoV
ROTCL
SUBC

D V0S

. ar epeat
D v1i
.aendr
EXTS. W
ROTCL
ADDC

EXTS. W

Example 4:

MOV
ROTCL
SUBC
XR
SUBC

D VOS

. ar epeat
ROTCL

D Vi

. aendr
ROTCL
ADDC

Rl, RL
R2, R2
Rl, R3

R2, R
RO, RL
16

RO, RL

R2, R3

R, RL
R3, R3
R3, R2

RO, RL
32

RO, RL

R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed
Upper 16 bits = divisor, lower 16 bits=0
Sign-extends the dividend to 32 hits

R2=0

Decrementsif the dividend is negative
Flag initialization

Repeat 16 times

R1 = quotient (one’ s complement)

Increments and takes the two’ s complement if the MSB of the
quotientis1

R1 = quotient (two’s complement)

R2 (32 bits) / RO (32 bits) = R2 (32 bits):Signed

Sign-extends the dividend to 64 bits (R1:R2)

R3=0

Decrements and takes the one' s complement if the dividend is
negative

Flag initialization

Repeat 32 times

R2 = Quotient (one's complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’'s complement)

68

6.20 DMULSL (Double-Length Multiply as Signed): Arithmetic
Instruction (SH7600)

Format Abstract Code State T Bit
DMLS.L RmRn With signed, Rn x Rm - 0011nnnnmmmmil101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit resultsin the MACL and MACH registers. The operation is asigned arithmetic
operation.

Operation:

DMLS(long mlong n) /* DMLS.L RmRn */

{
unsigned |ong RiL, RMH R, RH ResO0, Res1, Res2;
unsi gned |long tenpO, tenpl, tenp2, t enp3;
| ong tenpmtenpn, f nLm_;

tenpn=(1 ong) R n];

tenpnw(1 ong) R nj;

i f (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

if ((long)(Rn]*"Rn)<0) fnLm=-1;
el se f nLm.=0;

tenpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong)t enpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RL=t enp2&0x0000FFFF;
RH=(t enp2>>16) &0x0000FFFF;

t enpO=RL* RnL;
t enp1=RH* RnL;
t enp2=RrL* RnH,
t enp3=RrH R

69

Res2=0
Res1=t enpl+t enp2;
i f (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &xFFFF0000;
ResO=t enpO+t enpl;
i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

if (fnLni<0) {
Res2=~Res2;
i f (Res0==0)
Res2++;
el se
Res0=(~Res0) +1;

}
MACH=Res?2;
MACL=ResO0;
PC+=2;
}
Example:
DMLS RO, RL Before execution RO = H'FFFFFFFE, R1 = H'00005555

STS MACH, RO
STS MACL, RO

After execution

MACH = H'FFFFFFFF, MACL = H'FFFF5556

Operation result (top)
Operation result (bottom)

70

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH7600)

Format Abstract Code State TBit
DMLU L RmRn Without signed, Rn xRm - 0011nnnnmmm0101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-hit resultsin the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMLUlong mlong n) /* DMLUL RnRn */

{
unsi gned | ong RL, RMH R, RH ResO0, Res1, Res2;
unsigned |ong tenpO,tenpl,tenp2,tenp3;

R1L=R] n] &0x0000FFFF;
RnH=(R n] >>16) &0x0000FFFF;

R1L=R nj &0x0000FFFF;
RH=(R] >>16) &0x0000FFFF;

t enpO=RL* RnL;
t enpl=RrH RnL;
t enp2=RL* RiH
t enp3=RrH R

Res2=0

Resl1=t enpl+t enp2;

if (Resl<tenpl) Res2+=0x00010000;
t enpl=(Res1<<16) &xFFFF0000;
ResO=t enpO+t enpl;

i f (ResO<tenpO) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

71

MACH=Res?2;
MACL=ResO;
PC+=2;

Example:

DMLU RO, RL Before execution RO = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'00005554, MACL = H'FFFF5556
STS MACH, RO Operation result (top)
STS MACL, RO Operation result (bottom)

72

6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600)

Format Abstract Code State T Bit
Dr R Rn-1 -5 Rn; 0100nnnNn00010000 1 Comparison
WhenRnis 0,1 - T, result

when Rnis nonzero,0 - T

Description: The contents of general register Rn is decremented by 1 and the result is compared to
0 (zero). When theresult is O, the T hit is set to 1. When the result is not zero, the T bit isset to O.

Operation:
DT(l ong n) [* DI Rn */
{
Rn]--;
if (Rn]==0) T=1;
el se T=0;
PC+=2;
}
Example:
MOV #4, 5 Setsthe number of loops.
LOCP:
ADD RO, RL
or RS Decrements the R5 value and checks whether it has become O.

BF LOP Branchesto LOOPif T=0. (In this example, loops 4 times.)

73

6.23 EXTS (Extend as Signed): Arithmetic I nstruction

Format Abstract Code State T Bit
EXISB Rnk Sign-extended Rm from byte — 0110nnnnmmmmd110 1 —
BEXISW Rnkh Rn 0110nnnnnmmil111 1 —
Sign-extended Rm from word —
Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is specified, the
bit 15 value of Rm istransferred to bits 16 to 31 of Rn.

Operation:

EXTSB(1 ong m | ong n) /* EXTS.B RmRn */

{
Rn] =R nj;
if ((R nj&x00000080)==0) H n] & 0x000000FF;
el se R n] | =0xFFFFFFOO;

PC+=2;

}

EXTSWI ong m1ong n) /* EXTS. WRm R */

{
R =Rnj;
i f ((R n]&0x00008000)==0) R n] &0x0000FFFF;
el se R n] | =0xFFFFO00O;
PC+=2;

}

Examples:

BEXSB RO, Rl Before execution RO = H'00000080

After execution R1 = H'FFFFFF80
BEASW RO, RL Before execution RO = H'00008000
After execution R1 = H'FFFF8000

74

6.24 EXTU (Extend asUnsigned): Arithmetic I nstruction

Format Abstract Code State T Bit
EXTU. B Rm Rn Zero-extend Rm from byte -~ Rn 0110nnnnnmmi 100 1 —
EXTU. WRM Rn Zero-extend Rm from word — Rn 0110nnnnmmmi101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If bytelength is
specified, 0 istransferred to bits 8 to 31 of Rn. If word length is specified, O is transferred to bits
16 to 31 of Rn.

Operation:

EXTUB(long mlong n) /* EXTU B RmRn */

{
Rin=Rn};
R n] &0x000000FF,
PC+=2;

}

EXTUN | ong m1ong n)
{

/* EXTU WRm Rn */

Rin]=Rnj;
R n] &0x0000FFFF;
PC+=2;
}
Examples:
BEXQUB RO, RL Before execution RO = H'FFFFFF80
After execution R1 = H'00000080
BEAQUW RO, RL Before execution RO = H'FFFF8000

After execution

R1 = H'00008000

75

6.25 JMP (Jump): Branch Instruction
Class. Delayed branch instruction

Format Abstract Code State T Bit

JWP @n Rn - PC 0100nnnn00101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit datain general register Rn.

Note: Sincethisisadelayed branch instruction, the instruction after IMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as anillegal slot
instruction.

Operation:

JMP(l ong n) /[* IMP @ */

{
unsi gned | ong tenp;
t enp=PC,
PC=R n] +4;
Del ay_Sl ot (t enp+2) ;
}
Example:
MOV. L JMP_TABLE, RO Address of RO=TRGET
JMP @0 Branchesto TRGET
MOV RO, RL Executes MOV before branching
.align 4
JMP_TABLE: .data.l TRCGET Jump table
TRCGET: ADD #1, RL ~ Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay dot instruction, the branch will still
be made using the value of the register prior to the change as the branch destination address.

76

6.26 JSR (Jump to Subroutine): Branch Instruction
Class. Delayed branch instruction

Format Abstract Code State T Bit

JSR @n PC - PR,Rn - PC 0100nnnn00001011 2 —

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PR. The jump
destination is an address specified by the 32-bit datain genera register Rn. The PC pointsto the
starting address of the second instruction after JSSR. The JSR instruction and RTS instruction are
used for subroutine procedure calls.

Note: Sincethisisadelayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged asan illegal slot
instruction.

Operation:

JSR(l ong n) [* JSR @n */

{

PR=PC

PC=R{ n] +4;

Del ay_Sl ot (PR+2) ;
}

77

Example:

MOV. L JSR TABLE, RO RO = Address of TRGET

JSR @0 Branches to TRGET
XR RL, RL Execut es XOR before branchi ng
ADD RO, RL ~ Return address for when the
subroutine procedure is completed
(PR data)
align 4
JSR TABLE: .data.l TRGET Jump table
TRGET: NCP « Procedure entrance
MOV R2, R3
RTS Returns to the above ADD instruction
MOV #70, RL Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
till be made using the value of the register prior to the change as the branch destination
address.

78

6.27 LDC (Load to Control Register): System Control I nstruction
Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDC Rm SR Rm - SR 0100mMmm00001110 1 LSB
LDC Rm GBBR Rm - GBR 0100nMmM®©0011110 1 —
LDC Rm VBR Rm - VBR 0100mmMmM®D0101110 1 —
LDC L @Rm, SR (Rm) - SR,Rm+4 - Rm 0100nMmMM®D0000111 3 LSB
LDC L @, BR (Rm) - GBR,Rm+4 - Rm 0100mMmmMm00010111 3 —
LDC L @m, VBR (Rm) - VBR,Rm+4 - Rm 0100nMmM®©0100111 3 —

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR(1 ong m /* LDC Rm SR */
{

SR=R nj &x000003F3;

PC+=2;

}

LDOEBR(1 ong m /* LDC Rm GBR */
{

GBR=R n};

PC+=2;

}
LDOVBR(| ong m) /* LDC Rm VBR */

{
VBR=R N} ;
PC+=2;

79

LDCOVBR(1 ong n) /* LDC L @mt, SR */

{
SR=Read_Long(R nj) &x000003F3;

R nj +=4;
PC+=2;
}

LDOMBR(long m) /* LDC. L @, GBR */

{
@BR=Read_Long(R n);

R n] +=4;
PC+=2;

}

LDOWBR(long m) /* LDC. L @, VBR */

{
VBR=Read_Long(R nj);

R n] +=4;
PC+=2;

}

Examples:

LDC RO, SR Before execution RO = H'FFFFFFFF, SR = H'00000000
After execution SR = H'000003F3

LDC. L @15+ GBR Before execution R15 = H'10000000
After execution R15 = H'10000004, GBR = @H'10000000

80

6.28 LDS(Load to System Register): System Control Instruction
Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDS Rm MACH Rm - MACH 0100mMmmm00001010 1 —
LDS Rm MACL Rm - MACL 0100nMmMM®©0011010 1 —
LDS Rm PR Rm - PR 0100mMmmMm©00101010 1 —
LDS.L @m, MM\CH (Rm) -~ MACH,Rm+4 - Rm 0100nMmMM®O0000110 1 —
LDS. L @m, MACL (Rm) -~ MACL,Rm+4 - Rm 0100mMmmMm00010110 1 —
LDS. L @Rm+, PR (Rm) -~ PR,Rm+4 - Rm 0100mMmM®©0100110 1 —

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH7000, the lower 10 bits are stored in MACH. For the SH7600, 32 bits are stored in
MACH.

Operation:

LDSMACH(| ong m) /* LDS Rm NMACH */

{
NACH=R]] ;
i f ((MACHEOXx00000200) ==0) MACHE=0x000003FF; For SH7000 (these 2 lines
el se MACH =0xFFFFFQ00; not needed for SH7600)
PC+=2;

}

LDSMACL(1 ong m) /* LDS Rm MACL */

{
MACL=R{n ;
PC+=2;

}

LDSPR(1 ong 1) /* LDS Rm PR */

{
PR=R N ;
PC+=2;

}

81

LDSMVACH | ong) /* LDS.L @m+, MACH */

{
MACH=Read_Long(R[n});
if ((MACH&0Ox00000200)==0) NMACH&=0x000003FF; For SH7000 (these 2 lines
el se MACH =0xFFFFFQ00; not needed for SH7600)
R nj +=4;
PC+=2;
}
LDSMVACL (| ong m) /* LDS.L @m+, MNACL */
{
MACL=Read_Long(R nj);
R +=4;
PC+=2;
}

LDSMPR(| ong) /* LDS.L @, PR */

{
PR=Read_Long(R n});

R nj +=4;
PC+=2;
}
Examples:
LDS RO, PR Before execution
After execution
LDS. L @15+ MACL Before execution

After execution

82

RO = H'12345678, PR = H'00000000

PR = H'12345678

R15 = H'10000000

R15 = H'10000004, MACL = @H'10000000

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic I nstruction

(SH7600)
Format Abstract Code State T Bit
MAC. L @Rm+, @+ Signed operation, (Rn) x (Rm) + 0000nnnnnmml111 3/(2to —
MAC - MAC 4

Description: Signed-multiplicates 32-bit operands obtained using the contents of genera registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S hit is cleared to 0, the 64-hit result is stored in the coupled MACH and MACL
registers. When hit Sis set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long mlong n) /* MAC L @m+, @n+*/

{
unsi gned | ong R1L, RnH R1L, RH, Res0, Resl, Res2;
unsi gned | ong tenpO, tenpl,tenp2,tenps;
I ong tenpmtenpn, fnLni;

tenpn=(1 ong) Read_Long(R n]);
R n] +=4;
t enpm=(1 ong) Read_Long(R[n}) ;
R nj +=4;

if ((long)(tenpn*tenpn)<0) fnLni=-1;
el se f nLm.=0;

i f (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

tenpl=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong) t enpm

83

RiL=t enp1&0x0000FFFF;
RnH=(t enpl>>16) &0x0000FFFF;
R1L=t enp2&0x0000FFFF;
RH=(t enp2>>16) &0x0000FFFF;

t enpO=RL* RnL;
t enpl=RniH RnL;
t enp2=RrL* RnH,
t enp3=RrH RhH,

Res2=0;
Res1=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &xFFFF0000;
ResO=t enpO+t enpl;
i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

i f(fnLnx0) {
Res2=~Res2;
if (Res0==0) Res2++;
el se ResO=(~Res0) +1;
}
i f(S==1){
ResO=MACL+ResO0;
if (MMCL>ResO) Res2++;
Res2+=(MACHS&0x 0000FFFF) ;

i f (((Iong) Res2<0) &&(Res2<0xFFFF8000)) {
Res2=0x00008000;
Res0=0x00000000;

}

i f(((1ong)Res2>0) &&(Res2>0x00007FFF)) {
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

84

MACH=Res2;

MACL=ResO0;
}
el se {
ResO=MACL+ResO;
i f (MMCOL>ResQ) Res2++;
Res2+=NMACH
MACH=Res2;
MACL=ResO0;
}
PC+=2;
}
Example:
MOVA TBLM RO Table address
MOV RO, RL
MOVA TBLN RO Table address
QLRVAC MAC register initialization
MAC L @0+, L+
MAC. L @0+, AL+
STS MACL, RO Store result into RO
align 2
TBLM .data.l H 1234ABCD
.data.l H 5678EF01
TBLN .data.l H 0123ABCD

.data.l H 4567DEFO

85

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)

Format Abstract Code State T Bit
MAC W @, @+ With signed, (Rn) x (Rm) + MAC 0100nnnnmmmll11 3/(2) —
- MAC

Description (SH7000): Multiplies 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-hit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by
two.

When the Sbit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 datais transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the Shit is set to 1, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. Theresult is stored in the MACL
register, and the result is limited to a val ue between H'80000000 (minimum) for overflowsin the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The norma number of cyclesfor execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

86

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
(SH7600)

Format Abstract Code State TBit

MAC. W @m+, @+ Signed operation, (Rn) x (Rm) + 0100nnnnnmmrl111 3/(2) —
MAC @m, @+ MAC - MAC

Description (SH7600): Signed-multiplicates 16-bit operands obtained using the contents of

general registers Rm and Rn as addresses. The 32-hit result is added to contents of the MAC
register, and the final result is stored in the MAC register. Everytime an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to O, the operation is 16 x 16 + 64 — 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S it is set to 1, the operation is 16 x 16 + 32 - 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. Theresult is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflowsin the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the Shit is 0, the SH7600 series performsa 16 x 16 + 64 - 64 bit multiply and
accumul ate operation and the SH7000 series performsa 16 x 16 + 42 — 42 bit multiply and
accumul ate operation.

Operation:

MACWIong mlong n) /* MAC W@m+, @n+*/
{
| ong tenpmtenpn, dest, src, ans;
unsi gned | ong tenpl;
t enpn=(1 ong) Read_Word(R n]);
R n] +=2;
t enpn¥(1 ong) Read_VWord(R[nj);
R nj +=2;
t enpl =MACL;
tenpn¥((1 ong) (short)tenpn*(long) (short)tenpn;

87

if ((long) MACL>=0) dest =0;
el se dest =1,
if ((long)tenpm>=0 {
src=0;
t enpn=0;
}
el se {
src=1;
t enpn=0xFFFFFFFF;
}
src+=dest ;
MACL+=t enpm
if ((long) MACL>=0) ans=0;
el se ans=1;
ans+=dest ;
if (S==1) {
if (ans==1) {
if (src==0 || src==2) For SH7000 (these 2 lines
MACH =0x00000001; not needed for SH7600)
if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}

el se {

MACH+=t enpn;

if (tenpl >MACL) NACH=1;

i f ((MACHROx00000200) ==0) For SH7000 (these 3 lines
MACH&=0x000003FF; not needed for SH7600)

el se MACH =0xFFFFFQOO;

}
PC+=2;

88

Example:

TBLM

TBLN

TBLM RO
RO, RL
TBLN RO

H 5678
H 0123
H 4567

Table address
Table address

MAC register initialization

Store result into RO

89

6.32 MOV (MoveData): Data Transfer Instruction

Format Abstract Code State T Bit
MV RmRn Rm - Rn 0110nnnnmmMm®O011 1 —
MOV. B Rm @n Rm - (Rn) 0010nnnnmmm©O000 1 —
MOV. W Rm @ Rm - (Rn) 0010nnnnmMmMmMm®O001 1 —
MOV. L Rm @n Rm - (Rn) 0010nnnnmmm0010 1 —
M. B @m Rn (Rm) - sign extension - Rn 0110nnnnnmm©000 1 —
MOV. W @m Rn (Rm) - sign extension - Rn 0110nnnnmmm®©001 1 —
MWV.L @m Rn (Rm) - Rn 0110nnnnnmmm©010 1 —
MOV. B Rm @Rn Rn—-1 - Rn,Rm - (Rn) 0010nnnnmmm0100 1 —
MOV. W Rm @Rn Rn—-2 - Rn,Rm - (Rn) 0010nnnnmmMmMm©101 1 —
MOV.L Rm @Rn Rn—-4 - Rn,Rm - (Rn) 0010nnnnmmm0110 1 —
M. B @Rm+, Rn (Rm) - sign extension - Rn, Rm 0110nnnnnmmm©0100 1 —
+1 - Rm
MOV. W @+, Rn (Rm) - sign extension - Rn, Rm 0110nnnnmm0101 1 —
+2 - Rm
MOV. L @R+, Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmm®©110 1 —
MDV. B Rm @ RO, Rn) Rm - (RO + Rn) 0000NNNNMMMO100 1 —
MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000NNNNMMM0101 1 —
MDV. L Rm @RO, Rn) Rm - (RO + Rn) 0000NNNNMMMO110 1 —
MV.B @RO, RM, Rn (RO + Rm) - sign extension — 0000NnnnnNMMIML100 1 —
MV. W @RO, R), R RD 0000nnNNPMML101 1 —
MOV.L @RO, Ry, R (RO+Rm) - signextension ~ gooonppnmmmt120 1 —

Rn
(RO+Rm) - Rn

Description: Transfers the source operand to the destination. When the operand is stored in

memory, the transferred data can be a byte, word, or longword. When the source operand isin
memory, |oaded data from memory is stored in aregister after it is sign-extended to alongword.

Operation:

MOV(I ong m1ong n)

{
Rinl=Rn;
PC+=2;

/* MOV RmRn */

90

MOVBS(| ong m | ong n) /* MOV.B Rm @n */

{
Wite Byte(Rn],Rnj);
PC+=2;
}
MOWS(| ong m | ong n) /[* MOV. WRm @ */
{
Wite Word(Rn],Rn);
PC+=2;
}
MOVLS(| ong m | ong n) /* MOV.L Rm @n */
{
Wite_Long(Rin],Rn);
PC+=2;
}
MOVBL(| ong m | ong n) /[* MOV.B @m Rn */
{

Rin]=(1 ong) Read_Byte(Rnj);
if ((R n]&0x80)==0) KR n] &x000000FF;
el se R n] | =0xFFFFFFOO;

PC+=2;
}
MOWAL(| ong m | ong n) [* MOV.W@m Rn */
{

R n] =(1 ong) Read_Vord(R{n});
if ((Rn]&0x8000)==0) R n] &0X0000FFFF;
el se R n] | =0xFFFFO000;

PC+=2;
}
MOVLL(I ong m1ong n) /[* MOV.L @GRm R */
{
Rin] =Read_Long(Rnj);
PC+=2;
}

91

MOVBM | ong m | ong n) /* MOV.B Rn @Rn */
{
Wite Byte(Rin]-1,Rn);

R n] —=1;
PC+=2;
}
MOWN | ong m | ong n) /* MOV. WRm @R */
{
Wite_ Wrd(Rn]-2,Rnj);
R n] —=2;
PC+=2;
}
MOVLM | ong m | ong n) /* MOV.L Rm @R */
{
Wite_Long(Rin]-4,Rnj);
Rin]—=4;
PC+=2;
}

MOVBP(l ong mlong n) /* MW.B @m, Rn */
{
R{n] =(1 ong) Read_Byte(R(nj);
if ((R n]&x80)==0) R n] &x000000FF;
el se R n] | =0xFFFFFFOO;

it (ni=n) REn]+=l;
PC+=2,
}
MOWP(1 ong m | ong n) /* MOV. W @+, Rn */
{
R n] =(1 ong) Read_Vrd(R{n});
if ((Rn]&0x8000)==0) R n] &OXO000FFFF;
el se R n] | =0xFFFFO000;
if (nt=m) Rnj+=2;
PC+=2;
}

92

MOVLP(1 ong m | ong n) /[* MOV.L @m, Rn */
{
R{n] =Read_Long(R n});

if (nl=m R nj+=4;
PC+=2;
}
MOVBSO(| ong m | ong n) /* MOV.B Rm @RO, R) */

{
Wite Byte(Rin]+R 0], R nl);
PC+=2;

}

MOWBO(| ong m 1 ong n) /* MOV. WRm @R0, R1) */
{

Wite Word(Rn]+R 0], R n);

PC+=2;
}

MOVLSO(1 ong m 1 ong n) /* MOV.L Rm @RO, R1) */
{

Wite Long(Rn]+R0],Rnj);

PC+=2;

}

MOVBLO(1 ong m 1 ong n) /[* MOV.B @RO, R, Rh */
{

R{n] =(1 ong) Read_Byte(R nj +R 0]) ;

i f ((R n] &x80)==0) R n] &x000000FF;

el se R n] | =0xFFFFFFOO;

PC+=2;

}

MOWALO(1 ong m | ong n) [* MOV.W@R0, R, Rh */
{

R{n] =(1 ong) Read_Ver d(R{ nj +R 0]) ;

i f ((R n] &x8000)==0) R n] &x0000FFFF;

el se R n] | =0xFFFFO000;

PCH=2;

93

MOVLLO(1 ong m | ong n)
{
R{n] =Read_Long(R n} +R 0]);

PC+=2;
}
Example:

MOV RO, R1 Before execution
After execution

MV. W RO, @RL Before execution
After execution

MDV.B @0, RL Before execution
After execution

MV. W RO, @RL Before execution
After execution

MV.L @0+ RL Before execution
After execution

MV.B Rl, @R0, R2) Beforeexecution
After execution

M. W @R0, R2),RL Beforeexecution

After execution

/* MV.L @RO,RY), R */

RO = H'FFFFFFFF, R1 = H'00000000
R1 = H'FFFFFFFF

RO = H'FFFF7F80
@R1=H7F80

@RO = H'80, R1 = H'00000000
R1 = H'FFFFFF80

RO = HAAAAAAAA, R1 = H'FFFF7F80
R1 = HFFFF7F7E, @R1 = HAAAA

RO = H'12345670
RO = H'12345674, R1 = @H'12345670

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

R2 = H'00000004, RO = H'10000000
R1 = @H'10000004

94

6.33 MOV (Movelmmediate Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV #i mm Rn imm - sign extension - Rn 1110nnnniiiiiiii 1 —

MOV. W @di sp, PO, R (disp x 2+ PC) - sign 1001nnnndddddddd 1 —
extension — Rn

MOV.L @disp, PO, R (disp x4 +PC) - Rn 1101nnnndddddddd 1 —

Description: Storesimmediate data, which has been sign-extended to alongword, into general
register Rn.

If the datais aword or longword, table data stored in the address specified by PC + displacement
isaccessed. If the datais aword, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the tableis up to PC + 510 bytes. The PC pointsto the
starting address of the second instruction after thisMOV instruction. If the datais alongword, the
8-hit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
tableis up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’ 00.

Note: The end address of the program area (modul€) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When thisMQV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MM (long i,long n) [* MOV #immRn */

{
if ((i&x80)==0) R n]=(0x000000FF & (long)i);
el se R n]=(0OxFFFFFFO0 | (long)i);

PC+=2;
}
MOWN (1 ong d, |1 ong n) [* MOV.W@di sp, PC), R */
{

| ong di sp;

95

di sp=(0x000000FF & (1l ong)d);
R n] =(1 ong) Read_Wr d(PC+(di sp<<1));

i f ((R n] &x8000)==0) KR n] &0x0000FFFF;
el se R n] | =0xFFFF0000;

PC+=2;
}

MOWVLI (1 ong d, | ong n)

{

| ong di sp;

/* MOV.L @disp, PO, R */

di sp=(0x000000FF & (1 ong)d);
R n] =Read_Long((PC&OXFFFFFFFC) +(di sp<<2));

PC+=2;

}

Example:

Addr ess
1000
1002
1004
1006

1008
100A
100C
100E | MM
1010
1012 NEXT
1014

1018

MOV. W

TST

MOV. L
.data. w
.data. w
JWP

oW/ EQ

.align
.data.l

#H 80, RL
M R2
#-1, RO
RO, RO

RI3
NEXT

@4, PO, R3
H 9ABC

H 1234

a3

#0, RO

4
H 12345678

R1 = H'FFFFFF80
R2 = H'FFFF9ABC, IMM means @(H'08,PC)

~ PC location used for address calculation for the
MOV.W instruction

Delayed branch instruction
R3 = H'12345678

Branch destination of the BRA instruction

~ PC location used for address calculation for the
MOV .L instruction

96

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State T Bit

MV.B @disp, BR,R0 (disp+ GBR) - sign 11000100dddddddd 1 —
extension — RO

MV. W @disp, BR,R0 (disp x 2 + GBR) - 11000101dddddddd 1 —
sign extension —» RO

MV.L @disp, GBR, R0 (disp x 4+ GBR) - RO 11000110dddddddd
MV.B RO, @disp, BBR) RO - (disp + GBR) 11000000dddddddd
MV. W RO, @disp, @R RO - (disp x 2+ GBR) 11000001dddddddd
MV.L RO, @disp, BBR) RO - (disp x 4+ GBR) 11000010dddddddd

e

Description: Transfers the source operand to the destination. Thisinstruction is suitable for
accessing datain the peripheral module area. The data can be a byte, word, or longword, but the
register isfixed to RO.

A peripheral module base addressis set to the GBR. When the peripheral module datais abyte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module datais aword, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is alongword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within +1020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(R0,Rn) mode must be used after the GBR datais
transferred to ageneral register. When the source operand isin memory, the loaded datais stored
in the register after it is sign-extended to alongword.

Note: The destination register of adataload is always RO. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure6.1 Using RO after MOV

97

Operation:

MOVBLGE | ong d) /* MOV.B @disp, BR), R0 */

{

}

| ong di sp;

di sp=(0xO000000FF & (1 ong)d);

R 0] =(I ong) Read_Byt e(GBBR+di sp) ;

i f ((H 0] &x80)==0) KR 0] &0x000000FF;
el se R 0] | =0xFFFFFFOO;

PC+=2;

MOWALG | ong d) /* MOV.W@di sp, BR), R0 */

{

}

| ong di sp;

di sp=(0x000000FF & (1 ong)d);

R 0] =(1 ong) Read_Wr d(GBBR+(di sp<<1));

i f ((H 0] &x8000)==0) KR 0] &0x0000FFFF;
el se R 0] | =0xFFFF0000;

PC+=2;

MOVLLE | ong d) /* MOV.L @disp, BR),R0 */

{

}

| ong di sp;

di sp=(0x000000FF & (1 ong)d);
R 0] =Read_Long(GBR+(di sp<<2));
PC+=2;

MOVBSQ | ong d) /* MOV.B RO, @di sp, BBR) */

{

| ong di sp;

98

di sp=(0x000000FF & (1ong)d);
Wite Byte(@BRtdisp, H0]);
PC+=2;

}
MOWEE | ong d) /[* MOV. WRO, @di sp, GBBR) */

{
| ong di sp;

di sp=(0x000000FF & (1 ong)d);
Wite_ Word(@BR+(di sp<<l),R0]);

PC+=2;
}
MOVLSE | ong d) /* MOV.L RO, @disp, GBBR) */
{
| ong di sp;
di sp=(0x000000FF & (1ong)d);
Wite_Long(@BR+(disp<<2),R0]);
PC+=2;
}
Examples:
MV.L @2 &BR,R Before execution @(GBR + 8) = H'12345670
After execution RO = @H'12345670
MV.B RO, @1, GBR Before execution RO = H'FFFF7F80

After execution @(GBR + 1) = H'FFFF7F80

99

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State T Bit

MV.B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV. W RO, @di sp, Rn) RO - (disp x 2 + Rn) 10000001nnnndddd 1

MV.L Rm @disp, Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmuddd 1 —
1

MV.B @disp, R, R0 (disp + Rm) - sign 10000100mmmdddd
extension » RO

MV. W @di sp, R1, R0 (disp x 2+ Rm) - sign 10000101nmmdddd 1 —
extension - RO

MOV.L @disp, RM, R (disp x4 +Rm) - Rn 0101nnnnmmmdddd 1 —

Description: Transfers the source operand to the destination. Thisinstruction is suitable for
accessing datain a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register isfixed. When the datais a byte, the 4-bit displacement is
zero-extend. Conseguently, an address within +15 bytes can be specified. When the datais aword,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the datais alongword, the 4-bit displacement is zero-extended and
quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement istoo
short to reach the memory operand, the af orementioned @(R0,Rn) mode must be used. When the
source operand isin memory, the loaded datais stored in the register after it is sign-extended to a
longword.

Note: When byte or word datais loaded, the destination register is always R0O. RO cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure6.2 Using RO after MOV

100

Operation:

MOVB4(1 ong d, | ong n) /* MOV.B RO, @di sp, R1) */

{
| ong di sp;

di sp=(0x0000000F & (| ong)d);
Wite Byte(R n]+disp, R0]);
PC+=2;

}

MOW4A(1 ong d, | ong n) /* MOV. WRO, @di sp, R1) */

{
| ong di sp;

di sp=(0x0000000F & (long)d);
Wite Wrd(R n]+(disp<<l),R0]);
PC+=2;

}

MOVLSA(l ong mlong d, | ong n)
/* MOV.L Rm @disp, R1) */

{
| ong di sp;
di sp=(0x0000000F & (1ong)d);
Wite_Long(R n] +(disp<<2),Rnj);
PC+=2;

}

MOVBL4(1 ong m | ong d) /* MOV.B @di sp, R, RO */

{
| ong di sp;

di sp=(0x0000000F & (1ong)d);

R O] =Read_Byt e(R nj +di sp) ;

if ((H 0] &x80)==0) KR 0] &0x000000FF;
el se R 0] | =0xFFFFFFOO;

PC+=2;

101

MOWAL4A(1 ong m | ong d) /* MOV.W@di sp, R1), RO */

{
| ong di sp;

di sp=(0x0000000F & (1l ong)d);

R 0] =Read_Wr d(R nj +(di sp<<1));

i f ((H 0] &x8000)==0) KR 0] &0x0000FFFF;
el se R 0] | =0xFFFF0000;

PC+=2;

}

MOVLL4(l ong mlong d, | ong n)
/* MOV.L @disp, Ry, R */

| ong di sp;

di sp=(0x0000000F & (1 ong)d);
R n] =Read_Long(R nj +(di sp<<2));
PC+=2;

}

Examples:

MOV.L @2,R0),RlL Before execution @(RO + 8) = H'12345670
After execution R1 = @H'12345670

MV.L RO, @H F, RL) Before execution RO = H'FFFF7F80
After execution @(R1 + 60) = H'FFFF7F80

102

6.36 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code State T Bit

MVA @di sp, PO, RO disp x4+PC - RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register RO. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV A instruction, but the lowest two bits of the PC are corrected to B’ 00.

Note: If thisinstruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOWA(long d) /* MOVA @disp, PO, RO */

{
| ong di sp;
di sp=(0x000000FF & (1ong)d);
R 0] =(PC&OXFFFFFFFC) +(di sp<<2) ;
PC+=2;
}
Example:
Addr ess .org H 1006
1006 MOVA STR RO Addressof STR - RO
1008 MOV. B @, RL R1="X" PClocation after correcting the lowest
two hits
100A ADD R4, RS ~ Original PC location for address calculation for the

MOVA instruction
.align 4
100C STR .sdata “XYzZP12”

2002 BRA TRGET Delayed branch instruction
2004 MOVA @0,PO,R0 Addressof TRGET + 2 £ RO
2006 NCP

103

6.37 MOVT (MoveT Bit): Data Transfer Instruction

Format Abstract Code State T Bit

MOVT R T - Rn 0000nnnNn00101001 1 —

Description: Storesthe T bit value into general register Rn. When T =1, 1isstored in Rn, and
when T =0, Oisstoredin Rn.

Operation:

MWVT(long n) /* MOVT Rn */

{
R n] =(0x00000001 & SR;
PC+=2;

}

Example:

XCR R,R R2=0

QW PZ R T=1
MOVT RO RO=1
aRT T=0
MOVT RL R1=0

104

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600)
Format Abstract Code State T Bit

ML.L RmRn Rnx Rm - MACL 0000nnnNMMMT0111 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MLL(long mlong n) /* ML.L RmRn */
{

MACL=R{n] *R(n} ;
PC+=2;
}
Example:
MLL RO, RL Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MNACQL, RO Operation result

105

6.39 MULSW (Multiply as Signed Word): Arithmetic I nstruction
Format Abstract Code State T Bit

MLS. W RmRn Signed operation, Rn x Rm - 0010nnnnmmm 111 lto3 —
MLS Rm R MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-hit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MLS(l ong m1ong n) /* MLS RmRn */

{
MACL=((1 ong) (short) Rl n] *(l ong) (short)R n);
PC+=2;

}

Example:

MLS RO, RL Beforeexecution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556

STS MACQL, R0 Operation result

106

6.40 MULU.W (Multiply asUnsigned Word): Arithmetic Instruction

Format Abstract Code State T Bit

MLU W RmRn Unsigned, Rn x Rm - MAC 0010nnnnmmmm1.110 1to3 —
MULU Rm R

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MLWU I ong m1ong n) /* MLU RmRn */

{
MACL=((unsi gned | ong) (unsi gned short) R n]

*(unsi gned | ong) (unsi gned short) R nj);
PC+=2;

}

Example:

MLU RO, RL Before execution RO = H'00000002, R1 = H'FFFFAAAA
After execution MACL = H'00015554
STS NACL, R0 Operation result

107

6.41 NEG (Negate): Arithmetic Instruction

Format Abstract Code State T Bit

NEG Rm R 0-Rm - Rn 0110nnnnmmmml011 1 —

Description: Takesthe two's complement of datain general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and storesthe result in Rn.

Operation:

NEG | ong m1ong n) /* NEG RmRn */

{
Rin] =0-Rnj;
PC+=2;
}
Example:
NEG RO, RL Before execution RO = H'00000001
After execution R1 = H'FFFFFFFF

108

6.42 NEGC (Negatewith Carry): Arithmetic Instruction
Format Abstract Code State T Bit

NEGC Rm R 0O—-RmM-T - Rn,Borrow - T 0110nnnnmmmi010 1 Borrow

Description: Subtracts general register Rm dataand the T bit from 0, and stores the result in Rn.
If aborrow isgenerated, T bit changes accordingly. Thisinstruction is used for inverting the sign
of avalue that has more than 32 bits.

Operation:

NEG(long mlong n) /* NEGC RmRn */

{
unsi gned | ong tenp;
tenp=0-R nj;
R n]=tenp-T;
i f (0<tenp) T=1;
el se T=0;
if (tenp<Rn]) T=1,
PC+=2;

}

Examples:
QRT Sign inversion of R1 and RO (64 bits)

NEQC RL,RL Beforeexecution R1 =H'00000001, T=0
After execution R1=H'FFFFFFFF, T=1

NEQC RO, R0 Before execution RO = H'00000000, T =1
After execution RO =H'FFFFFFFF, T =1

109

6.43 NOP (No Operation): System Control Instruction

Format Abstract Code State T Bit

NCP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /* NCP */
{
PC+=2;

}

Example:

NOP Executesinonecycle

110

6.44 NOT (NOT—L ogical Complement): L ogic Operation Instruction

Format Abstract Code State T Bit

NOT' Rm Rn ~Rm - Rn 0110nnnnmmmr0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(I ong m1ong n) /* NOT RmRn */
{

Rin]=-Rnj;
PC+=2;
}
Example:

NOT RO,RL Beforeexecution RO=HAAAAAAAA
After execution R1 = H'55555555

111

6.45 OR (OR Logical) Logic Operation Instruction

Format Abstract Code State T Bit
R RN Rn|Rm - Rn 0010nnnnmmm1011 1 —
R # MR RO | imm - RO 110010120 iiiiiii 1 —
R B # mMmm @R, GBBR (RO+GBR) |imm - (RO+ 1100111%iiiiiiii 3 —

GBR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

CR(long mlong n) /* CRRmR */

{
Rn] | =Rnj;
PC+=2;

}

CRI(long i) /* R# M RO */

{
R 0] | =(0xO00000FF & (long)i);
PC+=2;

}

CRV(long i) /* CR B #i nm @ R0, GBR

{
| ong tenp;
t enp=(| ong) Read_Byt e(BR+R 0]) ;
t enp| =(0xOO0000FF & (long)i);
Wite Byte(@BR+R 0], tenp);
PC+=2;

}

*/

112

Examples:

xR RO, R1 Before execution RO = H'AAAAS5555, R1 = H'55550000
After execution R1 = H'FFFF5555

xR #H FO, RO Before execution RO = H'00000008
After execution RO = H'000000F8

RB #H 50 QRO, BR Before execution @(RO,GBR) = H'A5
After execution @(RO,GBR) = H'F5

113

6.46 ROTCL (Rotatewith Carry Left): Shift Instruction
Format Abstract Code State T Bit

ROTAL Rn T<RnT 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
storestheresult in Rn. The bit that is shifted out of the operand istransferred to the T bit
(figure 6.3).

MSB LSB

ROTCL . }4_‘

Figure6.3 Rotatewith Carry Left
Operation:

ROTCL(long n) /* ROTCL Rn */

{
| ong tenp;
i f ((R n] &x80000000)==0) tenp=0;
el se tenp=1,;
R n] <<=1;
if (T==1) R n]|=0x00000001;
el se R n] &OXFFFFFFFE;
if (tenp==1) T=1;
el se T=0;
PC+=2;

}

Example:
ROTCL RO Before execution RO =H'80000000, T =0

After execution RO =H'00000000, T=1

114

6.47 ROTCR (Rotatewith Carry Right): Shift Instruction

Format Abstract Code State T Bit

ROTCR Rn ToRnNoST 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
storesthe result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTCR

Figure6.4 Rotatewith Carry Right
Operation:

ROTCR(long n) /* ROTCR Rn */

{
| ong tenp;
i f ((H n] &x00000001) ==0) t enp=0;
el se tenp=1,;
Rin] >>=1;
if (T==1) R n]|=0x80000000;
el se R n] &0x7FFFFFFF;
if (tenp==1) T=1;
el se T=0;
PC+=2;

}

Examples:
ROTCR RO Before execution RO = H'00000001, T=1
After execution RO = H'80000000, T=1

115

6.48 ROTL (Rotate Left): Shift Instruction
Format Abstract Code State T Bit

ROTL R T « Rn -« MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the |eft by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL

Figure6.5 Rotate L eft
Operation:

ROTL(long n) /* ROTL Rn */

{
i f ((R n] &x80000000) ==0) T=0;
el se T=1;
Rin] <<=1;
if (T==1) R n]|=0x00000001;
el se R n] &O0xFFFFFFFE;
PC+=2;

}

Examples:
ROTL R Before execution RO = H'80000000, T =0

After execution RO =H'00000001, T=1

116

6.49 ROTR (Rotate Right): Shift Instruction

Format Abstract Code State T Bit

ROIR R LSB - Rn - T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

o [

Figure 6.6 Rotate Right
Operation:

ROTR(long n) /* ROTR R */
{
i f ((R n] &x00000001) ==0) T=0;
el se T=1,
R n] >>=1;
if (T==1) R n]|=0x80000000;
el se R n] &Ox7FFFFFFF;
PC+=2;

}

Examples:

ROIR RO Before execution RO =H'00000001, T=0
After execution RO = H'80000000, T =1

117

6.50 RTE (Return from Exception): System Control Instruction
Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area - PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Sincethisis adelayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as anillegal slot
instruction.

Operation:

RTE() /* RTE */

{
unsi gned | ong tenp;
t enp=PC,
PC=Read_Long(R 15]) +4;
R 15] +=4;
SR=Read_Long(R 15]) &x000003F?3;
R 15] +=4;
Del ay_Sl ot (t enp+2);
}
Example:
RTE Returnsto the original routine
ADD #8, R4 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
till be made using the value of the register prior to the change as the branch destination
address.

118

6.51 RTS(Return from Subroutine): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR - PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. Thisinstruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Sincethisisadelayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as anillegal slot
instruction.

Operation:
RTS() /* RTS */
{
unsi gned | ong t enp;
t enp=PC,
PC=PR+4,
Del ay_Sl ot (tenp+2) ;
}
Example:
MOV.L TABLE R3 R3 = Address of TRGET
ISR @3 Branchesto TRGET
NCP Executes NOP before JSR
ADD RO, RL ~ Return address for when the subroutine procedure is
completed (PR data)
TABLE: .data. | TRGET Jump table
TRGET: MV RL, RO ~ Procedure entrance
RTS PR data -~ PC
MOV #12, RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

119

6.52 SETT (Set T Bit): System Control Instruction

Format Abstract Code

State

T Bit

SETT 1T 0000000000011000

1

1

Description: Setsthe T hit to 1.
Operation:

SETT() /* SETIT */

{
T=1;
PC+=2;
}
Example:

SETT Beforeexecution T=0
After execution T=1

120

6.53 SHAL (Shift Arithmetic Left): Shift Instruction
Format Abstract Code State T Bit

SHAL R T<Rn<0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
storesthe result in Rn. The bit that is shifted out of the operand is transferred to the T bit

(figure 6.7).

MSB LSB

SHAL +—0

Figure 6.7 Shift Arithmetic L eft

Operation:

SHAL(long n) /* SHAL Rn (Sane as SHLL) */

{
i f ((R n] &x80000000) ==0) T=0;

el se T=1;
Rin] <<=1;
PC+=2;
}
Example:

SHAL 2] Before execution RO =H'80000001, T=0
After execution RO =H'00000002, T =1

121

6.54 SHAR (Shift Arithmetic Right): Shift Instruction
Format Abstract Code State T Bit

SHAR R MSB - Rn - T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
storesthe result in Rn. The bit that is shifted out of the operand istransferred to the T bit (figure
6.8).

MSB LSB

SHAR

Figure6.8 Shift Arithmetic Right
Operation:

SHAR(long n) /* SHAR R */

{
| ong tenp;
i f ((R n] &x00000001) ==0) T=0;
el se T=1;
i f ((R n] &x80000000)==0) t enp=0;
el se tenp=1,;
Rin] >>=1;
if (tenp==1) R n]|=0x80000000;
el se R n] &O0x7FFFFFFF;
PC+=2;

}

Example:
SHAR R Before execution RO =H'80000001, T=0

After execution RO =H'C0000000, T=1

122

6.55 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code State T Bit

SHL R T<Rn<0 0100nnnNN00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

MSB LSB
SHLL | T «—0

Figure6.9 Shift Logical Left
Operation:

SHLIi(long n) /* SHL R (Same as SHAL) */
{
i f ((R n] &x80000000)==0) T=0;

el se T=1,
R{n] <<=1;
PC+=2;

}

Examples:

SHL RO Before execution RO =H'80000001, T=0
After execution RO = H'00000002, T =1

123

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code State T Bit
SH L2 R Rn<<2 - Rn 0100nnnn00001000 1 —
SH L8 R Rn<<8 - Rn 0100nnnn00011000 1 —
SHL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

MSB LSB
SHLL2 |
Y
o
MSB LSB
SHLLS
- o
MSB LSB
SHLL16 | |

Figure6.10 Shift Logical Left n Bits
Operation:

SH.L2(long n) /* SHLL2 R */

R{n] <<=2;
PC+=2;

124

SH L8(long n) /* SHLL8 R */
{

Rin] <<=8;

PC+=2;

}
SH.L16(1 ong n) /* SHLL16 Rn */
{

R n] <<=16;
PC+=2;
}
Examples:
SHL2 RO Before execution RO = H'12345678
After execution RO = H'48D159E0
SHI8 RO Before execution RO = H'12345678
After execution RO = H'34567800
SH L16 RO Before execution RO = H'12345678
After execution RO = H'56780000

125

6.57 SHLR (Shift Logical Right): Shift Instruction
Format Abstract Code State T Bit

SHR R 0O-Rn T 0100nnnnN00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

MSB LSB

SHLR 0—>

Figure6.11 Shift Logical Right
Operation:

SHRlong n) /* SHR R */

{
i f ((R n]&x00000001)==0) T=0;
el se T=1,
R n] >>=1,
R n] &=0x7FFFFFFF;
PC+=2;

}

Examples
SHR R Before execution RO = H'80000001, T = 0

After execution RO =H'40000000, T=1

126

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit
SHR2 R Rn>>2 - Rn 0100nnnn00001001 1 —
SH R R Rn>>8 - Rn 0100nnnn00011001 1 —
SHRI6 R Rn>>16 - Rn 0100nnnn00101001 1 —

Description: Logically shiftsthe contents of general register Rn to the right by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

MSB LSB
SHLR2 |
o
MSB LSB
SHLRS |
o —
MSB LSB
SHLR16 | |
\\
o |

Figure6.12 Shift Logical Right n Bits
Operation:

SHR2(long n) /* SHR2 R */

{
R n] >>=2;
R n] &=0x3FFFFFFF;
PC+=2;

}

127

SHR8(long n) /* SHLRB Rn */

{
R n] >>=8;
R n] &0x00FFFFFF;
PC+=2;
}
SH.R16(I ong n) /* SHLRI6 R */
{
R n] >>=16;
R n] &0x0000FFFF;
PC+=2;
}
Examples:
SH R RO Before execution RO = H'12345678
After execution RO = H'048D159E
SH R8 RO Before execution RO = H'12345678
After execution RO = H'00123456
SH R16 RO Before execution RO = H'12345678
After execution RO = H'00001234

128

6.59 SLEEP (Sleep): System Control Instruction

Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3 —

Description: Setsthe CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given isfor the transition to sleep mode.
Operation:

SLEEP() /* SLEEP */

{
PG =2;
Error(“Sl eep Mde.”);
}
Example:

SLEEP Transits power-down mode

129

6.60 STC (Store Control Register): System Control I nstruction
Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STC SR R SR - Rn 0000nnNn00000010 1 —
STC &BR GBR - Rn 0000nnnNN00010010 1 —
STC VBR Rn VBR - Rn 0000nnNn00100010 1 —
STICL SR @Rmn Rn—-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STICL GBR @R Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STCL VBR @R Rn—-4 - Rn, VBR - (Rn) 0100nnnn00100011 2 —

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:
STCSR(| ong n) /* STC SR Rn */
{
Rl =SR
PC+=2;
}
STOEBR(| ong n) /* STC GBR R */
{
R n] =GBR
PC+=2;
}
STCVBR(| ong n) /* STC VBR Rn */
{
R n] =VBR
PC+=2;
}

130

STOVBR(| ong n) /* STC L SR @Rn */
{

R n]-=4;

Wite_Long(R n], SR ;

PC+=2;
}

STOMEBR(| ong n) [* STCL GBR @R */
{

R n]-=4;

Wite_Long(R n], GBR;

PC+=2;
}

STOWBR(long n) /* STCL VBR @Rn */
{

Rn]-=4,
Wite_Long(R n], VBR);
PC+=2;
}
Examples
STC SR RO Before execution RO = H'FFFFFFFF, SR = H'00000000
After execution RO = H'00000000
STC L GBR @R1I5 Before execution R15 = H'10000004
After execution R15 = H'10000000, @R15 = GBR

131

6.61 STS(Store System Register): System Control Instruction
Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STS MACH Rn MACH - Rn 0000nnNn00001010 1 —
STS MACL, Rn MACL - Rn 0000nnnNn00011010 1 —
STS PR Rn PR - Rn 0000nnnNn00101010 1 —
SISL MOH @R Rn-4 -5 Rn, MACH - (Rn) 0100nnnn00000010 1 —
SIS L MA,@R Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR @R Rn—-4 - Rn,PR - (Rn) 0100nnnn00100010 1 —

Description: Stores system registers MACH, MACL and PR datainto a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

If the system register is MACH in the SH7000 series, the value of bit 9 istransferred to and stored
in the higher 22 bits (bits 31 to 10) of the destination. With the SH7600 series, the 32 bits of
MACH are stored directly.

Operation:

STSMACH(| ong n) /[* STS MACH Rn */
{
R n] =MACH

i f ((R n] &x00000200) ==0) For SH7000 (these 2 lines
R n] &0x000003FF; not needed for SH7600)
el se R n] | =0xFFFFFQO0;

PC+=2;
}

STSMACL(long n) /* STS MACL, Rn */

{
R n] =MACL;
PC+=2;

132

STSPR(1 ong n)
{

/* STS PR R */

R n] =PR
PC+=2;

}
STSMVACH(| ong n)

{
R n] —=4,

/* STS.L MACH @Rn */

i f ((MACH&0Xx00000200) ==0)
Wite_Long(R n], MACHEOXx000003FF) ;

el se Wite_Long
(R n] , MACH OxFFFFFQ00)

For SH7000

Wite_Long(R n], MACH);

PC+=2;
}
STSMVACL(| ong n)
{

For SH7600

/* STS.L MACL, @Rn */

R n] —=4;
Wite_Long(R n], MACL);
PC+=2;
}
STSWPR(| ong n) /* STS.L PR @Rn */
{
R n] —=4;
Wite_Long(R n], PR;
PCH=2;
}
Example:
STS MACH RO Before execution

After execution

STS.L PR @R15 Beforeexecution

After execution

RO = H'FFFFFFFF, MACH = H'00000000
RO = H'00000000

R15 = H'10000004
R15 = H'10000000, @R15 = PR

133

6.62 SUB (Subtract Binary): Arithmetic Instruction
Format Abstract Code State T Bit

SUB Rm R Rn—-Rm - Rn 0011nnnnmmmi000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SWB(1ong mlong n) /* SUB RmRn */

{
Rin]-=Rnj;
PC+=2;
}
Example:

SB RO,RL Beforeexecution RO = H'00000001, R1 = H'80000000
After execution R1 = H'7FFFFFFF

134

6.63 SUBC (Subtract with Carry): Arithmetic I nstruction
Format Abstract Code State T Bit

SUBC Rm R Rn—RmM-T - Rn, Borrow - T 0011nnnnmmril010 1 Borrow

Description: Subtracts Rm dataand the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. Thisinstruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBJ long mlong n) /* SUBC RmRn */
{
unsi gned | ong tnpoO, t np1;

tnpl=Rn]-Rnj;
tnpO=R{ n] ;
Rn]=tnpl-T;
if (tnpO<tnpl) T=1;
el se T=0;
if (tnpl<R n]) T=1,
PCH=2;
}
Examples:
QRT RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 hits)
SUBC R3,RL Beforeexecution T =0, R1 = H'00000000, R3 = H'00000001
After execution T =1, R1 = H'FFFFFFFF
SUBC R, R0 Beforeexecution T =1, RO = H'00000000, R2 = H'00000000
After execution T =1, RO = H'FFFFFFFF

135

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic

Instruction
Format Abstract Code State T Bit
SuBV Rm R Rn—-Rm - Rn, Underflow - T 0011nnnnmmmilO11l 1 Underflow

Description: Subtracts Rm data from general register Rn data, and storesthe result in Rn. If an
underflow occurs, the T bit isset to 1.

Operation:

SWBV(long mlong n) /* SUBV Rmkn */
{

| ong dest, src, ans;

if ((long) R n]>=0) dest=0;
el se dest=1;
if ((long) R nj>=0) src=0;
el se src=1;
src+=dest ;
Rn]-=Rnj;
if ((long)R n]>=0) ans=0;
el se ans=1;
ans+=dest ;
if (src==1) {
if (ans==1) T=1;
el se T=0;
}
el se T=0;
PC+=2;

}

Examples:

SLBV RO,RL Before execution RO = H'00000002, R1 = H'80000001
After execution R1=H7FFFFFFF, T =1

SLBY R2, R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE
After execution R3 =H'80000000, T=1

136

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract

Code State T Bit

SWP.B RmRn Rm - Swap upper and lower 0110nnnnmmmr000 1 —
halves of lower 2 bytes — Rn

SWAP. W Rm Rn Rm - Swap upper and lower 0110nnnnmmm1001 1 —

word - Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If abyteis specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If aword is specified, bits 0 to 15 of Rm are

swapped for bits 16 to 31.

Operation:

SWAPB(long mlong n) /* SWAP.B RmRn */

{
unsi gned | ong tenpO, t enpl;
t enp0=R nj &xf f f f 0000;
t enpl=(R nj &x000000f f) <<8;
R n] =(R n} &x0000f f 00) >>8;
R n] =R n] | t enp1| t enpO;
PC+=2;

}

SWAPWIong mlong n) /* SWAP. WRmRn */

{
unsi gned | ong t enp;
t enp=(R n] >>16) &x0000FFFF;
R n] =R n} <<16;
REn] | =t enp;
PC+=2,

}

Examples

SWP.B R0,RL Before execution
After execution

SWAP.W RO, Rl Before execution
After execution

RO = H'12345678
R1 = H"'12347856

RO = H'12345678
R1=H'56781234

137

6.66 TAS(Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit
TAS.B @ When(Rn)is0,1 - T,1 -~ MSBof (Rn) 0100nnnn00011011 4 Test
results

Description: Reads byte data from the address specified by general register Rn, and setsthe T bit
to 1if thedataisO, or clearsthe T bit to O if the datais not 0. Then, data bit 7 is set to 1, and the
datais written to the address specified by Rn. During this operation, the busis not released.

Operation:

TAS(| ong n) /* TAS.B @n */

{
| ong tenp;
t enp=(1 ong) Read_Byte(R n]); /* Bus Lock enable */
if (tenp==0) T=1;
el se T=0;
t enp| =0x00000080;
Wite Byte(Rn],tenp); /* Bus Lock disable */
PC+=2;

}

Example:
_LaoP TAS B @7 R7 = 1000
BF _LooP Loops until datain address 1000 is0

138

6.67 TRAPA (Trap Always): System Control I nstruction

Format Abstract Code State T Bit
TRAPA #i nm PC/SR - Stack area, (imm x4+ 11000012iiiiiiii 8 —
VBR) - PC

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the

starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

TRAPA(long i) /* TRAPA #imm*/

{
| ong i mm
i ne(OXOO0000FF & i);
R 15] - =4;
Wite_Long(R 15], SR);
R 15] - =4,
Wite_Long(R 15], PG-2);
PC=Read_Long(VBR+(i mmx<2)) +4;
}
Example:
Addr ess
VBR+H 80 .data.l 10000000
TRAPA #H 20 Branches to an address specified by datain address VBR +
H'80
TST #0, RO ~ Return address from the trap routine (stacked PC value)
100000000 XR RO, RO ~ Trap routine entrance
100000002 RTE Returnsto the TST instruction
100000004 NCP Executes NOP before RTE

139

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State T Bit
TST RMm R Rn & Rm, when resultis 0010nnnnmmmi000 1 Test
0,1 -T results
TST #i mm RO RO & imm, when resultis 11001000iiiiiiii 1 Test
0,1 -T results
TST. B #i mm @R0, GBR (RO + GBR) & imm, when 11001100iiiiiiii 3 Test
resultis0,1 - T results

Description: Logically ANDs the contents of general registers Rn and Rm, and setsthe T bit to 1
if theresultisO or clearsthe T bit to O if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:

TST(l ong mlong n) /* TST RmRn */

{
if ((Rn]&Rnj)==0) T=1;
el se T=0;
PC+=2;
}
TSTI(long i) /* TEST # mm RO */
{
| ong tenp;
t enp=KR 0] & 0x000000FF & (Il ong)i);
if (tenp==0) T=1;
el se T=0;
PC+=2;
}
TSTMlong i) /* TST.B #i mm @RO, BBR */
{
| ong tenp;

140

t enp=(1 ong) Read_Byte(BR+R 0]) ;
t enp&=(0xO00000FF & (long)i);
if (tenp==0) T=1;

el se T=0;
PC+=2,
}
Examples:
TST RO, RO Before execution RO = H'00000000
After execution T=1
TST #H 80, RO Beforeexecution RO = H'FFFFFF7F

After execution T=1

TST.B #H A5, @R0, BBR) Beforeexecution @(RO,GBR) = H'A5
After execution T=0

141

6.69 XOR (Exclusve OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit
XR RnRn Rn”Rm - Rn 0010nnnnmmm1010 1 —
XR #imMmRO RO~ imm - RO 11001010iiiiiiii 1 —
XOR B #i nm @ RO, GBBR) (RO+GBR)~imm - (RO 11001110iiiiiiii 3 —

+ GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XCR(1ong mlong n) /* XOR RmRn */

{
Rn]~=Rnj;
PC+=2;

}

XXR(long i) [/* XCR#A mmRO */

{
R 0] ~=(0x000000FF & (long)i);
PC+=2;

}

XORMlong i) /* XORB #imm @R0, BR */

{
| ong tenp;
t enp=(| ong) Read_Byt e(BR+R 0]) ;
t enp”=(0xO0O0000FF & (long)i);
Wite Byte(@BR+R 0], tenp);
PC+=2;

}

142

Examples:

XR RORL Before execution RO =H'AAAAAAAA, R1 = H'55555555
After execution R1=HFFFFFFFF

XR #H FO, RO Before execution RO = H'FFFFFFFF
After execution RO = H'FFFFFFOF

XOR B #H A5, @R0, BR Before execution @(RO,GBR) = H'A5
After execution ~ @(RO,GBR) =H'00

143

6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit
XTRCT RmRn Center 32 bits of Rmand Rn - 0010nnnnmmmi1101 1 —
Rn

Description: Extracts the middle 32 bits from the 64 bits of genera registers Rm and Rn, and
stores the 32 bitsin Rn (figure 6.13).

MSB LSB MSB LSB

Rn

Figure6.13 Extract
Operation:

XTRCT(1 ong m | ong n) [* XTRCT RmRn */
{

unsi gned | ong t enp;

t enp=(R n] <<16) &xFFFFO000;
R n] =(R n] >>16) &0x0000FFFF;

Rin] | =t enp;
PC+=2;

}

Example:

XTRCT RO,RL Beforeexecution RO =H'01234567, R1 = H'S8OSABCDEF
After execution R1 = H'456789AB

144

Section 7 Processing States

7.1 State Transitions

The CPU has five processing states. reset, exception processing, bus release, program execution
and power-down. The transitions between the states are shown in figure 7.1. In the SH7600 series,
the transitions in the bus rel ease state are indicated for master mode. For more information, see the

SH Hardware Manual.

145

From any state when From any state when
RES=0and NMI =1 RES =0and NMI =0

RES =0,NMI=0
—_—

Manual reset state

Power-on reset state
-«

RES=0,NMI=1

RES =1, Reset states
NMI =0

RES =1,

When an interrupt source NMI=1
or DMA address error occurs
Exception processing state

NMI interrupt

Module standby
(SH7600 only)

source error
Bus request
cleared Bus request
generated
Exception Exception
) rocessin
Bus release state = processing p e g
source occurs
Bus request Bus request
Bus request generated cleared
generated
Bus request Program execution state
cleared SBY bit set
SBY bit for SLEEP
cleared for MSTP MSTP instruction
. SLEE'_D bit cleared bit set
instruction
Sleep mode Standby mode

Power-down state

Figure7.1 Transitions Between Processing States

146

711 Reset State

In the reset state, the CPU isreset. This occurs when the RES pin level goeslow. When the NMI
pinishigh, the result is a power-on reset; when it islow, amanual reset will occur.

In the power-on reset, all CPU internal states and on-chip peripheral module registers are
initialized. During manual reset, al on-chip peripheral module registers and CPU internal states,
with the exception of the bus state controller (BSC) and pin function controller (PFC), are
initialized. During manual reset the BSC is not initialized, allowing the refresh operation to
continue.

7.1.2 Exception Processing State
The exception processing state is atransient state that occurs when the CPU'’ s processing state
flow is altered by exception processing sources such as resets or interrupts.

For areset, the initial values of the program counter PC (execution start address) and stack pointer
SP are fetched from the exception processing vector table and stored; the CPU then branches to
the execution start address and execution of the program begins.

For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and status
register (SR) are saved to the stack area. The exception service routine start addressis fetched
from the exception processing vector table; the CPU then branches to that address and the program
starts executing, thereby entering the program execution state.

7.1.3 Program Execution State

In the program execution state, the CPU sequentially executes the program.

7.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has two modes: sleep mode and
standby mode. See section 7.2 for more details. The SH7600 al so has a modul e standby function.

7.15 BusReease State

In the bus rel ease state, the CPU rel eases access rights to the bus to the device that has requested
them.

147

7.2 Power-Down State

In addition to the ordinary program execution states, the CPU a so has a power-down state in
which CPU operation halts and power consumption is lowered (table 7.1). There are two power-
down state modes: sleep mode and standby mode.

721 Seep Mode

When standby bit SBY (in the standby control register SBY CR) is cleared to 0 and a SLEEP

instruction executed, the CPU moves from the program execution state to sleep mode. In the sleep
mode, the CPU halts and the contents of itsinternal registers and the datain on-chip cache (RAM)
are maintained. The on-chip peripheral modules other than the CPU do not halt in the sleep mode.

To return from sleep mode, use areset, any interrupt, or aDMA address error; the CPU returns to
the ordinary program execution state through the exception processing state.

7.22 Software Standby Mode

To enter the standby mode, set the standby bit SBY (in the standby control register SBYCR) to 1
and execute a SLEEP instruction. In standby mode, all CPU, on-chip peripheral module and
oscillator functions are halted. CPU internal register contents and on-chip cache(RAM) data are
held.

To return from standby mode, use areset or an external NMI interrupt. For resets, the CPU returns
to the ordinary program execution state through the exception processing state when placed in a
reset state after the oscillator stabilization time has elapsed. For NMI interrupts, the CPU returns to
the ordinary program execution state through the exception processing state after the oscillator
stabilization time has elapsed. In this mode, power consumption declines markedly, since the
oscillator stops.

7.23 Module Standby Function (SH7600 Only)

The module standby function is available for the multiplier (MULT), divider (DIVU), 16-bit free-
running timer (FRT), serial communication interface (SCI), and the DMA controller (DMAC) for
the on-chip peripheral modules.

The supply of the clock to these on-chip peripheral modules can be halted by setting the
corresponding bits 4-0 (MSTP4-M STPO) in the standby control register (SBY CR). Using this
function can reduce the power consumption in sleep mode.

148

The external pins of the on-chip peripheral modules in module standby are reset and al registers
except DMAC, MULT, and DIVU areinitialized. (The master enable bit (bit 0) of the DMAC's
DMA operation register (DMAOR) isinitialized to 0.)

Module standby function is cleared by clearing the MSTP4A-M STPO bitsto 0.

Table7.1 Power-Down State
State
On-Chip
Peripheral CPU 1/0
Mode Condition Clock CPU Module Register RAM Port Canceling
Sleep Executes Run Halt Run Held Held Held 1. Interrupt
mode _S.LEEP_ 2 DMA
|n_struct|on _ address
with SBY bit error
cleared to O
in SBYCR 3. Power-
on reset
4. Manual
reset
Standby Executes Halt Halt Haltand Held Held Heldor 1. NMI
N .
mode .SLEEP. initialize* hlglh- 2. Power-
|n§truct|0n . z* on reset
with SBY bit
setto1in 3. Manual
SBYCR reset
Module Sets Run Halt Supply of Held Held Held Clears
standby MSTP4- clock to MSTP4-
function ~ MSTPO bits affected MSTPO bits
(SH7600 of SBYCR module is of SBYCR
only) tol halted and to 0
module is
initialized.*2
Notes: 1. Depends on the peripheral module and pin. For details, see the Hardware Manual.

2. Interrupt vectors maintain their settings.

149

7.3 Master Mode and Slave Mode (SH7600 Series Only)

The SH7600 series has two master modes and a slave mode for bus rights that can be selected with
the M D5 pin. The master modes consist of a total master mode and a partial-share naster mode,
which are specified using the MD5 pin and the partial-share space specification bit (PSHR) in bus
control register 1 (BCR1). When the slave mode is selected with the MD5 pin, the device enters
total slave mode. When the master mode is selected with the MD5 pin and partial space shareis
specified with the PSHR bit, the device enters the partial-share master mode. When partial space
shareis not specified with the PSHR bit, the device enters the total master mode.

The master mode has rights to bus use. External devices can be accessed freely. When adlave
CPU requests the bus right, the master CPU can give the busright to the slave CPU.

Thetotal slave mode does not have rights to bus use. To access an external device, busrights have
to be regquested to the master CPU, permission to use the bus gained, and then the external device
accessed.

The partial-share master mode lacks bus rights only for CS2 space. To access the CS2 space, bus
rights have to be regquested to the master CPU, permission granted and then the CS2 space can be
accessed. This mode has bus rights for al other space and does not need to request the bus when
accessing them.

Table7.2 Master Modes and Slave M ode (SH7600)

MD5 (Total Slave Mode PSHR

Specification Pin) (Partial-Share

Mode Bit) Function

Total slave 1 (Not used) Has no bus rights. To use a bus,

mode requests the bus and receive
permission from the master CPU to
access.

Partial-share 0 1 Has bus rights to CS0, CS1, and CS3

master spaces. Lacks continuing bus rights

mode only to CS2. To access CS2, first
requests and be granted bus rights.

Total master 0 0 Always has bus rights. Gives bus rights

mode to slave CPUs.

150

Section 8 Pipeline Operation

This section describes the operation of the pipelines for each instruction. Thisinformation is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

* |IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.

ID (Instruction decode) Decodes the instruction fetched.

» EX (Instruction execution) Performs data operations and address cal culations according to the
results of decoding.

* MA (Memory access) Accesses datain memory. Generated by instructions that involve
memory access, with some exceptions.

* WB (Write back) Returns the results of the memory access (data) to aregister.
Generated by instructions that involve memory loads, with some
exceptions.

Asshown in figure 8.1, these stages flow with the execution of the instructions and thereby
congtitute a pipeline. At agiven instant, five instructions are being executed simultaneoudly. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows a so varies with the type of instruction. The basic pipeline flow is
as shown in figure 8.1; some pipelines differ, however, because of contention between IF and MA.
Infigure 8.1, the period in which asingle stage is operating is called adot.

4> 4> 4> 4> 4> 4> 4> 4> 4> 4> Sot

Instruction 1 IF ID EX MA WB Instruction
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB

.—>

Time

Figure8.1 Basic Structure of Pipeline Flow

151

8.2 Slot and Pipeline Flow

Thetime period in which asingle stage operatesis called adlot. Slots must follow the rules
described below.

8.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 8.2), with exception of WB and MA. Since WB
is executed immediately after MA, however, some instructions may execute MA and WB within
the same slot.

> “—> 4> > P> > > > > Sot
Instruction1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure8.2 Impossible Pipeline Flow 1

8.22 Yot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 8.3).

4 O 4 4 4D D D> > 4> 4> Sot
Instructon1 IF ID EX MA WB
Instruction2 IF ID EX MA WB

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

Figure8.3 Impossible Pipeline Flow 2

152

8.23 Sot Length

The number of states (system clock cycles) Sfor the execution of one slot is calcul ated with the
following conditions:

» S=(the cycles of the stage with the highest number of cycles of all instruction stages contained
in the dot)

This means that the instruction with the longest stage stalls others with shorter stages.

e The number of execution cycles for each stage:

— IF The number of memory access cycles for instruction fetch
— ID Alwaysone cycle

— EX Alwaysone cycle

— MA The number of memory access cycles for data access

— WB Alwaysone cycle

Asan example, figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 isthree cycles and al others are one cycle. The dashesindicate the instruction is
being stalled.

<“—> ¢—> 4> «———p <> <> : Slot

@)) 1) @ (1) (1) < Number of
Instrucionl IF IF ID — EX MA MA MA WB cycles
Instruction 2 IF IF ID EX — — MA WB

Figure8.4 SotsRequiring Multiple Cycles

153

8.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in apipeline flow like that shown in figure 8.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 isfive cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
isone state.

If aprogram ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using an MOV Rm, Rn that followsinstruction 3. (In the case of figure 8.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 8.4, Contention Between Instruction Fetch (1F) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 8.5 isseven states (5 + 1 + 1).

“—> ¢———> «—p «——p <> <> : Slot

@)) @) 4 o @

Instructonl IF IF ID — — MA MA MA WB
Instruction 2 IF IF D — — — —
Instruction 3 F IF — — — ID MA
(Instruction 4: MOV Rm, Rn IF ID [EX])

Figure8.5 How Instruction Execution States Are Counted

154

84 Contention Between Instruction Fetch (IF) and Memory Access (MA)

84.1 Basic Operation When IF and MA arein Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF
and MA stages both try to access memory within the same slot, the slot splits as shown in figure
8.6. When thereisaWB, it is executed immediately after the MA ends.

A B C D E F G
> O O O > > > > <> Sot

Instructionl IF ID EX WB MA of instruction 1 and IF of instruction 4

Instruction 2 IF ID EX WB contend at D

Instruction 3 F ID EX MA of instruction 2 and IF of instruction 5
contend at E

Instruction 4 ID EX

Instruction 5 ID EX

When MA and IF are in contention, the following occurs:

A B C D E F G
> 4> > “——> «———» <> <> Sot
Instruction1 IF ID EX WB Split at D
Instruction 2 IF ID — EX wB Split at E
Instruction 3 IF — ID — EX
Instruction 4 — ID EX
Instruction 5 ID EX

Figure8.6 Operation When IF and MA Arein Contention

The dotsinwhich MA and IF contend are split. MA is given priority to execute in the first half
(when thereisa WB, it immediately follows the MA), and the EX, ID, and |F are executed
simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is executed in
dlot D while the EX of instruction 2, the ID of instruction 3 and |F of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for aslot in which MA and IF arein contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

155

8.4.2 TheRelationship Between IF and the L ocation of Instructionsin On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the SH
microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a
single |F stage access.

If an instruction islocated on alongword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction |F also fetches two instructions, the
instruction |Fs after that do not generate a bus cycle either.

This means that |Fs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction addressare 00 is A1 = 0 and A0 = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as'if’. These 'if’s always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction addressare 10isAl1 =1, A0 = 0), the bus
cycle of the | F fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 8.7 illustrates
these operations.

156

. 32bits

Instruc-|| Instruc-
tion1 || tion2
Instruc-|| Instruc-
tion 3 || tion 4
Instruc-|| Instruc-
tion 5 tion 6
(On-chip memory

or on-chip cache)

-+ Instruction 1

Instruction 2

.- Instruction 3

Instruction 4

.- Instruction 5

Instruction 6

‘P O O O OO O O O D> >

ID EX
if ID EX
ID EX
if ID EX
ID EX
if ID EX

: Bus cycle generated
if . No bus cycle

Fetching from an instruction (instruction 1) located on a longword boundary

Instruc-
tion 2
Instruc-|| Instruc-
tion 3 || tion 4
Instruc-|| Instruc-
tion5 || tion 6

-+ Instruction 2

-+ Instruction 3

Instruction 4

-- Instruction 5

Instruction 6

+“r > 4> OO > OO > OO > D>

ID EX
ID EX
if ID EX
ID EX
if ID EX

. Bus cycle generated
if . No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

. Slot

. Slot

Figure 8.7 Réationship Between |F and L ocation of Instructionsin On-Chip Memory

8.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM or
On-Chip Memory and Contention Between |F and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are

instruction fetch stages (*if” written in lower case) that do not generate bus cycles as explained in
section 8.4.2 above. When anif isin contention with an MA, the slot will not split, as it does when
an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such
dots execute in the number of states the MA requires for memory access, asillustrated in figure

8.8.

When programming, avoid contention of MA and |F whenever possible and pair MAswith ifsto
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, 1D, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the

157

position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0) because the
MA of theinstruction fallsin the same slot asifs that follow.

<« 32Dits <> 4> 4> 4> > 4> <> 4> <> : Sht
instruc-|| Instruc- | - Instruction 1 IF 1D EX MA: WB

tion1 || tion2 Instruction 2 if ID EX MA. WB

Instruc-1| Instruc- | =+ Instruction 3 IF ID — EX

tion3 || tion 4 Instruction 4 fif i — ID EX

instruc-l Instruc- | -+ Instruction 5 ID EX

tion5 || tion 6 Instruction 6 if ID EX

(On-chip memory : Splits

or on-chip cache) Uif 1 Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

Figure 8.8 Relationship Between the Location of Instructionsin On-Chip Memory and
Contention Between |F and MA

8.5 Effectsof Memory Load Instructionson Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such aload instruction (load
instruction 1) will thus come after the EX stage of the instruction that immediately follows it

(instruction 2).

When instruction 2 uses the same destination register asload instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. The destination register of load instruction 1 is the same as the destination (not the
source) of instruction 2, so it splits.

When the destination of load instruction 1 isthe status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), asplit occurs. No split occurs, however, in the following cases:

* When instruction 2 isaload instruction and its destination is the same as that of load
instruction 1.

* Wheninstruction 2 is Mac @Rm+ , @Rn+, and the destination of load instruction 1 are the
same.

158

The number of statesin the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, asillustrated in figure 8.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

Load instruction 1 (MOV.W @RO0, R1)
Instruction 2 (ADD R1, R2)
Instruction 3

Instruction 4

<> 4> 4> «—» <> <> Sot

IF ID EX WB

IF ID —
IF — ID EX -
IF ID -

Figure8.9 Effectsof Memory Load Instructionson the Pipeline

8.6 Programming Guide

To improve instruction execution speed, consider the following when programming:

» To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and AO = 0) wherever possible.

* Theinstruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

* Locate instructions that use the multiplier nonconsecutively.

159

8.7

Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution

states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “1F” is
written in the instruction fetch stage, it may refer to either “I1F” or “if”. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with afew exceptions. When a dot has split, see section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given

there.

Table 8.1 lists the format for number of instruction stages and execution states:

Table8.1 Format for the Number of Stages and Execution Statesfor Instructions
Type Category Stage State Contention Instruction
Functional Instructions Number Number Contention that Corresponding instructions
types are catego- of of occurs represented by mnemonic
rized stages execu-
based on in an tion
operations instruc- states
tion when
no
conten-
tion
occurs
Table82 Number of Instruction Stagesand Execution States
Type Category Stage State Contention Instruction
Data Register- 3 1 — MOV #i mm Rn
transfer register NOV R R
instructions transfer)
instructions MOVA @disp, PO, RO
MOVT R
SWAP.B RmRn
SWAP. W Rm Rn
XTRCT RmRn

160

Table8.2 Number of Instruction Stages and Execution States (cont)
Type Category Stage Contention Instruction
Data Memory 5 » Contention occurs M. W @di sp, PO, R
Fransfer_ !oad _ if the instruction MOV.L @disp, PO, R
instructions instructions placed
(cont) immediately after MV.B @mkn
thisone usesthe MOV W @mRn
f:é?stiec:estlnatlon MOV.L @M Rn
MA contends with MV.B @R Rn
(= MOV. W @R+, Rn
MOV.L @RmH, Rn
MV.B @disp, Ry, R0
MOV. W @disp,R), RO
MOV.L @disp,R), R
MOVZ.B @RO, R, R
MOV. W @RO, R, Rn
MOV.L @RO,RM, R
MV.B @disp, BR, R0
MOV. W @disp, 8BR, R0
MV.L @disp, BR, R0
Memory 4 * MA contends with MOV. B Rm @n
;tore . IF MOV, W Rm @
instructions
MOV.L Rm@n
MOV.B Rm @R
MOV. W Rm @R
MOV.L Rm @R
M. B RO, @disp, Rn)
MV. W RO, @di sp, Rn)
MOV.L Rm @disp, Rn)
MOV. B Rm @RO, Rn)
MOV. W Rm @R0, Rn)
MOV.L Rm @RO, Rn)
MV.B RO, @disp, GBBR
MV. W RO, @di sp, GBBR
MV.L RO, @disp, GBBR

161

Table8.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Arithmgtic Arithmgtic 3 1 — ADD Rm R
instructions E:&;Iuecélr(])ns ADD # mm R
registers ADDC Rm Rn
(except ADDV Rm Rn
multiplic- QP EQ # mm R
instruc- OW EQ RmRn
tions) O/ HS R R
OW/ CGE Rnkn
OwW/ H Rm R
OW/ Gl RmRn
OW/PZ R
QwP/ PL R
OW/ STR RmRn
D Vi Rm R
D VOSs Rm R
D WU
or Rn*3
EXTS B RmRn
EXTS W RmRn
EXTUB RmR
EXTUW RmRn
NEG Rm R
NECC Rm R
SUB Rm R
SUBC Rm R
SuBv Rm R
Multiply/ 7/8%1 3/(2)*2 « Multiplier contention MC W @Rm+, @+
accumulate occurs when an
instructions instruction that uses the
multiplier follows a
MAC instruction
* MA contends with IF
Notes 1. Inthe SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6

stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

SH7600 instructions

162

Table8.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Arithmetic Double - 9 3/(2to * Multiplier MAC L @R+, @n++3
instructions length 4)x2 contention occurs
(cont) multiply/ when an
accumulate instruction that
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction
* MA contends with
IF
Multiplic- 6/7+1 1to3*2 « Multiplier MLS. W RmRn
ation contention occurs MLUW RmRn
instructions when an instruc- '
tion that uses the
multiplier follows a
MUL instruction
* MA contends with
IF
Double- 9 2to4*2 « Multiplier DMLS. L RmRn*3
length contention occurs DMLU L Rm R1*3
multiply/ when an 3
accumulate instruction that ML L Rm Rn
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction
* MA contends with
IF
Logic Register- 3 1 — AND Rm R
operation register AND # mm RO
instructions logic
operation NOT Rm Rn
instructions R Rm R
R # mm RO
TST Rm Rn
TST # mm RO
XCR Rm Rn
XR # mm RO
Notes 1. Inthe SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6

163

stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

SH7600 instructions

Table8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Logic Memory logic 6 3 * MA contends AND. B # mm @RO, GBR
pperatiqn pperatiqns with IF R B # mm @R0, GBR)
instructions instructions)
(cont) TST.B #i mm @RO, GBR
XCR B #imm @R0, BR
TAS 6 4 * MA contends TAS. B @
instruction with IF
Shift Shift 3 1 — ROTL R
instructions instructions ROTR R
ROTCL R
ROTCR Rn
SHAL R
SHAR R
SH L R
SHR R
SHL2 R
SHR2 R
SHL8 R
SHRB R
SHL16 R
SHRI6 R
Branch Conditional 3 3/1%4 — BF | abel
instructions .branch. BT | abel
instructions
Delayed 3 2/1%4 — BF/S |abel *3
conditional BT/ S | abel *3
branch
instructions
(SH7600 only)
Unconditional 3 2 — BRA | abel
branch BRAF Rn*3
instructions
BSR | abel
BSRF Rn*3
JWP @
JSR @
RTS

Notes 3. SH7600 instruction

4. One state when there is no branch

164

Table8.2 Number of Instruction Stages and Execution States (cont)
Type Category Stage State Contention Instruction
System System 3 1 — CLRT
control control LDC RM SR
instructions ALU
instructions LoC Rm GBR
LDC Rm VBR
LDS Rm PR
NCP
SETT
STC SR R
STC @&BR R
STC VBR Rn
STS PR Rn
STC.L 4 2 e MA contendswith STCL SR @R
instructions IF sTC L &R @R
STCL VBR @R
LDS.L 5 1 » Contention occurs LDS.L @m, PR
instructions when an
(PR) instruction that
uses the same
destination
register is placed
immediately after
this instruction
* MA contends with
IF
STS.L 4 1 * MA contends with STS. L PR @R
instruction IF
(PR)

165

Table8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
System Register . 4 1 e Contention occurs CLRVAC
control MAC with multiplier LDS Rm MACH
instructions transfer :
* MA contends with
(cont) instruction IE LDS Rm MACL
Memory - 4 1 ¢ Contentionoccurs LDS. L @+, MACH
MAC with multiplier LDS. L @, MACL
.transfer. * MA contends with
instructions IE
MAC - 5 1 * Contention occurs STS MACH Rn
register with multiplier STS MACL. Rn
transfer « Contention occurs
instruction when an

instruction that
uses the same
destination
register is placed
immediately after
this instruction

* MA contends with

IF
MAC - 4 1 * Contentionoccurs STS. L MACH @-Rn
memory with multiplier STSL MO, @R
.transfer' * MA contends with
instruction
IF
RTE 5 4 — RTE
instruction
TRAP 9 8 — TRAPA #imm
instruction
SLEEP 3 3 — SLEEP
instruction

166

8.7.1 DataTransfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

- MOV #imm, Rn

« MOV Rm, Rn

* MOVA @(disp, PC), RO
e MOVT Rn

+ SWAP.B Rm, Rn
« SWAPW Rm, Rn
* XTRCT Rm, Rn

<> 4> <> <> <> <> : Sot
lInstruction A IF_ID EX]|
Next instruction IF ID EX -«
Third instruction IF ID EX -«

Figure8.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Dataistransferred in the EX
stageviathe ALU.

167

Memory Load Instructions: Include the following instruction types:

« MOV.W
* MOV.L
« MOV.B
+ MOV.W
« MOV.L
+ MOV.B
« MOV.W
* MOV.L
« MOV.B
+ MOV.W
« MOV.L
+ MOV.B
« MOV.W
* MOV.L
« MOV.B
+ MOV.W
* MOV.L

@(disp, PC), Rn
@(disp, PC), Rn
@Rm, Rn

@Rm, Rn

@Rm, Rn
@Rm+, Rn
@Rm+, Rn
@Rm+, Rn
@(disp, Rm), RO
@(disp, Rm), RO
@(disp, Rm), Rn
@(RO, Rm), Rn
@(RO, Rm), Rn
@(RO, Rm), Rn
@(disp, GBR), RO
@(disp, GBR), RO
@(disp, GBR), RO

[Instructon A IF__ID _EX_MB_WB|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure8.11 Memory Load Instruction Pipeline

Operation: The pipeline hasfive stages: IF, ID, EX, MA, and WB (figure 8.11). If an instruction
that uses the same destination register as thisinstruction is placed immediately after it, contention
will occur. (See Section 8.5, Effects of Memory Load Instructions on Pipelines.)

168

Memory Store Instructions: Include the following instruction types:

« MOV.B Rm, @Rn

« MOV.W Rm, @Rn

e MOV.L Rm, @Rn

« MOV.B Rm, @-Rn

e MOV.W Rm, @-Rn

« MOV.L Rm, @-Rn

« MOV.B RO, @(disp, Rn)
« MOV.W RO, @(disp, Rn)
e MOV.L Rm, @(disp, Rn)
« MOV.B Rm, @(RO, Rn)

e MOV.W Rm, @(RO, Rn)

« MOV.L Rm, @(RO, Rn)

« MOV.B RO, @(disp, GBR)
« MOV.W RO, @(disp, GBR)
e MOV.L RO, @(disp, GBR)

[Instructon A IF__ID _EX_MA]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure8.12 Memory Storelnstruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.12). Datais not returned to
the register so thereis no WB stage.

169

8.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

« ADD Rm, Rn
« ADD #imm, Rn
« ADDC Rm, Rn
+ ADDV Rm, Rn

e« CMP/EQ #mm, RO
« CMP/EQ Rm, Rn

e« CMPHS Rm, Rn

« CMP/GE Rm, Rn

e CMPHI Rm, Rn

« CMP/IGT Rm, Rn

e CMPIPZ Rn

« CMP/PL Rn

e CMP/ISTR Rm, Rn

« DIV1 Rm, Rn
« DIVOS Rm, Rn
« DIVOU

« DT Rn (SH7600 only)
« EXTSB Rm, Rn
e EXTSW Rm, Rn
« EXTUB Rm, Rn
« EXTUW Rm, Rn
* NEG Rm, Rn
« NEGC Rm, Rn
« SUB Rm, Rn
e SUBC Rm, Rn
« SUBV Rm, Rn

170

<> <> 4> <> <> <> : Slot
[Instruction A

IFE ID EX MA]|

Next instruction

Third instruction

Figure8.13 Pipelinefor Arithmetic Instructions between Registers Except Multiplication
Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is
completed in the EX stage viathe ALU.

171

Multiply/Accumulate I nstruction (SH7000): Includes the following instruction type:

* MACW @Rm+, @Rn+

> 4> > > > <> <> > Sot
[MACW IF ID EX MA MA mm mm_ mm]
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure8.14 Multiply/Accumulate I nstruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
dot. The D of theinstruction after the MAC.W instruction is stalled for one slot. The two MASs of
the MAC.W instruction, when they contend with IF, split the slots as described in section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occursin the
following cases:

When aMAC.W instruction is located immediately after another MAC.W instruction
When aMULS.W instruction is located immediately after aMAC.W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction islocated immediately after aMAC.W instruction
When an LDS (register) instruction is located immediately after aMAC.W instruction
When an LDS.L (memory) instruction is located immediately after aMAC.W instruction

o 0~ wDdh PP

172

1. WhenaMAC.W instruction islocated immediately after another MAC.W instruction

When the second MA of aMAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
8.15).

“> 4> > 4> 4> 4> —> 4> <> 4> Sot

|MAC.W IF ID EX MA MA mm :mm_mm:

MAC.W IF — ID EX MA :M—A:mm mm mm

Third instruction IF — ID EX — MA -

> > 4> > > > > > > <> > <> Slot
| MAC.W IF ID EX MA MA mm mm :mm:
Other instruction IF — ID EX MA WB

MAC.W IF ID EX MA MA' mm mm mm -

Figure8.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 8.16 illustrates a case of this
type. This figure assumes MA and |F contention.

> > > D D O P> C—P P> <—P> > Slot
[MACW if ID EX MA MA mm mm mm:

MAC.W IF — ID EX MA
MAC.W if — —
MAC.W IF — ID EX — MA:M—A ‘mm -

Figure8.16 Consecutive MAC.Wswithout Misalignment

173

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 8.17 illustrates a case of thistype. This
figure assumes MA and | F contention.

> € D P AP > > 4P > 4> > <> S)o

MAC.W
Other instruction
Other instruction
Other instruction

if — — ID

t

Figure8.17 MA and IF Contention

174

When aMULS.W instructions is located immediately after aMAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. When the MULS.W MA and IF contend, the slot is split.

“r 4> > 4> >

“————— > 4> 4> > > > <> Slot

|MAC.W IF ID EX MA MA :mm mm mm:
MULS.W IF — ID EX M————A mm mm mm
Other instruction IF ID EX — — MA ...

“r 4> > 4> >

[MACW IF ID EX MA MA mm :mm mm
Other instruction IF — ID EX
MULS.W IF D
Other instruction IF ID EX — MA -

“—r 4> > > >

[MAC.W

IF ID EX MA

Other instruction
Other instruction

MULS.W
Other instruction

IF — ID
IF

Figure8.18 MULSW Instruction Immediately After aMAC.W Instruction

175

3. When an STS (register) instruction is located immediately after aMAC.W instruction

When the contents of aMAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.19) to create asingle slot. The MA of the STS contends with the IF. Figure 8.19
illustrates how this occurs, assuming MA and | F contention.

P 4> P> > 4> P 4> P> Sot

[MACW IF _
STS f — — ID EX M—A WB
Other instruction IF D — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MACW if ID EX MA MA mm :mm mm:

STS IF — ID — EX:M—A WB
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure8.19 STS(Register) Instruction Immediately After aMAC.W Instruction

176

4. When an STS.L (memory) instruction is located immediately after aMAC.W instruction

When the contents of a MAC register are stored in memory using an STSinstruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 8.20) to create asingle slot. The MA of the STS contends with the IF.
Figure 8.20 illustrates how this occurs, assuming MA and IF contention.

> 4> > —> >« > 4> 4> <> <4><4>; Slot
[MACW IF ID EX MA —
STS.L if — — ID “M——— A WB
Other instruction IF b — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX -t

> > D P P P 4> > 4> > <> <> Sot
[MACW if ID EX MA MA mm mm mmj

STS.L F — ID — EX . M—A
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX -

Figure820 STSL (Memory) Instruction Immediately After a MAC.W Instruction

177

5. When an LDS (register) instruction is located immediately after aMAC.W instruction

When the contents of a MAC register are |loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.21) to create asingle slot. The MA of this LDS contends with IF. Figure 8.21
illustrates how this occurs, assuming MA and | F contention.

> P> P> P 4> P 4P <> >4> > Sot
[MACW IF ID EX MA

LDS if — —
Other instruction
Other instruction f — — — ID EX
Other instruction IF ID EX -

> 4> > > > > > > > > > > Sot
[MAC.W if
LDS
Other instruction

Other instruction

Other instruction

Figure8.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

178

When an LDS.L (memory) instruction islocated immediately after aMAC.W instruction

When the contents of aMAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described |ater.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.22) to create a
singleslot. The MA of the LDS contends with IF. Figure 8.22 illustrates how this occurs,
assuming MA and |F contention.

D D P P P> P P> > <> Sot

[MACW IF ID EX MA —

LDS.L
Other instruction
Other instruction
Other instruction

if — — ID EX M—A
IF b — — — EX
f — — — ID EX

IF ID EX -

D D P P > > > > > > <> <> Sot

[MAC.W

if ID EX MA MA mm |]

LDS.L
Other instruction
Other instruction
Other instruction

f — ID — EX : M—A:
if — ID EX
IF ID — EX MA
if — ID EX -

Figure8.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

179

Multiply/Accumulate I nstruction (SH7600): Includes the following instruction type:

* MACW @Rm+, @Rn+

> 4> > > 4> > <> <> Sot
[MACW IF ID EX MA MA mm mm]
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure8.23 Multiply/Accumulate I nstruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 8.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the fina MA ends, regardless of slot. The ID of
theinstruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the dots as described in Section 8.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be afive-stage pipeline instructions of IF, 1D, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occursin the
following cases:

When aMAC.W ingtruction is located immediately after another MAC.W instruction
When aMAC.L instruction is located immediately after aMAC.W instruction

When aMULS.W instruction is located immediately after aMAC.W instruction

When aDMULS.L instruction is located immediately after aMAC.W instruction

When an STS (register) instruction is located immediately after aMAC.W instruction
When an STS.L (memory) instruction is located immediately after aMAC.W instruction
When an LDS (register) instruction is located immediately after aMAC.W instruction
When an LDS.L (memory) instruction is located immediately after aMAC.W instruction

O NS O~ WD

180

1. WhenaMAC.W instruction islocated immediately after another MAC.W instruction

The second MA of aMAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

> > > 4> 4P P> > 4> 4> <> <> Sot
|MAC.W IF ID EX MA MA mm

MAC.W IF — ID EX MA IMA mm mm
Third instruction IF — ID EX MA

Figure8.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by

MA and IF contention. Figure 8.25 illustrates a case of thistype. This figure assumes MA and
|F contention.

D D P D P P D 4D O > > > <> Sot
[MACW if ID EX MA MA mm mm]|

MAC.W IF — ID EX MA — MA mm mm
MAC.W if — — ID EX MA MA mm mm
MAC.W

IF ID EX MA MA mm -

Figure8.25 Consecutive MAC.Wswith Misalignment

181

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual.
Figure 8.26 illustrates a case of thistype. This figure assumes MA and | F contention.

> 4> 4> —> 4> 4> 4> 4> 4> 4> <> <> Sot

MACW IF ID EX MA — MA mm:mm:
MAC.W if — — ID EX MA MA:mm mm
Other instruction IF — ID — EX MA
Other instruction if — ID EX
Other instruction IF

Figure8.26 MA and IF Contention
2. WhenaMAC.L instruction is located immediately after a MAC.W instruction

The second MA of aMAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 8.27).

> > > > > > > > > <> > St
|MAC.W IF ID EX MA MA mm mm:

MAC.L IF — ID EX MA:MA: mm mm mm mm
Third instruction IF — ID EX MA

Figure8.27 MAC.L InstructionsImmediately After aMAC.W Instruction

182

When a MULS.W instruction is located immediately after aMAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.28) to
create asingle slot. When one or more instructions not related to the multiplier come between
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. Thereisno MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

> 4> 4> 4> 4> 4“—> 4> 4> 4> 4> 4> 4> <> Sot

MACW IF ID EX MA MA mm mm:

MULS.W IF — ID EX :M—A :mm mm

Other instruction IF ID EX — MA

> 4> 4> 4> 4> > > 4> 4> > <> > <> Sot
MACW IF ID EX MA MA :
Other instruction IF — ID EX
MULS.W IF ID
Other instruction IF ID EX MA

Figure8.28 MULSW Instruction Immediately After aMAC.W Instruction
When aDMULS.L instruction islocated immediately after aMAC.W instruction

DMULSLL instructions have an MA stage for accessing the multiplier, but thereisno
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 8.29).

D D 4 4 4 D D 4> 4 D D 4> P> <> Sot

MACW IF ID EX MA MA mm:mm:

DMULS.L IF — ID EX MA:MA:mm mm mm mm

Other instruction IF — ID EX MA

Figure8.29 DMULSL InstructionsImmediately After a MAC.W Instruction

183

5. When an STS (register) instruction is located immediately after aMAC.W instruction

When the contents of aMAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.30) to create asingle slot. The MA of the STS contends with the IF. Figure 8.30
illustrates how this occurs, assuming MA and | F contention.

> > > > > <> <> > <> <> Sot
MACW IF ID EX MA — :

STS if — — ID EX I
Other instruction IF
Other instruction f — — ID EX
Other instruction IF ID EX

MAC.W if ID EX MA MA mm mm:

STS IF — ID — EX:MA WB
Other instruction if — ID EX
Other instruction IF ID EX MA
Other instruction if ID EX

Figure8.30 STS(Register) Instruction Immediately After aMAC.W Instruction

184

6. Whenan STS.L (memory) instruction is located immediately after aMAC.W instruction

When the contents of a MAC register are stored in memory using an STSinstruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cacheis enabled.

Figure 8.31 illustrates how this occurs, assuming MA and | F contention.

<> > > C—— P 4> P 4> <> 4> > <> <> Sot

MACW IF ID EX MA — MA mm mm.

STS.L if — — ID EX M—A:
Other instruction IF ID — — EX MA
Other instruction if — — ID EX
Other instruction IF ID EX

MAC.W if ID EX MA MA mm:mm:

STS.L IF — ID —
Other instruction if —
Other instruction IF ID EX
Other instruction if ID EX

Figure8.31 STS.L (Memory) Instruction Immediately After aMAC.W Instruction

185

7. When an LDS (register) instruction is located immediately after aMAC.W instruction

When the contents of a MAC register are |loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.32) to create asingle slot. The MA of this LDS contends with IF. Figure 8.32
illustrates how this occurs, assuming MA and | F contention.

> > > > > 4> > > > > Sot
MACW IF ID EX MA :
LDS if — —
Other instruction

Other instruction
Other instruction IF ID EX

D D P P > > > > > > <> <> Sot

MACW if ID EX MA MA mm:mm:

LDS IF — ID — EX:MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure8.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

186

When an LDS.L (memory) instruction islocated immediately after aMAC.W instruction

When the contents of aMAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described |ater.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.33) to create a
singleslot. The MA of the LDS contends with IF. Figure 8.33 illustrates how this occurs,
assuming MA and |F contention.

> > > > > > 4> > <> > > Sot

MACW IF ID EX MA —

LDS.L if — — ID

Other instruction IF
Other instruction
Other instruction

MAC.W if ID EX MA MA mm:

LDS.L IF — ID — EX:

Other instruction if — ID

Other instruction IF
Other instruction

Figure8.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

187

Double-Length Multiply/Accumulate I nstruction (SH7600): Includes the following instruction
type:

« MACL @Rm+, @Rn+ (SH7600 only)

> 4> > > > > > > > St
[MACL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure8.34 Multiply/Accumulate I nstruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
8.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
dot. The D of theinstruction after the MAC.L instruction is stalled for one slot. The two MASs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occursin the
following cases:

When aMAC.L instruction is located immediately after another MAC.L instruction
When aMAC.W instruction is located immediately after aMAC.L instruction

When aDMULS.L instruction is located immediately after aMAC.L instruction

When aMULS.W instruction is located immediately after aMAC.L instruction

When an STS (register) instruction is located immediately after aMAC.L instruction
When an STS.L (memory) instruction islocated immediately after aMAC.L instruction
When an LDS (register) instruction is located immediately after aMAC.L instruction
When an LDS.L (memory) instruction is located immediately after aMAC.L instruction

N s~ wWwDdhPE

188

When aMAC.L instruction islocated immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M —
A shown in the dotted line box in figure 8.35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

P D D D P > > > > <> <> Sot

[MACL IF ID EX MA MA mm mm mm mm:

MAC.L IF — ID EX MA: M—A ‘mm mm mm mm

Third instruction IF — ID EX — — MA .

4 4 O O O 4 D O O > 4> 4> > Sot

[MACL IF ID EX MA MA mm mm mm :mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA:mm mm mm mm

Figure8.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when thereis
misalignment of instruction execution caused by MA and IF contention. Figure 8.36 illustrates
a case of thistype, assuming MA and IF contention.

O > > > > > <> <> Sot

[MACL if ID EX MA MA mm mm:mm mm:

MAC.L IF — ID EX MA — M—A :mm mm mm mm
MAC.L f — — ID EX — MA M———A mm mm mm mm
MAC.L IF — ID EX — — — MA

Figure8.36 Consecutive MAC.Lswith Misalignment

189

When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the dot in the usual way. Figure 8.37 illustrates a case of
this type, assuming MA and IF contention.

P> O > 4> 4> 4> «—————p 4> 4> <> Sot

|MAC.L IF ID EX MA — MA mm:mm mm_ mm:
MAC.L f — — ID EX MA: M——A ‘mm mm mm mm
Other intruction IF — b — — — EX
Other intruction f — — — ID
IF

Other intruction

Figure8.37 MA and IF Contention

190

2. WhenaMAC.W instruction is located immediately after aMAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M —
A shown in the dotted line box in figure 8.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC.W
instructions, the stall caused by multiplier contention between MAC.L instructionsis
eliminated.

> 4> 4> <> > 4> <«———p 4> <> ;. Slot
[MACL IF ID EX MA MA mm mm mm mmj
MAC.W IF — ID EX MA MA—— A mm mm

Third instruction IF — ID EX — — MA -

[MACL IF ID EX MA MA mm mm mm:mm]

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA :MA mm mm

Figure8.38 MAC.W Instruction Immediately After aMAC.L Instruction

191

3. WhenaDMULSL instruction is located immediately after aMAC.L instruction

DMULSLL instructions have an MA stage for accessing the multiplier. When the MA of the
DMULSL.L instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.39) to
create asingle slot. When two or more instructions not related to the multiplier come between
the MAC.L and DMULSLL instructions, MAC.L and DMULS.L contention does not cause
stalling. When the DMULS.L MA and IF contend, the dlot is split.

G D 4D D 4 D 4> > > 4> 4> <> Sot

[MACL IF ID EX MA MA mm:mm mm mm:

DMULS.L IF — ID EX MA: M——A mm mm mm mm

Other instruction IF — ID — — EX MA -

> > > P> > > > > > > > > > St
|MAC.L IF ID EX MA MA

Other instruction IF — ID EX
DMULS.L IF ID
Other instruction IF — ID — EX MA -

> 4 D 4 4 O D O D D O > > <> Sot

[MACL IF ID EX MA MA mm mm mm mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB

DMULS.L IF ID EX MA:MA:mm mm mm mm
Other instruction IF — ID EX MA -

Figure8.39 DMULSL.L Instruction Immediately After aMAC.L Instruction

192

When aMULS.W instruction is located immediately after aMAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 8.40) to
create asingle slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the dlot is split.

193

+“r 4> 4> > >

|MAC.L IF ID EX MA MA mm:mm_mm mm:
MULS.W IF — ID EX MA:M———A ‘mm mm
Other instruction IF — ID EX — — MA -
> > > > > > P 4> > 4> <> <> Sot
[MACL IF ID EX MA MA mm mm mm mm:
Other instruction IF — ID EX
MULS.W IF ID
Other instruction IF
> 4> > D > O > P> 4> > > > > Sot
[MACL IF ID EX MA MA mm mm mm _mm:
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX M—A mm mm
Other instruction IF ID EX — MA -
> > > P > P D D > > > > Sot
[MACL IF ID EX MA MA mm mm mm mm.
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX MA mm mm
Other instruction IF ID EX MA -

Figure840 MULSMW Instruction Immediately After aMAC.L Instruction

194

5. When an STS (register) instruction is located immediately after aMAC.L instruction

When the contents of aMAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.41) to create asingle dlot. The MA of the STS contends with the IF. Figure 8.41
illustrates how this occurs, assuming MA and | F contention.

P D D C— P P44 44> > Slot

| MAC.L IF ID EX MA — MA mmmmmmmm|
STS f — — ID EX M——A'WB
Other instruction IF D — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX oo

[MACL if ID EX MA MA mm:mm mm_ mm]

STS IF — ID — EX:M—A ‘WB
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction if — — ID EX -

Figure8.41 STS(Register) Instruction Immediately After aMAC.L Instruction

195

6. Whenan STS.L (memory) instruction islocated immediately after aMAC.L instruction

When the contents of aMAC register are stored in memory using an STSinstruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
ST S does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the |F. Figure 8.42 illustrates how this occurs, assuming MA and IF

contention.
> > > —> > < > <> 4> <> <> Slot
[MACL IF
STS.L
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX -

[MACL if ID EX MA MA mm:mm mm mm]

STS.L IF — ID — EX:M——A:
Other instruction if — ID EX — —
Other instruction IF ID — — EX
Other instruction if — — ID EX -

Figure8.42 STSL (Memory) Instruction Immediately After aMAC.L Instruction

196

7. When an LDS (register) instruction is located immediately after aMAC.L instruction

When the contents of aMAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.43) to create asingle slot. The MA of this LDS contends with IF. Figure 8.43
illustrates how this occurs, assuming MA and | F contention.

> 4> > —> > <« > <4P><>><>: Slot
[MACL IF ID EX MA — MA:mm mm mm mm]
LDS it — — ID EX M—————A"
Other instruction IF b — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX oo

[MACL if ID EX MA MA mm:mm mm_ mm]

LDS IF — ID — EX:M—A
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction if — — ID EX -

Figure8.43 LDS (Register) Instruction Immediately After aMAC.L Instruction

197

When an LDS.L (memory) instruction is located immediately after aMAC.L instruction

When the contents of aMAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.44) to create a
singleslot. The MA of the LDS contends with |F. Figure 8.44 illustrates how this occurs,
assuming MA and |F contention.

O > > P> p4P>e4P>P><>: St

[MACL IF ID EX MA —

LDS.L f — — ID EX:

Other instruction IF
Other instruction

Other instruction

[MAC.L if ID EX MA MA mm :mm mm mm:

LDS.L IF — ID — EX:M—A:
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction if — — ID EX -

Figure8.44 LDSL (Memory) Instruction Immediately After a MAC.L Instruction

198

Multiplication Instructions (SH7000): Include the following instruction types:

* MULSW Rm, Rn
* MULU.W Rm, Rn

> 4> > > > > > > Sot
[MULSW IF ID EX MA mm mm mm|
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure8.45 Multiplication Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardliess of aslot. The MA of the MULS.W instruction, when
it contends with IF, splitsthe slot as described in Section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MUL S.W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occursin the following cases:

When aMAC.W ingtruction is located immediately after aMULS.W instruction

When aMULS.W instruction is located immediately after another MULS.W instruction
When an STS (register) instruction islocated immediately after aMULS.W instruction
When an STS.L (memory) instruction is located immediately after aMULS.W instruction
When an LDS (register) instruction is located immediately after aMULS.W instruction
When an LDS.L (memory) instruction is located immediately after aMULS.W instruction

o g~ WD P

199

1. WhenaMAC.W instruction is located immediately after aMULS.W instruction

When the second MA of aMAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions

does not cause stalls (figure 8.46).

> > 4> 4> 4> “—> 4> > > > <> Sot

[MULSW IF ID EX MA mm :mm mm|]

MAC.W IF ID EX MA: M—A :mm mm mm

Third instruction IF — ID EX — MA -

> 4 4 4 4 4> 4O O > > > > Sot

|MULS.W IF ID EX MA mm mm :mm:

Other instruction IF ID EX MA WB

MAC.W IF ID EX MA MA mm mm mm -

Figure8.46 MAC.W Instruction Immediately After aMULS.W Instruction

200

When aMULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS.W instructions, contention between the MUL S.Ws does
not cause stalling. When the MULS.W MA and IF contend, the dlot is split.

D D 4D 4> 4> > > 4> > 4> > <> Sot

[MULSW IF ID EX MA :mm mm_ mm]

MULS.W IF ID EX: M——A ‘mm mm mm

Other instruction IF D EX — — MA -

O D > D D — P 4 > 4> > > > <> Sot
[MULSW IF ID EX MA mm mm mm:]

Other instruction IF ID EX
MULS.W IF ID EX :M—A:mm mm mm
Other instruction IF ID EX — MA -

> 4> 4> 4 O 4> > 4> 4> 4> 4> > > > Sot

[MULSW IF ID EX MA mm mm mm:

Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX :MA:mm mm mm
Other instruction IF ID EX MA -

Figure8.47 MULSMW Instruction Immediately After Another MUL SW Instruction

201

When the MA of the MULS.W instruction is extended until the mm ends, contention between
MA and IF will split the dlot, asis normal. Figure 8.48 illustrates a case of thistype, assuming

MA and IF contention.

D D P > > 4> 4> > 4> <> <> Sot

|MULS.W IF ID EX MA:mm mm mm:

MULS.W if ID EX: M———A ‘mm mm mm

Other instruction IF D — — — EX MA -
Other instruction f — — — ID EX -
IF D -

Other instruction

Figure8.48 MULSW Instruction Immediately After Another MUL S.W Instruction (IF and
MA Contention)

202

3. When an STS (register) instruction is located immediately after aMULS.W instruction

When the contents of aMAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.49) to create asingle slot. The MA of the STS contends with the IF. Figure 8.49
illustrates how this occurs, assuming MA and | F contention.

D D P> > > 4> 4> > 4> <> <> Sot

[MULSW IF ID EX MA :mm mm mm:

STS if ID EX: M—A :WB
Other instruction IF ID — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULS.W

STS

Other instruction
Other instruction
Other instruction

Figure8.49 STS(Register) Instruction Immediately After a MULS.W Instruction

203

4. When an STS.L (memory) instruction is located immediately after aMULS.W instruction

When the contents of aMAC register are loaded from memory using an STSinstruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STSinstruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 8.50) to create asingle slot. The MA of the STS contends with the IF.
Figure 8.50 illustrates how this occurs, assuming MA and | F contention.

> > > > < > <> <> 4> <> <> <> Slot

[MULSW IF_ID EX MA’
STS.L if ID EX M

Other instruction IF ID
Other instruction f — — — — ID EX
Other instruction IF ID EX -

O D D> P > > P> > > > > Sot

[MULS.W if ID EX MA mm:mm mm

STS.L IF ID — EX:M——A
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction if — — ID EX -

Figure8.50 STSL (Memory) Instruction Immediately After aMULS.W Instruction

204

5. When an LDS (register) instruction is located immediately after aMULS.W instruction

When the contents of aMAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create asingle slot. The MA of this LDS contends with IF. Figure 8.51 illustrates how this
occurs, assuming MA and IF contention.

O D D > 4> > > > > <> Got

[MULS.W IF
LDS
Other instruction
Other instruction
Other instruction

[MULSW if ID EX MA mm:mm_ mm

LDS IF ID — EX:M—A:
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure851 LDS (Register) Instruction Immediately After a MULS.W Instruction

205

When an LDS.L (memory) instruction is located immediately after aMULS.W instruction

When the contents of aMAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.52) to create a
singleslot. The MA of the LDS contends with |F. Figure 8.52 illustrates how this occurs,
assuming MA and |F contention.

D D P > > 4> 4> > 4> <> <> Sot

[MULSW IF ID EX MA :mm mm mm]

LDS.L if ID EX:M——A
Other instruction IF ID — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm:

LDS.L IF ID —

Other instruction if —
Other instruction

Other instruction

Figure852 LDS.L (Memory) Instruction Immediately After a MUL SW Instruction

206

Multiplication Instructions (SH7600): Include the following instruction types:

* MULSW Rm, Rn
* MULU.W Rm, Rn

> 4> <> <> <> <> <> <> Sot
[MULSW IF ID EX MA mm mm |
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure8.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
islocated after the MULS.W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

When aMAC.W instruction is located immediately after a MULS.W instruction

When aMAC.L instruction is located immediately after aMULS.W instruction

When aMULS.W instruction is located immediately after another MULS.W instruction
When aDMULS.L instruction islocated immediately after aMULS.W instruction

When an STS (register) instruction islocated immediately after a MULS.W instruction
When an STS.L (memory) instruction is located immediately after aMULS.W instruction
When an LDS (register) instruction is located immediately after a MULS.W instruction
When an LDS.L (memory) instruction is located immediately after aMULS.W instruction

O No g~ wDdPE

207

1. WhenaMAC.W instruction is located immediately after aMULS.W instruction

The second MA of aMAC.W instruction does not contend with the mm generated by a

preceding multiplication instruction.

- 4> <>

> 4> > > > <> <> <> . Sot

[MULSW IF ID EX

MA mm mm|

MAC.W IF ID
Third instruction IF

EX MA MA mm mm
— ID EX MA -

Figure854 MAC.W Instruction Immediately After aMULSW Instruction

2. WhenaMAC.L instruction is located immediately after aMULS.W instruction

The second MA of aMAC.W instruction does not contend with the mm generated by a

preceding multiplication instruction.

- 4> <>

> 4> > > > <> <> <> Sot

[MULSW IF ID EX

MA mm mm|

MAC.L IF ID
Third instruction IF

EX MA MA mm mm mm mm
— ID EX MA -

Figure855 MAC.L Instruction Immediately After a MULS.W Instruction

208

3. WhenaMULSW instruction is located immediately after another MUL S.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS.W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.56) to create a single slot. When one or more instructions not related to the multiplier
islocated between the two MULS.W instructions, contention between the MUL S.Ws does not
cause stalling. When the MULS.W MA and IF contend, the dlot is split.

> OO 4O 44— > O 4> > 4> > <> <> Sot
[MULSW IF ID EX MA mm mm]
MULS.W IF ID EX:M—A : mm mm

Other instruction IF ID EX — MA -

> 4> 4> 4 > > O > > 4> > > <> Sot

|MULS.W IF ID EX MA mm:mm:

Other instruction IF ID EX
MULS.W IF ID EX:MA. mm mm
Other instruction IF ID EX MA -

Figure8.56 MULSW Instruction Immediately After Another MUL SW Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between
the MA and IF will split the ot in the usual way. Figure 8.57 illustrates a case of thistype,
assuming MA and IF contention.

P D P > > 4> 4> 4> > > > Sot
[MULSW IF ID EX MA mm_mm]

MULS.W if ID EX:M——A :mm mm
Other instruction IF ID — — EX MA -
Other instruction f — — ID EX -
Other instruction IF ID -

Figure857 MULSMW Instruction Immediately After Another MULS.W Instruction (IF and
MA contention)

209

4. WhenaDMULSL instruction islocated immediately after a MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. The MA of the

MULS.W instruction does not contend with the operating multiplier (mm) of the DMULS.L
instruction.

> D D D > P D 4 4> 4> > > <> Sot
[MULSW IF ID EX MA mm mm |

DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA

Figure858 DMULSL Instruction Immediately After a MULS.W Instruction

210

When an STS (register) instruction islocated immediately after a MULS.W instruction

When the contents of aMAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.59) to create asingle slot. The MA of the STS contends with the IF. Figure 8.59
illustrates how this occurs, assuming MA and | F contention.

> 4> 4> 4> 4> 4> > 4> <> <> <> Slot

[MULS.W
STS if ID EX:M—A WB
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

[MULS.W if
STS
Other instruction
Other instruction
Other instruction if ID EX e

Figure859 STS(Register) Instruction Immediately After a MULS.W Instruction

211

When an STS.L (memory) instruction is located immediately after aMULS.W instruction

When the contents of aMAC register are stored in memory using an STSinstruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
ST S does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.60 illustrates how this occurs, assuming MA and IF
contention.

P D P > > P> > > > <> <> Sot
[MULSW IF ID EX MA mm mm|

STS.L if ID EX:M——-A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

4> 4 4 4P 4> 4> 4> > > > <> <> Sot

[MULSW if ID EX MA mm:mm
STS.L IF ID — EX N
Other instruction if — ID

Other instruction IF

Other instruction

Figure8.60 STSL (Memory) Instruction Immediately After a MUL SW Instruction

212

When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of aMAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create asingle slot. The MA of this LDS contends with IF. The following figuresillustrates
how this occurs, assuming MA and IF contention.

> 4> 4> 4> 4> 4> > 4> <> <> <> Slot

[MULS.W
LDS if ID EX:M—A
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

P D P > P> 4> 4> 4> 4> > > <> Sot
[MULSW if ID EX MA mm mm

LDS IF ID — EX :MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure8.61 LDS (Register) Instruction Immediately After aMULS.W Instruction

213

8. When an LDS.L (memory) instruction is located immediately after aMULS.W instruction

When the contents of aMAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.62) to create a
singleslot. The MA of the LDS contends with |F. Figure 8.62 illustrates how this occurs,
assuming MA and |F contention.

> 4> 4> > 4> 4> > 4> > <> <> Slot

[MULSW IF ID EX MA mm mm:

LDS.L if ID EX:M—A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> 4> 4> > 4> 4> 4> > 4> > > <> Sot
[MULSW if ID EX MA mm .mm|

LDS.L IF ID — EX MA
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure8.62 LDS.L (Memory) Instruction Immediately After aMULS.W Instruction

214

Double-Length Multiplication Instructions (SH7600): Include the following instruction types:

« DMULSL Rm, Rn (SH7600 only)
« DMULU.L Rm, Rn (SH7600 only)
« MULL Rm, Rn (SH7600 only)

> 4> > > > > > > > > <> Sot
[DMULS.L IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure8.63 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
four cycles after the MA ends, regardless of aslot. The ID of the instruction following the
DMULSL instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
dot as described in section 8.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULSLL instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like anormal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
SO operation is not as normal. This occurs in the following cases:

When aMAC.L instruction is located immediately after aDMULS.L instruction

When aMAC.W instruction is located immediately after aDMULS.L instruction

When aDMULSLL instruction is located immediately after another DMULS.L instruction
When aMULS.W instruction is located immediately after aDMULS.L instruction

When an STS (register) instruction islocated immediately after aDMULS.L instruction
When an STS.L (memory) instruction is located immediately after aDMULS.L instruction
When an LDS (register) instruction is located immediately after aDMULS.L instruction
When an LDS.L (memory) instruction is located immediately after aDMULS.L instruction

O No g~ wDdPE

215

1. WhenaMAC.L instruction is located immediately after aDMULS.L instruction

When the second MA of aMAC.L instruction contends with the mm generated by a preceding
multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M—A
shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 8.64).

> > > > > P> P 4> > > > Sot

| DMULS.L IF ID EX MA MA mm ;| ;
MAC.L IF — ID EX MA

Third instruction IF — ID

> 4 4> 4 > > 4> > P> > 4> > <> Sot

|DMULS.L IF ID EX MA MA mm mm mm:mm.:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA mm mm mm mm

Figure8.64 MAC.L Instruction Immediately After aDMULS.L Instruction

216

2. WhenaMAC.W instruction is located immediately after aDMULS.L instruction

When the second MA of aMAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W
instructions does not cause stalls (figure 8.65).

> > D P> > 4> > > > Sot

| DMULS.L IF ID EX MA MA mm :
MAC.W IF — ID EX MA

Third instruction IF — ID

> 4> 4> 4 O > > > 4> > 4> > <> Sot

[DMULSL IF ID EX MA MA mm mm mm :mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA MA:mm mm

Figure8.65 MAC.W Instruction Immediately After aDMULS.L Instruction

217

When aDMULSLL instruction is located immediately after another DMULS.L instruction

DMULSLL instructions have an MA stage for accessing the multiplier. When the MA of the
DMULSL.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.L MA and IF contend, the dlot is split.

<> 4> > > > P> P 4> <> > > > St
| DMULS.L IF ID EX MA MA mm :mm._mm.mm..
DMULS.L IF — ID EX MA: M——A ‘mm mm mm mm
Other instruction IF — ID EX — — MA -
<> 4> > > > > > > > > > > > St
| DMULS.L IF ID EX MA MA mm mm:mm.mm:
Other instruction IF — ID EX
DMULS.L IF ID EX MA M—A mm mm mm mm
Other instruction IF — ID EX — MA -

+“r 4> 4> > >

| DMULS.L

Other instruction
Other instruction

DMULS.L
Other instruction

IF ID EX MA MA
IF — ID EX

IF ID

IF

Figure8.66 DMULS.L Instruction Immediately After Another DMUL S.L Instruction

218

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the dot in the usual way. Figure 8.67 illustrates a case of

this type, assuming MA and IF contention.

> 4> > D> > > < > <> <> <> :Slot
| DMULS.L IF ID EX MA MA —
DMULS.L if — EX — ID Smm omm mm mm
Other instruction IF EX
Other instruction if — — — ID EX -
IF ID e

Other instruction

Figure8.67 DMULSL Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

219

4. When aMULS.W instruction is located immediately after aDMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of aDMULS.L instruction,
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULSL.L instruction and the MULS.W instruction, contention between the
DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and | F contend,
the slot is split..

> O 4 O > 4 p 4P 4> > > <> St
[DMULSL IF ID EX MA MA T 7]
MULS.W IF — ID EX'M A mm mm

Other instruction IF ID EX — — — MA -

D D D O 4 O 4P D 4> D 4> > > > Sot

[DMULS.L IF ID EX MA MA mm mm mm: mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX:MA: MA mm mm
Other instruction IF ID EX MA ...

Figure8.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the dot in the usual way. Figure 8.69 illustrates a case of
this type, assuming MA and IF contention.

> > P> > ¢ p 4> > >4 Sot

| DMULS.L IF ID EX MA — MA:mm._ mm _ mm. mm:
MULS.W f — — ID EX M— A mmmm
Other instruction IF b — — — — EXMA: -
Other instruction if — — — — ID EX
Other instruction IF ID e

Figure8.69 MULSW Instruction Immediately After aDMULS.L Instruction (IF and MA
Contention)

220

5. When an STS (register) instruction is located immediately after aDMULS.L instruction

When the contents of aMAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.70) to create asingle slot. The MA of the STS contends with the IF. Figure 8.70
illustrates how this occurs, assuming MA and | F contention.

P P > p4P P> St
DMULS.L IF ID EX MA — MA:

STS f — — ID EX:M——— A
Other instruction IF D — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX

STS
Other instruction
Other instruction
Other instruction

Figure8.70 STS(Register) Instruction Immediately After aDMULS.L Instruction

221

6. When an STS.L (memory) instruction is located immediately after aDMULS.L instruction

When the contents of aMAC register are stored in memory using an STSinstruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
ST S does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.71 illustrates how this occurs, assuming MA and IF
contention.

> > > —> < > 4> <> <> 4> <> Slot

DMULS.L IF
STS.L
Other instruction

Other instruction
Other instruction

STS.L
Other instruction
Other instruction
Other instruction

Figure8.71 STSL (Memory) Instruction Immediately After aDMULS.L Instruction

222

7. When an LDS (register) instruction islocated immediately after aDMULS.L instruction

When the contents of aMAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create asingle slot. The MA of this LDS contends with IF. The following figureillustrates
how this occurs, assuming MA and IF contention.

D P> P> <> <> > <> <> Sot
DMULS.L IF ID EX MA —

LDS if — — ID
Other instruction IF
Other instruction f — — — — ID EX
Other instruction IF ID EX

LDS
Other instruction
Other instruction
Other instruction

Figure8.72 LDS (Register) Instruction Immediately After aDMULSLL Instruction

223

When an LDS.L (memory) instruction is located immediately after aDMULS.L instruction

When the contents of aMAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.73) to create a
singleslot. The MA of the LDS contends with |F. Figure 8.73 illustrates how this occurs,
assuming MA and |F contention.

AP AP P> P p 4> <> <> <> <> Slot

DMULS.L IF
LDS.L
Other instruction
Other instruction f — — — — ID EX
Other instruction IF ID EX

LDS.L
Other instruction
Other instruction
Other instruction

Figure8.73 LDS.L (Memory) Instruction Immediately After aDMULS.L Instruction

224

8.7.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

* AND Rm,Rn
« AND #imm, RO
« NOT Rm,Rn
« OR Rm, Rn
*« OR #mm,RO
« TST Rm,Rn
e TST #mm, RO
¢« XOR Rm,Rn
e XOR #imm, RO

<> 4> <> <> <> <> : Sot
lInstruction A IF_ ID EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure8.74 Register-Register Logic Operation Instruction Pipéine

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage viathe ALU.

225

Memory Logic Operation Instructions: Include the following instruction types:

- AND.B #mm, @(RO, GBR)
« ORB #mm, @(RO, GBR)
- TSTB #mm, @(RO, GBR)
« XORB #mm, @(RO, GBR)

P 4> > P> 4> P> 4> P> <> . Sot
[Instruction A IF_ ID EX MA EX MA]
Next instruction IF — — ID EX

Third instruction IF ID EX

Figure8.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

226

TAS Instruction: Includes the following instruction type:

« TASB @Rn

> 4> 4> 4> 4> <> <> 4> <> Sot
[Instructon A IF ID EX MA EX MA]
Next instruction F — — — ID EX -
Third instruction IF ID EX -

Figure8.76 TASInstruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.76). The ID of the
next instruction stalls for 3 dots. The MA of the TAS instruction contends with IF.

227

8.7.4 Shift Instructions

Shift Instructions: Include the following instruction types:

* ROTL
* ROTR
* ROTCL
* ROTCR
* SHAL
* SHAR
o SHLL

* SHLR
o SHLL2
* SHLR2
e SHLLS
* SHLRS8
* SHLL16
* SHLR16

¥FIIIIIIIIIIIIY

> 4> > > > > <> > <> Sot
[Instructon A IF_ID EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure8.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.77). The data operation is
completed in the EX stage viathe ALU.

228

8.7.5 Branch Instructions
Conditional Branch Instructions: Include the following instruction types:

« BF labd
« BT labd

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination addressiis calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch

destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 8.78).

<> 4> 4> 4> 4> 4> 4> <> <> : Sot
[Instructon A IF__ID__EX]

Next instruction IF — (Fetched but discarded)
Third instruction IF — (Fetched but discarded)
Branch destination — IF ID EX -
...... |F |D EX

Figure8.78 Branch Instruction When Condition is Satisfied

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.79).

<> 4> 4> 4> 4> 4> 4> <> 4> Sjot
[Instructon A IF__ID__EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX oo

Figure8.79 Branch Instruction When Condition isNot Satisfied

229

Delayed Conditional Branch Instructions (SH7600 only): Include the following instruction
types.

e BF/S label (SH7600 only)
» BT/S labe (SH7600 only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. When condition is satisfied

The branch destination addressis calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction beginsits fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.80).

<> 4> 4> 4> 4> 4> 4> <> <> : Sot
[Instructon A IF ID EX]

Next instruction IF ID — EX MA WB
Third instruction IF — (Fetched but discarded)
Branch destination IF ID EX -
...... IE ID EX -

Figure8.80 Branch Instruction When Condition is Satisfied
2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes afetch (figure 8.81).

<« 4> 4> > 4> <> 4> <> <> Sot
[Instruction A IF 1D EX|

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX -

Figure8.81 Branch Instruction When Condition is Not Satisfied

230

Unconditional Branch Instructions: Include the following instruction types:

* BRA label

* BRAF Rn (SH7600 only)
e BR label

* BSRF Rn (SH7600 only)
« JMP @Rn

+ JSR @Rn

 RTS

<+ 4> 4> P> > 4> P> <> 4P Sot
[Instruction A IF_ ID EX]

Delay slot IF — ID EX MA WB
Branch destination IF ID EX -
..... IE ID EX o

Figure 8.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.82). Unconditional branch
instructions are delayed branch. The branch destination addressis calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID dlot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of instruction
A.

231

8.76 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

e CLRT

« LDC Rm, SR
e« LDC Rm,GBR
« LDC Rm,VBR
« LDS Rm,PR
« NOP

o« SETT

« STC SR, Rn

e« STC GBR,Rn
« STC VBR,Rn
« STS PR, Rn

> 4> 4> 4> > > <> 4> <> Slot
linstruction A IF_ ID EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure8.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.83). The data operation is
completed in the EX stageviathe ALU.

232

LDC.L Instructions: Include the following instruction types:

 LDCL @Rm+, SR
* LDCL @Rm+, GBR
 LDCL @Rm+, VBR

> 4> 4> 4> 4> <> <> 4> <> Sot
Linstructon A IF__ID EX MA EX|
Next instruction IF — — ID EX -
Third instruction IF ID EX -

Figure8.84 LDC.L Instruction Pipeline

Operation: The pipeline hasfive stages: IF, ID, EX, MA, and EX (figure 8.84). The ID of the
following instruction is stalled for two dots.

233

STC.L Instructions: Include the following instruction types:

« STCL SR, @-Rn
+ STCL GBR, @-Rn
« STCL VBR,@Rn

<> 4> 4> 4> > > <> <> <> Sot
[Instructon A IF_ ID _EX MA]
Next instruction IF

— ID EX -
Third instruction IF

Figure8.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages. IF, ID, EX, and MA (figure 8.85). The ID of the next
instruction is stalled for one dot.

234

LDS.L Instruction (PR): Includes the following instruction type:

« LDSL @Rm+, PR

> 4> 4> 4> 4> <> <> 4> <> Sot
Linstructon A IF__ID EX MA WB]|

Next instruction IF ID EX -

Third instruction IF ID EX -

Figure8.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline hasfive stages: IF, ID, EX, MA, and WB (figure 8.86). It isthe same as
an ordinary load instruction.

235

STS.L Instruction (PR): Includes the following instruction type:

» STSL PR, @-Rn

<+ 4> 4> 4> <> 4> 4> <> 4> ;. Slot
[Instruction A IF_ ID EX MA]

Next instruction

Third instruction

Figure8.87 STSL Instruction (PR) Pipéine

Operation: The pipeline has four stages:. IF, ID, EX, and MA (figure 8.87). It isthe same as an
ordinary store instruction.

236

Register —~ MAC Transfer Instructions: Include the following instruction types:

« CLRMAC
 LDS Rm, MACH
* LDS Rm, MACL

<> 4> 4> 4> 4> 4> 4> <> <> Sjot
[Instructon A IF ID EX MA]

Next instruction IF ID EX

Third instruction IF ID EX

Figure8.88 Register -~ MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store

instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

237

Memory — MAC Transfer Instructions: Include the following instruction types:

« LDSL @Rm+, MACH
« LDSL @Rm+, MACL

P 4> > P> 4> P> 4> P> <> . Sot
[Instruction A IF_ ID EX MA]

Next instruction IF ID EX

Third instruction IF

Figure8.89 Memory - MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as

ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

238

MAC - Register Transfer Instructions: Include the following instruction types:

« STS MACH, Rn
+ STS MACL,Rn

P 4 4> 4> <P 4> 4> <> <P ;. Sot
[Instructon A IF_ ID EX

MA WB]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure8.90 MAC - Register Transfer Instruction Pipeline

Operation: The pipeline hasfive stages: IF, ID, EX, MA, and WB (figure 8.90). The MA isa
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as

ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

239

MAC - Memory Transfer Instructions: Include the following instruction types:

» STSL MACH, @Rn
» STSL MACL, @-Rn

P 4> > P> 4> P> 4> P> <> . Sot
[Instruction A IF_ ID EX MA WB]
Next instruction IF ID

Third instruction IF

Figure8.91 MAC - Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.91). The MA isastage for
accessing the multiplier. The MA contends with IF. This makes it the same as ordinary store

instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

240

RTE Instruction: Includes the following instruction type:

« RTE
<> 4> 4> > > > > > <> St
[RTE IF_ID EX MA MA]
Delay slot IF — — — ID EX -
Branch destination IF ID EX -

Figure8.92 RTE Instruction Pipeline

The pipeline hasfive stages: IF, ID, EX, MA, and MA (figure 8.92). The MAs contend with the
IF. The RTE isadelayed branch instruction. The ID of the delay dlot instruction is stalled for 3

dots. The IF of the branch destination instruction starts from the slot following the MA of the
RTE.

241

TRAP Instruction: Includes the following instruction type:

e TRAPA #imm

4> 4> 4 4> 4> 4> 4> > > > 4> 4> <> ;. Sot
[TRAPA IF ID EX EX MA MA MA EX EX]|

Next instruction IF

Third instruction IF
Branch destination IF ID EX -«

Figure8.93 TRAP Instruction Pipeline

The pipdline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.93). The MAs
contend with the IF. The TRAP is not adelayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

242

SLEEP Instruction: Includes the following instruction type:

» SLEEP

- O O O > > D> P> <> Sot
[SLEEP IF ID EX]|
Next instruction IF

Figure8.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 8.94). It isissued until the I F of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

243

8.7.7 Exception Processing

I nterrupt Exception Processing: Includes the following instruction type:

* Interrupt exception processing

> > > > O > 4 > > > > > > Sot

[interrupt IF_ID. EX EX MA MA EX MA EX EX]
Next instruction IF
Branch destination IF ID EX -

...... IE ID -

Figure8.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

244

Address Error Exception Processing: Includes the following instruction type:

» Address error exception processing

> > G O O D O > > > > > <> Sot

linterrupt {IF_ID: EX EX MA MA EX MA EX EX]
Next instruction IF
Branch destination IF ID EX oo

....... IE ID -

Figure8.96 AddressError Exception Processing Pipeline

Operation: The address error isreceived during the 1D stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages:. IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the | F starts from the slot that has the final EX in the
address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on-chip peripheral register
causes an instruction fetch address error. Accessing word data from other than aword boundary,
accessing longword data from other than alongword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause aread or write address error.

245

[llegal Instruction Exception Processing: Includes the following instruction type:

« lllegal instruction exception processing

4> 4> 4> 4> 4D 4> 4> 4> 4D > 4> 4> 4> Slot

|I|Iegal instruction :IF_ ID: EX EX MA MA MA EX EX

Next instruction IF
(Third instruction IF)
Branch destination IF ID EX .o

Figure8.97 lllegal Instruction Exception Processing Pipeline

Operation: Theillegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by theillegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.97). Illegal instruction
exception processing is not a delayed branch. Inillegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
aswell depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot directly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay dlot to rewrite the program counter is decoded, anillegal slot instruction

OCCurs.

246

Appendix A Instruction Code
See “6. Instruction Descriptions” for details.

A.l Instruction Set by Addressing Mode

Table A.1 listsinstruction codes and execution states by addressing modes.

247

TableA.l

Instruction Set by Addressing Mode

Types
Addressing Mode Category Sample Instruction SH SH
7600 7000
No operand — NCP 8 8
Direct register Destination operand only MVT Rn 18 17
addressing
Source and destination ADD Rm R 34 31
operand
Load and store with control LDC Rm SR 12 12
register or system register grg MACH, Rn
Indirect register Destination operand only JMP @
addressing Data transfer with direct MOV.L Rm @n
register addressing
Post increment indirect Multiply/accumulate MAC. W @Rm+, @+ 2 1
register addressing operation
Data transfer from direct MV.L @Rm+, Rn 3 3
register addressing
Load to control registeror LDC L @ m+, SR 6 6
system register
Pre decrement indirect Data transfer from direct MOV.L Rm @Rn 3 3
register addressing register addressing
Store from control register STC L SR @Rn 6 6
or system register
Indirect register Data transfer with direct MOV.L Rm @di sp, Rn) 6 6
addressing with register addressing
displacement
Indirect indexed register Data transfer with direct MOV.L Rm @RO, Rn) 6 6
addressing register addressing
Indirect GBR addressing Data transfer with direct MV.L R @disp, GBBR 6 6
with displacement register addressing
Indirect indexed GBR Immediate data transfer ADB #nm@R, &R 4 4
addressing
PC relative addressing Data transfer to direct MOV.L @disp, PO, R 3 3
with displacement register addressing
PC relative addressing Branch instruction BRAF R 2 0
with Rn
PC relative addressing Branch instruction BRA | abel
Immediate addressing Arithmetic logical ADD # mm R 7
operations with direct
register addressing
Specify exception TRAPA #i nm 1 1

processing vector

248

Total: 142 133

A.1.1 NoOperand
TableA.2 NoOperand

Instruction Code Operation State T Bit
AQRT 0000000000001000 0-T 1 0
CLRVAC 0000000000101000 0 - MACH, MACL 1 —
D VU 0000000000011001 0 -~ MIQIT 1 0
NCP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, Stack area 4 LSB
- PCI/ISR

RTS 0000000000001011 Delayed branch, PR - PC 2 —
SETT 0000000000011000 1-T 1 1
SLEEP 0000000000011011 Sleep 3 —

249

A.12 Direct Register Addressing
TableA.3 Destination Operand Only

Instruction Code Operation State T Bit

OW/PL R 0100nnnn00010101 Rn>0,1-T 1 Comparison result
QW PZ R 0100nnnn00010001 Rn=0,1 - T 1 Comparison result
Dr Rn* 0100nnnn00010000 Rn—-1 - Rn 1 Comparison result

WhenRnis0,1 - T,
when Rn is nonzero,
0-T

MOVT R 0000nnNnNn00101001 T - Rn 1 —

ROTL R 0100nnnNn00000100 T « Rn — MSB 1 MSB

ROTR R 0100nnnNn00000101 LSB - Rn - T 1 LSB

ROTCL R 0100nnnn00100100 T <« Rn « T 1 MSB

ROTCR R 0100nnnNn00100101 T-Rn-T 1 LSB

SHAL R 0100nnnNN00100000 T<Rn-0 1 MSB

SHAR R 0100nnnn00100001 MSB - Rn - T 1 LSB

SHL R 0100nnnNn00000000 T « Rn ~ O 1 MSB

SHR R 0100nnnNN00000001 0-Rn-T 1 LSB

SH.L2 R 0100nnnNn00001000 Rn<<2 - Rn 1 —

SH R2 R 0100nnnn00001001 Rn>>2 - Rn 1 —

SHLS R 0100nnnNn00011000 Rn<<8 - Rn 1 —

SH.R8 R 0100nnnn00011001 Rn>>8 - Rn 1 —

SH L16 R 0100nnnNn00101000 Rn<<16 - Rn 1 —

SH R16 R 0100nnnNn00101001 Rn>>16 - Rn 1 —

Note: SH7600 instruction

TableA.4 Sourceand Destination Operand

Instruction Code Operation State T Bit

ADD Rm R 0011nnnnmMmmmi100 Rn+Rm - Rn 1 —

ADDC Rm R 0011nnnnnmmi110 Rn+Rm+T - Rn, 1 Carry
carry - T

ADDV Rm R 0011nnnnmmmi111 Rn+Rm - Rn, 1 Overflow
overflow — T

AND RnR 0010nnnnmmmi00l Rn&Rm - Rn 1 —

250

TableA.4 Sourceand Destination Operand (cont)

Instruction Code Operation State T Bit
OWEQ RmRn 0011nnnnmm®©000 WhenRn=Rm,1 - T 1 Comparison
result

QW HS RmRn 0011nnnnnmmm®©010 When unsigned and Rn 1 Comparison
>Rm,1 - T result

OW/ GE RmRn 0011nnnnnmm®©011 When signed and Rn> 1 Comparison
Rm,1-T result

oW/ H Rm R 0011nnnnmmmD110 When unsigned and Rn 1 Comparison
>Rm,1 - T result

OW/ GIT RmRn 0011lnnnnmmmo111 When signedand Rn> 1 Comparison
Rm,1-T result

OW/ STR RmRn 0010nnnnnmmmi1100 When a byte in Rn 1 Comparison
equals bytes in Rm, 1 result
- T

D Vi Rm R 0011nnnnmmm®©100 1-step division (Rn + 1 Calculation
Rm) result

D V0S R R 0010nnnnnmmm0111 MSBofRn - Q,MSB 1 Calculation
ofRm - M,M”*Q -T result

DMLS.L RmR1*2 0011nnnnmmmmill01 Signed, Rn x Rm - 2to 41 —
MACH, MACL

DMLU L RmR1*2 0011nnnnmmm0101 Unsigned, Rn x Rm - 2to4* —
MACH, MACL

EXTSSB RmRn 0110nnnnmmmi110 Sign — extends Rm 1 —
from byte -~ Rn

EXTS W RmR 0110nnnnnmmmi111 Sign — extends Rm 1 —
fromword —» Rn

EXTUB RmMRm 0110nnnnmmm 100 Zero — extends Rm 1 —
from byte - Rn

EXTUW RmRmn 0110nnnnmmmml101 Zero — extends Rm 1 —
fromword —» Rn

MOV Rm R 0110nnnnmmm0011 Rm - Rn 1 —

M. L Rm R1*2 0000nnnnnmm0111 Rnx Rm - MACL 2to4*1 —

MLS. W RmR 0010nnnnnmmmmi111 Signed, Rn x Rm - 1to3*1 —
MAC

MLU W RmR 0010nnnnmmmil110 Unsigned, Rn x Rm - 1to 3+l
MAC

NEG RMm R 0110nnnnmmmmi011 0—-Rm - Rn —

NEQGC RM 0110nnnnmmm 010 0-RMm-T - Rn, 1 Borrow
Borrow - T

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

251

TableA.4 Sourceand Destination Operand (cont)

Instruction Code Operation State T Bit
NOT Rn R 0110nnnnmmm®©111 ~Rm - Rn 1 —
R Rm R 0010nnnnnmm 1011 Rn|Rm - Rn 1 —
SUB Rn R 0011nnnnmmmrilO00 Rn—Rm - Rn 1 —
SUBC RmRr 0011lnnnnmmmmi010 Rn—-Rm-T - Rn, 1 Borrow
Borrow - T
SUBV Rm R 0011nnnnnmmil011 Rn—-Rm - Rn, 1 Underflow
Underflow - T
SWP.B Rn R 0110nnnnnmmi000 Rm — Swap upperand 1 —
lower halves of lower 2
bytes - Rn
SWP. W RmRr 0110nnnnnmmmi1001 Rm - Swap upper and 1 —
lower word -~ Rn
TST Rn R 0010nnnnmmmril000 Rn & Rm, whenresultis 1 Test results
0,1 -T
XCR Rn R 0010nnnnmmmril010 Rn”*Rm - Rn 1 —
XTRCT Rm R 0010nnnnmmmi101 Center 32 bits of Rmand 1 —
Rn - Rn
TableA.5 Loadand Storewith Control Register or System Register
Instruction Code Operation State T Bit
LDC Rm SR 0100nMmMmMO0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mm©O0011110 Rm - GBR 1 —
LDC Rm VBR 0100mmmM®©0101110 Rm - VBR 1 —
LbS Rm MACH 0100nMmmMO0001010 Rm - MACH 1 —
LDsS Rm MACL 0100mm©0011010 Rm - MACL 1 —
LDS Rm PR 0100mmmM®©0101010 Rm - PR 1 —
STC SR Rn 0000nnNN00000010 SR - Rn 1 —
STC &BR R 0000nnNN00010010 GBR - Rn 1 —
STC VBR, Rn 0000nnNN00100010 VBR - Rn 1 —
STS MACH, Rn 0000nnNN00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL - Rn 1 —
STS PR Rn 0000nnnNn00101010 PR - Rn 1 —

252

A.1.3 Indirect Register Addressing

TableA.6 Destination Operand Only

Instruction Code

Operation

State

T Bit

IJW @ 0100nnnn00101011

Delayed branch, Rn - PC

JSR @ 0100nnnn00001011

Delayed branch, PC - PR,
Rn - PC

TAS.B @n 0100nnnn00011011

When (Rn)is0,1 - T,1 -
MSB of (Rn)

Test results

TableA.7 DataTransfer with Direct Register Addressing

Instruction Code Operation State T Bit

MV.B Rm @ 0010nnNnNnNMMMO000 Rm - (Rn) 1 —

MOV. W Rm @n 0010nnnnmMMMO001 Rm - (Rn) 1 —

MOV.L Rm @n 0010nnNnnnnmmm®010 Rm - (Rn) 1 —

MV.B @mRn 0110nnnnmmm©000 (Rm) - sign extension - Rn 1 —

MOV. W @M Rn 0110nnnnmmmO001 (Rm) - sign extension - Rn 1 —

MOV.L @mRn 0110nnnnmmm©010 (Rm) - Rn 1 —

A.14 Post Increment Indirect Register Addressing

TableA.8 Multiply/Accumulate Operation

Instruction Code Operation State T Bit

MC L @m, @Gn+*2 0000nnnnmmmi111 Signed, (Rn) x (Rm) + MAC 3(to4yl —
- MAC

MC W @, @+ 0100nnnnmmmMi111 Signed, (Rn) x (Rm) + MAC 3/(2)*1 —

- MAC

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH7600 instruction

253

TableA.9 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV. B @+, R 0110nnnnmMmmMm©100 (Rm) - sign extension - 1 —
Rn,Rm+1 - Rm

MV. W @Rm+, Rn 0110nnnnmmmMm©101 (Rm) - sign extension — 1 —
Rn,Rm+2 - Rm

MOV.L @m+ R 0110nnnnmmm®©110 (Rm) - Rn,Rm+4 - Rm 1 —

TableA.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

LDC. L @mt, SR 0100mmM®O0000111 (Rm) -~ SR,Rm+4 - Rm 3 LSB

LDC L @, GBR 0100mmm©O0010111 (Rm) - GBR,Rm+4 - Rm 3 —

LDC L @m, VBR 0100mmMmM®D0100111 (Rm) - VBR,Rm+4 - Rm 3 —

LDS.L @mr, MACH 0100mmm00000110 (Rm) -~ MACH,Rm+4 - Rm 1 —

LDS.L @m+, MACL 0100mmm®©0010110 (Rm) - MACL, Rm +4 - Rm 1 —

LDS.L @ m, PR 01000100110 (Rm) -~ PR,Rm+4 - Rm 1 —

A.1l5 PreDecrement Indirect Register Addressing

TableA.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MV.B Rm @ 0010nnnnnMmm0100 Rn-1 - Rn,Rm - (Rn) 1 —

MV. W Rm @R 0010nnnnmmmMD101 Rn-2 - Rn,Rm - (Rn) 1 —

MOV.L Rm @R 0010nnnnmmm0110 Rn-4 - Rn,Rm - (Rn) 1 —

254

TableA.12 Storefrom Control Register or System Register

Instruction Code Operation State T Bit

STICL SR @R 0100nnnn00000011 Rn—-4 - Rn, SR - (Rn) 2 —

STICL GBR @R 0100nnnn00010011 Rn—-4 - Rn,GBR - (Rn) 2 —

STICL VBR @Rn 0100nnnn00100011 Rn-4 - Rn, VBR - (Rn) 2 —

STS L MACH @R 0100nnnn00000010 Rn—-4 - Rn, MACH - (Rn) 1 —

SIS L MO, @M 0100nnnn00010010 Rn—-4 - Rn,MACL - (Rn) 1 —

SIS L PR @Rn 0100nnnn00100010 Rn-4 - Rn,PR - (Rn) 1 —

A.1.6 Indirect Register Addressing with Displacement

TableA.13 Indirect Register Addressing with Displacement

Instruction Code Operation State T Bit

M. B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —

MOV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x 2 + Rn) 1 —

MOV.L Rm @di sp, Rn) 0001nnnnmmmdddd Rm - (disp x4+Rn) 1 —

MV.B @disp, R, R0 10000100mmmdddd (disp + Rm) - sign 1 —

extension — RO
MV. W @disp, R, R0 10000101 mmmdddd (disp x 2+ Rm) - sign 1 —
extension - RO

MOV.L @disp, R, R 0101nnnnmmmudddd (disp x4+Rm) - Rn 1 —

A.1.7 Indirect Indexed Register Addressing

TableA.14 Indirect Indexed Register Addressing

Instruction Code Operation State T Bit

MV.B Rm @RO, Rn) 0000nnNNMMMD100 Rm - (RO + Rn) 1 —

MOV. W Rm @RO, Rn) 0000NNNNNMMMO101 Rm - (RO + Rn) 1 —

MV.L Rn@R0,R1) 0000nnnnnmm0110 Rm - (RO + Rn) 1 —

MV.B @RO,R1), Rn 0000nnnNMMMML100 (RO + Rm) - sign extension 1 —
- Rn

MV. W @RO, R1), Rn 0000nnnnnMML101 (RO + Rm) - sign extension 1 —
- Rn

MV.L @RO,R1Y),Rn 0000nnnNMMM110 (RO+Rm) - Rn 1 —

255

A.18

Indirect GBR Addressing with Displacement

TableA.15 Indirect GBR Addressing with Displacement

Instruction Code Operation State T Bit
MOV.B RO, @di sp, BBR 11000000dddddddd RO - (disp + GBR) 1 —
MOV. W RO, @di sp, BR 11000001dddddddd RO - (disp x 2 + 1 —
GBR)
MOV.L RO, @di sp, 8BR 11000010dddddddd RO - (disp x 4 + 1 —
GBR)
MOV. B @disp, GBR), RO 11000100dddddddd (disp + GBR) - sign 1 —
extension - RO
MOV. W @di sp, GBBR), RO 11000101dddddddd (disp x2+GBR) - 1 —
sign extension - RO
MOV.L @disp, GBR, RO 11000110dddddddd ~ (disp x 4+ GBR) » 1 —
RO
A.19 Indirect Indexed GBR Addressing
TableA.16 Indirect Indexed GBR Addressing
Instruction Code Operation State T Bit
AND. B #i nm @RO, GBBR 11001102 iiiiiii (RO + GBR) & imm - 3 —
(RO + GBR)
R B #inm@RO, GBR 1100121%iiiiiiii (RO+GBR) |imm - (RO 3 —
+ GBR)
TST.B #imm @R0, BR) 11001100iiiiiiii (RO + GBR) & imm, when 3 Test
resultis0,1 - T results
XCR B #i nm @RO, GBBR) 11001110iiiiiiii (RO + GBR) Nimm - (RO 3 —
+ GBR)
A.1.10 PC Rélative Addressing with Displacement
TableA.17 PC Relative Addressing with Displacement
Instruction Code Operation State T Bit
MV. W @disp, PO, R 1001nnnndddddddd (disp x2+PC) - sign 1 —
extension - Rn
MV.L @disp, PO, R 1101nnnndddddddd (disp x4+ PC) - Rn 1 —
MOVA @disp,PO,R0 11000111dddddddd disp x4+PC - RO 1 —

256

A.1.11 PC Relative Addressing with Rn

TableA.18 PC Relative Addressing with Rn

Instruction Code Operation State T Bit

BRAF Rn*2 0000nnnn00100011 Delayed branch, Rn + PC - PC —

BSRF R1*2 0000nnnn00000011 Delayed branch, PC - PR,Rn+PC 2 —

- PC

Notes: 2. SH7600 instruction

A.1.12 PC Relative Addressing

TableA.19 PC Relative Addressing

Instruction Code Operation State T Bit

BF | abel 10001011dddddddd When T=0,disp x2+PC - PC; 3/1*3 —
When T =1, nop

BF/S |abel *2 10001111dddddddd When T=0,disp x2+PC - PC; 2/1*3 —
When T =1, nop

BT | abel 10001001dddddddd When T =1, disp x 2+ PC - PC; 3/1%3 —
When T =0, nop

BT/S |abel *2 10001101dddddddd WhenT=1,disp x2+PC - PC; 2/1*3 —
When T =0, nop

BRA | abel 1010dddddddddddd Delayed branch, dispx 2+PC - 2 —
PC

BSR | abel 1011dddddddddddd Delayed branch, PC - PR, dispx 2 —

2+PC - PC

Notes: 2. SH7600 instruction

3. One state when it does not branch

257

A.1.13 Immediate
Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State TBit

ADD #inm R Olldlnnnniiiiiiii Rn +imm - Rn 1 —

AND #mm RO 1100100%iiiiiiii RO & imm - RO 1 —

OW/ EQ #imm R0 10001000iiiiiiii When RO=imm,1 - T 1 Comparison
result

MOV #HimMmRn 1110nnnniiiiiiii imm - sign extension -~ Rn 1 —

R #mMmm RO 1100101%iiiiiiii RO | imm - RO 1 —

TST #HmMmRO 11001000iiiiiiii RO & imm, when resultis 0, 1 Test results

1-T
XCR #mMm RO 11001010iiiiiiii RO~ imm - RO 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit
TRAPA #i mm 1100001%iiiiiiii PC/SR - Stack area, (imm x4+ 8 —
VBR) - PC

A.2 Instruction Setsby Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

258

Table A.22 Instruction Setsby Format

Types
Format Category Sample Instruction SH SH
7600 7000
0 — NCP 8 8
Direct register addressing MOVT Rn 18 17
Direct register addressing (store with control ~ STS MACH, Rn 6 6
or system registers)
Direct register addressing JMP @ 3 3
Pre decrement indirect register addressing STIC L SR @R 6 6
PC relative addressing with Rn BRAF R 2 0
m Direct register addressing (load with control ~ LDC Rm SR 6 6
or system registers)
Post increment indirect register addressing LDC. L @R, SR 6 6
nm Direct register addressing ADD Rm R 34 31
Indirect register addressing MOV.L Rm@n 6 6
Post increment indirect register addressing MAC. W @R+, @G+ 2
(multiply/accumulate operation)
Post increment indirect register addressing MOV.L @R, R 3 3
Pre decrement indirect register addressing MOV.L Rm @&Rn 3 3
Indirect indexed register addressing MV.L Rm @RO, Rn) 6 6
md Indirect register addressing with MOV. B @di sp, Rm), RO 2 2
displacement
nd4 Indirect register addressing with MDV. B RO, @di sp, Rn) 2 2
displacement
nmd Indirect register addressing with MDV.L Rm @di sp, Rn) 2 2
displacement
d Indirect GBR addressing with displacement MOV. L RO, @di sp, GBBR 6 6
Indirect PC addressing with displacement MOVA @disp, PO, R0 1 1
PC relative addressing BF | abel 4 2
di2 PC relative addressing BRA | abel 2 2
nd8 PC relative addressing with displacement MOV. L @disp, PO, R 2 2
i Indirect indexed GBR addressing AND. B #i mm @R0, GBBR 4 4
Immediate addressing (arithmetic and logical AND #i mm RO 5 5
operations with direct register)
Immediate addressing (specify exception TRAPA #i mm 1 1
processing vector)
ni Immediate addressing (direct register ADD #i mm Rn 2 2

arithmetic operations and data transfers)

Total: 142 133

259

A.21 OFormat

Table A.23 0Format

Instruction Code Operation State T Bit

CQLRT 0000000000001000 0-T 1 0

CLRVAC 0000000000101000 0 - MACH, MACL 1 —

D WouU 0000000000011001 0 - M/IQIT 1 0

NCP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack 4 LSB
area - PC/SR

RTS 0000000000001011 Delayed branching, PR - 2 —
PC

SETT 0000000000011000 1-T 1 1

SLEEP 0000000000011011 Sleep 3x4 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

260

A.2.2

n Format

Table A.24 Direct Register Addressing

Instruction Code Operation State T Bit

QW PL R 0100nnnn00010101 Rn>0,1-T 1 Comparison result

OW PZ R 0100nnnNn00010001 Rn=0,1 - T 1 Comparison result

Dr Rn*2 0100nnnn00010000 Rn-1 - Rn; 1 Comparison result
IfRnis0,1 - T,ifRn
isnonzero,0 - T

MOVT R 0000nnNnn00101001 T - Rn 1 —

ROTL R 0100nnnNn00000100 T « Rn — MSB 1 MSB

ROTR R 0100nnnNn00000101 LSB - Rn - T 1 LSB

ROTCL R 0100nnnn00100100 T<RnN T 1 MSB

ROTCR R 0100nnnn00100101 T-Rn-T 1 LSB

SHAL R 0100nnnNN00100000 T-Rn-0 1 MSB

SHAR R 0100nnnn00100001 MSB - Rn - T 1 LSB

SHL R 0100nnnNn00000000 T « Rn 0 1 MSB

SHR R 0100nnnNN00000001 0-Rn-T 1 LSB

SHL2 R 0100nnnn00001000 Rn<<2 - Rn 1 —

SHR2 R 0100nnnn00001001 Rn>>2 - Rn 1 —

SHLS R 0100nnnNn00011000 Rn<<8 - Rn 1 —

SHRB R 0100nnnn00011001 Rn>>8 - Rn 1 —

SHL16 Rn 0100nnnNn00101000 Rn<<16 - Rn 1 —

SHRI6 Rn 0100nnnn00101001 Rn>>16 - Rn 1 —

Notes: 2. SH7600 instruction.

TableA.25 Direct Register Addressing (Storewith Control and System Registers)

Instruction Code Operation State T Bit
STC SR Rn 0000nnNN00000010 SR - Rn 1 —
STC &BR 0000nnnNN00010010 GBR - Rn 1 —
STC VBR Rn 0000nnnNN00100010 VBR - Rn 1 —
STS MACH Rn 0000nnNN00001010 MACH - Rn 1 —
STS MACL, Rn 0000nnnNn00011010 MACL - Rn 1 —
STS PR Rn 0000nnnNn00101010 PR - Rn 1 —

261

Table A.26 Indirect Register Addressing

Instruction Code

Operation State

T Bit

JW @ 0100nnnn00101011

Delayed branch, Rn - PC 2

JSR @ 0100nnnn00001011

Delayed branch, PC - PR, 2

Rn - PC

TAS.B @n 0100nnnn00011011

When (Rn)is0,1 - T,1 - 4

MSB of (Rn)

Test results

Table A.27 PreDecrement Indirect Register

Instruction Code Operation State T Bit
STICL SR @mn 0100nnnn00000011 Rn—-4 - Rn, SR - (Rn) 2 —
STICL GBR @Rn 0100nnnn00010011 Rn-4 - Rn,GBR - (Rn) 2 —
STCL VBR @R 0100nnnn00100011 Rn—-4 - Rn, VBR - (Rn) 2 —
STS. L MCH @R 0100nnnn00000010 Rn—-4 - Rn, MACH - (Rn) 1 —
STS. L MO, @Rn 0100nnnn00010010 Rn—-4 - Rn,MACL - (Rn) 1 —
SIS L PR @R 0100nnnn00100010 Rn—-4 - Rn, PR - (Rn) 1 —
TableA.28 PC Relative Addressing With Rn

Instruction Code Operation State T Bit
BRAF R1*2 0000nnnn00100011 Delayed branch, Rn + PC - PC 2 —

BSRE Rn*2 0000nnnn00000011

- PC

Delayed branch, PC - PR,Rn+PC 2

Notes: 2. SH7600 instruction

262

A.23 mFormat

Table A.29 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit
LDC Rm SR 0100mm©O0001110 Rm - SR 1 LSB
LDC Rm GBR 0100mMmmM®0011110 Rm - GBR 1 —

LDC Rm VBR 0100mmMmM©O0101110 Rm - VBR 1 —

LDS Rm MACH 0100mm©O0001010 Rm - MACH 1 —

LDS Rm MACL 0100mMmmM®0011010 Rm - MACL 1 —

LDS Rm PR 0100mmm©0101010 Rm - PR 1 —
Table A.30 Post Increment Indirect Register

Instruction Code Operation State T Bit
LDC L @Rmt, SR 0100mm®©0000111 (Rm) - SR,Rm+4 - Rm 3 LSB
LDC L @m+, GBR 0100mmm®©0010111 (Rm) - GBR,Rm+4 - Rm 3 —
LDC L @Rmt, VBR 0100mmMm®©0100111 (Rm) - VBR,Rm+4 - Rm 3 —
LDS. L @Rm+, MACH 0100nmm©0000110 (Rm) - MACH,Rm+4 -~ Rm 1 —
LDS.L @m+, MVACL 0100mmm®©0010110 (Rm) - MACL,Rm+4 - Rm 1 —
LDS. L @Rm, PR 0100mmMm®©0100110 (Rm) - PR,Rm+4 - Rm 1 —

263

A.24

nm Format

TableA.31 Direct Register Addressing

Instruction Code Operation State T Bit

ADD RM R 0011nnnnnmmi100 Rn+Rm - Rn 1 —

ADDC Rm R 0011nnnnmmmml110 Rn+Rm+T - Rn,carry 1 Carry
- T

ADDV Rm R 0011nnnnmmmil1l Rn+Rm - Rn, overflow 1 Overflow
-T

AND RM R 0010nnnnmmmil001 Rn&Rm - Rn —

QW EQ R R 0011nnnnnMmm0000 WhenRn=Rm,1 - T Comparison

result

QW HS Rm R 0011nnnnmmm®©010 When unsigned and Rn> 1 Comparison
Rm,1-T result

owl e Rm R 0011nnnnmmmd011 When signed and Rn = 1 Comparison
Rm,1 T result

oW/ H Rm R 0011nnnnmmm0110 When unsignedand Rn > 1 Comparison
Rm,1-T result

QW GT Rm R 0011nnnnmmmoO111 When signed and Rn > 1 Comparison
Rm,1-T result

OW/ STR RmRn 0010nnnnmmm1100 When a byte in Rn equals 1 Comparison
abyteinRm,1 - T result

D Vi Rm R 0011nnnnmmm©100 1-step division (Rn+Rm) 1 Calculation

result

D VOS Rm R 0010nnnnmmm®111 MSB of Rn - Q,MSBof 1 Calculation
Rm-> M,M*"Q -T result

DMLS.L RmR1*2 001lnnnnmmmil0l Signed, Rn x Rm - 2to 41 —
MACH, MACL

DMLU. L RmR1*2 0011nnnnnmmm0101 Unsigned, Rn x Rm - 2to 41 —
MACH, MACL

EXTS. B Rm R 0110nnnnnmmmi 110 Sign-extends Rm from 1 —
byte -~ Rn

EXTS W RmRn 0110nnnnmmmilll Sign-extends Rm from 1 —
word - Rn

EXTU. B R R 0110nnnnnMmmi 100 Zero-extends Rm from 1 —
byte - Rn

EXTU. W Rm R 0110nnnnnmmmi 101 Zero-extends Rm from 1 —
word - Rn

MOV Rm R 0110nnnnmmmO011 Rm - Rn 1 —

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

264

Table A.31 Direct Register Addressing (cont)

Instruction Code Operation State T Bit
ML.L RmRn*2 0000nnnnmmm0111 Rnx Rm - MACL 2t0 41 —
MLS. W Rm R 0010nnnnmmmi111 Signed, Rn x Rm - MAC 1to L —
MLU W Rm R 0010nnnnmmm 1110 Unsigned, Rn x Rm — 1to3* __
MAC
NEG RM R 0110nnnnmmmm 011 0-Rm - Rn 1 —
NEQC R R 0110nnnnmmmi010 0—-Rm-T - Rn, borrow 1 Borrow
- T
NOT Rm R 0110nnnnnmm®©111 ~Rm - Rn 1 —
R RM R 0010nnnnmmmmM 011 Rn|Rm - Rn 1 —
SUB Rm R 0011nnnnmmmi000 Rn—Rm - Rn 1 —
SuBC RM R 0011nnnnmmmi010 Rn—RmM-T - Rn, 1 Borrow
borrow - T
SUBV R R 0011nnnnnmmmmil011 Rn—Rm - Rn, underflow 1 Underflow
- T
SWP.B RmR1 0110nnnnnmmi000 Rm — Swap upper and 1 —
lower halves of lower 2
bytes - Rn
SWAP. W Rm Rn 0110nnnnNMmM1001 Rm - Swap upper and 1 —
lower word - Rn
TST Rm R 0010nnnnmmmi000 Rn & Rm, when result is 1 Test results
0,1-T
XCR Rm R 0010nnnnmMmMM1010 Rn~*Rm - Rn 1 —
XTRCT RmRn 0010nnnnmmmil101 Center 32 bitsof Rmand 1 —
Rn - Rn
Notes: 1. The normal minimum number of execution cycles.
2. SH7600 instructions
TableA.32 Indirect Register Addressing
Instruction Code Operation State T Bit
MOV. B Rm @n 0010nNNNMMMO000 Rm - (Rn) 1 —
MV. W Rm @ 0010nnnNMMMO001 Rm - (Rn) 1 —
MOV.L Rm@n 0010nnnNMMM0010 Rm - (Rn) 1 —
MOV.B @mRn 0110nnnnmmmO000 (Rm) - sign extension -» Rn 1 —
MOV. W @m Rn 0110nnnnmmmO001 (Rm) - sign extension -» Rn 1 —
MV.L @mRn 0110nnnNMMM010 (Rm) — Rn 1 —

265

Table A.33 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

MCL @m, @+2 0000nnnnnmmri1ll Signed, (Rn) x (Rm) + 3(to —
MAC - MAC ayt

MCW @, @G+ 0100nnnnmmm1111 Signed, (Rn) x (Rm) + It —
MAC - MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH7600 instruction.

Table A.34 Post Increment Indirect Register

Instruction Code Operation State T Bit

MOV. B @+, Rh 0110nnNnnnnmm®©100 (Rm) - sign extension - 1 —
Rn,Rm+1 - Rm

M. W @R+, Rn 0110nnnnmmmr0101 (Rm) - sign extension — 1 —
Rn,Rm+2 - Rm

MOV.L @m+ R 0110nnnnmMmM©110 (Rm) -~ Rn,Rm+4 - Rm 1 —

Table A.35 PreDecrement Indirect Register

Instruction Code Operation State T Bit
MV.B Rm @ 0010nnnnnMmm0100 Rn-1 - Rn,Rm - (Rn) 1 —
MV. W Rm @R 0010nnnnmmmMD101 Rn-2 - Rn,Rm - (Rn) 1 —
MOV.L Rm @R 0010nnnnmmm0110 Rn-4 - Rn,Rm - (Rn) 1 —

Table A.36 Indirect Indexed Register

Instruction Code Operation Cycles TBit
MV.B Rm @RO, Rn) 0000NNNNMM0100 Rm - (RO + Rn) 1 —
MOV. W Rm @ RO, Rn) 0000NNNNMMM0101 Rm - (RO + Rn) 1 —
MOV.L Rm @RO, Rn) 0000NNNNMMO110 Rm - (RO + Rn) 1 —
MV.B @RO,R1Y), R 0000nnNNNMMM1100 (RO + Rm) - sign extension 1 —

- Rn
MOV. W @RO, Rm), Rn 0000nnNNMMM1101 (RO + Rm) - sign extension 1 —

- Rn
MV.L @RO,R1Y),Rn 0000nnNNNMM1110 (RO+Rm) - Rn 1 —

266

A.25 md Format
Table A.37 md Format

Instruction Code Operation State T Bit
MOV.B @disp, Ry, R0 10000100mmmdddd (disp+Rm) - sign 1 —
extension - RO
MOV. W @di sp, RM, RO 10000101mmmdddd (disp x2 + Rm) - 1 —
sign extension —
RO
A.2.6 nd4 Format
Table A.38 nd4 Format
Instruction Code Operation State T Bit
MOV. B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —
MOV. W RO, @di sp, Rn) 10000001nnnndddd RO - (disp x 2+ Rn) 1 —
A.27 nmd Format
Table A.39 nmd Format
Instruction Code Operation State T Bit
MOV.L Rm @di sp, Rn) 0001nnnnmmmdddd Rm - (disp x4+Rn) 1 —
MOV.L @disp, R, R 0101nnnnmmmudddd (disp x 4+ Rm) - Rn 1 —

267

A.28 dFormat

Table A.40 Indirect GBR with Displacement

Instruction Code Operation State T Bit
MOV.B RO, @di sp, 8BR 11000000dddddddd RO - (disp + GBR) 1 —
MOV. W RO, @di sp, BR 11000001dddddddd RO - (disp x 2 + 1 —
GBR)
MOV.L RO, @di sp, 8BR 11000010dddddddd RO - (disp x 4 + 1 —
GBR)
MOV. B @disp, GBR), RO 11000100dddddddd (disp + GBR) - sign 1 —
extension - RO
MOV. W @di sp, GBBR), RO 11000101dddddddd ~ (disp x2+ GBR) - 1 —
sign extension - RO
MOV.L @disp, GBR, RO 11000110dddddddd ~ (disp x4+ GBR) » 1 —
RO
TableA.41 PC Relativewith Displacement
Instruction Code Operation State T Bit
MOVA @disp,PO,R0 11000111dddddddd dispx 4+ PC - RO 1 —
TableA.42 PC Réative Addressing
Instruction Code Operation State T Bit
BF | abel 10001011dddddddd When T =0, disp x 2+ PC PC; 3/1*3 —
When T =1, nop
BF/ S label *2 10001111dddddddd When T=0,disp x 2+ PC - PC; 2/1*3 —
When T =1, nop
BT | abel 10001001dddddddd WhenT=1,disp x 2+ PC PC; 3/1%3 —
When T = 0, nop
BT/S label *2 10001101dddddddd WhenT=1,disp x 2+ PC - PC; 2/1*3 —
When T =0, nop
Notes: 2. SH7600 instruction

3. One state when it does not branch

268

A.29 d12Format

Table A.43 d12 Format

Instruction Code Operation State T Bit

BRA | abel 1010dddddddddddd Delayed branch, disp x2+PC - PC 2 —

BSR | abel 1011dddddddddddd Delayed branching, PC - PR, dispx2 2 —

+PC - PC

A.2.10 nd8 Format

TableA.44 nd8 Format

Instruction Code Operation State T Bit

MOV. W @di sp, PO, R1 1001nnnndddddddd (disp x 2+ PC) - sign 1 —

extension - Rn

MOV.L @disp, PO, R 1101nnnndddddddd (disp x4 +PC) - Rn 1 —

A.211 iFormat

TableA.45 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND. B #i mm @ R0, GBR) 1100110%iiiiiiii (RO+GBR)&imm - 3 —
(RO + GBR)

RB #imm @R, BR 1100111%iiiiiiii (RO + GBR) | imm — 3 —
(RO + GBR)

TST. B #i mm @R0, GBR 11001100i iiiiiii (RO + GBR) & imm, 3 Test
whenresultis0,1 - T results

XOR B #i nm @ RO, GBBR) 11001110iiiiiiii (RO + GBR) "imm - 3 —

(RO + GBR)

269

TableA.46 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #i mm RO 1100100%iiiiiiii RO & imm - RO 1 —

OW/ EQ #immRO 10001000iiiiiiii WhenRO=imm,1 - T 1 Comparison

results
xR #i mm RO 11001012iiiiiiii RO |imm - RO 1 —
TST #i mm RO 11001000iiiiiiii RO & imm, when result 1 Test results
is0,1 -T
XCR #i mm RO 11001010iiiiiiii RO~ imm - RO 1 —

Table A.47 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State T Bit
TRAPA #i mm 1100001%iiiiiiii PC/SR - Stack area, (imm x4+ 8 —

VBR) - PC
A.2.12 ni Format
TableA.48 ni Format
Instruction Code Operation State T Bit
ADD #immRn Ol1lnnnniiiiiiii Rn +imm - Rn 1 —
MOV #imm Rn 1110nnnniiiiiiii imm - sign extension - Rn —
A.3 Ingtruction Set in Order by Instruction Code
Table A.49 listsinstruction codes and execution states in order by instruction code.
Table A.49 Instruction Set by Instruction Code
Instruction Code Operation State T Bit
CLRT 0000000000001000 0-T 1 0
NCP 0000000000001001 No operation 1 —
RTS 0000000000001011 Delayed branch, PR - 2 —

PC

SETT 0000000000011000 1-T 1
D VU 0000000000011001 0 - M/QIT 1 0

270

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SLEEP 0000000000011011 Sleep 3 —
CLRVAC 0000000000101000 0 - MACH, MACL —
RTE 0000000000101011 Delayed branch, stack 4 LSB
area - PC/SR
STC SR R 0000nnNN00000010 SR - Rn 1 —
BSRF Rn* 2 0000nnNN0O0000011 Delayed branch, PC - 2 —
PR,Rn+PC - PC
STS MACH Rn 0000nnnNN00001010 MACH - Rn 1 —
STC GBR R 0000nnNN00010010 GBR - Rn 1 —
STS MACL, Rn 0000nnNn00011010 MACL - Rn 1 —
STC VBR Rn 0000nnnNN00100010 VBR - Rn 1 —
BRAF Rn* 2 0000nNnn00100011 Delayed branch, Rn + 2 —
PC - PC
MOVT R 0000nnnn00101001 T - Rn 1 —
STS PR R 0000nnnNn00101010 PR - Rn 1 —
MV.B Rm@R0, R) 0000NnNNNMM©100 Rm - (RO + Rn) 1 —
MOV. W Rm @R, Rn) 0000nnNNMMT0101 Rm - (RO + Rn) 1 —
MV.L Rn @R, R) 0000nNNNNMMMO110 Rm - (RO + Rn) 1 —
ML. L Rm Rn*2 0000NnNnnmMMD111 Rnx Rm - MACL 2 —
(to 4)*1
MOV.B @RO,RM), R 0000NnnNNMMITL100 (RO + Rm) - sign 1 —
extension — Rn
MV. W @RO, R, R 0000nnNNMMMM1101 (RO + Rm) - sign 1 —
extension - Rn
MOV.L @RO,RM, R 0000NnnNNMMITML110 (RO+Rm) - Rn 1 —
MC L @Rmn, @n+*2 0000nnnnMMM1111 Signed, (Rn) x (Rm) + 3/ (2 —
MAC - MAC to 4)*1
MOV.L Rm@disp, R1) 0001lnnnnmmmdddd Rm - (disp x4+Rn) 1 —
MV.B Rm @n 0010nnnnmmmO000 Rm - (Rn) 1 —
MV. W Rm @ 0010nnnnnMMmMm0001 Rm - (Rn) 1 —
Notes: 1. The normal minimum number of execution states (The number in parentheses is the

number of states when there is contention with preceding/following instructions)
2. SH7600 instruction

271

TableA.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

MOV. L Rm @n 0010nnnnNnmmM®©010 Rm - (Rn) 1 —

MDV. B Rnm @R 0010nnNnnnNMMM©100 Rn-1 - Rn,Rm - 1 —
(Rn)

MOV. W R @R 0010nnnnnmmm0101 Rn-2 -~ Rn,Rm = 1 —_
(Rn)

MOV. L Rm @R 0010nnnnMmMM®©110 Rn-4 - Rn,Rm - 1 —
(Rn)

D VOS Rm R 0010nnnnnmmm0111 MSBof Rn - Q,MSB 1 Calculation
ofRm - M,M”*Q - result
T

TST Rm R 0010nnnnnmm1000 Rn & Rm, whenresult 1 Test results
is0,1 -T

AND Rn R 0010nnnnmmmil001 Rn&Rm - Rn 1 —

XR Rm R 0010nnnnmmmmM 1010 Rn~"Rm - Rn 1 —

R Rm R 0010nnnnmm011 Rn|Rm - Rn 1 —

OW/ STR RmRn 0010nnnnnmm1100 When a byte in Rn 1 Comparison
equals a byte in Rm, 1 result
T

XTRCT Rm R 0010nnnnnMM1101 Center 32 bits of Rm 1 —
and Rn - Rn

MLUW RmR1 0010nnnnmmmil110 Unsigned, Rn x Rm - 1to 3
MAC

MLS. W RmRn 0010nnnnmmML111 Signed, Rn x Rm - 1to3*1 —
MAC

OWEQ RmRn 0011nnnnmmm©O000 WhenRn=Rm,1 -T 1 Comparison

result

W HS RmRn 0011nnnnnmmm®©010 When unsigned and 1 Comparison
Rn=Rm,1 - T result

CW/ GE Rk 0011nnnnmmm®D011 When signed and Rn> 1 Comparison
Rm,1-T result

D Vi Rm R 0011nnnnnmmm®©100 1-step division (Rn + 1 Calculation
Rm) result

DMULU L RmRn*2 0011nnnnmmm0101 Unsigned, Rn xRm - 2to4*1 —

MACH, MACL

Notes:

2. SH7600 instruction

272

1. The normal minimum number of execution states

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

oW/ H Rm R 0011nnnnmmm®o110 When unsigned 1 Comparison
and Rn>Rm, 1 result
ST

QW GT Rm R 0011nnnnmmmo0111 When signed and 1 Comparison
Rhn>Rm,1 - T result

SUB Rm R 0011nnnnnmmi000 Rn—-Rm - Rn 1 —

SUBC Rm R 0011nnnnmmmi010 RNn—-Rm-T - 1 Borrow
Rn, borrow - T

SUBV Rm R 0011nnnnmmmiO11 Rn—Rm - Rn, 1 Underflow
underflow - T

ADD Rm R 0011nnnnmmmi100 Rm+Rn - Rn 1 —

DMLS.L RmR*2 0011nnnnmmmi101 Signed, RnxRm 2to4*1 —
- MACH, MACL

ADDC Rm R 0011nnnnnmmi110 Rn+Rm+T - 1 Carry
Rn,carry - T

ADDV Rm R 0011nnnnmmmilll Rn+Rm - Rn, 1 Overflow
overflow - T

SH L R 0100nnnNN00000000 T<Rn-~0 1 MSB

SHR R 0100nnnn00000001 0O-Rn T 1 LSB

STS. L MACH @Rn 0100nnnNn00000010 Rn—-4 - Rn, 1 —
MACH - (Rn)

STC L SR @R 0100nnnn00000011 Rn-4 - Rn,SR 2 —
- (Rn)

ROTL R 0100nnnNn00000100 T « Rn -« MSB 1 MSB

ROTR R 0100nnnn00000101 LSB - Rn - T 1 LSB

LCS. L @Rm-, MACH 0100mMmmMO0000110 (Rm) - MACH, 1 —
Rm+4 - Rm

LDC L @+, SR 0100MmmM®O0000111 (Rm) - SR, Rm 3 LSB
+4 - Rm

SH L2 R 0100nnnn00001000 Rn<<2 - Rn 1 —

SH R2 29 0100nnnn00001001 Rn>>2 - Rn 1 —

LDS Rm MACH 0100nMmmMM®O0001010 Rm - MACH 1 —

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

273

TableA.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
JSR @ 0100nnnn00001011 Delayed branch, PC 2 —
- PR,Rn - PC
LDC Rm SR 0100mMmmM®D0001110 Rm - SR 1 LSB
DT Rn*2 0100nnnNN00010000 Rn-1 -5 Rn;ifRnis 1 Comparison
0,1 - T,ifRnis result
nonzero,0 - T
OW/ PZ R 0100nnnn00010001 Rn=0,1 - T 1 Comparison
result
STS. L MACL, @Rh 0100nnnn00010010 Rn-4 - Rn, MACL 1 —
- (Rn)
STC L &EBR @R 0100nnnn00010011 Rn-4 - Rn,GBR - 2 —
(Rn)
CW/PL Rn 0100nnnn00010101 Rn>0,1-T 1 Comparison
result
LDS. L @Rm+, MACL 0100mmm00010110 (Rm) - MACL,Rm+ 1 —
4 . Rm
LDC L @, GBR 0100mmm©0010111 (Rm) - GBR,Rm+4 3 —
- Rm
SH L8 R 0100nnnn00011000 Rn<<8 - Rn 1 —
SH. R8 R 0100nnnn00011001 Rn>>8 - Rn 1 —
LDS Rm NMACL 0100MmmM®©0011010 Rm - MACL 1 —
TAS.B @ 0100nnnn00011011 When (Rn)is 0,1 - 4 Test results
T,1 - MSB of (Rn)
LDC Rm GBR 0100mmm®©0011110 Rm - GBR 1 —
SHAL R 0100nnnNN00100000 T-«Rn<0 1 MSB
SHAR R 0100nnnNn00100001 MSB - Rn - T 1 LSB
SIS L PR @R 0100nnnn00100010 Rn-4 - Rn,PR = 1 —
(Rn)
STC L VBR @R 0100nnnn00100011 Rn-4 - Rn,VBR - 2 —
(Rn)
ROTCL R 0100nnnn00100100 T«RnN<T 1 MSB
ROTCR Rn 0100nnnn00100101 T-oRnN-T 1 LSB
LbS.L @, PR 0100mmMmM®©0100110 (Rm) - PR,Rm + 4 1 —
- Rm
LDC L @, VBR 0100mMmmMM®©0100111 (Rm) - VBR,Rm+4 3 —
- Rm
Notes: 2. SH7600 instruction

274

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SHL16 Rn 0100nnnn00101000 Rn<<16 - Rn 1 —
SHRI6 Rn 0100nnnn00101001 Rn>>16 - Rn 1 —
LDS Rm PR 0100mMmMmM©00101010 Rm - PR 1 —
JMP @ 0100nnnn00101011 Delayed branch, Rn 2 —
- PC
LDC Rm VBR 0100mMmMmM©00101110 Rm - VBR 1 —
MC W @Rm, @+ 0100nnnnmmmi11l Signed, (Rn) x (Rm) 3/(21 —
+ MAC - MAC
MOV.L @disp,RM), R 0101nnnnmmmuddd (disp+ Rm) - Rn 1 —
MV.B @mRm 0110nnnnmmmm©000 (Rm) - sign 1 —
extension — Rn
MV. W @mRn 0110nnnnmmmoO001 (Rm) - sign 1 —
extension — Rn
MV.L @mRm 0110nnnnmmm©010 (Rm) - Rn 1 —
MOV Rm R 0110nnnnmmmm0011 Rm - Rn 1 —
MOV.B @Rm+, R 0110nnnnmMmmMm©100 (Rm) - sign 1 —
extension —» Rn, Rm
+1 - Rm
MOV. W @R+, Rn 0110nnnnmmmmO101 (Rm) - sign 1 —
extension - Rn, Rm
+2 - Rm
MOV.L @Rm R 0110nnnnmmmoO110 (Rm) - Rn,Rm+4 1 —
- Rm
NOT Rm R 0110nnnnnmm®o111 ~Rm - Rn 1 —
SWAP.B RmRn 0110nnnnmmmi1000 Rm - Swap upper 1 —
and lower halves of
lower 2 bytes - Rn
SWAP. W RmRn 0110nnnnmmmmi1001 Rm - Swap upper 1 —
and lower word - Rn
NEGC Rm Rn 0110nnnnmmm1010 0O—-Rm-T - Rn, 1 Borrow
borrow - T
NEG Rm R 0110nnnnnmmi011 0-Rm - Rn 1 —
Notes: 1 The normal minimum number of execution states (The number in parentheses is the

number in contention with preceding/following instructions)

275

TableA.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTUB RmRn 0110nnnnnMmMmMm 1100 Zero-extends Rm 1 —
from byte - Rn

EXTU. W Rm Rn 0110nnnnmmm101 Zero-extends Rm 1 —
fromword - Rn

EXTS.B RmRn 0110nnnnmmmm 1110 Sign-extends Rm 1 —
from byte - Rn

EXTS. W Rm R 0110nnnnnmmmil111 Sign-extends Rm 1 —
fromword - Rn

ADD #i nm R Olldlnnnniiiiiiii Rn +imm - Rn 1 —

MOV.B RO, @di sp, Rn) 10000000nnnndddd RO - (disp + Rn) 1 —

M. W RO, @di sp, Rn) 10000001nnnndddd RO - (dispx 2 + 1 —
Rn)

MV.B @disp, R, R0 10000100mmmdddd (disp + Rm) - sign 1 —
extension —» RO

MV. W @disp, R, R0 10000101mmmdddd (disp x2 + Rm) — 1 —
sign extension - RO

W/ EQ #imm RO 10001000iiiiiiii When RO =imm, 1 1 Compariso
->T n results

BT | abel 10001001dddddddd When T =1, disp x2 31 —
+PC - PC;
When T = 0, nop.

BT/ S | abel * 10001101dddddddd When T =1, disp x2 2/1*8 —
+PC - PC;
When T = 1, nop.

BF | abel 10001011dddddddd When T =0, disp x 2 3/1%3 —
+PC - PC;
When T = 0, nop

BF/ S | abel * 10001111dddddddd When T =0, disp x 2 2113 —
+PC - PC;
When T =1, nop

MV. W @disp, PO,Rn 1001nnnndddddddd (disp x2 +PC) - 1 —
sign extension —» Rn

BRA | abel 1010dddddddddddd Delayed branch, 2 —
dispx 2 +PC - PC

Notes: 2. SH7600 instruction

3. One state when it does not branch

276

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

BSR | abel 1011dddddddddddd Delayed branch, PC 2 —
- PR, dispx 2+ PC
- PC

MOV. B RO, @di sp, GBBR) 11000000dddddddd RO - (disp + GBR) 1 —

MOV. W RO, @di sp, GBBR 11000001dddddddd RO - (disp x 2 + 1 —
GBR)

MOV.L RO, @di sp, BR 11000010dddddddd RO - (disp x 4 + 1 —
GBR)

TRAPA #i nm 11000012iiiiiiii PC/SR - Stack 8 —
area, (imm x 4 +
VBR) - PC

MOV. B @di sp, 8BR), R0 11000100dddddddd (disp + GBR) - sign 1 —
extension - RO

MOV. W @di sp, 8BR), R0 11000101dddddddd (disp x 2 + GBR) — 1 —
sign extension —» RO

MV.L @disp, BR,R0 11000110dddddddd (disp x 4 + GBR) - 1 —
RO

MOVA @di sp, PO, RO 11000111dddddddd dispx 4+PC - RO 1 —

TST #i mm RO 11001000 iiiiiii RO & imm, when 1 Test results
resultis0,1 - T

AND #i mMm RO 1100100%iiiiiiii RO & imm - RO 1 —

XCR #i mMm RO 11001010iiiiiiii RO~ imm - RO 1 —

R #i mMm RO 11001012iiiiiiii RO |imm - RO 1 —

TST.B #i nm @RO, GBBR 11001100iiiiiiii (RO + GBR) & imm, 3 Test results
whenresultis0,1 -
T

AND. B #i nm @RO, BR) 1100110%iiiiiiii (RO + GBR) & imm 3 —
- (RO + GBR)

XRB #imm @R, BR 11001110iiiiiiii (RO+GBR)"imm - 3 —
(RO + GBR)

RB #mm @R, BR 11001112iiiiiiii (RO+GBR) |imm - 3 —
(RO + GBR)

MOV. L @disp, PO, R 1101nnnndddddddd (disp x4 +PC) - Rn 1 —

MOV #i mm R 1110nnnniiiiiiii imm - sign 1 —

extension —» Rn

277

A4

Operation Code Map

Table A.50 is an operation code map.

Table A.50 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

0000 |Rn Fx 0000

0000 |Rn Fx 0001

0000 |Rn Fx 0010 |STC SR R* | STC BR R |[STC VBR R

0000 |Rn Fx 0011 |BSRF Rn* BRAF Rn*

0000 |Rn Rm 01MD | M. B MOV. W MOV. L MUL. L
RmM@RO,R1) RM@RO,R1) |RmM@RO,R1) |RmR*

0000 | 0000 |Fx 1000 |QLRT SETT CLRVAC

0000 | 0000 |Fx 1001 |NCP D VouU

0000 | 0000 |Fx 1010

0000 | 0000 |Fx 1011 |RTS SLEEP RTE

0000 |Rn Fx 1000

0000 |Rn Fx 1001 MVT Rn

0000 |Rn Fx 1010 |[STS MACH R |STS MO, R |[STS PR R

0000 |Rn Fx 1011

0000 |Rn Fx 11IMD | MOV. B MOV. W MOV. L MAC. L
@QRO,RM), R | @RO,RM), R |@RO,Rm, R | @m+, @n+*

0001 (Rn Rm |disp |[MOV.L Rm @di sp: 4, Rn)

0010 |Rn Rm OOMD | MOV.B Rm@n |[MOV. W Rm @n |[MOV.L Rm @n

0010 |Rn Rm 01MD | MOV. B MOV. W MOV. L D VOS RmRn
Rmn @R Rn @R Rm @R

0010 |Rn Rm 10MD | TST Rm R AND RMRr | X(R Rm R R Rm R

0010 |Rn Rm |11MD| QW STR XTRCT RmAM |[MLUWRMmR |[MLS W RmRn
Rm R

0011 |Rn Rm OOMD| QW EQ Rm Rn OWHS RmRh |OW G RmRn

0011 |Rn Rm 0OIMD|DV1 RmRn DMULU. L OWH RmRr |OQW/ GI' R Rn

Rm Rn*
0011 |Rn Rm 10MD | SUB Rm R SUBC Rm R SUBY RmRn
0011 |Rn Rm 11MD| ADD Rm R DMULS. L ADDC RmRn ADDV RmRn
Rm Rn*
0100 |Rn Fx 0000 |[SHL R DT R* SHAL R
0100 |Rn Fx 0001 [SHR R QW PZ R SHAR Rn

278

Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 |Rn Fx 0010 |STS. L STS. L STS. L
MACH, @Rn MACL, @R PR @R
0100 |Rn Fx 0011 |STC L STC L STC L
SR @R &BR @R VBR, @R
0100 |Rn Fx 0100 |[ROTL Rn ROTCL R
0100 |Rn Fx 0101 |ROTR R QW PL Rn ROTCR R
0100 |[Rm |Fx 0110 |LDS. L LDS. L LDS. L
@, MACH @+, NACL @Rm+, PR
0100 |[Rm |Fx 0111 |LDC L LDC L LDC L
0100 |Rn Fx 1000 |SHL2 R SHL8 R SHL16 Rn
0100 |Rn Fx 1001 |SHR? R SHR8 R SH R16 R
0100 |Rm |Fx 1010 |[LDS RmMACH |LDS RmMACL |[LDS RmPR
0100 |Rn Fx 1011 |JSR @ TAS.B @n JMWP @
0100 |Rm |Fx 1100
0100 |Rm |Fx 1101
0100 |Rn Fx 1110 |[LDC RmMSR |LDC Rm &R |LDC RmVBR
0100 |Rn Rm 1111 |MAC W @Rm+, @GR+
0101 |Rn Rm |disp |MOV.L @disp:4,R1), R
0110 |Rn Rm |0OMD| M.B RmRn MV.W@nmRmR [MV.L @R M/ RnR
0110 |Rn Rm |0OIMD| MW.B Rm+-, R MW @R [N/ L @ R | NOT Rm R
0110 |Rn Rm |10MD| SWAP. B SWAP. W NEQC RmRn NEG RmRn
Rm R Rm R
0110 |Rn Rm |11IMD EXTUB RmMRY|EXTUW RmR1 [EXTSB RnRh [EXTS W RmRn
0111 |Rn imm ADD #i mm 8, R
1000 |OOMD |Rn disp [MV.B R, M/ W R,
@di sp: 4, R) @di sp: 4, R)
1000 (OIMD|Rm |disp |MOV.B MOV. W
@di sp: 4, @di sp: 4,
R1), RO RM, RO
1000 |10MD| imm/disp |QOW/ EQ BT label:8 BF |abel:8
#imMm 8, RO
1000 |11IMD| imm/disp BT/ S BF/ S
| abel : 8* | abel : 8*

279

Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
1001 |Rn disp MOV. W @di sp: 8, PO, Rn
1010 disp BRA | abel : 12
1011 disp BSR | abel : 12
1100 (OOMD| imm/disp |MOV.B RO, MOV. W RO, MOV. L RO, TRAPA #i nm 8
@di sp: 8, @di sp: 8, @di sp: 8,
&R &R &R
1100 (01MD disp MOV. B MOV. W MOV. L MOVA
@di sp: 8, @di sp: 8, @di sp: 8, @di sp: 8,
&R, R @R, R @R, R PO, RO
1100 (10MD imm TST AND XR OR
mm 8, RO # mm 8, RO # nm 8, RO # mm 8, RO
1100 (11MD imm TST. B AND. B XCOR B R B
#i mm 8, #i mm 8, #i mm 8, #i mm 8,
@R, GBR @R0, BR @R0, BR @R0, BR
1101 |Rn disp MOV.L @disp:8, PO, R0
1110 |Rn imm MOV #i mm 8, Rn
1111
Note: SH7600 instructions

280

Appendix B Pipeline Operation and Contention

The SH7000 seriesis designed so that basic instructions are executed in one state. Two or more
states are required for instructions when, for example, the branch destination address is changed by
abranch instruction or when the number of statesisincreased by contention between MA and IF.
Table B.1 gives the number of execution states and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions experience contention in the following ways:
» Operations and transfers between registers are executed in one state with no contention.
» No contention occurs, but the instruction still requires 2 or more cycles.

« Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

— MA contends with IF

— MA contends with |F and sometimes with memory loads as well

— MA contends with | F and sometimes with the multiplier as well

— MA contends with |F and sometimes with memory |oads and sometimes with the multiplier

281

TableB.1 Instructionsand Their Contention Patterns

Contention State Stage Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers
Shift instruction
System control ALU instruction

Unconditional branche

3/1%3 Conditional branche

SLEEP instruction

RTE instruction

TRAP instruction

w
O Ol W| W|W

Pl o| A

MA contends with IF Memory store instruction and STS.L

instruction (PR)

STC.L instruction

Memory logic operations

TAS instruction

RN
gl oo b

MA contends with IF and Memory load instructions and LDS.L
sometimes with memory loads as instruction (PR)

well 3 5 LDC.L instruction
MA contends with IF and 1 4 Register to MAC transfer instruction,
sometimes with the multiplier as memory to MAC transfer instruction and
well MAC to memory transfer instruction
1t03*2 6/7+1 Multiplication instruction
3/(2)*2 7/8*1 Multiply/accumulate instruction
3(2to 9 Double-length multiply/accumulate
4)x2 instruction (SH7600 only)
2t04*2 9 Double-length multiplication instruction
(SH7600 only)
MA contends with IF and 1 5 MAC to register transfer instruction

sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH7600, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH7000, multiply/accumulate instructions are 8
stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

282

