
SPARC

SH Series Simulator/Debugger

User’s Manual

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons

during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of

Hitachi’s semiconductor prodocuts. Hitachi assumes no responsibility for any intellectual property claims or other

problems that may result from applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL APPLICATIONS without the

written consent of the appropriate officer of Hitachi’s sales company. Such use includes, but is not limited to, use in life

support systems. Buyers of Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning

to use the products in MEDICAL APPLICATIONS.

Preface

The SPARCstation*1 SH Series Simulator/Debugger (referred to in this manual as the
simulator/debugger) is a software tool that simulates execution of programs for the SH series of
single-chip 32-bit microcomputers on the SunOS*2 to support program development and
debugging.

This manual gives a general description of the functions and usage of the simulator/debugger.

Related information concerning the SH-series microcomputers and their C compiler, assembler,
linkage editor, and librarian can be found in the following manuals.

• SH7032, SH7034 Hardware Manual

• SH Series C Compiler User’s Manual

• SH Series Cross Assembler User’s Manual

• SH Series Linkage Editor User’s Manual

• SH Series Librarian User’s Manual

Notes: 1. SPARCstation is a registered trademark of SPARC International Inc. It is developed by
the Sun Microsystems Corp.

2. SunOS is a trademark of Sun Microsystems Corp.

Notation

The following notational conventions are used in this manual.

1. {A|B} means that either A or B must be selected, but not both.

2. [A] means that A may be omitted.

3. Information to be keyed in by the user is underlined.

4. <CTRL> + <\> means to press the back slash (\) key while pressing the control key.

5. <CTRL> + <C> means to press the C key while pressing the control key.

6. (RET) indicates the return key.

7. (LF) indicates the line-feed key.

8. A triangle (∆) indicates one or more spaces or tabs.

9. Hexadecimal values are preceded by H'. (Example: H'F81A)

Contents

Part I Simulator/Debugger

Section 1 Overview.. 3
1.1 Features... 3
1.2 Debugging Object Programs... 4
1.3 Simulation Range.. 5

Section 2 Simulator/Debugger Functions .. 7
2.1 Environment Specification.. 7
2.2 Simulator/Debugger Memory Management ... 7
2.3 Loading Debugging Object Programs .. 9
2.4 Setting Register Initial Values, Displaying and Changing Register Values.................... 11
2.5 Displaying the Memory Map, and Allocating, Displaying,

Changing, and Releasing Memory ... 12
2.6 Execution and Trace ... 14
2.7 Exception Processing.. 15
2.8 Standard I/O and File I/O Processing ... 17
2.9 Saving and Restoring the Simulation Status... 17
2.10 C Source Level Debugging... 18
2.11 Break Conditions .. 20
2.12 Memory Manipulation .. 24
2.13 Macro (Command Combination).. 24
2.14 Command Chains and Saving Execution Results to a File... 25
2.15 Saving Input Commands to a File .. 26
2.16 Test Functions ... 26

2.16.1 Stub Function.. 26
2.16.2 Coverage Measurement .. 26

Section 3 Using the Simulator/Debugger .. 29
3.1 Sample Program Description.. 29
3.2 Procedure for Creating the Debugging Object Program... 30
3.3 Simulator/Debugger Usage Example.. 31

3.3.1 Creating the CPU Information File... 31
3.3.2 Loading the Program .. 32
3.3.3 Memory Map Display and Memory Allocation ... 33
3.3.4 Displaying Section Load Address and Allocating Memory Areas..................... 34
3.3.5 Disassembly Display .. 35
3.3.6 Checking Memory Contents ... 35
3.3.7 System Call Start Address .. 36

3.3.8 Setting and Checking Breakpoints.. 36
3.3.9 Starting a Trace... 37
3.3.10 Program Execution ... 37
3.3.11 Single Step Execution... 37
3.3.12 Single Subroutine Execution .. 39
3.3.13 Trace Buffer Display... 40
3.3.14 Symbol Display .. 41
3.3.15 Automatic Command Execution during Simulation... 41
3.3.16 Coverage Range Display .. 42
3.3.17 Starting Coverage Data Acquisition ... 42
3.3.18 Setting and Executing Sequential Breakpoints... 43
3.3.19 Coverage Information Display.. 44

Section 4 Simulator/Debugger Invocation and Command Input 47
4.1 Invoking the Simulator/Debugger... 47
4.2 Exiting the Simulator/Debugger ... 47
4.3 Simulator/Debugger Commands... 48
4.4 Specifying Command Parameters... 50

4.4.1 Expressions ... 50
4.4.2 Locations... 56
4.4.3 Data... 56
4.4.4 Floating Point Data ... 57
4.4.5 Character Strings .. 57
4.4.6 File Names .. 58
4.4.7 Comment Lines... 58
4.4.8 Limitations on C Expressions... 58

Section 5 Simulator/Debugger Commands.. 59
5.1 ASSEMBLE Assembles line by line .. 61
5.2 BREAK Sets, displays, and cancels breakpoints based on

instruction execution address...................................... 63
5.3 BREAK_ACCESS Sets, displays, and cancels break conditions based

on access to a range of memory.................................. 66
5.4 BREAK_DATA Sets, displays, and cancels breakpoints based

on the value of memory data....................................... 69
5.5 BREAK_REGISTER Sets, displays, and cancels break conditions based

on the value of data in a register 73
5.6 BREAK_SEQUENCE Sets, displays, and cancels breakpoints based

on a specified execution sequence 77
5.7 CALL Calls a function ... 79
5.8 COMMAND_CHAIN Executes commands from a file.................................. 83

5.9 COMPARE Compares memory contents 85
5.10 CONVERT Calculates expression.. 86
5.11 COVERAGE Starts and stops coverage measurement...................... 87
5.12 DATA_SEARCH Searches for data... 90
5.13 DEBUG_LEVEL Specifies debug level ... 92
5.14 DISASSEMBLE Disassembles and displays memory contents 95
5.15 DISPLAY_CHARACTERS .. Displays character string .. 97
5.16 DISPLAY_COVERAGE Displays coverage data ... 98
5.17 DUMP Displays memory contents.. 102
5.18 EXEC_MODE Switches execution mode.. 104
5.19 FILL Initializes memory area... 106
5.20 GO Executes instructions continuously............................. 107
5.21 HELP Displays command name and input format 110
5.22 LOAD Loads file ... 112
5.23 LOAD_STATUS Restores simulator/debugger memory and register

state ... 115
5.24 MACRO Defines, displays, executes, and deletes

simulator/debugger command macros 116
5.25 MAP Defines, displays, modifies, and deletes

memory areas.. 128
5.26 MEMORY.............................. Modifies memory contents ... 133
5.27 MOVE Copies memory block ... 136
5.28 PRINT.................................... Creates execution history file...................................... 137
5.29 QUIT Exits the simulator/debugger 140
5.30 RADIX Sets the radix... 141
5.31 REGISTER Displays register contents ... 142
5.32 RESET Resets the simulator/debugger 143
5.33 SAVE Saves memory data to a file .. 144
5.34 SAVE_STATUS Saves the current simulator/debugger status

in a file .. 145
5.35 SCOPE Displays the function that includes the current

execution address.. 147
5.36 SET_COVERAGE Sets coverage range .. 148
5.37 SHOW_CALLS Displays function call ... 150
5.38 STEP Performs step execution in subroutine units 152
5.39 STEP_INTO Performs step execution.. 154
5.40 STUB Executes command during simulation........................ 156
5.41 SYMBOL............................... Displays symbol information...................................... 159
5.42 TRACE................................... Displays trace buffer ... 163
5.43 TRACE_CONDITION Sets trace condition, and starts or stops trace 167

5.44 TRAP_ADDRESS Sets, displays, and clears the system call start
address .. 170

5.45 TYPE Displays variable value ... 193
5.46 VECTOR................................ Executes from an interrupt vector address.................. 195
5.47 .<register> Modifies register content .. 197
5.48 ! Invokes sub-process .. 199

Part II CPU Information Analysis Program

Section 1 Creating the CPU Information ... 203
1.1 CIA Functions... 203
1.2 Invoking the CIA Program.. 203
1.3 CIA Usage Procedures and Selection Menus ... 204
1.4 CIA Sample Sessions.. 206
1.5 CIA Limitations .. 211

Part III Appendix

Appendix A Differences between Line Assemble Command and
SH-Series Cross Assembler Syntax.. 215

Appendix B SH-Series Assembler Mnemonics .. 216

Appendix C SH-Series Memory Maps ... 217

Appendix D Sample Programs.. 219

Appendix E Limitations on Debugging Object Programs 233

Appendix F Messages... 235
F.1 Information Messages... 235

F.1.1 Information Messages at Instruction Execution Interruption 235
F.1.2 Information Messages during Command Analysis... 236

F.2 Error Messages ... 237
F.2.1 Error Messages during Startup or Load Command Execution 237
F.2.2 Error Messages during Command Execution ... 239
F.2.3 Error Messages during Simulation ... 245

F.3 CIA Error Messages ... 247
F.3.1 I/O Related Error Messages.. 247
F.3.2 Keyboard Input Related Error Messages .. 248

Appendix G ASCII Code Table .. 249

Appendix H Installation .. 250
H.1 Contents of the Cartridge Tape ... 250
H.2 How to Install the Simulator/Debugger in the Host System... 250
H.3 Equipment... 251
H.4 Special Keys ... 251

Figures

Part I Simulator/Debugger

1-1 Methods for Creating Debugging Object Programs ... 4
2-1 Relocatable Section Load Map... 10
2-2 Initial Register Values... 11
3-1 Input File Example (input.obj) ... 29
3-2 SH7000 Memory Map (Mode 2) .. 31
5-1 Command Description Format ... 59
5-2 Macro Internal Variable ¥SIMSTAT... 120
5-3 Display Range Specified by the Start Instruction Index... 164
5-4 Display Range Specified by the Start Instruction Index and the Instruction Count 165
5-5 Trace Buffer Contents... 168

Part II CPU Information Analysis Program

1-1 CIA Usage procedure ... 204

Tables

Part I Simulator/Debugger

2-1 Memory Types .. 7
2-2 Example Memory Map ... 9
2-3 Stack Addresses Used to Save PC and SR ... 16
2-4 Limitations of C Debugging ... 19
2-5 Processing When Satisfying a Break Condition... 21
2-6 Execution Time Increase Due to Break Condition Specifications.................................. 21
2-7 List of Simulation Errors .. 22
2-8 Register States at Simulation Error Stop .. 23
4-1 Simulator/Debugger Commands... 48
4-2 Operators and Operator Priorities ... 55
4-3 C Expression Limitations and Workarounds .. 58
5-1 System Call Functions .. 172

Part II CPU Information Analysis Program

1-1 CIA Limitations .. 211

Part III Appendix

A-1 Differences between Line Assemble Command and SH-Series Cross
Assembler Syntax ... 215

B-1 Assembler Mnemonics Recognized by the Line Assemble Command.......................... 216
C-1 SH7000 Memory Map .. 218
F-1 Information Messages at Instruction Execution Interruption ... 235
F-2 Information Messages during Command Analysis... 236
F-3 Error Messages during Startup for Load Command Execution...................................... 237
F-4 Error Messages during Command Execution ... 239
F-5 Error Messages during Simulation ... 245
F-6 I/O Related Error Messages.. 247
F-7 Keyboard Input Related Error Messages .. 248
G-1 ASCII Code Table... 249

Section 1 Overview

The SH-series simulator/debugger provides simulation and debugging functions for SH-series
microcomputer CPUs and supports efficient debugging of software written in either C or assembly
language.

When used in conjunction with the following software, the SH-series simulator/debugger reduces
the effort required for software development.

• SH Series C compiler

• SH Series cross assembler

• H Series linkage editor

• H Series librarian

• H Series object converter

• SH Series CPU information analysis program

1.1 Features

• Since the simulator/debugger runs on a host computer, software debugging can start without
using an actual SH-series target system, thus reducing overall system development time.

• A designated CPU information file can be used to specify an environment corresponding to
any of the memory maps used with the SH-series MCUs.

• The simulator/debugger provides the following functions which enable efficient program
testing and debugging.

— The ability to handle all of the SH7000 CPUs
— C debugging functions
— Debugging functions for optimized C programs (which may differ from those of non-

optimized C programs)
— Test functions (stub, coverage measurement)
— Subroutine execution functions
— Macros (command combinations)
— Tracing instructions or subroutines
— Functions for stopping or continuing execution when an error occurs during object

program execution
— Standard I/O and file I/O
— A comprehensive set of break functions
— Saving the execution history to a file
— Saving command lines to a file, and inputting command lines from a file

3

1.2 Debugging Object Programs

The simulator/debugger can debug object modules generated by a C compiler or cross assembler,
and load modules generated by a linkage editor. These object modules and load modules are
referred to as debugging object programs.

Figure 1-1 shows the software associated with creating debugging object programs.

Figure 1-1 Methods for Creating Debugging Object Programs

Assembler
source

program

SH-series
cross assembler

Object
module

C source
program

SH-series
C compiler

Librarian

Library file

Linkage editor

Load
module

CPU information
analysis program

CPU
information

file

SH-series
simulator/debugger

4

1.3 Simulation Range

1. The simulator/debugger supports the following SH-series MCU functions.

• All executable CPU instructions (including delayed branch instructions)

• Exception processing

• General registers, control registers, and system registers

• All address areas

Refer to the SH Series Programming Manual for details regarding the delay branch
instructions.

2. The simulator/debugger does not support the following SH-series MCU functions. Programs
which use these functions must be debugged using the SH-series emulator.

• Direct memory access controller (DMAC)

• Watchdog timer (WDT)

• Integrated timer pulse unit (ITU)

• Serial communications interface (SCI)

• A/D converter

• I/O port

• Timing pattern controller (TPC)

• Interrupt controller (INTC)

• User break controller (UBC)

5

6

Section 2 Simulator/Debugger Functions

2.1 Environment Specification

The simulator/debugger handles SH7000 CPUs.

When creating a CPU information file, use the CPU information analysis program (CIA) to select
the CPU type. Details of the CIA program are given in part II, CPU Information Analysis
Program, of this manual.

The instructions that can be used differ according to the CPU type. Refer to the SH Series
Programming Manual for details of the CPU specifications.

2.2 Simulator/Debugger Memory Management

(1) Memory Map Specification

The simulator/debugger supports the memory types shown in table 2-1.

Table 2-1 Memory Types

Memory Type Access Type Debugging Object Program Execution

Internal ROM Read only Yes

Internal RAM Read/write Yes

External bus area Read/write Yes

Internal I/O area Read/write No

The SH-series CPU memory map is a combination of the above memory types. The user must
create a CPU information file which correctly specifies the memory map for the CPU used.

The CPU information analysis program is used to create a CPU information file. This file can be
used to specify the CPU (its type and address bus width) and the memory (its types, the start and
end addresses of the memory areas, the number of memory access states, and the memory data bus
width).

When the simulator/debugger is started, a memory map corresponding to the user system is created
from the specified CPU information file. (When no file is specified, external bus area is assumed.)

7

(2) Memory Allocation

When the simulator/debugger is started or when a LOAD command is entered, the simulator/
debugger allocates memory on the host computer for both the SH-series debugging object program
load area and the vector area. Areas other than these are allocated with the MAP command.

a. Vector area

When a vector area is allocated by the debugging object program, it must be specified as an
absolute address section starting at location H'0. The simulator/debugger allocates addresses
H'0 to H'3FF as the vector area when no absolute address section has been allocated in this
area.

b. Stack area

Although the stack pointer is set to the address following the end address of the internal RAM,
no stack area is allocated.

When there is no stack area allocated within the debugging object program, allocate a stack
area using the simulator/debugger MAP command.

When there is no internal RAM space, the stack pointer will be cleared to 0.

When there is a stack area allocated within the debugging object program, set the stack pointer
either by an instruction included in the program or by a .<register> command.

c. Undefined symbol area

When the U option is specified with the LOAD command, a 4-byte area is allocated for each
undefined symbol and taken as the symbol’s address. Undefined symbol areas are allocated to
an empty area in either the external bus area or the internal RAM.

(3) Memory Access Types

The memory access type is determined from the memory type corresponding to the load address of
the debugging object program. The memory access type can be either read-only or read/write.
Since it is an error for the debugging object program to write to read-only memory, it is possible to
detect memory access errors. The memory access type for each memory area can be changed with
the MAP command.

8

2.3 Loading Debugging Object Programs

The simulator/debugger loads debugging object programs in the order that sections appear in the
source program. The loading method differs depending on whether the section is relocatable or
not, as described below.

(1) Relocatable Sections

Individual sections are loaded consecutively starting at address H'400 so that they do not cross
boundaries between the internal ROM space, the internal RAM, and the internal I/O area.

Example: If a program consists of three relocatable sections, use a memory map based on the
SH7000 memory map (mode 0) with an external bus area set up as shown in table 2-2.

Table 2-2 Example Memory Map

Memory Type Address Number of States Data Bus Width

External bus area 1 H'0000000 to H'0FFFFFF 3 8

External bus area 2 H'1000000 to H'4FFFFFF 2 8

Internal I/O area H'5000000 to H'5FFFFFF 3 8

External bus area 3 H'6000000 to H'7FFFFFF 3 8

Internal RAM H'F000000 to H'FFFFFFF 1 32

Figure 2-1 shows the sizes and load addresses of the three relocatable sections.

9

Figure 2-1 Relocatable Section Load Map

(2) Absolute Address Sections

Absolute address sections are loaded at the specified address. A load error is generated if the
absolute address section crosses any of the boundaries between the internal ROM area, the external
bus area, the internal RAM area, and the internal I/O area. This makes it possible to verify that
absolute address sections are correctly loaded into the appropriate memory area.

An error occurs if the load address of either a relocatable section or an absolute section exceeds the

H'0000000

H'0000400

H'0500400

H'4500000

H'6700000

H'8000000

H'F000000

H'FFFFFFF

Address
Vector area*2

External bus area 1

External bus area 2

Internal I/O area

External bus area 3

Section B *1
H'1000000

H'5000000

H'6000000

Internal RAM area

Section A

Section C *1

10

Section Load Address Size

A H'400 H'500000

B H'1000000*1 H'3500000

C H'6000000*1 H'700000

Notes: 1. Since section B would cross the boundary between external bus areas 1 and 2 if it
was loaded following section A, it is loaded from the start address of external bus
area 2, i.e.,address H'1000000. Similarly, section C is loaded from the start
address of external bus area 3, i.e., address H'6000000 so that it does not cross
the boundary between external bus areas 2 and 3. Relocatable sections cannot
be loaded to the internal I/O area.

2. Regions allocated when the simulator/debugger is started up.

CPU addressing range. A load error also occurs if an attempt is made to load a program into an
invalid memory area (an area which does not correspond to the actual memory) which the user
specified.

Relocatable sections cannot be loaded to the internal I/O area.

2.4 Setting Register Initial Values, Displaying and Changing Register Values

The simulator/debugger supports the following SH-series registers.

• General registers (R0 to R15, SP(R15))
• Control registers (SR, GBR, VBR)
• System registers (MACH, MACL, PR, PC)

(1) Initial Register Values

Figure 2-2 shows the initial values when the simulator/debugger is started up.

Figure 2-2 Initial Register Values

Register name

R0

R14

R15 (SP)

SR

GBR

VBR

MACH/L

PR

PC

R0

R14

SP

SR

GBR

VBR

MACH

PR

PC

MACL

32 bits
Initial value

H'00000000

H'00000000

Internal RAM last address + 1*1

H'00000000

H'00000000

H'00000000

H'00000000

H'00000000

H'00000000

Entry point address*2

11

Notes: 1. The address following the last address of internal RAM is loaded into R15. When
there is no internal RAM , R15 is set to H'00000000.

2 The entry point address is the address within the section specified either by the
assembler .END directive or the ENTRY option of the linkage editor. The start
address of the first section of code is used if no entry point is specified. If there is
no code section, this resister is set to 0.

(2) Displaying and Changing Register Values

The REGISTER command is used to display and confirm the contents of the global, control, and
system registers.

The .<register> command is used to change the values of these registers.

2.5 Displaying the Memory Map, and Allocating, Displaying, Changing,
and Releasing Memory

(1) Displaying Section Addresses and the Memory Map

The addresses where the debugging object program is loaded can be confirmed by using the MAP
command to display the section addresses.

In addition, the MAP command M option can be used to display the memory map from the CPU
information file specified at simulator/debugger start-up.

(2) Memory Area Allocation

The MAP command is used to allocate vector areas and stack areas, and to allocate memory areas
which have not yet been allocated by the debugging object program.

The following conditions must be satisfied when allocating an area, otherwise an error will occur.

• The allocated area must not overlap a previously allocated section.

• The allocated area must not cross over the boundary between two different memory types.

• The allocated area must not include any part of an invalid area.

The MAP command can allocate a maximum of 20 memory areas.

12

(3) Displaying Memory Contents

The memory contents can be displayed by using the DUMP or DISASSEMBLE command.

• DUMP: The memory contents of the specified address range are displayed as
hexadecimal and ASCII data, or in floating point format.

• DISASSEMBLE: The memory contents of the specified address range are displayed as
instruction mnemonics and operands.

An error is generated if an unallocated area is specified as the memory area.

(4) Changing the Contents of Memory

The contents of memory can be changed by using the MEMORY or ASSEMBLE command.

• MEMORY: The input values are converted to hexadecimal and stored in the specified
address.

• ASSEMBLE: The instruction mnemonics and operands are converted to instruction codes
and stored in the specified address.

The MEMORY and ASSEMBLE commands continue converting and storing contents to memory
(updating the storage address each time) until a termination symbol is read.

(5) Releasing a Memory Area

Memory areas allocated with the MAP command can be released. The simulator/debugger
commands operate as follows when a memory area is released.

• If a break has been set with a break-related command, it will be cancelled.

• The LOAD_STATUS command retains the released state.

• The SET_COVERAGE command treats released sections as errors at
DISPLAY_COVERAGE execution.

• The TRACE command displays an error during assembly and display.

13

2.6 Execution and Trace

(1) Execution Types

The simulator/debugger supports five ways of executing programs that are being debugged:
continuous execution, single instruction execution, single line execution, single function
(subroutine) execution, and execution starting from an interrupt vector address.

a. Continuous execution

The GO command starts continuous execution of the object program. Continuous execution
starts from the specified starting address or from the current value of the program counter.
Execution continues until a break condition is satisfied or until execution is forcibly
terminated by a (CTRL) + (C). When execution stops, the simulator/debugger displays the
number of instructions executed, the contents of the registers, the last instruction executed (as
a disassembled instruction), and termination information messages.

b. Single instruction execution

When the N or I option is specified with the DEBUG_LEVEL command, the execution unit
for the STEP and STEP_INTO commands becomes the single instruction. (The STEP
command executes subroutines as a single step.) Each time a single instruction is executed,
the mnemonic of the executed instruction is displayed. If the R option was specified, the
contents of the registers after execution is also displayed.

c. Single line execution

When the S option is specified with the DEBUG_LEVEL command, the execution unit for the
STEP and STEP_INTO commands becomes the single line.

d. Single function execution

In single function execution, the CALL command creates the C language function call stack
frame, and the simulator/debugger executes the function. Execution is stopped immediately if
an error occurs or if a break condition is satisfied.

14

e. Execution starting from an interrupt vector address

The simulator/debugger generates a vector address from the vector number specified with the
VECTOR command and initiates interrupt processing. Execution continues until a break
condition is satisfied or until execution is forcibly terminated by a <CTRL> + <C>. When
execution stops, the simulator/debugger displays the number of instructions executed, the
contents of the registers, the last instruction executed (as a disassembled instruction), and
termination information messages.

(2) Trace

When trace is enabled during instruction execution, the results of the execution of each instruction
are written into the trace buffer. The trace buffer can hold the results for up to 1023 instruction
executions. (When the 1023th instruction is a delayed branch instruction, the trace buffer can store
up to 1024 instruction executions.) The TRACE_CONDITION command enables tracing, and the
TRACE command displays the acquired trace information.

The following information is stored in the trace buffer.

• The values of the general registers (R0 to R15, SP(R15))

• The values of the control registers (SR, GBR, VBR)

• The values of the system registers (MACH, MACL, PR, PC)

• The accessed memory data

Note that the TRACE_CONDITION command is used to specify the types of acquired instructions
traced, the tracing start and end points, and the processing performed when the trace buffer
becomes full.

In addition, the SHOW_CALLS command can display the functions called before arriving at the
current execution address. SHOW_CALLS displays the line numbers called in reverse order. The
file name, function name, line number, and arguments of the called functions are displayed.

2.7 Exception Processing

The simulator/debugger generates exception processing corresponding to the TRAPA instruction,
general illegal instructions, slot illegal instructions, and address errors. (Other exception
processing is supported as simulates exception processing by the VECTOR command.)

Exception processing simulation is performed in the following sequence.

15

• When the EXEC-MODE command select continuous mode:

1 The simulator/debugger detects the exception generated during instruction execution.

2 PC and SR are saved in the stack area. If an error occurs during the saving operation, the
simulator/debugger stops exception processing, indicates occurrence of an exception
processing error, and enters command input wait state.

3. The start address is read out of the vector address corresponding to the vector number. If an
error occurs during this read operation, the simulator/debugger stops exception processing,
indicates occurrence of an exception processing error, and enters command input wait state.

4. Instruction execution is simulated from the start address. If the start address was 0, the
simulator/debugger stops exception processing, indicates occurrence of an exception
processing error, and enters command input wait state.

• When the EXEC-MODE command selects stop mode:

The simulator/debugger executes the above steps 1 to 3, and stops.

Note: In the SH-series, the stack address which saves the PC and SR during exception processing
differs depending on the access size, the type of memory, and the bus width. The addresses
used by the simulator/debugger to save PC and SR are shown in table 2-3. These can be
used to easily determine the values of PC and SR at the time of exception processing.

Table 2-3 Stack Addresses Used to Save PC and SR

Type of Register Stack Address

PC The address of SP-8 when the exception processing occurs

SR The address of SP-4 when the exception processing occurs

16

2.8 Standard I/O and File I/O Processing

The simulator/debugger supports standard I/O and file I/O processing so that the object program
can perform I/O from standard I/O (usually the console and keyboard) or from disk files.

The following 13 I/O processing types are supported.

• Single character input from standard input
• Single character output to standard output
• Single line input from standard input
• Single line output to standard output
• Single byte input from a file
• Single byte output to a file
• Single line input from a file
• Single line output to a file
• File open
• File close
• File pointer reference
• File pointer move
• EOF (end of file) check

The TRAP_ADDRESS command is used to implement these functions. The user writes a
subroutine branch instruction (BSR or JSR) to a special location for I/O in the object program.
The program is then executed by the simulator/debugger with that special location specified by the
TRAP_ADDRESS command after starting the simulator/debugger. The simulator/debugger
performs I/O processing with the contents of R0 and R1 as parameters when a subroutine call
(BSR or JSR) to the specified location is detected during debugging object program execution.

The simulator/debugger restarts simulation at the instruction following the subroutine call
instruction after completion of the I/O processing

2.9 Saving and Restoring the Simulation Status

(1) Saving Simulation Status

The current simulation state can be saved using the SAVE_STATUS command. After executing
this command, the LOAD_STATUS command can be used to return to the simulator/debugger
status at the time the SAVE_STATUS command was executed. Command options can be used to
specify the type of saved information. The following types of information can be saved.

• Option M: Saves only the current contents of memory and registers.

• Option A: Saves the complete, current status of the simulator/debugger.

17

(2) Restoring Simulation Status

The LOAD_STATUS command restores the contents of memory and registers saved when the
SAVE_STATUS command was executed.

Restoring the status saved when the A option was specified is not performed with the
LOAD_STATUS command, but by a specification at simulator/debugger startup.

However, if the current memory map differs from the memory map in use, at the time the
SAVE_STATUS command was executed, an error occurs and the state is not restored.

2.10 C Source Level Debugging

The simulator/debugger also provides functions for debugging programs written in C. The most
important of these functions are described below.

(1) C Source Line Display

The C source line is displayed at the time of disassembly display, trace display, coverage display,
and step execution.

However, the format will differ depending on options specified by the DEBUG_LEVEL command.

(2) Single Function and Single Source Line Stepping Function

The debugging object program can be executed in units of C source functions (subroutines) or
lines.

Single function execution is performed using the CALL command, and single source line
execution is performed using the DEBUG_LEVEL, STEP, or STEP-INTO command.

(3) Symbol Reference

There are three classes of symbol scope in C: global symbols, which are valid over the entire
program, static symbols, which are valid in a single file, and local symbols, which are valid within
a function.

When only the name of the symbol is specified, symbols will be considered valid in the current file
or function indicated by the program counter. The valid file and function names can be examined
using the SCOPE command. Symbols in other files or functions can be examined by stating the
name of the file and function explicitly. Symbol related information can also be examined using
the SYMBOL command.

Table 2-4 shows debugging limitation, when a C program is compiled with optimization.

18

Table 2-4 Limitations of C Debugging

Items Limitations

1 Local symbols of the current function cannot be referenced.

2 Source lines deleted by optimization cannot be debugged.

3 Because lines may change places due to optimization, the program execution order or
the disassembly display may differ from the order of the source listing.

Example:

Source listing Simulator disassembly display
12 for (i = 0; i < 6; i++) 14 i_2 = i+1;

13 { 12 for (i = 0; i < 6; i++)

14 i_2 = i+1; 17 i_2++;

15 i_2++

16 }

17 i_2++

4 In “for” and “while” loops, disassembly display may be performed twice: once at the
loop entrance and once at the loop exit.

19

2.11 Break Conditions

The simulator/debugger provides the following conditions for breaking (interrupting) the
simulation of an object program during execution started by a CALL, GO, STEP, STEP_INTO, or
VECTOR command.

• Break due to satisfaction of a condition set by a break command

• Break due to detection of a run-time error in the object program

• Break due to overflow of the trace buffer

• Break due to execution of a SLEEP instruction

• Break due to input of (CTRL) + (C)

(1) Break Due to the Satisfaction of a Condition Set by a Break Command

There are 5 break commands as follows:

• BREAK: Break based on the location of the instruction executed

• BREAK_ACCESS: Break based on access to a range of memory

• BREAK_DATA: Break based on the value of data written to memory

• BREAK_REGISTER: Break based on the value of data written to a register

• BREAK_SEQUENCE: Break based on a specified execution sequence

When a break condition is satisfied while executing an object program, the instruction at the break
point may or may not have been executed depending on the type of the break, as listed in table 2-5.

20

Table 2-5 Processing When Satisfying a Break Condition

Command Instruction When Satisfying a Break Condition

BREAK Not executed

BREAK_ACCESS Executed

BREAK_DATA Executed

BREAK_REGISTER Executed

BREAK_SEQUENCE Not executed

When a break condition is specified, the simulator/debugger program execution time increases.
Table 2-6 shows which break types can increase program execution time.

Table 2-6 Execution Time Increase Due to Break Condition Specifications

Command Change in Execution Time Due to Break Condition Setting

BREAK Not increased

BREAK_ACCESS Increased

BREAK_DATA Increased

BREAK_REGISTER Increased

BREAK_SEQUENCE Not increased

If a break condition is specified at an address location other than the beginning of an instruction,
the break condition will not be detected.

When a break condition is satisfied during object program execution, a break condition satisfaction
message is displayed and execution stops.

(2) Break Due to Detection of a Run-time Error in the Object Program

The simulator/debugger supports a simulation error to detect program errors which cannot be
detected by the CPU exception generation functions. The EXEC_MODE command specifies
whether to stop or continue the simulation when such an error occurs. Table 2-7 lists the types of
errors, the error causes, and the action of the simulator/debugger if execution continues.

21

Table 2-7 List of Simulation Errors

Processing in
Error Type Error Cause Continuation Mode

Memory access error 1. Access to a memory area that has not
been allocated

2. Write to a memory area having the
write protect attribute

3. Read from a memory area having
the read disable attribute

4. Access to a memory area where
memory does not exist

Invalid SP instruction 1. Execution of an instruction that places
R15 (SP) outside the four-byte boundary

MOV.B reg, @–R15
MOV.B @R15+, REG
MOV.W reg, @–R15
MOV.W @R15+, REG

Illegal operation 1. Zero division is executed by the DIV1
instruction.

If the simulator/debugger is in stop mode when a simulation error occurs, the simulator/debugger
returns to command wait mode after stopping instruction execution and displaying the error
message. Table 2-8 lists the states of the PC and SP at simulation-error stop.

22

On memory write,
nothing is written;
on memory read, all
bits are read as 1.

The simulation
continues identically
to the operation of
the device.

The simulation
continues identically
to the operation of
the device.

Table 2-8 Register States at Simulation Error Stop

Error Type Value of the PC Value of the SP

Memory access error Error on instruction read: Unchanged
The address of the instruction that caused
the error

Error during instruction execution:
The address following the instruction that caused
the error

Invalid SP instruction The address of the instruction that caused
the error

Illegal operation The address following the instruction that caused
the illegal operation

Use the following procedure when debugging programs which include instructions that generate
simulation errors.

a. First execute the program in stop mode and confirm that there are no errors except those in the
intended locations.

b. After confirming the above, execute the program in continuation mode.

Note: If an error occurs in stop mode and simulation is continued after changing the simulator
mode to continuation mode, the simulation may not be performed correctly. When
restarting a simulation, always restore the register contents (general, control, and system
registers) and memory contents to the state prior to the occurrence of the error.

The SAVE_STATUS and LOAD_STATUS commands can be used to save and restore the
simulation state during debugging.

(3) Break Due to Overflow of the Trace Buffer

When the B option has been specified with the TRACE_CONDITION command, the simulator/
debugger stops execution when the trace buffer becomes full. The following message is displayed
when execution is stopped.

TRACE BUFFER FULL

If execution is resumed with a GO, STEP, STEP_INTO, or VECTOR command the trace buffer is
overwritten starting from the beginning of the buffer.

23

(4) Break Due to Execution of a SLEEP Instruction

When a SLEEP instruction is executed during simulation, the simulator/debugger stops execution.
The following message is displayed when execution is stopped.

SLEEP

Execution can be resumed with a GO, STEP, STEP_INTO, or VECTOR command.

(5) Break Due to Input of (CTRL) + (C)

Execution can be forcibly terminated by the user during simulation using the above keys. The
following message is displayed when execution is terminated.

MANUAL BREAK

Execution can be resumed with a GO, STEP, STEP_INTO, or VECTOR command.

2.12 Memory Manipulation

The simulator/debugger provides the COMPARE, FILL, and MOVE commands as functions to
increase debugging ability.

1. The COMPARE command compares memory contents. It is used, for example, to compare
the results of executions. The COMPARE command displays unmatched data.

2. The FILL command fills a memory area with initial data. It is used to initialize memory prior
to program execution.

3. The MOVE command copies the contents of a specified memory area to a specified
destination area.

2.13 Macro (Command Combination)

A macro function is a function that produces new commands by combining multiple commands.
Macros can be created in the simulator/debugger by using the MACRO command.

Macros can use macro internal variables and macro internal commands. Macro internal commands
are control commands which define macro internal conditions, or which can be executed.

The following macro internal commands are provided.

• WHILE

• FOR

24

• DO/WHILE

• IF/ELSE

• MBREAK

• CONTINUE

An executing macro command can be stopped by inputting (CTRL) + (C).

There is no limitation on the number of macro calls within a macro (the number of nesting levels).

Refer to section 5.24, MACRO (Definition, Display, Execution, and Deletion of Macro
Commands), for details on the MACRO command.

2.14 Command Chains and Saving Execution Results to a File

(1) Command Chains

Commands can be input from files which are created with a text editor. Command files can be
specified by the COMMAND_CHAIN command, or by a parameter when the simulator/debugger
is started. It is possible to include data that makes use of standard I/O processing in command
files.

(2) Saving Execution Results to a File

There are two methods for saving simulator/debugger execution results to a file: the PRINT
command and redirection.

a. PRINT command

The PRINT command saves to a file all command input and all execution results during the
time that saving is specified. In addition, saving can be temporarily stopped and then
restarted.

b. Redirection

The results of executing a single command can be saved to a file by using redirection.

Unlike the PRINT command, however, command input is not saved.

There are two redirection specification formats as follows:

Writing to a new file: <command line>∆\>∆"<file name>"
Appending to an existing file: <command line>∆\>>∆"<file name>"

Note that redirection cannot be used with the COMMAND_CHAIN command.

25

2.15 Saving Input Commands to a File

The PRINT command also provides a function for saving only command input. Test re-execution
can be automated by using this function to create a command file and using that command file
with the COMMAND_CHAIN command.

2.16 Test Functions

2.16.1 Stub Function

During simulation of a object program, the simulator/debugger can stop execution and execute a
specified set of simulator/debugger commands each time the program passes a location specified
with the STUB command. When this execution is completed, the simulator/debugger returns to
simulation of the object program. This is referred to as a “stub”.

The return location following stub execution can be specified as desired. When the stub execution
location is not the same as the return location, the resulting execution can be seen as stub execution
replacing one part of the program simulation. This is referred to as “stub proxy execution”.

Stub proxy execution is used, for example, to jump over subroutine processing that has not yet
been implemented. This allows simulation to be performed even if the program is not completed.

On the other hand, when the return location is the same as the stub location, since the simulation
returns to the same location after executing the simulator commands, this function can be used to
insert instructions in the debugging object program. This is referred to as an “insertion stub”.
Insertion stubs can be used, for example, to insert a patch in a program.

Up to 16 stubs can be specified.

2.16.2 Coverage Measurement

The final stages of program development, i.e, the steps immediately prior to release as a product,
include functional evaluation, performance evaluation, optimization, and quality assurance. The
simulator/debugger supports the coverage method, which is a testing technique used for quality
assurance.

The coverage function is a function to investigate whether program testing has covered all the
program’s functions, and to determine if those tests are adequate. While there are several coverage
techniques, this simulator/debugger supports C0 and C1 coverage.

C0 coverage indicates what sections of the program code have been executed as a percentage of
the entire object of measurement.

C1 coverage indicates as a percentage, which branch instructions have been tested for the cases of

26

branch taken and branch not taken, for all branch instructions within the object of measurement.
Furthermore, the simulator/debugger supported coverage functions not only indicate the results as
percentages, but can also indicate exactly which lines of code have been executed.

(1) Coverage Measurement Sequence

The coverage measurement sequence and the commands used are as follows.

• Measurement range specification: SET_COVERAGE

• Coverage start declaration: COVERAGE file name

• Program execution: Simulator commands

• Temporary stop, restart,
and initialization of
the coverage measurement: COVERAGE ; option

• Display of measurement results: DISPLAY_COVERAGE

• Coverage termination: COVERAGE–

a. Measurement range specification

The SET_COVERAGE command specifies the range of the measurement area.

Up to 16 coverage areas can be specified. The program code sections (and no other sections)
are automatically set as the coverage measurement range when the simulator/debugger is
started, or when an object program (object module or load module file) is loaded with the
LOAD command.

b. Coverage start

The start of the coverage function is declared with the COVERAGE command.

Prior to actually starting measurement, the file used to store the measured data is specified
with the COVERAGE command. If a file which already holds measurement data is specified,
the measurement range and the measurements stored in that file are read out and used, thus
allowing the measurement to be continued. In this case, since the measurement range will be
read from the file, there is no need to specify the range with the SET_COVERAGE command.
Furthermore, the range from the file takes precedence over any SET_COVERAGE command
range setting.

27

c. Program execution

When coverage measurement preparations are complete, use a GO, STEP, STEP_INTO,
CALL, or VECTOR command to execute the object program.

d. Temporary stop, restart, and initialization of coverage measurement

Coverage data measurement is performed between the start of coverage and coverage
termination. However, temporary stop of measurement, restart, and initialization of
measurement data can be selected with the D (disable), E (enable), and R (reset) COVERAGE
command options, respectively.

e. Display of measurement results

The DISPLAY_COVERAGE command is used to display the measurement results. Four
types of display methods (selected by options) for different purposes are supported.

• T option: Displays C0 and C1 coverage

• G option: Displays the coverage results in units of source line

• D option: Displays the coverage results in units of machine language

• N0 and N1 options: Displays the addresses of lines that were not executed

f. Coverage termination

Coverage is terminated using the COVERAGE command termination specification:
COVERAGE–.

The measured data is stored in the file specified in the coverage start declaration.

28

Section 3 Using the Simulator/Debugger

This section describes the use of the simulator/debugger with a sample program. See appendix D,
Sample Program, for a source listing of the sample program.

3.1 Sample Program Description

The sample program used in this manual dumps each record of an SH-series object file. Lines of
data are read from the file and dumped one at a figure. Figure 3-1 shows an example of the input
data.

Figure 3-1 Input File Example (input.obj)

This program consists of 5 modules.

• main(): Handles loop control of the initialization, reading, editing, and display
operations.

• Print_rec(): Reads, edits, and displays data.

• Read_rec(): Reads a single record.

• Bin_ascii(): Converts binary data to ASCII.

• Ph_read(): Inputs data by calling an assembly language routine.

Note that when executing the sample program, an assembly language routine must be written to
allow binary data to be read into a C source file.

29

80200080 00800080 00008080 80808080
80008080 00000000 00000000 0000005F
842B2039 31303830 36313432 35343200
01003031 30300810 10000000 00000470
726F6706 48382F33 3030D886 25400001
00000003 0470726F 6708415F 48382F33
30303931 30383036 31343235 34320000

3.2 Procedure for Creating the Debugging Object Program

This section describes the procedure for creating the debugging object program.

(1) Source Program Creation

The C source program to be debugged is created with a text editor. Here we assume that the file
containing this C source program is sample.c, and that the assembler source program file is
prog.src.

(2) Object Module Creation

The object module is created by compiling the C source program with the SH-series C compiler.
Specify the DEBUG and OPTIMIZE options when compiling the sample program.

% shc˘sample.c˘-debug˘-optimize=0 (RET)
1 2 3 4

Notes: 1 shc is the SH-series C compiler command.
2 The file name of the C source program (sample. c in this case).
3 A command line option to the C compiler. This option specifies that debugging

information is output to the relocatable object program.
4 This option specifies the optimization level.

Refer to the SH-Series C Compiler User’s Manual for more information.

Create an object module by assembling the source program prog.src with the SH-series cross
assembler, using the following command.

% asmsh˘prog.src˘-debug (RET)

Refer to the SH-Series Cross Assembler User’s Manual for more information.

(3) Creating the Debugging Object Program

Use the linkage editor to combine the object module output by the C compiler with the object
module output by the cross assembler, by entering the following command line. Be sure to include
the EXCLUDE, DEBUG, and ENTRY options.

% lnk˘sample,prog˘-exclude˘-debug˘

-entry =_main˘-start=P/8000400˘

-start= D,B,dt/9000000 (RET)

30

Here, standard library (shclib.lib) and low-level library must be specified as default libraries.
Refer to the H-Series Linkage Editor User’s Manual for more information.

3.3 Simulator/Debugger Usage Example

This section describes the command inputs and simulator/debugger outputs for a sample
simulator/debugger session.

3.3.1 Creating the CPU Information File

A CPU information file which corresponds to the SH-series device to be used must be created
before using the simulator/debugger. Refer to part II, CPU Information Analysis Program, in this
manual.

Our example uses the memory map for the SH7000 extended mode with ROM (mode 2). Figure
3-2 gives an overview of the SH7000 mode 2 memory map. Refer to appendix C.1, SH7000
Memory Map for more information.

Figure 3-2 SH7000 Memory Map (Mode 2)

The internal ROM areas H'0000000 to H'0FFFFFF and H'8000000 to H'8FFFFFF correspond to
the same area in the SH series, but are treated separately by the simulator/debugger. To use the
internal ROM area ranging from H'8000000 as the vector area, specify either of the following.

Internal ROM area (32 bits, 1 state)
H'0000000

H'0FFFFFF

Internal I/O area (16 bits, 3 states)
H'5000000

H'5FFFFFF

Vector area
H'8000000

Internal ROM area (32 bits, 1 state)H'9000000
External ROM area (16 bits, 3 states)

H'F000000
Internal RAM area (32 bits, 1 state)H'FFFFFFF

31

(1) Copy the data from H'8000000 to H'800000F to the memory starting from H'0.

: MAP 8000000 800000F (RET)

: MOVE 8000000 800000F 0 (RET)

(2) Write H'8000000 to VBR.

: . VBR 8000000 (RET)

Since VBR is not affected by reset interrupts, copy the data from H'8000000 to H'800000F to the
memory starting from H'0 by entering the command line as shown in item (1).

3.3.2 Loading the Program

When the simulator/debugger is invoked by the following command line, the debugging object
program is loaded and the simulator/debugger enters the command wait state.

% sdsh˘sample.abs˘-cpu=mode2 (RET)

SH SERIES SIMULATOR-DEBUGGER Ver. 1.1 (HS0700SDCU1SM)
Copyright (C) Hitachi, Ltd. 1992
Licensed Material of Hitachi, Ltd.
: 3

Notes: 1 “sdsh” is the simulator/debugger command.
2 “sample.abs” is the debugging object program file name.
3 The colon is the simulator/debugger command prompt.

32

1 2

3.3.3 Memory Map Display and Memory Allocation

The MAP command is used to verify the memory map as follows.

: MAP ;M (RET)
<KIND> <START> <END> <STATE> <BUS>
NOT_A 00000000 - 04FFFFFF
I/O 05000000 - 05FFFFFF 3 16
NOT_A 06000000 - 07FFFFFF
ROM 08000000 - 08FFFFFF 1 32
EXT 09000000 - 0eFFFFFF 3 16
RAM 0F000000 - 0FFFFFFF 1 32

: MAP 0F000000 0FFFFFFF (RET) 5
:

Notes: The M option displays the memory map specified in the CPU information file.

1 Indicates the type of memory.
ROM: Internal ROM area EXT: External bus area
NOT_A: Unused area I/O: Internal I/O area
RAM: Internal RAM area

2 The first and last addresses of the memory area.
3 The number of states.
4 The width of the data bus.
5 This command allocates the area from H'F000000 to H'FFFFFFF as a stack area.

33

1 2 3 4

3.3.4 Displaying Section Load Addresses and Allocating Memory Areas

The following commands are used to determine at what addresses the program sections are loaded
and to change the section attributes.

: MAP (RET)
<START> <END> <ATTR> <SECT_NAME>
08000400 - 08000D83 R P
09000000 - 09000064 RW D
09000068 - 090035AB RW B
090035AC - 09003663 RW dt
0F000000 - 0FFFFFFF RW

: MAP 5000000 5FFFFFF ;RW (RET) 5
: MAP (RET)
<START> <END> <ATTR> <SECT_NAME>
05000000 - 05FFFFFF RW
08000400 - 08000D83 R P
09000000 - 09000064 RW D
09000068 - 090035AB RW B
090035AC - 09003663 RW dt
0F000000 - 0FFFFFFF RW
:

Notes: The MAP command displays the currently allocated memory areas.

1 The first and last address of each section.
2 The section attribute.

R: Read-only
W: Write-only
RW: Read/write

3 The section name. Sections without a name include the vector area and those allocated
by the MAP command.

4 The memory areas.
08000400 to 08000D83 is section P
09000000 to 09000064 is section D
09000068 to 090035AB is section B
090035AC to 09003663 is section dt
0F000000 to 0FFFFFFF is stack area allocated with the MAP command.

5 This command allocates memory area.
6 The MAP command verifies the allocated memory areas.

34

1 2 3

4

6

3.3.5 Disassembly Display

The following command disassembles 16 lines and displays the result. (When option I is specified
by the DEBUG-LEVEL command.)

: DISASSEMBLE 8000A78 (RET)
%prog.src!P: 1

08000A78 STS.L PR,@-R15
08000A7A MOV.L R4,R0
08000A7C MOV.L %prog.src!PARM_1,R1
08000A7E MOV.L R0,@R1
08000A80 MOV.L %prog.src!REQ_CD_1,R0
08000A82 MOV.L %prog.src!TRP_AD_1,R3
08000A84 JSR @R3
08000A86 NOP
08000A88 MOV.L %prog.src!PARM_1,R3
08000A8A MOV.L @R3,R1
08000A8C MOV.B @R1,R0
08000A8E CMP/EQ.L #00000000,R0
08000A90 BT %prog.src!R_EXIT
08000A92 MOV.L #00000001,RO
08000A94 MOV.L %prog.src!RTN_AD_1,R3
08000A96 BRA %prog.src!R_RTN

:

Notes: 1 The line “%prog.src!P” is the symbol defined for address H'8000A78. Here,
“prog.src” is the file name and “P” is the label.
Note that “%prog.src!P” can be specified instead of H'8000A78.

2 The first address of the instructions.
3 The instruction mnemonics.
4 The instruction operand.

3.3.6 Checking Memory Contents

: DUMP stop_f @6 (RET) 1
address +0 +2 +4 +6 +8 +A +C +E ASCII
09002F48 0000 0000 0000 0000 0000 0000

:

35

2 3 4

2 3 4

Notes: 1 This command displays six 2-byte blocks of data starting at the symbol “stop_f” in
hexadecimal.

2 The first address. Displayed in 16-byte units.
3 The contents of 12 bytes of data (six 2-byte blocks).
4 The contents of 3 as ASCII characters. Periods are displayed when the values cannot

be converted.

3.3.7 System Call Start Address

Line 24 of the sample program prog.src (see appendix D, Sample Program) inputs a single line
using the instruction JSR @R3. The starting address of the system call is specified with the
simulator/debugger TRAP_ADDRESS command as follows.

: TRAP_ADDRESS TRAP (RET) 1
:

Note: 1 Specifies TRAP as the location for the start of the system call.

3.3.8 Setting and Checking Breakpoints

The following command sets a breakpoint so that the program will stop at location H'800040C.

: BREAK 800040C (RET) 1
: BREAK (RET) 2
<E/D> <ADDR> <COUNT> <COMMAND LINE> <SYMBOL
E 0800040C 1 ------- %sample.c/main(# 38)

Notes: 1 Sets a breakpoint at address H'800040C.
2 Confirms the breakpoint settings.
3 The breakpoint enable or disable condition.
4 The location where the breakpoint is set.
5 The number of times the breakpoint has been passed.
6 Command to be executed when the program execution stops at the breakpoint.
7 Indicates the symbol corresponding to the location where the breakpoint is set. When

there is no corresponding symbol, nothing is displayed.
When there are multiple symbols corresponding to the same address, the displayed
symbol may be different from the symbol used in setting the breakpoint.

36

4 5 6 73

3.3.9 Starting a Trace

The following command starts acquiring trace information.

: TRACE_CONDITION (RET)
:

3.3.10 Program Execution

The following command executes the debugging object program starting at the current value of the
program counter.

: GO (RET)

Exec instructions = 18 1
PC=0800040C SR=00000000:**********************------**-- SP=0FFFFFF8

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800040C

R0-7 00000000 090035AC 00000000 08000CB8 09000020 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

08000ACE LDS.L @R15+,PR

BREAK POINT 3
:

Notes: 1 The number of instructions executed.
2 The contents of the registers at the point when the program stopped.
3 Indicates that the program has stopped at a breakpoint.

3.3.11 Single Step Execution

After the program has stopped at the breakpoint (H'800040C), the following command executes 3
instructions one at a time. At each step the executed instruction is displayed. (In this example, the
instruction following the delayed branch instruction is also executed because the third instruction
is a delayed branch instruction.)

37

2

: STEP_INTO 3;R (RET)

PC=0800040E SR=00000000:**********************------**-- SP=0FFFFFF8

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800040C

R0-7 00000000 090035AC 00000000 08000CB8 09003554 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

%sample.c# 38 Read(f_name);

0800040C MOV.L @(00000048,PC),R4

PC=08000410 SR=00000000:**********************------**-- SP=0FFFFFF8

GBR=00000000 VBR=000000000 MACH=00000000 MACL=00000000 PR=0800040C

R0-7 00000000 090035AC 08000A78 08000CB8 09003554 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

080040E MOV.L @(0000004C,PC),R2

PC=08000A78 SR=00000000:**********************------**-- SP=0FFFFFF8

GBR=00000000 VBR=000000000 MACH=00000000 MACL=00000000 PR=08000414

R0-7 00000000 090035AC 08000A78 08000CB8 09003554 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

08000410 JSR @R2

PC=08000A78 SR=00000000:**********************------**-- SP=0FFFFFF8

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=08000414

R0-7 00000000 090035AC 08000A78 08000CB8 09003554 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

08000412 NOP

STEP NORMAL END

:

38

3.3.12 Single Subroutine Execution

The following command executes 7 instructions starting at the current program counter
(H'8000406)). Each subroutine call is executed as a single step.

: STEP 7 (RET)
08000406 MOV.L @(0000004C,PC,)R3
08000408 JSR @R3
0800040A NOP
0800040C MOV.L @(00000048,PC),R4
0800040E MOV.L @(0000004C,PC),R2
08000410 JSR @R2
08000412 NOP
STEP NORMAL END
:

Note: 1 Indicates that a subroutine was executed within the specified range.

39

1

3.3.13 Trace Buffer Display

The following command displays the contents of the trace buffer.

: TRACE -17, @3;A (RET) 1
08000400 MOV.L R8,@-R15 2
PC=08000402 SR=00000000:**********************------**-- SP=0FFFFFFC

W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0FFFFFFFC

08000402 STS.L PR,@-R15

PC=08000404 SR=00000000:**********************------**-- SP=0FFFFFF8

W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

08000404 MOV.L @(00000048,PC),R4

PC=08000406 SR=00000000:**********************------**-- SP=0FFFFFF8

R=09000020

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800000C

R0-7 00000000 00000000 00000000 00000000 09000020 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF8

:

Notes: 1 Displays 3 instructions from the trace buffer starting 17 instructions back. Option
“;A”specifies that all of the saved trace information is to be displayed.

2 The executed instructions are disassembled and displayed.
3 The contents of the registers after instruction execution.
4 “R=09000020” indicates that data H'9000020 was read from memory by the

instruction.
5 “W=00000000” indicates that data H'0 was written to memory by the instruction.

40

3

5

4

3.3.14 Symbol Display

The following command displays the information related to the specified symbol from the global
area of the load module.

: SYMBOL %!stop_f (RET) 1
stop_f.......................... 09002F48 VAR S WORD 0002

:

Notes: 1 Displays the information related to the symbol “stop_f” from the global area.
2 The symbol.
3 The symbol’s definition address.
4 The symbol type. “VAR” indicates that the symbol is variable.
5 Indicates whether the data is signed. “S” indicates that the data is signed.
6 Indicates the format of the data. “WORD” indicates that the data is a two byte integer.
7 The size of the symbol in byte units.

3.3.15 Automatic Command Execution during Simulation

The following command instructs the simulator/debugger to execute pre-registered simulator
commands when an attempt is made to execute a specified location.

: STUB 800055E { (RET) 1
STUB> DISPLAY_CHARACTERS ÒENTRY %sample.c/Print_recÓ (RET)

STUB> REGISTER (RET)

STUB> } (RET) 3
: STUB (RET) 4
<ENTRY ADDR> <RETURN ADDR> <SYMBOL>

0800055E 0800055E %sample.c/Print_rec(# 85)

%sample.c/Print_rec(# 85)

:

41

2 3 7654

5 6 87

2

Notes: 1 This command instructs the simulator/debugger to start stub execution when the
instruction at address H'800055E is about to be executed.

2 Specifies the stub execution commands. Here a command to display a message
confirming passage through the stub point and a command to display the contents of
the registers are specified. Note that “STUB>” is the prompt used by the STUB
command.

3 Indicates completion of the setting.
4 Confirms the setting.
5 The stub execution start address.
6 The simulation return address.
7 The symbol corresponding to the start address and its line number.
8 The symbol corresponding to the return address and its line number.

3.3.16 Coverage Range Display

The following command displays the coverage range. When no coverage range has been set, the
code sections of the debugging object program are used as the default value.

: SET_COVERAGE (RET)
coverage area
08000400 - 08000D83

:

Notes: 1 The starting address for coverage data acquisition.
2 The terminating address for coverage data acquisition.

3.3.17 Starting Coverage Data Acquisition

The following command starts the acquisition of coverage data. Since no coverage file is
specified, the file “temp.cov” is used.

: COVERAGE (RET)
coverage area
08000400 - 08000D83
:

42

1 2

3.3.18 Setting and Executing Sequential Breakpoints

The following command sets a breakpoint so that execution will stop when the debugging object
program passes through the 3 specified locations.

: BREAK SEQUENCE 80004BA 80009E8 8000566 (RET) 1
: BREAK SEQUENCE (RET) 2
1st BREAKPOINT = 080004BA %sample.c/Print_rec (# 78)

2nd BREAKPOINT = 080009E8 %sample.c/Bin_ascii (# 217)

3rd BREAKPOINT = 08000566 %sample.c/Print_rec (# 87)

<COMMAND LINE>

:GO (RET)

ENTRY %sample.c/Print_rec 7
PC=0800055E SR=00000000:**********************------**-- SP=0FFFFE40

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=0800055E

R0-7 00000000 0FFFFE44 08000030 0FFFFE45 0FFFFE45 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFE40

Exec instructions = 156

PC=08000566 SR=00000000:**********************------**-- SP=0FFFFE40

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=08000566

R0-7 00000000 0FFFFE44 08000030 0FFFFE44 0FFFFE44 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFE40

%sample.c# 225 }

BREAK SEQUENCE

:

Notes: 1 This command instructs the simulator/debugger to stop at location H'8000566 (the last
location) when the 3 locations H'80004BA, H'80009E8, and H'8000566 are passed in
sequence.

2 This command displays the sequential breakpoint settings.
3 Indicates the setting order.
4 The breakpoint address.
5 The symbol corresponding to the breakpoint address.
6 Command to be executed when the program execution stops at the breakpoint.
7 The output for confirming passage through the point set by the STUB command.
8 Register display set by the STUB command.
9 At this point the sequential break conditions are satisfied and execution stops.

43

3

6

4 5

8

9

3.3.19 Coverage Information Display

This section lists the coverage information for each of the command options.

(1) T Option Specification

This option displays the C0 and C1 coverage values.

: DEBUG_LEVEL ;S (RET) 1
: DISPLAY_COVERAGE /Read_rec @14 ;T (RET) 2
C0: 44.0% 3
C1: 50.0% 4
:

Notes: 1 This command sets the debug level to source code line units.
2 This command sets symbol /Read_rec as the coverage start address. Coverage is

performed for 20 lines from the start address.
3 The C0 coverage value
4 The C1 coverage value

44

(2) G Option Specification

The G option displays C0 coverage over a wide range.

: DISPLAY_COVERAGE /Read_rec @14 ;G (RET)

%sample.c# 172 * void Read_rec()

%sample.c# 177 * if (phg_pos == -1)

%sample.c# 179 . Ph_read(phg_rec); /*: First 256 bytes.

%sample.c# 180 . Ph_read(phg_rec+256); /*: First spare 256 bytes.

%sample.c# 181 . phg_pos = (short)0; /*: Index initialize.

%sample.c# 182 . rec_num = (short)0; /*: Physical record number

initialize

%sample.c# 185 * phg_lng = phg_rec[phg_pos + 1];

%sample.c# 186 * if (phg_lng < 0)

%sample.c# 188 . phg_lng += 256; /*: Adjust to unsigned char.

%sample.c# 191 * wi = (short)0;

%sample.c# 192 * while (wi <phg_lng)

%sample.c# 194 . log_rec[wi++] = phg_rec[phg_pos++];

%sample.c# 197 * if (phg_pos > 255)

%sample.c# 200 . for (wi = (short)0; wi < (short)256; wi++)

%sample.c# 202 . phg_rec[wi] = phg_rec[wi + 256];

%sample.c# 205 . Ph_read(&phg_rec[256]);

%sample.c# 206 . phg_pos —= 256;

%sample.c# 207 . rec_num++;

%sample.c# 209 * }

%sample.c# 214 . void Bin_ascii(p)

:

Notes: 1 The file name and line number of the source code.
2 Indicates the coverage information symbolically.

• Asterisk (*): Indicates that this address was accessed and executed.
• Period (.): Indicates that this line was not executed.
• Space (∆): Indicates that there is no machine language corresponding to this

line.
3 Displays the source code in the coverage range.

45

321

46

Section 4 Simulator/Debugger Invocation and
Command Input

4.1 Invoking the Simulator/Debugger

The following command invokes the simulator/debugger.

%sdsh[˘{[<debugging object program file name>]

1 2
[[˘]-com=<command file name>][[˘]-cpu=<CPU information file name>]}

3 4
|-stat=<simulator state file name>] (RET)

5

Notes: 1 "sdsh" is the command name of the simulator/debugger installed on the host computer.
2 The file name of the debugging object program loaded when the simulator/debugger

starts. When the file extension is omitted ".abs" is used as the default.
3 When the -com command line option is specified, the simulator/debugger reads a

command from the file whose name is specified following the equal sign (=) and
executes it.

4 When the -cpu command line option is specified, the simulator/debugger creates a
memory map from the information stored in the CPU information file whose name is
specified following the equal sign (=). When the file extension is omitted ".cpu" is
used as the default.

5 The state at the time a SAVE_STATUS command was executed in a previous
debugging session can be restored by specifying the simulator state file following an
equal sign (=) with the -stat command line option. When the file extension is omitted
".sav" is used as the default.

4.2 Exiting the Simulator/Debugger

To exit the simulator/debugger, enter the following simulator command line.

: QUIT (RET)
%

47

4.3 Simulator/Debugger Commands

Table 4-1 lists the simulator/debugger commands.

Table 4-1 Simulator/Debugger Commands

No. Command Abbreviation Function

1 ASSEMBLE A Assembles line by line

2 BREAK B Sets, displays, and cancels breakpoints
based on the instruction execution address

3 BREAK_ACCESS BA Sets, displays, and cancels break conditions
based on memory range access

4 BREAK_DATA BD Sets, displays, and cancels break conditions
based on memory data values

5 BREAK_REGISTER BR Sets, displays, and cancels break conditions
based on register data values

6 BREAK_SEQUENCE BS Sets, displays, and cancels breakpoints
based on specified execution sequences

7 CALL CA Calls a function

8 COMMAND_CHAIN CC Executes commands from a file

9 COMPARE CMP Compares memory contents

10 CONVERT CV Calculates expression

11 COVERAGE COV Starts and stops coverage measurement

12 DATA_SEARCH DS Searches for data

13 DEBUG_LEVEL DL Specifies debug level

14 DISASSEMBLE DA Disassembles and displays memory
contents

15 DISPLAY_CHARACTERS DCH Displays character string

16 DISPLAY_COVERAGE DCV Displays coverage data

17 DUMP D Displays memory contents

18 EXEC_MODE EM Switches execution mode

19 FILL F Initializes memory area

20 GO G Executes instructions continuously

21 HELP HE Displays command name and input format

22 LOAD L Loads file

23 LOAD_STATUS LS Restores simulator/debugger memory and
register state

48

Table 4-1 Simulator/Debugger Commands (cont)

No. Command Abbreviation Function

24 MACRO MA Defines, displays, executes, and deletes
simulator/debugger command macros.

25 MAP MP Defines, displays, modifies, and deletes
memory areas.

26 MEMORY M Modifies memory contents

27 MOVE MV Copies memory block

28 PRINT P Executes history file

29 QUIT Q Exits the simulator/debugger

30 RADIX RX Sets the radix

31 REGISTER R Displays register contents

32 RESET RS Resets the simulator/debugger

33 SAVE SV Saves memory data to a file

34 SAVE_STATUS SS Saves the current simulator/debugger state
in a file

35 SCOPE SCP Displays the name of function at the current
execution address.

36 SET_COVERAGE SCV Sets coverage range

37 SHOW_CALLS SHC Displays function call

38 STEP S Performs step execution in subroutine units

39 STEP_INTO SI Performs step execution

40 STUB SB Executes command during simulation

41 SYMBOL SY Displays symbol information

42 TRACE T Displays trace buffer

43 TRACE_CONDITION TC Sets trace condition, and starts or stops
trace

44 TRAP_ADDRESS TA Sets, displays, and clears the system call
start address

45 TYPE TY Displays variable value

46 VECTOR V Executes from an interrupt vector address

47 .<register> — Modifies register contents

48 ! — Invokes sub-process

49

4.4 Specifying Command Parameters

The simulator/debugger commands allow parameter specification. This section describes the
aspects of parameter specification common to all commands. Refer to section 5,
Simulator/Debugger Commands, for more information on the command parameters.

4.4.1 Expressions

Expressions (integer expressions) consist of terms, operators, and parentheses.

Operations are performed in 32-bit unsigned operations, and overflows during operation is
ignored. However, divide by zero and floating-point operations generate errors.

(1) Terms

The following terms can be used in integer expressions.

a. Numeric constants

Numeric constants represent 32-bit integer constants. Numeric constants can be prefixed with
B', Q', D', or H' to represent binary, octal, decimal, or hexadecimal constants respectively.

When the prefix is omitted, the base specified with the RADIX command is used.

Examples: Binary constant: B'1010
Octal constant: Q'4567
Decimal constant: D'1234
Hexadecimal constant: H'A4FF

Note that a leading zero must be inserted at the head of a hexadecimal constant when the first
digit is A to F and the H' prefix is omitted.

Example: To write “H'A0” without the prefix, use “0A0”.

50

b. Register values

Register value terms represent the current value stored inside the register at the time they are
evaluated. Register values are zero-extended to 32-bit integer values.

R0
|

R15
SP
PC
SR
GBR
VBR
MACH
MACL
PR

c. Symbols

Symbols represent an address or constant value.

The syntax for symbols is shown below.

• [!]symbol[.member name[...]]
• %file name
• /function name

The <function name> indicates a C function. It is not used with assembler language symbols.

Although alphanumerics and the $ and _ characters can be used in symbols (as well as
function and member names), symbols, function names, and member names must be 32 or
fewer characters in length, and must start with either a letter, the “$” character, or the “_”
character.

Upper and lower case letters are distinguished.

Member names express elements of structures or unions. Member names are not used with
assembler language symbols.

51

There are three classes of symbol scope in C: global symbols which are valid over the whole
program, static symbols that are valid in a single file, and local symbols that are valid within a
function.

If a symbol is specified, the simulator debugger searches for it with local symbols in the
currently valid function, static symbols in the file, and global symbols valid in the whole
program, in that order. The simulator debugger allows the following specifications to refer to
the same symbols of other level, or those included in other functions or files.

• /function!symbol
Refers to the local symbols in the specified function

• %file!symbol
Refers to the static symbols in the specified file

• %!symbol
Refers to the specified global symbol

The valid file and function names can be determined with the SCOPE command. For both file
names and symbol names, items specified with upper case letters and items specified with
lower case letters will be treated as distinct objects.

Examples: %main.c!sym Indicates the symbol "sym" which appears in the file
"main.c".

/func!sym Indicates the symbol "sym" which appears in the
function "func".

!TEST Indicates the symbol TEST that is included in the file
that the program counter is currently pointing to.

%!sym Indicates the global symbol "sym".

Caution: The following points require caution when programs written in C and programs
written in assembler are linked together.

When an assembler language subroutine is to be called from a C program, the
subroutine name in the assembler language program must begin with an
underscore (_) character.

52

Example: C source Assembler source
Read(&b) .EXPORT _Read

_Read:

To apply a breakpoint to this “Read” subroutine, either of the following commands can be
used.

• From C: BREAK _Read
• From assembler: BREAK _Read

d. Indirect memory values

The contents of an address can be referenced by prefixing the address with an asterisk (*).

Examples: *1000: Indicates the contents of address H'1000.
*R1: Indicates the contents of the address pointed to by register R1.

e. Line numbers

Line numbers are preceded by a number sign (#).

The value of a line number is the address of the first location in the machine language code
into which that line was compiled.

Since line numbers should have consecutive values within a single file, they must generally be
prefixed by a file name. If the file name is omitted, the file that includes the current value of
the program counter will be used.

The syntax for line numbers is shown below.

[%<file name>]#<line number>

Line numbers are always expressed in decimal.

The RADIX command has no influence on the interpretation of line numbers.

Examples: %sub.c#100 Indicates line 100 in the file “sub.c”.

#120 Indicates line 120 in the file which includes the current value
of the program counter.

Caution: • Line number specification is only valid when debugging information output
was specified during compilation. Also, if the specified line number is a line
number for which debugging information was not output, an error occurs.

53

f. Special symbols that can be used as location specifiers

The following special symbols can be used for location specification.

• @RTN: Return address of a function

Usage example: GO ,@RTN (RET)

Execution will stop at the point the currently executing
function returns.

• @END: The last address in a file or function.

Usage example: DA %file.c/func @END (RET)

This command disassembles and displays the function
func from its first location to its last.

54

(2) Operators

Table 4-2 shows the operators that can be used in expressions and their priorities.

Table 4-2 Operators and Operator Priorities

Priorities Symbol Description

1 . Structure member operator

– > Structure member operator

2 + Plus sign (unitary operator)

– Minus sign (unitary operator)

~ Bit inversion (unitary operator)

* Pointer (unitary operator)

& Address operator (unitary operator)

3 * Multiplication

/ Division

4 + Addition

– Subtraction

5 < Less than (relational operator)

< = Less than or equal (relational operator)

> Greater than (relational operator)

> = Greater than or equal (relational operator)

6 = = Equal (relational operator)

! = Not equal (relational operator)

7 & Logical and

8 ^ Logical exclusive or

9 | Logical or

10 = Assign the left hand side to the right hand side
(assignment operator)

Relational operators are used to compare the values on the right and left sides. If the comparison
is true, the value of the operation is H'FFFFFFFF, and if the comparison is false, H'00000000.
Parentheses can be used to override the operator precedence.
Assignment operator can only be used within the MACRO command.

55

4.4.2 Locations

Location expressions are expressions whose values are addresses. Instruction locations cannot
contain automatic variables or pointer variables.

The following symbols can be used for locations:

Variable name, label, function name, file name: Symbol addresses

EQUATE name: Symbol values

Note, however, that symbols defined for registers cannot be used for locations.

Examples: 1000 Indicates location 1000.

!ABCD Indicates the address of the symbol ABCD in the file associated with the
current value of the program counter.

#100 Indicates the address of line 100 in the file associated with the current
value of the program counter.

4.4.3 Data

Data expressions consist of an expression and a size indicator.

The syntax for data expressions is shown below.

<expression>[:<size>]

size: B (byte): 8 bits
W (word): 16 bits
L (long): 32 bits

Word is the default size when the size specification is omitted.

When the value of the expression is larger than the size, the overflow digits are ignored, i.e., only
the lower order <size> digits are valid.

56

The following symbols can be used for data:

Variable name and label: Symbol contents

Function name and file name: Symbol addresses

EQUATE name: Symbol values

Example: The data expression H'1234:B has the same value as the expression H'34:B.

4.4.4 Floating Point Data

Floating point constants are either single (S) or double (D) precision and have the following
syntax.

F’[{–}] { } [t[[{–}] xx]]

F': Prefix indicating floating-point data. Cannot be omitted.
n: Integer part (in decimal)
m: Fraction part (in decimal)
±: Sign. + is is the default at omission.
t: Precision specifier. S is the default when the precision specifier is omitted.

S = Single precision
D = Double precision

xx: Exponent part (in decimal). 0 is the default when the exponent specification is
omitted.

Examples: F’1.S Specifies 1.0 in single precision.

F’.1D-2 Specifies 0.1 × 10-2 in double precision.

4.4.5 Character Strings

Character strings are handled as data sequences consisting of the ASCII code of each character in
turn, and are enclosed by double quotation marks. To include a double quotation mark in a
character string, insert two double quotation marks in sequence. To include a non-text ASCII
code, surround the numeric constant representing the code in angle brackets. Note however, that
the <numeric constant> notation can only be used with the MEMORY and DATA_SEARCH
commands.

Example: "ABCDEF"<0A>

Note when the number of characters within the double quotation marks is four or less, the string is
handled as a character constant.

n[.[m]]
.m

57

4.4.6 File Names

File name notations must follow the restrictions on file names imposed by the operating system.
File names can be optionally enclosed in double quotation marks.

4.4.7 Comment Lines

Lines beginning with a semicolon are treated as comment lines by the simulator/debugger. The
simulator/debugger takes no action for comment lines.

4.4.8 Limitations on C Expressions

Table 4-3 lists the limitations on C expressions used in command parameters.

Table 4-3 C Expression Limitations and Workarounds

No. Limitation Workaround

1 Arrays are limited to 2 dimensions Acquire the starting address of 3-dimensional or
greater arrays with the SYMBOL command and
then specify the address by computing the index
with an expression.

2 Parentheses are limited to 8 nesting Simplify the structure of the parameter to reduce
levels the number of parentheses.

3 Pointers and arrays are limited to Simplify the data structures or specify the
8 levels reference with an address.

Pointers: ********ptr
Arrays: a[b[c [d [e [f [g [h [0]]]]]]]]

58

Section 5 Simulator/Debugger Commands

This section provides detailed descriptions of the individual simulator/debugger commands.
Figure 5-1 shows the command description format used in this section.

Figure 5-1 Command Description Format

The numbered items in the above format are described below.

1 Section number
2 Command name
3 Command abbreviation
4 Command function
5 Command name
6 Input format for the command

Format

6

Parameter

7

Function

8

Description

9

Note

0

Example

q

5

1
2

4
3

59

7 Description of command parameters and options.
• Options indicated as "start-up settings" are defaults at start-up only. As a result,

specifying these command options creates new default values to be used if the options are
omitted next time.

• Options indicated as "default" are not influenced by previous specifications if later
omitted, i.e. these defaults do not change. However, in commands such as the DUMP
command that continuously display memory, the value of the memory start address option
is inherited from the previous command specification if omitted.

8 Command function.
9 Command description.
0 Notes on command usage.
q Usage examples.

60

Format

ASSEMBLE∆<start address>(RET)

Parameter

• <start address>
Indicates the address to store the results of assembly.

Function

This command converts assembly language notations to machine language in line units and stores
the results starting at the indicated start address. Long word or word integer can be defined by the
.DATA directive.

Description

1. When this command is entered, the current contents of the specified address are displayed and
the command enters interactive mode. The display and input format are as follows.

ASSEMBLE <start address> (RET)
<instruction mnemonic>
address xxxx ? <assembly language or .DATA notation> (RET)
address xxxx ? <assembly language or .DATA notation> (RET)

: :
address xxxx ? . (RET)

The above terms are described below:

<instruction mnemonic> : The current disassembled contents of the start address.
address : The start address.
xxxx : The value of the first two bytes of the memory address

indicated by “address”.
periods (.) : Terminates the line assembly command.

61

ASSEMBLE

5.1 ASSEMBLE

A

Assembles line by line

2. The following processing is performed if only (RET) is entered.

• Prior to assembly language notation input
The address counter is advanced to value equal to the current address plus the instruction
length, the instruction mnemonic is displayed, and the command waits for assembly language
notation input.

• After assembly language notation input
The address counter is advanced to the current address plus 2, and the command waits for
assembly language notation input.

Notes

1. Refer to the SH-Series Cross Assembler User’s Manual for details on assembly language
syntax and the .DATA directive.

2. Refer to appendix A, Differences Between SH-Series Cross Assembler Syntax and Line
Assembly Command, for differences between the notations used with this command and those
of the cross assembler.

Example

To interactively input assembly language expressions, convert them to machine language, and store
them starting at address H'400:

: ASSEMBLE 400 (RET)
00000400 MOV.L #0000002E,R1
00000400 E12E ? (RET)
00000402 MOV.L #FFFFFFF,R2
00000402 E2FF ? MOV.L #0FF,R3 (RET)
00000404 0009 ? ADD R1,R2 (RET)
00000406 0009 ? .(RET)
: DISASSEMBLE 400 @3 (RET)
00000400 MOV.L #0000002E,R1
00000402 MOV.L #FFFFFFFF,R3
00000404 ADD.L R1,R2
:

62

ASSEMBLE

Format

Set: BREAK∆<instruction address>[∆<repeat count>]
[;"<command line>"] (RET)

Enable/disable: BREAK∆<instruction address>;{E|D} (RET)

Display: BREAK (RET)

Cancellation: BREAK-[∆<instruction address>] (RET)

Parameters

• <instruction address>
Specifies the address of the breakpoint.

• <repeat count>
Specifies the number of times the instruction of the specific position is fetched before
breaking. (A value between H'1 and H'3FFF; default is H'1.)

• Option

— Enable/disable {E|D}
E (enable): Enables previously set breakpoints.
D (disable): Disables previously set breakpoints.

• <command line>
Specifies a certain command line to be executed when the break occurs. To indicate a double
quotation mark in a character string, insert two double quotation marks in sequence.

Function

Sets, displays, and cancels breakpoints based on instruction execution address.

When the instruction at the specified address has been fetched the specified number of times
during execution by a CALL, GO, STEP, STEP_INTO, or VECTOR command, instruction
execution is stopped.

63

BREAK

5.2 BREAK

B

Sets, displays, and cancels breakpoints based on
instruction execution address

Description

Set: Sets a break address and count.
Program execution stops before the instruction at the break address is executed.
Up to 8 breakpoints can be set.
Note that breakpoints are automatically enabled when a breakpoint is set.

Enable/disable: Allows breaking to be enabled or disabled without changing the breakpoint
settings.

Display: Displays the breakpoints set with the BREAK command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK command.
If no instruction addresses are specified, all breakpoints set with the BREAK
command are removed. In this case a confirmation message will be displayed.
Enter "Y" to remove all breakpoints or "N" to cancel the removal.

Notes

1. If a breakpoint is set at any address other than the first byte of an instruction, the break will
not be detected.

2. The execution count is reset at the point that instruction execution stops.

3. If a breakpoint is set at an instruction following a delayed branch instruction, execution stops
at the start address of the delayed branch instruction.

4. If conditions specified with the BREAK and BREAK_SEQUENCE commands are satisfied
simultaneously, the command line specified with the BREAK command is executed first.

64

BREAK

Examples

1. To set a breakpoint that breaks just prior to the eighth time the instruction at address H'2000 is
about to be executed, and to execute the REGISTER command after stopping at the
breakpoint:

: B 2000 8 ;"REGISTER" (RET)
:

2. To disable the break at address H'2000:

: B 2000 ;D (RET)
:

3. To display currently set breakpoints (note that addresses and counts are displayed in
hexadecimal):

: B (RET)
<E/D> <ADDR> <COUNT> <COMMAND LINE> <SYMBOL>
D 00002000 8 "REGISTER" %file.c!symbol(# 100)

:

4. To clear the breakpoint at address H'2000:

: B- 2000 (RET)
:

65

BREAK

Format

Set: BREAK_ACCESS∆<start address>[∆{<end address>|@<byte
count>}] [;[{R|W|RW}][,"<command line>"]] (RET)

Enable/disable: BREAK_ACCESS∆<start address>;{E|D} (RET)

Display: BREAK_ACCESS (RET)

Cancellation: BREAK_ACCESS-[∆<start address>] (RET)

Parameters

• <start address>∆{<end address>|@<byte count>}
Specifies the start address or the range of memory for which the simulator/debugger will stop
if accessed by the object program being debugged.
When the end address is not specified, the range consists of only the specified address.

• Options

— Access type {R|W|RW}
R (read): Break on a read from the specified memory.
W (write): Break on a write to the specified memory.
RW (read/write): Break on either a read or a write. (default)

— Enable/disable {E|D}
E (enable): Enables previously set break conditions.
D (disable): Disables previously set break conditions.

• <command line>
Specifies a command line to be executed when the break occurs. To indicate a double
quotation mark in a character string, insert two double quotation marks in sequence.

Function

This command sets, displays, and cancels breakpoints based on access to a specified memory
address or range.

66

BREAK_ACCESS

5.3 BREAK_ACCESS

BA

Sets, displays, and cancels break conditions based
on access to a range of memory

Instruction execution stops when the break condition (access of the specified type to the specified
memory area) is satisfied during program execution due to a CALL, GO, STEP, STEP_INTO, or
VECTOR command.

Description

Set: Sets a breakpoint so that program execution stops on an access of the specified
type to the specified memory range.
Up to two memory ranges can be specified.
Note that breakpoints are automatically enabled when a breakpoint is set.

Enable/disable: Allows breaking to be enabled or disabled without changing the breakpoint
settings.

Display: Displays the breakpoints set with the BREAK_ACCESS command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK_ACCESS command.
If no addresses are specified, all breakpoints set with the BREAK_ACCESS
command are removed. In this case, a confirmation message will be displayed.
Enter "Y" to remove all breakpoints or "N" to cancel the removal.

Note

If conditions specified with the BREAK_ACCESS, BREAK_DATA, and BREAK_REGISTER
commands are satisfied simultaneously, the corresponding command lines are executed in that
order.

Examples

1. To set a breakpoint so that execution stops when a read or a write to memory in the range from
address H'1000 to H'1100 occurs, and to execute the REGISTER command after stopping at
the breakpoint:

: BA 1000 1100 ;RW, "REGISTER" (RET)
:

2. To disable the breakpoint at address H'1000:

: BA 1000 ;D (RET)
:

67

BREAK_ACCESS

3. To display the currently set breakpoints:

: BA (RET)

<E/D> <START> <END> <ATTR> <COMMAND LINE> <SYMBOL>

D 00001000 00001100 RW “REGISTER” %file.c!table_a (# 4)

:

4. To clear the breakpoint at address H'1000:

: BA- 1000 (RET)
:

68

BREAK_ACCESS

Format

Set: BREAK_DATA∆<break address>∆{<data>[:<size>][∆<mask>]|
<real number>}[;[{EQ|NE}][,"<command line>"]] (RET)

Enable/disable: BREAK_DATA∆<break address>;{E|D} (RET)

Display: BREAK_DATA (RET)

Cancellation: BREAK_DATA-[∆<break address>] (RET)

Parameters

• <break address>
Specifies the address whose contents are to be checked during execution.

• <data>[:<size>]
Specifies the accessed data.
Although word is the default size, when the break address corresponds to a high-level
language variable, the size of that variable will be used.

• Data size {B|W|L}

B (byte): Byte data
W (word): Word data
L (long): Long word data

• <mask>
Only the bits for which the mask is set to 1 will be compared.
When omitted, all bits are compared.
Note that a mask may not be specified when a real number is specified.

• <real number>
Specifies floating point number.

69

BREAK_DATA

5.4 BREAK_DATA

BD

Sets, displays, and cancels breakpoints based on the
value of memory data

• Options

— Data match/differ {EQ|NE}
EQ (equal): Break when the data matches. (default)
NE (not equal): Break when the data differs.

— Enable/disable {E|D}
E (enable): Enables previously set break conditions.
D (disable): Disables previously set break conditions.

• <command line>
Specifies a command line to be executed when the break occurs. To indicate a double
quotation mark in a character string, insert two double quotation marks in sequence.

Function

This command sets, displays, and cancels breakpoints based on data written to memory.

Instruction execution stops when the break condition (data written to the specified memory address
matches/differs from the specified value) is satisfied during program execution due to a CALL,
GO, STEP, STEP_INTO, or VECTOR command.

Description

Set: Sets up to 8 breakpoints based on the data value written to memory.
Note that breakpoints are automatically enabled when a breakpoint is set.

Display: Displays the breakpoints set with the BREAK_DATA command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK_DATA command.
If no arguments are specified, all breakpoints set with the BREAK_DATA
command are removed. In this case a confirmation message will be displayed.
Enter "Y" to remove all breakpoints or "N" to cancel the removal.

Note

If conditions specified with the BREAK_ACCESS, BREAK_DATA, and BREAK_REGISTER
commands are satisfied simultaneously, the corresponding command lines are executed in that
order.

70

BREAK_DATA

Examples

1. To set a breakpoint so that execution stops when word-size data with the value 10 is written to
address H'2000 and execute the REGISTER command after stopping at the breakpoint:

: BD 2000 10:W ;,"REGISTER" (RET)
:

2. To set a breakpoint so that execution stops when byte-size data with a value other than 20 is
written to address H'AF00:

: BD 0AF00 20:B ;NE (RET)
:

3. To set a breakpoint so that execution stops when a byte-size data whose lower 2 bits have the
value 10 is written to address H'FF00:

: BD 0FF00 2:B 3 (RET)
:

4. To disable the breakpoint at address H'2000:

: BD 2000 ;D (RET)
:

5. To generate a break if 100 is written to symbol rsym:

: BD rsym 100 (RET)
:

71

BREAK_DATA

6. To display the currently set breakpoints (note that addresses, data, and masks are displayed in
hexadecimal):

: BD (RET)
<E/D> <ADDR> <DATA> <EQ/NE> <COMMAND LINE>

<MASK> <SYMBOL>
D 00002000 0010:W EQ "REGISTER"

---- %file.c!a(# 4)
E 0000AF00 20:B NE --------------

---- %file.c!b(# 236)
E 0000FF00 02:B EQ --------------

03 %file.c!c(# 246)
E R4 00000100:L EQ --------------

-------- rsym
:

If a symbol assigned to a register is specified as a break addresses, the register name is
indicated at <ADDR>.

7. To clear the breakpoint at address H'FF00:

: BD- 0FF00 (RET)
:

72

BREAK_DATA

Format

Set: BREAK_REGISTER∆<register>∆[∆<data>[:<size>][∆<mask>]]
[;[{EQ|NE}][,"<command line>"]] (RET)

Enable/disable: BREAK_REGISTER∆<register>;{E|D} (RET)

Display: BREAK_REGISTER (RET)

Cancellation: BREAK_REGISTER-[∆<register>] (RET)

Parameters

• <register>
Specifies the register for which the break is to be set. SP can be specified instead of R15.

• <data>[:<size>]
Specifies the data value for the break condition.
When the size is omitted, the register size is used as default.

• Data size {B|W|L}
B (byte): Byte data
W (word): Word data
L (long): Long word data

• <mask>
Only the bits for which the mask is one will be compared.
When omitted, all bits are compared.

• Options

— Data match/differ {EQ|NE}
EQ (equal): Break when the data matches. (default)
NE (not equal): Break when the data differs.

— Enable/disable {E|D}
E (enable): Enables previously set break conditions. (default)
D (disable): Disables previously set break conditions.

73

BREAK_REGISTER

5.5 BREAK_REGISTER

BR

Sets, displays, and cancels break conditions based
on the value of data in a register

• <command line>
Specifies a command line to be executed when the break occurs. To indicate a double
quotation mark in a character string, insert two double quotation marks in sequence.

Function

This command sets, displays, and cancels breakpoints based on data written to the CPU registers.

Instruction execution stops when the break condition (data written to the specified register matches
the specified value) is satisfied during program execution due to a CALL, GO, STEP,
STEP_INTO, or VECTOR command.

When the data value in the BREAK_REGISTER command is omitted, the simulator/debugger
stops execution on any write, regardless of the data value, to the specified register.

Description

Set: The command sets a break condition so that execution stops when the specified
register is accessed. Note that breakpoints are automatically enabled when a
breakpoint is set.
Up to 8 breakpoints can be set.

Enable/disable: Allows breaking to be enabled or disabled without changing the breakpoint
settings.

Display: Displays the breakpoints set with the BREAK_REGISTER command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK_REGISTER command.
All breakpoints set with the BREAK_REGISTER command are removed if the
register is omitted from the break removal form of the command.
In this case, a confirmation message will be displayed. Enter "Y" to remove all
breakpoints or "N" to cancel the removal.

Notes

1. If a break condition is satisfied at a delayed branch instruction, execution stops at the branch
destination.

74

BREAK_REGISTER

2. If conditions specified with the BREAK_ACCESS, BREAK_DATA, and
BREAK_REGISTER commands are satisfied simultaneously, the corresponding command
lines are executed in that order.

Examples

1. To set a breakpoint so that execution stops whenever R0 is written:

: BR R0 (RET)
:

2. To set a breakpoint so that execution stops if the value FF is written to register R1, and to
execute the REGISTER command after the break:

: BR R1 0FF ;,"REGISTER" (RET)
:

3. To set a breakpoint so that execution stops if any value other than FF is written to register R2:

: BR R2 0FF ;NE (RET)
:

4. To set a breakpoint so that execution stops if a value whose lower two bits have the value 10 is
written to register R10:

: BR R10 2 3 (RET)
:

5. To disable the breakpoint R1:

: BR R1 ;D (RET)
:

75

BREAK_REGISTER

6. To display the currently set breakpoints (note that data and masks are displayed in
hexadecimal):

: BR (RET)
<E/D> <REGISTER> <DATA> <EQ/NE> <COMMAND LINE>

<MASK>
E R0 -------- EQ

D R1 000000FF EQ "REGISTER"

E R2 000000FF NE

E R10 00000002 EQ

00000003
:

7. To clear the breakpoint R0:

: BR- R0 (RET)
:

76

BREAK_REGISTER

Format

Set: BREAK_SEQUENCE∆<instruction address>[∆<instruction
address>[∆<instruction address>[...]]]
[;"<command line>"](RET)

Display: BREAK_SEQUENCE (RET)

Cancellation: BREAK_SEQUENCE- (RET)

Parameters

• <instruction address>
Specifies the address(es) that will form the sequential breakpoint condition.

• <command line>
Specifies a command line to be executed when the break occurs. To indicate a double
quotation mark in a character string, insert two double quotation marks in sequence.

Function

This command sets, displays, and cancels a breakpoint based on a specified execution sequence.

Instruction execution stops when the break condition (sequential execution of the specified
addresses) is satisfied during program execution due to a CALL, GO, STEP, STEP_INTO, or
VECTOR command.

Description

Set: Sets a break condition so that execution stops at the last specified address when the
instructions at the specified addresses have been executed in the specified order.
Note that a sequence of up to 8 addresses can be specified with this command.

Display: Displays the breakpoints set with the BREAK_SEQUENCE command.

Cancellation: Cancels (clears) the breakpoints set with the BREAK_SEQUENCE command.

77

BREAK_SEQUENCE

5.6 BREAK_SEQUENCE

BS

Sets, displays, and cancels breakpoints based on a
specified execution sequence

Notes

1. If a breakpoint is set at any address other than the first byte of an instruction, the break will
not be detected.

2. The execution sequence condition is reset at the point that instruction execution is stopped.

3. If the instruction following a delayed branch instruction is specified as the last instruction
address, execution stops at the start address of the delayed branch instruction.

4. If conditions specified with the BREAK and BREAK_SEQUENCE commands are satisfied
simultaneously, the command line specified with the BREAK command is executed first.

Examples

1. To set a sequential breakpoint for addresses H'2000, H'2100, and H'3000, and to execute the
REGISTER command after break:

: BS 2000 2100 3000 ; "REGISTER" (RET)
:

Execution will break when execution has passed addresses H'2000, H'2100, and H'3000.
Note that “passing an address” is defined as “passing at least once”. Thus, the breakpoint
sequence is not reset when an address is executed more than once.

2. To display the currently set sequential breakpoint:

: BS (RET)
1ST BREAK POINT = 00002000 %file.c!entry_add(# 36)
2ND BREAK POINT = 00002100 %file.c!entry_sub(# 58)
3RD BREAK POINT = 00003000 %file.c!entry_mult(# 102)
<COMMAND LINE>
"REGISTER"

3. To clear the sequential breakpoint:

: BS- (RET)
:

78

BREAK_SEQUENCE

Format

CALL∆<function name>([[<argument>],[<argument>]...])
[∆<return address>] (RET)

Parameters

• <function name>
Specifies the name of the function to be simulated.

• <argument>
These parameters specify the arguments to the function.
The arguments are pushed onto the stack in order from right to left.
Expressions which represent data values (including floating point values) can be used as
arguments. Data items are stored on the stack in the specified size.
Up to 63 arguments can be specified.
When arguments are omitted, zero (0) is assumed.

• <return address>
Specifies the address to store the return value.

Function

This command creates the stack frame required by C language functions, and calls the specified
function. It can be used for testing individual functions. Execution stops if an error occurs or a
break condition is satisfied.

Description

Usage: The command line specifies the arguments to be passed to the function, and the
address to store the return value.
This specification creates the stack frame, sets up the SP, PC and PR registers,
and executes the function.
The following values are loaded into the SP, PC, and PR.
• SP: The SP is automatically decremented by an amount corresponding to the

size of the area allocated.
• PC: The PC is set to the entry address of the specified function.
• PR: The PR indicates the current PC address.

79

CALL

5.7 CALL

CA

Calls a function

The format of the stack frame is as follows.

1. Stack frame when a register is used to pass the return value.
This format is used when the register is equal to or larger than the size of the returned data.

When the function completes and returns, the return value is copied from register R0 to the
specified address. However, if no return value storage address is specified, the value is not
copied.

2. Stack frame when the return value is passed to the specified address.
This format is used when the size of the return value is greater than the CPU register size, and
the return value address was specified in the CALL command.

The return area address is set to the return value address specified in the command line.

Return value area address

Argument 1

Argument n

.

.

.

High

Address

Low

Argument 1

Argument n

.

.

.

High

Address

Low

80

CALL

3. Stack frame when the return value is passed on the stack.
This format is used when the size of the return value is larger than the CPU register size, and
the return value address was not specified in the CALL command.

Since the return value address was not specified, a return value area is allocated on the stack,
and the return value is stored in that area.

The value of the stack pointer must be set to an appropriate value beforehand, since the current
stack area, registers, and memory areas are used during function execution.

Note that the SAVE_STATUS and LOAD_STATUS commands can be used to restore the system
to the simulator/debugger state prior to function execution after executing a function with the
CALL command.

Refer to the SH-Series C Compiler User’s Manual for more information on the function call
interface.

Note

If optimization is performed at compilation, arguments may be stored in the registers instead of on
the stack.

Return value area address

Argument 1

Argument n

.

.

.

High

Address

Low Return value area

81

CALL

Examples

1. To call the function “func1” with the arguments 1 and 10, and to store the return value at
address 5000:

: CA /func1(1,10) 5000 (RET)
:

2. To show the setup required to test the function “func2” shown below. The results of the
arithmetic operations are stored starting at address H'1800:

func2(p,i,j)

int *p ;

int i,j ;

{

*p++ = i + j ;

*p++ = i – j ;

*p++ = i * j ;

*p++ = i / j ;

}

: L test2.obj (RET) Loads the file test2.obj.

UNDEFINED SYMBOL : symbol

: MP 1000 @1000 (RET) Allocates the stack and return areas.

: .R15 1800 (RET) Initializes the stack pointer.

: CA /func2(1800,50,10) (RET) The return address will be H'100, i.e., the current value of the

PC.

: D 1800 @10 (RET) Confirms the results of the arithmetic operations.

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F ASCII

00001800 00 00 00 60 00 00 00 40 00 00 05 00 00 00 00 05

...’...@........

:

82

CALL

Format

COMMAND_CHAIN∆<file name>[∆["<actual parameter>"],["<actual
parameter>"]...] (RET)

Parameters

• <file name>
Specifies the name of the command file.

• <actual parameter>
Specifies a character string to replace dummy parameters.
To omit an actual parameter, skip its position by inserting an extra comma.

Function

This command reads commands from a file and executes them in sequence.

Dummy arguments can be specified within a command file to be replaced with the “actual
parameters” specified in the COMMAND_CHAIN command.

There are 10 dummy parameters, ¥0 to ¥9.

Use the strings ¥¥0 to ¥¥9 to represent ¥0 to ¥9 within character stings, or as character strings in
option command lines of the BREAK, BREAK_ACCESS, or BREAK_DATA commands.

Dummy parameters for which no actual parameters are specified are replaced with NULL.

Notes

1. To include a double quotation mark in a character string, insert two double quotation marks in
sequence.

2. Command chain files can be nested up to 8 levels.

3. Redirection cannot be specified.

83

COMMAND_CHAIN

5.8 COMMAND_CHAIN

CC

Executes commands from a file

Examples

1. To execute the commands in the auto.com command file in sequence:

: CC auto.com (RET)

: P out.log Execution history is stored in out.log.

: S 100 The debugging object program is executed for H'100 steps starting

: at the current PC.

: ;END A comment line.

:

2. To use dummy parameters:

a. The following command file uses dummy parameters.

RADIX ¥0
MEMORY ¥1 100

autol.sbt

b. The following command executes the commands in the “auto1.sbt” command file.

: CC auto1.sbt "D", "1000" (RET)

: RX D The RADIX command is executed with D as the actual parameter.

: M 1000 100 The MEMORY command is executed with 1000 as the actual

: parameter.

The first parameter (¥0) is used as the argument to the RADIX command.

The second parameter (¥1) is used as the first argument to the MEMORY

command.

84

COMMAND_CHAIN

Format

COMPARE∆<start address>∆{<end address>|@<byte count>}
∆<comparison memory start address> (RET)

Parameters

• <start address>∆{<end address>|@<byte count>}
Specifies the range of memory (the source data) to be compared.

• <comparison memory start address>
Specifies the start of the comparison data memory area.

Function

Compares the specified range of memory (the source data) with the comparison data in byte units.

When data that does not match is found, those data items and their addresses are displayed.

Example

To compare the H'500 bytes of data starting at address H'1000 with the H'500 bytes of data starting
at address H'2000, and to display the addresses and values of the source data and compared data
when data which does not match is found:

: CMP 1000 @500 2000 (RET)
source data compared data
00001005 3F 00002005 42

:
:

000014FE 00 000024FE 80
:

85

COMPARE

5.9 COMPARE

CMP

Compares memory contents

Format

CONVERT∆<expression> (RET)

Parameter

• <expression>
Specifies an integer expression for conversion.

Function

The value of the expression is displayed in binary, octal, decimal, and hexadecimal and as ASCII
characters.

Example

To display the result of evaluating the expression “3*5” in binary, octal, decimal, and hexadecimal
and as ASCII characters:

: CV 3*5 (RET)
B' 00000000 00000000 00000000 00001111
Q' 00000000017
D' 15
H' 0000000F
A'
:

Note

If a symbol is specified in an expression, the symbol address is displayed.

86

CONVERT

5.10 CONVERT

CV

Calculates expression

Format

Start: COVERAGE[∆<file name>] (RET)

Restart/temporary halt/initialization: COVERAGE ;{E|D|R} (RET)

Termination: COVERAGE-[;N] (RET)

Parameters

• <file name>
Specifies the file to hold coverage data.
The file "temp.cov" is used as default when the a file name is omitted.
When the file extension is omitted, ".cov" is supplied as default.

• Options

— Restart and temporary halt coverage measurement {E|D}
E (enable): Restarts coverage measurement.
D (disable): Temporarily halts coverage measurement.

— Coverage data initialization specification R
R (reset): Initializes coverage data.

— Coverage data storage specification N
N (not save): Coverage measurement is terminated without saving the acquired data to

a file.

Function

Starts, temporarily stops, restarts, and terminates coverage measurement data acquisition.

Description

Start: Starts the acquisition of coverage data.
Previously acquired coverage data is lost.
The addresses of instructions executed by a CALL, GO, STEP,
STEP_INTO, or VECTOR command following the input of this
command are saved as coverage data.

87

COVERAGE

5.11 COVERAGE

COV

Starts and stops coverage measurement

If the specified file exists, the information in that file is read in, thus
resetting the address range.
If the file name is omitted, the current coverage range setting is
displayed, and acquisition of coverage data begins.

Restart/temporary halt/ Data acquisition is restarted, temporarily halted, or re-initialized with
initialization: no change in other settings.

Termination: Acquisition of coverage data is terminated, and the acquired data is
output to the file.
Specify the N option to terminate coverage data acquisition without
saving the data to a file.

Notes

1. Use the SET_COVERAGE command to confirm the setting state.

2. The coverage calculation involves disassembling the program to count instructions. As a
result, correct values cannot be computed for programs which include data within their code
areas.

Examples

1. To start the acquisition of coverage data:

: COV (RET)
coverage area
00001000 - 000012FF
00001800 - 00001FFF

:

88

COVERAGE

2. To load a coverage file and start the acquisition of coverage data:

: COV test1.cov (RET)
object file name = test.abs
coverage area
00001000 - 000012FF
00001800 - 00001FFF

:

3. To initialize coverage measurement:

: COV ;R (RET)
:

4. To terminate coverage measurement:

: COV- (RET)
:

89

COVERAGE

Format

DATA_SEARCH∆<start address>∆{<end address>|@<byte count>}∆
{<search string>|<search data>[:<size>][∆<mask>]}[;[S=<byte
count>][∆{EQ|NE}]] (RET)

Parameters

• <start address>∆{<end address>|@<byte count>}
Specifies the range of the addresses to be searched.

• {<search string>|<search data>[:<size>][∆<mask>]}
Specifies the string or data to be searched for.

• <size>
B (byte): Searches for byte sized data.
W (word): Searches for word sized data (default).
L (long): Searches for long-word sized data.

• <mask>
Only bits which correspond to 1 bits in the mask are tested.
The size of the mask data depends on the size of the search data.

• Options

— Search step width
S=<byte count> : Specifies the search step width in byte units.

The default search step width is the size of the data.

— Data match/differ {EQ|NE}
EQ (equal): Searches for data that matches the search data (default).
NE (not equal): Searches for data that differs from the search data.

90

DATA_SEARCH

5.12 DATA_SEARCH

DS

Searches for data

Function

This command searches for the specified data in the specified memory range.

When the EQ option is specified, the addresses of data which match are displayed.

When the NE option is specified, the addresses of data which differ are displayed.

When the search step width is specified with the S (step) option, the command searches for data
only at addresses separated by the step width starting at the start address.

Example

To search for the value 005E from address H'1000 to address H'14FF:

: DS 1000 14FF 5E (RET)
address
00001004
00001100
000011A8
:

91

DATA_SEARCH

Format

Specification: DEBUG_LEVEL [;] {S|I|N} (RET)

Display: DEBUG_LEVEL (RET)

Parameter

• Option

— Specification of the units for source line display and of the step count for the step
execution command. {S|I|N}

Option Source Line Display S and SI Command Step Units

S (Source display, source C source only Line units
line step)

I (Instruction and source Both C source and machine Machine language instruction units
display, instruction step) language

N (No source display, Machine language only
instruction step)

Function

This command specifies whether high-level language debugging is performed or not.

There are three aspects to high-level language debugging as listed below.

1. Source line display
The display consists of the source program corresponding to the results of command
execution.
The following commands display the source program in their execution results.

• The disassembly command (DA)
• The trace buffer display command (T)
• The debugging object program execution commands (G, S, SI, V)

92

DEBUG_LEVEL

5.13 DEBUG_LEVEL

DL

Specifies debug level

2. Step execution units
This specification determines whether or not the step execution commands (S and SI) take the
C source line as the step.

3. BREAK stop address
This command also specifies whether the simulator/debugger stops on source line units or
machine instruction units when a break condition specified by a BREAK_ACCESS,
BREAK_DATA, or BREAK_REGISTER is detected.

Description

Specification: Sets the source program display and step execution unit.
• S option: Only C source lines are displayed, and step execution steps in

source line units. (Start-up setting)
• I option: Both C source lines and machine language are displayed, and step

execution steps in machine language units.
• N option: Only machine language is displayed, and step execution steps in

machine language units. (Assembly source programs are
displayed in the same way while the I option is specified.)

Display: Displays the current setting state.

Note

The S and I options cannot be specified for files without debugging information.

93

DEBUG_LEVEL

Examples

1. To display the setting state:

: DL (RET)
Source/Instruction/Not display = S
:

2. To set the step unit for the STEP and STEP_INTO commands to machine language instruction
units:

: DL ;I (RET)
: S 10 (RET)
%filename.c#100 a = b + 1;
00000556 MOV.L R1,R0
00000558 MOV.L R3,R2

:
:

%filename.c#101 printf("simulator debugger¥n");
MOV.L R5,R3

:

94

DEBUG_LEVEL

Format

DISASSEMBLE∆<start address>[∆{@<instruction count>|<end address>}
(RET)

Parameters

• <start address>
Specifies the address from which to start disassembly of memory contents.

• <instruction count>
Specifies the number of instructions to disassemble.

• <end address>
Specifies the address at which disassembly is terminated.

Function

This command disassembles and displays the contents of memory in the range specified by the
start address and the end address or instruction count parameters.

Description

1. When the end address or instruction count parameter is omitted, 16 lines from the start address
are disassembled.

2. The hexadecimal representation for the two bytes of data is displayed when an illegal
instruction is encountered.

3. The first address of the instruction, the instruction mnemonic, the operands, and the symbol
are displayed.

Note that the address corresponding to a symbol displayed as a label is the address of the
instruction displayed on the line following the symbol.

4. After this command is executed, pressing the RETURN key again disassembles and displays
the next 16 lines until other commands are entered.

95

DISASSEMBLE

5.14 DISASSEMBLE

DA

Disassembles and displays memory contents

5. When the SP is specified as a register in PC-relative or register-indirect-with-displacement
addressing mode, the displacement value will be converted to the corresponding automatic
variable symbol and the conversion results will be displayed.

Note

Since the DISASSEMBLE command does not recognize delay branch instructions correctly,
symbol conversion may not be performed correctly.

Examples

1. To disassemble and display from addresses H'400 to H'406. In the output below,
“%sample.src!SECT1” is a symbol which corresponds to address H'404:

: DA 400 406 (RET)
00000400 MOV.W @(12,PC),R0
00000402 MOV.W @R1,R0

%sample.src!SECT1:
00000404 MOV.L #00000012,R3
00000406 ADD.L R2,R1
:

2. To disassemble and display the four instructions starting at address H'400:

: DA 400 @4 (RET)
00000400 MOV.W @(12,PC),R0
00000404 MOV.W @R1,R0

%sample.src!SECT1:
00000408 MOV.L #00000012,R3
0000040A ADD.L R2,R1
:

96

DISASSEMBLE

Format

DISPLAY_CHARACTERS˘"<character string>" (RET)

Parameter

• <character string>
Specifies an arbitrary character string.

Function

Displays the specified character string on the screen.

This command can be used to display messages, for example, with the STUB command.

Examples

1. To display "SIMULATOR" on the screen:

: DCH "SIMULATOR" (RET)
SIMULATOR
:

2. To insert the DISPLAY_CHARACTERS command in a STUB command sequence so that it
displays its argument during simulation:

: SB 10 { (RET)
STUB > DCH "PASS 10" (RET)
STUB > } (RET)
: G 8 (RET)
PASS 10 The DCH command is executed when the instruction at address H'10 is executed.

:

97

DISPLAY_CHARACTERS

5.15 DISPLAY_CHARACTERS

DCH

Displays character string

Format

DISPLAY_COVERAGE [˘<first address>[˘{<end address>|@<source line
count>|@<instruction count>}]] [;{T|G|D|N0|N1}] (RET)

Parameters

• <first address>˘{<end address>|@<source line count>|
@<instruction count>}
Specifies the range of coverage data to be displayed.

• Options

Display format specification {T|G|D|N0|N1}
T (total): Specifies display of both C0 and C1 coverage values.
G (general): Specifies display of the results in source line units. (default)
D (detail): Specifies display of the results in machine instruction units.
N0, N1 (not executed): Specifies display of addresses that were not executed.

Function

Displays C0 and C1 coverage data.

• When the T option is specified
Only coverage values are displayed.
If only the option is specified, (i.e., if the range specification is omitted) then the whole
coverage range is taken as the object of the coverage values.

• When the G option is specified
The coverage results are displayed in source line units.
When the range specification is omitted, display continues from the previous use of the
command.
When the end address or source line count specification is omitted, 16 lines are displayed.

• When the D option is specified
The coverage results are displayed in machine instruction units.
When the range specification is omitted, display continues from the previous use of the
command.
When the end address or source line count specification is omitted, 16 lines are displayed.

98

DISPLAY_COVERAGE

5.16 DISPLAY_COVERAGE

DCV

Displays coverage data

• When the N0 or N1 option is specified
The addresses of unexecuted instructions are displayed.
Line numbers will be displayed if line number information is available.
N0 specifies the addresses not executed under C0 coverage, and N1 specifies the branches not
taken under C1 coverage.

Description

After the DISPLAY_COVERAGE command has been executed once, pressing (RET) again will
show the next 16 lines of coverage information until another command is entered.

Examples

1. To display the coverage data with specifying the T option:

: DCV 0 @30 ;T (RET)
C0 : 87.5%
C1 : 50.0%
:

2. To display the coverage data with specifying the G option:

: DCV 0 @10 ;G (RET) (This example is a C program.)
%sample.c# 4 * for(i=0; i<20; ++i)
%sample.c# 6 . printf("Number is %c", number[i]);
:

• C0 coverage is displayed.
• The objects of display are C and assembler source programs.
• An indicator mark is inserted in column 1.
• Indicator interpretations:

* (asterisk) — This address was accessed and executed.
. (period) — This address was not executed.
˘ (space) — No machine instruction was generated for this line.

99

DISPLAY_COVERAGE

3. To display the coverage data with specifying the D option:

: DCV 0 ;D (RET)
* 00000000 ADD.L #FFFFFFFC,R15
%sample.c# 4 for(i=0; i<20; ++i)
* 00000002 MOV.L #00000000,R3
* 00000004 MOV.L R3,@R15
* 00000006 BRA 00000010
* 00000008 NOP
* 0000000A MOV.L @R15,R2
* 0000000C ADD.L #00000001,R2
* 0000000E MOV.L R2,@R15
* 00000010 MOV.L @R15,R3
* 00000012 MOV.L #00000014,R2
* 00000014 CMP/GE.L R2,R3
T 00000016 BF 0000040A
:

• The disassembled source program corresponding machine code are displayed.
• C0 and C1 are displayed.
• An indicator mark is inserted to the left of the disassembled machine code.
• Indicator interpretations:

* (asterisk) — Accessed and executed.
T — The true branch was taken.
F — The false branch was taken.
TF — Both branches have been taken.
. (period) — Not executed.

100

DISPLAY_COVERAGE

4. To display the coverage option with specifying the N option:

: DCV 0 ;N1 (RET)
.F 0000002C %main#009
:

(This example is coverage data for a C program.)
• There are two N options, N0 and N1. N0 displays the line numbers for addresses not

executed under C0, and N1 displays the line numbers for addresses not executed under C1.
• An indicator mark is inserted at column 1 for the C1 display.
• Indicator interpretations:

T. — The true branch was taken.
.F — The false branch was taken.
.. — Not executed.

101

DISPLAY_COVERAGE

Format

DUMP˘<start address>[˘{<end address>|@<item count>}]
[;{B|W|L|S|D}] (RET)

Parameters

• <start address>[˘{<end address>|@<item count>}]
Specifies the range of memory to be displayed.

• Options

— Data size {B|W|L|S|D}
B (byte): Byte data (default).
w (word): Word data.
L (long): Long-word data.
S (single precision): Single-precision floating point data.
D (double precision): Double-precision floating point data.

Function

This command displays, in the specified format, the block of data from the start address to the end
address, or for the specified number of data items.

If the end address is omitted, 16 lines are displayed starting at the first address.

After executing the DUMP command once, the next 16 lines of data can be displayed by just
pressing (RET) before entering any other command.

102

DUMP

5.17 DUMP

D

Displays memory contents

Examples

1. To display the memory contents in byte units starting at address H'1000:

: D 1000 ;B (RET)

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F ASCII

00001000 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00 FF 00

: :

: :

00001070 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 ABCDEFGHIJKLMNOP

:

2. To display two items of single precision floating point data starting at address H'2000:

: D 2000 @2 ;S (RET)
address +0 +1 +2 +3
00002000 49 96 B4 38 1.234567S+6
00002004 3F 80 00 00 1.0S+0
:

103

DUMP

Format

Set: EXEC_MODE ;{S|C} (RET)
Display: EXEC_MODE (RET)

Parameter

• Options

Execution mode specifier {S|C}
S (stop) In this mode execution is stopped when the simulator/debugger detects an

abnormality (simulation error) in the debugging object program.
C (continue): In this mode simulation errors are ignored and execution continues when the

simulator/debugger detects an abnormality (simulation error) in the debugging
object program.

The simulator/debugger execution mode is set to S when first invoked.

Function

This command selects whether execution will continue or stop when an abnormality is detected
during debugging object program execution.

When the execution mode specifier is omitted, the current setting of the execution mode is
displayed.

Refer to section 2.11 (2), Break due to detection of an execution time error in the debugging object
program, for more information on abnormalities occurring while executing the debugging object
program.

Description

Set: Stop mode is recommended for the early stages of debugging, with continue mode
being useful in the later stages.

Display: “STOP” is displayed in stop mode, and “CONTINUE” in continue mode.

104

EXEC_MODE

5.18 EXEC_MODE

EM

Switches execution mode

Examples

1. To set the execution mode to continue mode:

: EM ;C (RET)
:

2. To display the current execution mode:

: EM (RET)
EXEC_MODE = CONTINUE
:

105

EXEC_MODE

Format

Fill˘<start address>˘{<end address>|@<data item count>}
˘<initialization data>[:<size>] (RET)

Parameters

• <start address>˘{<end address>|@<data item count>}
Specifies the range of addresses to be initialized.

• <initialization data>
Specifies the data value to be stored.

• <size> {B|W|L}
B (byte): Initialization is performed in byte units.
W (word): Initialization is performed in word units. (default)
L (long): Initialization is performed in long word units.

When the size specification is omitted, word is used as the default unless the start address was
specified with a high level language variable. In that case, the size will be the size of that
variable.

Function

The initialization data is stored in the specified memory range.

Example

To clear addresses H'1000 to H'1FFF to zero:

: F 1000 1FFF 0 (RET)
:

106

FILL

5.19 FILL

F

Initializes memory area

Format

GO [˘[<start address>][,[<break address>]][;D]] (RET)

Parameters

• <start address>
Specifies the address from which program execution starts.
When omitted, execution starts from the address specified by the current value of the program
counter.

• <break address>
Specifies the address at which to stop program execution.

• Options

— Break disable D
D (disable breaks): Breakpoints specified with the break commands are temporarily

disabled.

Function

This command executes the debugging object program continuously starting at the specified start
address.

The break address, break instruction execution cycle count, and break disable option specifications
are temporary disabled during GO command execution but are enabled again when execution
stops.

Description

1. Execution is interrupted when either a condition set by a break command is satisfied, or when
an error occurs.
However, if the D option is specified, execution is not interrupted on the satisfaction of a break
condition.

107

GO

5.20 GO

G

Executes instructions continuously

2. When execution is interrupted, the instruction execution count (in decimal), the current
register values, a disassembled display of the last instruction executed, and a confirmation
message are displayed.

3. If the E option has been specified with the TRACE_CONDITION command, the execution
history is written to the trace buffer.

Notes

1. If a break address is specified at a point that is not the start address of an instruction, the
break will not be detected.

2. If a break address is specified at an instruction following a delayed branch instruction,
execution stops at the start address of the delayed branch instruction.

Examples

1. To execute the debugging object program continuously while temporarily ignoring the
currently specified break conditions:

: G ;D (RET)

Exec Instructions = 159

PC=00000402 SR=00000000:**********************------**-- SP=05000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 05000000

00000400 SLEEP

SLEEP

:

108

GO

2. To execute the debugging object program from address H'1000 to address H'1020:

: G 1000,1020 (RET)

Exec Instructions = 30

PC=00001020 SR=00000000:**********************------**-- SP=05000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000FFFF 00000000 00000000 01000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000010 00000000 0000FFFF 00000000 00000000 05000000

0000101E MOV.L R0,@R4

BREAK POINT

:

109

GO

Format

HELP [˘<command name>] (RET)

Parameter

• <command name>
Specifies the name of the command for which the help message is to be displayed.

Function

Displays the help message for the specified command.

Description

• When a command name is specified, the help message for the specified command is
displayed.

• When the command name is omitted, a table of commands is displayed.

110

HELP

5.21 HELP

HE

Displays command name and input format

Examples

1. To display a table of commands:

: HE (RET)

Assemble Break_Register Break_Access Break_Data Break

Break_Sequence CAll Command_Chain CoMPare ConVert

COVerage Data_Search Debug_Level DisAssemble

Display_CHaracters

Display_CoVerage Dump Exec_Mode Fill Go

HElp Load Load_Status MAcro MaP

Memory MoVe Print Quit RadiX

Register ReSet SaVe Save_Status SCoPe

Set-CoVerage SHow_Calls Step Step_Into StuB

SYmbol Trace Trace_Condition Trap_Address TYpe

Vector .<register> !

:

2. To display the syntax of the HELP command:

: HE HELP (RET)
HE|HELP [command-name]

111

HELP

Format

LOAD˘<file name>[˘[<load address>][;[{OD|O|M}][,U]]] (RET)

Parameters

• <file name>
Specifies the name of the file to be loaded.
When the file format is omitted from the file name, ".abs" is supplied for debugging object
programs and ".dat" is supplied for memory image files.

• <load address>
Specifies the address to which the file is loaded.
If a load position is specified for an absolute load module, the specification will be ignored.
When omitted, relocatable load modules will be loaded at H'400. Absolute load modules will
be loaded at their load address. Memory image files are loaded starting at address H'0.

• Options

— File format specifier {OD|O|M}
OD (object and debug information): Both the machine language and the debugging

information are loaded. (default)
O (object): Only the machine language is loaded.
M (memory image file): A memory image file is loaded.

— Undefined symbol allocation U
U (undefined): Addresses are allocated for undefined symbols.

Function

This command loads debugging object programs and memory image files, including files created
with the SAVE command.

When a memory image file is loaded, the load start and end addresses are displayed after loading.

When the U option is specified, a 4-byte area is allocated for each undefined symbol, and its
address is used as the value of the symbol. These areas are allocated in the external bus space or
internal RAM area, and are displayed on the screen.

112

LOAD

5.22 LOAD

L

Loads file

Although the LOAD command allocates the required memory when loading a debugging object
program, memory is not allocated when loading a memory image file.

In addition, before loading a memory image file, memory must be allocated using the MAP
command.

Description

The figure below shows the load map for a debugging object program and its undefined symbol
area.

Note: The address of the area allocated will be filled with the number of undefined symbols.

The initial settings following the loading of a debugging object program are as follows:

Memory areasThe debugging object program areas and an undefined symbol area are
allocated.

CoverageThe coverage areas are automatically set to be the code sections. The
maximum number of areas is 16.

PCIf an entry address was specified in the debugging object program, the PC is
set to that address. Otherwise, the PC is set to the start address of the code
segment that appeared first.

SP.............................The SP is set to the last address of the internal RAM area + 1.

No other registers or flags are set.

Section 1

Unused

Undefined symbol area
(See note)

Internal ROM area

External bus space

Section 2

113

LOAD

Notes

1. Before loading a memory image file, memory must be allocated using the MAP command.

2. The information loaded by the LOAD_STATUS command differs from that loaded by the
LOAD command.

Examples

1. To load “test1.abs” as the debugging object program:

: L test1.abs (RET)
:

2. To load “test2.dat” as a memory image file, starting at address H'3000:

: L test2.dat 3000 ;M (RET)
<START> <END>
00003000 - 000030FF
:

114

LOAD

Format

LOAD_STATUS [˘<file name>] (RET)

Parameter

• <file name>
Specifies the name of a file that was used to save the simulator/debugger memory and register
state.
If the file name is omitted, the file "sdsh.sav" is assumed.
If the file format is omitted, ".sav" is supplied.

Function

The states of memory and the registers are restored to the point when the corresponding
SAVE_STATUS command was executed.

Notes

1. If the memory map differs from that at the point the SAVE_STATUS command was executed,
the memory and register state is not restored.

2. Files saved by specifying the A option with the SAVE_STATUS command must be loaded at
simulator/debugger startup time.

Example

To load the memory and register state saved in the file “test1.sav”:

: LS test1.sav (RET)
:

115

LOAD_STATUS

5.23 LOAD_STATUS

LS

Restores simulator/debugger memory and register
state

Format

Definition: MACRO˘<macro name>{ (RET)
Display: MACRO[˘<macro name>] (RET)
Execution: <macro name> [˘["<actual parameter>"],["<actual

parameter>"]...] (RET)
Deletion: MACRO- [˘<macro name>] (RET)

Parameters

• <macro name>
Specifies the name of the macro.
A macro name must be an alphanumeric string starting with an alphabetic character.
A macro name must be 32 or fewer characters in length.
Note that upper and lower case characters are not distinguished.
Since the following symbols are used as macro internal functions, they may not be specified as
macro names.

— WHILE
— FOR
— DO
— IF
— ELSE
— MBREAK
— CONTINUE

Also note that if a simulator/debugger command name is redefined as a macro, the macro
usage will take precedence.

• <actual parameter>
Specifies the parameters passed to the macro.
To omit an actual parameter, specify both the comma delimiting the previous actual parameter
and a comma to correspond to the omitted parameter.
Omitted actual parameters are replaced by ‘NULL’ during macro expansion.

116

MACRO

5.24 MACRO

MA

Defines, displays, executes, and deletes
simulator/debugger command macros

Function

Definition: Defines a macro command.
Up to 64 macro commands can be defined.
However, since the area used for storing the macro definitions is limited, there are
cases when a full 64 macros cannot be defined.
When the command line “MACRO∆<macro name>{(RET)” is entered, the
simulator/debugger displays a prompt (“0001>”) indicating macro definition in
progress, and waits for input of the macro body.
The macro body can include multiple simulator/debugger commands, macro
commands, and macro internal commands.
Furthermore, %0 to %9 can be used as dummy arguments inside a macro body.
The dummy arguments are replaced with the actual parameters specified when the
macro is called.
Use the strings %%0 to %%9 to represent %0 to %9 in character stings, or in
command line option character strings in BREAK, BREAK_ACCESS,
BREAK_DATA, BREAK_REGISTER, or BREAK_SEQUENCE command lines.
Note that no command line syntax checking is performed during macro definition.
Error checking is performed during macro command execution.
Macro command definition is terminated by entering “}(RET)” at nesting depth 0.

Display: The definition state of the specified macro command is displayed.
If the macro name is omitted, all the currently defined macro names are displayed.
When a macro name is specified, the macro body (i.e., the contents of the macro
definition) of the specified macro command is displayed.

Execution: The specified macro command is executed.
Processing is terminated if an error occurs in the macro command or if the user
performs a manual break with (CTRL) + (C).
Although a macro command with the same name as a simulator/debugger command
takes precedence over the simulator/debugger command, the simulator/debugger
command can be executed by preceding the name with a caret ("^").
Macro commands are executed with the dummy arguments in the macro body
replaced with the actual parameters specified in the macro call.

117

MACRO

Deletion: A previously defined macro is deleted.
If a macro name is specified, the macro command defined with that name is deleted.
If the macro name is omitted, all defined macro commands are deleted.
In this case a confirmation message will be displayed. Respond "Y" to delete all
macro commands or "N" to cancel the deletion.

Notes

1. Macro display, definition, and deletion, as well as execution of “!” commands, are not allowed
within macro bodies.

2. Re-direct cannot be specified for macro command execution.

Examples

1. To define a macro command:
: MA ISTEP { (RET)

0001 > ·PAR = %0 (RET)

0002 > IF(*1000 == ·PAR) { (RET) If the value of address H'1000 agrees with the

parameter,

0003 > SI (RET) the STEP_INTO command will be executed.

0004 > }ELSE{ (RET) If they are not the same, the STEP command will be

0005 > S (RET) executed.

0006 > } (RET) Termination of the IF internal macro command.

0007 > } (RET) Termination of the macro command definition.

:

2. To display the ISTEP macro command:
: MA ISTEP (RET)
ISTEP {

·PAR = %0
IF(*1000 == ·PAR) {
SI

}ELSE{
S

}
}

:

118

MACRO

3. To execute the ISTEP macro command:

: ISTEP "10" (RET) The value “10” is passed as the parameter.
: STEP
:

4. To delete the ISTEP macro command:

: MA- ISTEP (RET)
:

Macro Internal Variables

Format

·<variable name>

Description

1. Variables can be used within macro commands.

2. The first character must be "¥", the second character must be alphabetic, and the remaining
characters must be alphanumeric.

3. The variable name, including the "¥", must be at least 2 characters and no more than 32
characters in length.

4. Variables represent 32-bit unsigned quantities.

5. Since macro variables are inherited when a macro call is nested inside a macro definition,
variables of the same name within both macros are treated as the same variable, i.e., as a
global variable.

6. Variables can be assigned values using the assignment operator.
The assignment operator is an operator that can only be used inside a macro body, and has the
following syntax.

<variable>=<expression>

119

MACRO

The names and usage of pre-defined macro internal variables are described below.
These variables are reference-only variables, and thus their values cannot be changed by the user.

·SIMSTAT : Indicates the simulator stop factor.
When one of the bits shown in figure 5-2 is 1, the simulator/debugger has stopped
for the corresponding reason, and when a bit is 0, that factor is not the cause of the
stop.

Figure 5-2 Macro Internal Variable ¥SIMSTAT

BREAK or BREAK_SEQUENCE
BREAK_ACCESS, BREAK_DATA,
or BREAK_REGISTER

Error
STEP normal end

Trace buffer

MSB LSB

31

— — — —

120

MACRO

Macro Internal Commands

(1) WHILE

Format

WHILE (<expression>){
<macro body>

}

Parameters

• <expression>
The <expression> parameter expresses the condition for macro body execution or iteration.

• <macro body>
The <macro body> parameter expresses the sequence of commands or macro internal
commands to be executed while the condition is true.

Function

The <expression> is evaluated, and if its value is any value other than zero the macro body is
executed.

The macro body is iterated until <expression> evaluates to zero.

If the value of <expression> is zero initially, the macro body is not executed even once.

Multiple simulator/debugger commands, macro commands, or macro internal commands can be
included in the macro body.

Example

To display the fifth to tenth elements in array ABC:

·NUM = 5
WHILE(·NUM <= 10) {
TYPE ABC[·NUM-1]
·NUM = ·NUM + 1

}

121

MACRO

(2) FOR

Format

FOR ([<expression 1>];[<expression 2>];[<expression 3>]) {
<macro body>

}

Parameters

• <expression 1>
The parameter <expression 1> is evaluated prior to testing the <macro body> execution
condition.

• <expression 2>
The parameter <expression 2> expresses the <macro body> execution or iteration condition.

• <expression 3>
The parameter <expression 3> is evaluated after <macro body> execution.

• <macro body>
The <macro body> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is true.

Function

The FOR loop executes <expression 1> and then evaluates <expression 2>. If that latter value was
any value other than zero, the FOR loop executes the <macro body> and then <expression 3>.

The <macro body> and <expression 3> are iterated until <expression 2> evaluates to zero.

If the value of <expression 2> is zero initially, the <macro body> is not executed even once.

Multiple simulator/debugger commands, macro commands, or macro internal commands can be
included in the <macro body>.

122

MACRO

Examples

1. To display the fifth to tenth elements in array ABC:

FOR(·NUM = 5; ·NUM <= 10; ·NUM = ·NUM+1) {
TYPE ABC[·NUM-1]

}

2. To operate identically to the loop in example (1):

·NUM = 5
FOR(;·NUM <= 10;) {
TYPE ABC[·NUM-1]
·NUM = ·NUM+1

}

(3) DO/WHILE

Format

DO {
<macro body>

} WHILE <expression>

Parameters

• <expression>
The <expression> parameter expresses the <macro body> iteration condition.

• <macro body>
The <macro body> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is true.

Function

The DO/WHILE loop first executes the macro body and then evaluates the <expression>. If that
value is any value other than zero, the macro body is executed again.

123

MACRO

The macro body is iterated until the <expression> evaluates to zero.

If the value of <expression> is zero initially, the macro body is executed exactly once.

Multiple simulator/debugger commands or macro internal commands can be included in the
<macro body>.

Examples

To display the fifth to tenth elements in array ABC:

·NUM = 5
DO {

TYPE ABC[·NUM-1]
·NUM = ·NUM+1

} WHILE(·NUM <= 10)

(4) IF

Format

IF (<expression>) {
<macro body 1>

[} ELSE {
<macro body 2>]

}

Parameters

• <expression>
The <expression> parameter expresses the condition for execution of <macro body 1>
selectively.

• <macro body 1>
The <macro body 1> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is true.

124

MACRO

• <macro body 2>
The <macro body 2> parameter expresses the sequence of commands or macro internal
commands to be executed when the condition is false.

Function

The <expression> is evaluated, and if its value is any value other than zero, the <macro body 1> is
executed.

When the value is zero, if the optional ELSE clause is present, <macro body 2> will be executed,
otherwise nothing is executed.

Multiple simulator/debugger commands or macro internal commands can be included in <macro
body 1> and <macro body 2>.

Examples

1. To display the value of address H'2000 if its value is any value other than zero:

IF(*2000 != 0) {
D 2000

}

2. To display the value of address H'2000 if its value is any value other than zero, and if its value
is zero, to display the value of address H'2100:

IF(*2000 != 0) {
D 2000

}ELSE{
D 2100

}

125

MACRO

(5) MBREAK

Format

MBREAK

Function

When an MBREAK command is executed, the enclosing WHILE, FOR, or DO/WHILE loop is
interrupted, and control exits one level of iteration nesting.

Notes

The MBREAK command can only be used inside a WHILE, FOR, or DO/WHILE loop.

Example

To display the values of addresses H'1000 to H'2000, and to terminate the display if the value zero
is encountered:

FOR(·ADDR = 1000; ·ADDR <= 2000; ·ADDR = ·ADDR+2) {
D ·ADDR
IF(*·ADDR == 0){
MBREAK

}
}

126

MACRO

(6) CONTINUE

Format

CONTINUE

Function

When a CONTINUE command is executed, execution of the enclosing WHILE, FOR, or
DO/WHILE loop is interrupted, and control proceeds to evaluation of the <expression> for a
WHILE or DO/WHILE loop, or to the evaluation of <expression 3> for a FOR loop.

Note

The CONTINUE command can only be used inside a WHILE, FOR, or DO/WHILE loop.

Example

To display the values of addresses H'1000 to H'2000, jumping over (i.e. ignoring) addresses whose
value is zero:

FOR(·ADDR = 1000; ·ADDR <= 2000; ·ADDR = ·ADDR+1) {
IF(*·ADDR == 0) {

CONTINUE
}
D ·ADDR

}

127

MACRO

Format

Set: MAP˘<start address>˘{@<byte count>|<end address>}
[;{R|W|RW}] (RET)

Display: MAP [;M] (RET)

Modification: MAP˘<start address> [;{R|W|RW}] (RET)

Deletion: MAP-[˘<start address>] (RET)

Parameters

• <start address>
Specifies the address of the start address in the memory area.

• <byte count>
Specifies the number of bytes in the memory area.

• <end address>
Specifies the address of the end address in the memory area.

• Option

— Access type {R|W|RW}
R (read): Specifies the memory area to be read-only.
W (write): Specifies the memory area to be write-only.
RW (read/write): Specifies the memory area to be read/write.

When omitted, the access type is set as follows.
Æ Internal ROM area (only when defining a memory area): R
Æ All other cases: RW

— CPU information memory map display: M
M (map): Specifies display of the memory map information from the CPU

information file.

128

MAP

5.25 MAP

MP

Defines, displays, modifies, and deletes memory
areas

Function

This command defines (sets) the memory area to be used by the object program, displays the state,
and changes the access type for the memory areas used by the debugging object program.

Description

Set: This command is used to allocate memory areas other than those allocated when
the debugging object program was loaded.
Up to 20 memory areas can be allocated with the MAP command.

Display: Displays the start address, end address, access type, and section names of the
allocated memory areas.
When the “;M” option is specified, the CPU information file memory map is
displayed.
The memory map information is displayed in the following format.

<KIND> <START> <END> <STATE> <BUS>
1 2 3 4 5

1 Memory type: Indicates the memory type with a keyword.
• ROM: Internal ROM area
• I/O: Internal I/O area
• NOT_A: Unused area
• EXT: External bus space
• RAM: Internal RAM area

2 Start address: The address of the start address in the memory specified
by the memory classifier.

3 Last address: The address of the last address in the memory specified
by the memory classifier.

4 State count: The number of memory access states.
5 Bus width: The width of the memory data bus.

Modification: This form of the command allows the access type of an already allocated memory
area to be changed by specifying its start address.

Deletion: This form of the command allows an already allocated memory area to be deleted
by specifying its start address.

129

MAP

Notes

1. Always confirm the address of the start address in the memory area with the MAP command
before changing the access type.

2. An error occurs if an attempt is made to use the MAP command to allocate a memory area
that is already allocated.

3. An error occurs if an attempt is made to use the MAP command to allocate a memory area
that includes any part of the invalid area.

4. It is not possible to allocate a memory area that covers multiple memory areas, including the
internal ROM area, the external bus space, the internal RAM area, and the internal I/O space.

5. Areas other than those allocated with the MAP command cannot be deleted with the MAP
command.

6. Areas specified by the MAP command cannot be initialized.

Examples

1. To allocate addresses H'3000 to H'301F as a read-only memory area:

: MP 3000 301F ;R (RET)
:

2. To allocate a 50 byte area starting at address H'4000 as a write-only memory area:

: MP 4000 @50 ;W (RET)
:

3. To change the access type for memory area allocated from address H'0 to address H'03FF to
write-only:

: MP 0 ;W (RET)
:

130

MAP

4. To display the current memory allocation state:

: MP (RET)
<START> <END> <ATTR> <SECT_NAME>
00000000 - 000003FF W
00002000 - 000020EF RW SECT1
00003000 - 0000301F R
00004000 - 0000404F W
00004050 - 0000504F RW
:

5. It is not possible to allocate an area that includes an already allocated memory area:

: MP 2000 2FFF (RET)
MEMORY AREA ALREADY EXISTS
:

6. The access type of a memory area that has not been allocated cannot be changed:

: MP 1050 ;R (RET)
INVALID ADDRESS
:

131

MAP

7. It is not possible to allocate a single memory are that covers multiple memory areas. For
example, when the area from H'0 to H'3FFF is the internal ROM area and the external bus area
starts at H'4000, the following command generates an error as shown:

:MP 3F00 40FF (RET)
ADDRESS EXCEEDS MEMORY SPACE BOUNDARY
:

In this case, this area must be allocated as two separate areas as shown below.

: MP 3F00 3FFF (RET)
: MP 4000 40FF (RET)
:

8. To display the memory map from the CPU information file:

: MP ;M (RET)
<KIND> <START> <END> <STATE> <BUS>
EXT 00000000 - 00FFFFFF 3 8
EXT 01000000 - 04FFFFFF 2 8
I/O 05000000 - 05FFFFFF 3 8
EXT 06000000 - 07FFFFFF 3 8
NOT_A 08000000 - 0EFFFFFF
RAM 0F000000 - 0FFFFFFF 1 32
:

132

MAP

Format

Modify: MEMORY˘<start address>˘{<data>[:size]|<real number>|
<character string>} (RET)

Interactive form: MEMORY˘<start address>[;{B|W|L|S|D}] (RET)

Parameters

• <start address>
Specifies the start address to be modified.

• <data>
Specifies the new value to be stored.

• <size>
B (byte): Specifies that memory is to be modified in byte units.
W (word): Specifies that memory is to be modified in word units (default).
L (long): Specifies that memory is to be modified in long word units.

When the size specification is omitted, word units are used as the default unless the start
address was specified with a high level language variable. In that case, the size will be the
size of that variable.

• <real number>
Specifies a floating point number.

• <character string>
Specifies a character string.

• Option

— Size specification {B|W|L|S|D}
B (byte): Specifies byte units.
W (word): Specifies word units (default).
L (long): Specifies long word units.
S (single precision): Specifies single precision floating point units.
D (double precision): Specifies double precision floating point units.

133

MEMORY

5.26 MEMORY

M

Modifies memory contents

Function

Changes the contents of memory to an arbitrary value.

Examples

1. To change the contents of one byte of memory at address H'1000 to 3E:

: M 1000 3E:B (RET)
:

2. To input in interactive form:

a. To modify memory interactively one byte at a time starting at address H'1000:

: M 1000 ; B (RET)
00001000 3E 5F (RET)
00001001 FF (RET)
00001002 55 25 (RET)

:
:

00001005 CC . (RET)
:

The following abbreviated commands can be used here, in addition to data specification:

(RET) only : The contents of the immediately following address are displayed.
^ : The contents of the immediately preceding address are displayed.
. (period) : Terminates the command.

134

MEMORY

b. To interactively modify memory a single precision floating point number at a time starting
at address H'2000:

: M 2000 ;S (RET)
00002000 1.413991S-3 F’-3.1415922S+1 (RET)
00002004 1.234567S+5 . (RET)
:

135

MEMORY

Format

MOVE˘<start address>˘{<end address>|@<byte count>}˘<transfer
destination address> (RET)

Parameters

• <start address>˘{<end address>|@<byte count>}
Specifies the range of addresses to be copied.

• <transfer destination address>
Specifies the address of the transfer destination.

Function

Copies the specified range of memory data to the specified transfer destination.

Note

The transfer destination area must have been allocated in advance with the MAP command.

Example

To copy the H'500 bytes of data starting at address H'1000 to the area starting at address H'2000:

: MV 1000 @500 2000 (RET)
:

136

MOVE

5.27 MOVE

MV

Copies memory block

Format

Start: PRINT [˘<file name>][˘;[A][C]] (RET)

Temporary stop/restart: PRINT ;{E|D} (RET)

Terminate: PRINT- (RET)

Parameters

• <file name>
Specifies the file name.
When the file name specification is omitted, the simulator/debugger creates a file in the
directory from which the simulator/debugger was started with the same name as the
debugging object program and the extension ".prt".
When the file extension is omitted, the extension ".prt" is supplied.

• Options

— Append mode specification A
A (append): If a file name was specified, the execution history is appended to the

specified file.
When this option is omitted, the execution history is stored in the file
starting at the beginning of the file.

— Write data selection C
C (commands): When the C option is specified, only the input commands are written to

the file.

— File output suspend/restart {E|D}
E (enable): File output is restarted.
D (disable): File output is temporarily stopped.

137

PRINT

5.28 PRINT

P

Creates execution history file

Function

This command starts the output of a command execution history to a file.

When the C option is specified, only the input commands are saved to the file.

Furthermore, the file output can be temporarily halted, restarted, and terminated.

Description

Start: Starts the output of an execution history to a file.
If the specified file exists, that file is deleted and a new file is created.
If the A option is specified, the execution history is appended to the end
of the specified file.

Temporary stop/restart: File output is suspended when the D (disable) option is specified, and
restarted when the E (enable) option is specified.

Terminate: Execution history output is terminated.

Notes

1. The C (command) option only handles typed input, and commands executed from command
files are not output.

2. When an error occurs in command input or in single line I/O processing, the input/output data
is not written to the output file.

3. Execution results from the “!” command (sub-process creation) are not written to the output
file.

138

PRINT

Examples

1. To specify output of input command and displayed data to the file “sample1.prt”, and to start
output to that file:

: P sample1.prt (RET)
:

2. To specify output of only input command to the file “sample2.prt”, and to start output to that
file:

: P sample2.prt ;C (RET)
:

3. To append an execution history to the file “sample1.prt”:

: P sample1.prt ;A (RET)
:

a. To temporarily suspend execution history output:

: P ;D (RET)
:

b. To resume execution history output:

: P ;E (RET)
:

139

PRINT

Format

QUIT (RET)

Function

Exits the simulator/debugger and returns to the OS.

Description

1. If an execution history file is open, it will be closed.

2. If a command file is open, it will be closed.

3. If the COVERAGE command is being executed, the results up to the present will be written to
the file and that file will be closed.

Note

If the coverage data could not be saved due to, e.g., insufficient disk space, when the
simulator/debugger is terminated during COVERAGE command execution (i.e., coverage has not
been terminated with a COVERAGE- command), the following message will be displayed.

Coverage data could not be saved

In such a case, check the program execution environment, and save the coverage data once again.

Example

To terminate simulator/debugger processing:

: Q (RET)

%

140

QUIT

5.29 QUIT

Q

Exits the simulator/debugger

Format

Set: RADIX˘{B|Q|D|H} (RET)

Display: RADIX (RET)

Parameter

• Options

— Radix {B|Q|D|H}
B : Sets the radix to binary.
Q : Sets the radix to octal.
D : Sets the radix to decimal.
H : Sets the radix to hexadecimal.

The radix is set to hexadecimal when the simulator/debugger is first invoked.

Function

Specifies the radix for command parameter input.

Displays the state of the radix setting.

Examples

1. To display the current radix:

: RX (RET)
Hexadecimal
:

2. To change the radix to decimal:

: RX D (RET)
: RX (RET)
Decimal
:

141

RADIX

5.30 RADIX

RX

Sets the radix

Format

REGISTER (RET)

Function

Displays the contents of the general registers (R0–R15), the control registers (SR, GBR, VBR)
and system registers (MACH, MACL, PR, PC).

Description

1. The same value is displayed for the SP and R15.

2. The SR is displayed first as a value and then as the states of each bit.

• Bits with the value 1: The mnemonic of these bits is displayed.
T: Indicates true or false referred to by the MOVT, CMP, TAS, TST, BT, BF, SETT,

and CLRT instruction, or indicates carry, borrow, over/underflow referred to by the
ADDV/C, SUBV/C, DIVOU/S, DIV1, SHAR/L, SHLR/L,ROTR/L and ROTCR/L
instructions.

S: Referred to by the MAC instruction.
I: Functions as an interrupt mask bit.
Q, M: Referred to by the DIVOU/S and DIV1 instructions.

• Bits with the value 0: These bits are displayed as a minus sign (-).

Example

To display the general and control register values:

: R (RET)

PC=02000000 SR=000003F3:**********************MQIIII**ST SP=0FFFFFF4

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0FFFFFF4

:

142

REGISTER

5.31 REGISTER

R

Displays register contents

Format

RESET (RET)

Function

This function resets the simulator/debugger.

When this command is executed, the registers, the memory, the debugging object program, and the
commands are reset to the following states.

Registers: All registers are set to 0.

Memory: All memory settings are cleared.
The simulator/debugger goes to the memory unspecified state.

Debugging object program: All information concerning the debugging object program is deleted,
and the simulator/debugger goes to the no program loaded state.

Commands: Except for settings made with the following commands, all settings
are cleared, and the simulator/debugger returns to its initial state.
• EXEC_MODE
• MACRO
• RADIX

Example

To reset the simulator/debugger:

: RS (RET)
:

143

RESET

5.32 RESET

RS

Resets the simulator/debugger

Format

SAVE˘<file name>˘<start address>˘{<end address>|
@<byte count>} (RET)

Parameters

• <file name>
Specifies the name of the file to be saved.
When the file extension is omitted, the extension ".dat" is supplied.

• <start address>˘{<end address>|@<byte count>}
Specifies the range of addresses to be saved.

Function

Outputs to a file the contents of memory in the specified range as a memory image.

Notes

1. If the end address of the memory data exceeds the allocated memory areas, only that portion
of the data within allocated memory areas is saved.

2. The data saved with this command differs from that saved with the SAVE_STATUS
command.

Examples

1. To save the memory data from addresses H'2000 to H'3000 in the file “sample.lo”:

: SV sample.lo 2000 3000 (RET)
:

2. To save the H'100 bytes of memory starting at address H'3000 in the file “sampl2.lo”:

: SV sampl2.lo 3000 @100 (RET)
:

144

SAVE

5.33 SAVE

SV

Saves memory data to a file

Format

SAVE_STATUS [˘<file name>][˘;{M|A}] (RET)

Parameters

• <file name>
Specifies the name of the file in which to save the simulator/debugger status.
If the file name is omitted, the file "sdsh.sav" is used.
If the extension is omitted, the extension ".sav" is supplied.

• Options

— Data saved {M|A}
M (memory and registers): The status of the memory and registers is saved. (default)
A (all): The complete state of the simulator/debugger is saved.

Function

Saves the current status of the simulator.

The status of the simulator/debugger immediately following the execution of this command can be
restored by executing the LOAD_STATUS command.

Description

1. Use with the M option
Only the status of the memory and registers is saved. This command is useful, for example,
when program errors are expected during execution by the GO, STEP, or STEP_INTO
command. If the status of the simulator/debugger is saved prior to execution with the GO,
STEP, or STEP_INTO command, then the status can be restored after an error occurs.

2. Use with the A option
The complete state of the simulator/debugger is saved.
This form of the command is useful to resume program debugging from a particular point
after exiting and restarting the simulator/debugger.

145

SAVE_STATUS

5.34 SAVE_STATUS

SS

Saves the current simulator/debugger status in a
file

Notes

1. When the A option is specified, the resultant status file is not loaded with the LOAD_STATUS
command, but rather, that file is specified at simulator/debugger startup.

2. The A option cannot be specified from within a command chain file.

Examples

1. To save the current status of the memory and register in the file "test1.sav":

: SS test1.sav ;M (RET)
:

2. To save the complete current status of the simulator/debugger in the file "test2.sav":

: SS test2.sav ;A (RET)
:

146

SAVE_STATUS

Format

SCOPE (RET)

Function

Displays the file and function that include the current value of the program counter.

This command allows the user to confirm the name of the currently executing function.

Example

To display the file and function that include the current value of the program counter:

: SCP (RET)
%calc.c/add32
:

147

SCOPE

5.35 SCOPE

SCP

Displays the function that includes the current
execution address

Format

Set: SET_COVERAGE˘<start address>˘{<end address>|
@<byte count>} (RET)

Setting state display: SET_COVERAGE (RET)

Clear: SET_COVERAGE- [˘<start address>] (RET)

Parameter

• <start address>˘{<end address>|@<byte count>}
Specifies the range for which coverage information is to be acquired.

Function

Sets, displays, and clears the range of addresses over which C0 and C1 coverage information is
acquired.

Note that this command only sets the range for coverage measurement, and that the COVERAGE
command is used to start the acquisition of coverage information.

Description

Set: Sets the area for the acquisition of C0 and C1 coverage information.
Up to 16 address ranges can be specified.
The coverage ranges may not be set during coverage execution.
When a debugging object program is loaded with the LOAD command, the
code segment areas in that program are automatically set as the address
range.

Setting state display: Displays the setting state.
When the setting state is displayed during coverage execution, the address
range(s), the file name, and the enable/disable state are displayed.
When coverage is not being executed, only the coverage areas are
displayed.

Clear: The specified coverage area is made invalid.
When the address specification is omitted, all areas settings are cleared.

148

SET_COVERAGE

5.36 SET_COVERAGE

SCV

Sets coverage range

In this case a confirmation message will be displayed. Respond "Y" to
clear all areas or "N" to cancel the clear operation.

Examples

1. To set the address range for coverage data acquisition to be from address H'1000 to address
H'12FF:

: SCV 1000 12FF (RET)
:

2. To display coverage setting following the start of coverage measurement:

: SCV (RET)
file name = test1.cov
Enable/Disable = E
coverage area
00001000 - 000012FF
00001800 - 00001FFF

:

3. To cancel the area starting at address H'1000 from the coverage address ranges:

: SCV- 1000 (RET)

149

SET_COVERAGE

Format

SHOW_CALLS [˘<display count>] (RET)

Parameter

• <display count>
Specifies the number of function calls displayed.
When omitted, all function calls are displayed.

Function

Displays the functions called up to arrival at the current address.

Description

1. Functions are displayed in the reverse order from the order called.

2. The display includes the file, function, and line number of the call and the arguments.

3. When the specified display count exceeds the actual function call depth, the number of
function calls displayed is the actual function call depth.

4. The following is displayed when there is no debugging information or when the function was
written in assembler.

• The file, function, line number, and address are displayed.
• Arguments: A “?” is displayed.

150

SHOW_CALLS

5.37 SHOW_CALLS

SHC

Displays function call

Examples

1. To display the last 3 function calls:

: SHC 3 (RET)
%file.c/func_d(# 2002) func_e(1,3,0)
%file.c/func_c(# 1004) func_d()
%file.c/func_b(# 777) func_c(2)
:

2. To display all functions called up to the current function:

: SHC (RET)
%file.c/func_d(# 2002) func_e(1,3,0)
%file.c/func_c(# 1004) func_d()
%file.c/func_b(# 777) func_c(2)
%file.c/func_a(# 307) func_b(0)
%file.c/main(# 32) func_a(10,1024)
:

151

SHOW_CALLS

Format

STEP [˘<step count>][;R] (RET)

Parameters

• <step count>
Specifies the number of instruction execution steps. (H'1 to H'7FFFFFFF)
When omitted, 1 step is executed.

• Option

— Register content display R
R (register): Displays the contents of the registers after instruction execution.

Function

Executes instructions one at a time starting at the current program counter for the specified number
of steps.

Description

1. Each time an instruction is executed the mnemonic of the executed instruction is displayed.
If the R option was specified, the contents of the registers are displayed after instruction
execution.

2. This command executes subroutines called with a BSR or JSR instruction, from the start of
the subroutine through the RTN instruction, as a single step.

3. Execution is halted if a condition set by a break command is satisfied, or if a
simulator/debugger error occurs. The cause of the halt is displayed when execution stops.

4. The simulator/debugger performs processing identical to that for the input of a “STEP (RET)”
command line if a (RET) is input following the completion of STEP command execution.

152

STEP

5.38 STEP

S

Performs step execution in subroutine units

Note

If a delayed branch instruction is executed during STEP command execution, execution stops at
the end of the instruction following the delayed branch instruction.

Example

To execute five instructions, with executing the subroutine as though it were a single step:

: S 5 (RET)
00000000 STS.L PR,@—R15
00000002 MOV.L @(0000000C,PC),R3
00000004 JSR @%file.c/func!sub1
00000006 NOP
00000008 LDS.L @R15+,PR
STEP NORMAL END
:

153

STEP

Format

STEP_INTO [˘<step count>][;R] (RET)

Parameters

• <step count>
Specifies the number of instruction execution steps. (H'1 to H'7FFFFFFF)
When omitted, 1 step is executed.

• Options

— Register content display R
R (register): Displays the contents of the registers after instruction execution.

Function

Executes instructions one at a time starting at the current program counter for the specified number
of steps.

Description

1. Each time an instruction is executed the mnemonic of the executed instruction is displayed.
If the R option was specified, the contents of the registers are displayed after instruction
execution.

2. The step unit is set to the source line unit at startup time, but can be changed to the machine
language instruction level with the I or N option to the DEBUG_LEVEL command.

3. When a function is called within the program, the called function is also executed one step at a
time.

4. Execution is halted if a condition set by a break command is satisfied, or if a
simulator/debugger error occurs.
The cause of the halt is displayed when execution stops.

5. The simulator/debugger performs processing identical to that for the input of a “STEP_INTO
(RET)” command line if a (RET) is input following the completion of STEP_INTO command
execution.

154

STEP_INTO

5.39 STEP_INTO

SI

Performs step execution

Notes

If a delayed branch instruction is executed during STEP_INTO command execution, execution
stops at the end of the instruction following the delayed branch instruction.

Examples

1. To execute one instruction and then display the mnemonic of the executed instruction and the
contents of the registers following the instruction execution:

: SI ;R (RET)

PC=00000404 SR=00000000:**********************------**-- SP=0FE00000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000002E 00000000 00000000 00000000 00000000 00000000

00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0FE00000

00000402 MOV.L #0000002E,R1

:

2. To execute three instructions:

: SI 3 (RET)
00000404 MOV.L #0000002E,R4
00000406 MOV.L #FFFFFFFF,R3
00000408 ADD.L R1,R2
STEP NORMAL END
:

155

STEP_INTO

Format

Set: STUB˘<stub start address>[˘<return address>] {(RET)

Display: STUB[˘<stub start address>] (RET)

Delete: STUB- [˘<stub start address>] (RET)

Parameters

• <stub start address>
Specifies the address in the debugging object program at which command execution is to be
performed.

• <return address>
Specifies the address of the address to restart the debugging object program after command
execution.
When omitted, the debugging object program is restarted at the <stub start address>.

Function

Specifies addresses and commands so that instruction execution is interrupted and command
execution is performed at the point that the simulator/debugger is about to execute the instruction
at the stub start address.

Also displays and clears the stub execution address and command settings.

Description

Set: Specifies the stub execution actions as simulator commands.
Up to 16 stub command executions can be specified.
However, since the command sequence storage area is limited, there are cases where a
full 16 stubs cannot be specified.
When the command “STUB∆<stub start address>{(RET)” is input, a prompt
(“STUB>”) indicating that STUB specification is in progress is displayed, and the
simulator/debugger waits for input of the execution command sequence.
Command line syntax is not checked during command sequence input.
Error checking is performed during stub execution.

156

STUB

5.40 STUB

SB

Executes command during simulation

Display: When the stub start address specification is omitted, a table of the stub execution start
and return positions specified with the STUB command is displayed.
When the stub start address is specified, the simulator command sequence specified for
that start address is displayed.

Deletion: Deletes the stub execution for the specified address.
When a stub execution is deleted, the replacement or insertion command set is deleted,
and the original execution sequence is restored.
When the stub start address is omitted, all stub execution addresses are deleted.
In this case a confirmation message will be displayed. Respond "Y" to delete all stub
executions or "N" to cancel the deletion.

Notes

1. In the following case, the stub will be executed twice.

• If stub execution is interrupted with a manual break, and execution resumed with a GO,
STEP, or STEP_INTO command, the stub will be executed twice.

Therefore, do not specify stubs that will generate different results when executed twice
(e.g., stubs that increment memory) in situations where a manual break will be used.

2. The STUB command, “!” commands, and macro commands cannot be used within a stub.

3. If the stub start address is specified after a delayed branch instruction, stub execution starts
before the delayed branch instruction.

Examples

1. To specify a command set starting with the MEMORY command to be executed just prior to
the execution of the instruction at address H'1200:

Simulation will be resumed at address H'1200 after execution of the stub commands.

: SB 1200 { (RET) Sets the stub execution start address to be H'1200.

STUB > M 5000 FF (RET)
STUB > : Specifies the stub execution commands.

:
:

STUB > } (RET) Terminates specification.
:

157

STUB

2. To display a table of stub execution addresses:

: SB (RET)

<ENTRY ADDR> <RETURN ADDR> <SYMBOL>

00001000 00001000 %file.c!eradd(# 100) %file.c!eradd(#

100)

00001200 00001200 %file.c!entrya(# 542) %file.c!entrya(#

542)

:

3. To display the simulator command set specified for the stub execution command registered at
address H'1200:

: SB 1200 (RET)
entry address = 00001200 %file.c!entrya(# 542)
return address = 00001200 %file.c!entrya(# 542)
command {

M 5000 FF
:
:
:

}
:

4. To delete the stub execution registered at address H'1200:

: SB- 1200 (RET)
:

158

STUB

Format

SYMBOL [˘[%<file name>][/<function name>][!<symbol>[.<member
name>]]] (RET)

Parameters

• <file name>
Specifies the file in which the referenced symbol is defined.

• <function name>
Specifies the function in which the referenced symbol is defined.

• <symbol>
Specifies the referenced symbol.

• <member name>
Specifies the member referenced.

Function

Displays symbol information.

Description

The following symbol information is displayed according to the specified parameters.

• Parameter specification and displayed information

In items 1 to 3 in the following table, information pertaining to the member will be displayed
if a structure or union member is specified along with the symbol.

159

SYMBOL

5.41 SYMBOL

SY

Displays symbol information

Item Parameter Specification Displayed Information

1 SYMBOL %<file name>/<function name>!<symbol> Information pertaining to the
specified local symbol in the

SYMBOL /<function name>!<symbol> specified function is displayed.

2 SYMBOL %<file name>!<symbol> Information pertaining to the specified
local symbol in the specified file is
displayed.

3 SYMBOL !<symbol> Information pertaining to the specified
global symbol is displayed.

4 SYMBOL %<file name>/<function name> Information pertaining to the local
symbols in the specified function is
displayed.

5 SYMBOL %<file name> Information pertaining to the local
symbols in the specified file is
displayed.

6 SYMBOL Information pertaining to all symbols
that can be referenced currently is
displayed.

7 SYMBOL ! symbol name Local symbols in the function, static
symbols in the file, and global
symbols are searched for in that
order, and the first symbol to be
detected is displayed.

• Symbol information display format

Symbol information is displayed in the following format.

Symbol Value Symbol type Sign information Type information Size Bit offset
1 2 3 4 5 6 7

Undefined status
8

Description:

1 Symbol

2 Value
— Address ... <8 digit hexadecimal number>
— Value ... <8 digit hexadecimal number>
— SP offset.. SP+<4 digit hexadecimal number>
— Structure offset.. +<4 digit hexadecimal number>
— Register name
— Cannot be referenced because of

C compiler optimization 'REG'

160

SYMBOL

3 Symbol type
— Variable ... 'VAR'
— Label ... 'LAB'
— Function ... 'FUN'
— Value ... 'VAL'

4 Sign information
— Signed ... 'S'
— Unsigned ... 'U'
— Undefined ... '-'

5 Type information
— Character type (1-byte integer) 'BYTE'
— Integer type (2-byte) 'WORD'
— Integer type (4-byte) 'LONG'
— Floating point type (single precision) 'SGL'
— Floating point type (double precision) ... 'DBL'
— Bit type.. 'BITF'
— Enumerated type 'ENUM'
— Structure type.. 'STRU'
— Union type .. 'UNI'
— Pointer type... 'PTR'
— All other types... '------'

6 Size
The number of bytes (the number of bits for integer types with a bit field type
specification) is displayed as a 4-digit hexadecimal number.

7 Bit offset
A 2-digit hexadecimal value is displayed only for integer types with a bit field type
specification.

8 Undefined status
— Undefined symbols 'U'
— Any other object No display

161

SYMBOL

Examples

1. To display information concerning the local symbols from the file sample:

: SY %sample.c (RET)

number................................. 00000038 VAR S BYTE 0015

:

2. To display information concerning the local symbols from the function “main” in the file
sample:

: SY %sample.c/main (RET)

i...................................... SP+0008 VAR S LONG 0004

:

162

SYMBOL

Format

TRACE [˘-<start instruction index>][˘,{@<instruction count>|-<end
instruction index>|][;{I|A}] (RET)

Parameters

• <start instruction index>
Specifies the first instruction to display.
The value indicates the point in the trace buffer at which to start display as a number of
instructions back from the end instruction stored in the trace buffer.When omitted, display
starts at the beginning of the trace buffer.

• <instruction count>
Specifies the number of instruction to display.
When both the instruction count and the end instruction index are omitted, the end instruction
executed is displayed.

• <end instruction index>
Specifies the end instruction to display.
The value indicates the point in the trace buffer at which to end display as a number of
instructions back from the end instruction stored in the trace buffer.

• Options

— Display content {I|A}
I (instruction): Only instruction addresses and mnemonics are displayed.
A (all): The instruction address, instruction mnemonic, register data, and memory

access data are displayed.
When omitted, the I option is assumed.

Function

Displays the trace results stored in the trace buffer.

163

TRACE

5.42 TRACE

T

Displays trace buffer

Description

1. The following information is displayed.

• The address of the executed instruction
• The mnemonic of the executed instruction
• The general registers (R0 to R15), the control registers (SR, GBR, VBR), and the system

registers (MACH, MACL, PR, and PC)
• The memory access data (read data is displayed as R=xxxxxx and write data as

W=xxxxxx)

2. Display range specified by the start instruction index.

Figure 5-3 shows the contents of the trace buffer when displaying starting at 5 instructions
back from the end of the trace buffer.

(This example assumes the command “TRACE -5”.)

Figure 5-3 Display Range Specified by the Start Instruction Index

First instruction
displayed Display range

Trace buffer

First instruction executed

Last instruction executed

Breakpoint

–5

–1

0

164

TRACE

3. Display range specified by the start instruction index and instruction count

Figure 5-3 shows the contents of the trace buffer when displaying 3 instructions starting at 5
instruction back from the end of the trace buffer.

(This example assumes the command “TRACE -5 @3”.)

Figure 5-4 Display Range Specified by the Start Instruction Index and
the Instruction Count

Notes

1. The addresses of the executed instructions are stored in the trace buffer during trace data
acquisition.
When displaying the contents of the trace buffer, the contents of the stored address is
disassembled and displayed as a mnemonic instruction.
As a result, if memory contents are overwritten between trace data acquisition and trace buffer
display, the displayed mnemonic can differ from the actually executed instruction.

2. The trace buffer can hold 1023 instruction execution cycles of data. If the 1023th instruction
is a delayed branch instruction, the trace buffer can hold 1024 instructions.

First instruction
displayed Display range

Trace buffer

Instruction count

Last instruction executed

Breakpoint

–5
–4
–3

0

Last instruction
displayed

First instruction executed

–2
–1

165

TRACE

Examples

1. To display the instruction addresses and mnemonics for the last five instructions stored in the
trace buffer:

: T -5 (RET)
00000100 STS.L PR,@—R15
00000102 MOV.L #00000000,R4
0000010E ADD.L #00000001,R4
00000110 MOV>L #0000000A,R3
00000114 CMP/GE.L R3,R4
:

2. To display the instruction address, instruction mnemonic, register data, and memory access
data for the H'3 instructions starting five instructions back from the end of the trace buffer:

: T -5 @3 ;A (RET)

00000400 STS.L PR,@—R15

PC=00000402 SR=00000000:**********************------**-- SP=FFFFFF8

W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000002E 00000000 0000000A 00000001 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFF8

00000402 MOV.L #00000000,R4

PC=00000404 SR=00000000:**********************------**-- SP=FFFFFF8

W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000002E 00000000 0000000A 00000001 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFF8

00000404 ADD.L #00000001,R4

PC=00000406 SR=00000000:**********************------**-- SP=FFFFFF8

W=00000000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 0000002E 00000000 0000000A 00000001 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000 FFFFFFF8

:

166

TRACE

167

TRACE_CONDITION

5.43 TRACE_CONDITION

TC

Sets trace condition, and starts or stops trace

Format

Start: TRACE_CONDITION [;[{I|S}][˘E][˘{C|B}]] (RET)

Stop: TRACE_CONDITION ;D (RET)

Parameter

• Options

— Instruction type {I|S}
I (instruction): All instructions are recorded in the trace buffer. (default)
S (subroutine): Only subroutine calling instructions (BSR and JSR) are recorded in the

trace buffer.
The I setting is assumed when this option is omitted.

— Trace start/stop {E|D}
E (enable): Starts recording to the trace buffer. (default)
D (disable): Turns off recording to the trace buffer.
The E setting is assumed when this option is omitted.

— Trace buffer full handling {C|B}
C (continue): Overwrites the previous contents of the trace buffer after the trace buffer

overflows.
B (break): Interrupts program execution when the trace buffer overflows.
The C setting is assumed when this option is omitted.

Function

Specifies the conditions for storing the results of instruction execution in the trace buffer during
debugging object program execution due to a CALL, GO, STEP, STEP_INTO, or VECTOR
command.

168

TRACE_CONDITION

Description

1. The following items are stored in the trace buffer.

• The general registers (R0 to R15), the control registers (SR, GBR, VBR), and the system
registers (MACH, MACL, PR, and PC)

• The memory access data

2. The trace buffer is initialized at trace start.

3. The trace buffer is organized as a ring buffer with storage for 1023 instructions.

When the B option is specified, and when 1023 instructions for trace information have been
stored, instruction execution is halted, and the simulator/debugger returns to the command
wait state. However, note that if the 1023th instruction is a delayed branch instruction, the
simulator/debugger enters command wait state when the 1024 instructions of trace
information has been acquired.

When the C option is specified, if 1024 or more instructions have been executed, the buffer is
overwritten starting at the beginning.

Figure 5-5 shows the contents of the trace buffer.

Figure 5-5 Trace Buffer Contents

Execution order
Instruction 1 The instruction

executed first

The instruction
executed last

Instruction n
1023 instructions

.

.

.

169

TRACE_CONDITION

Examples

1. To record all instructions in the trace buffer following the execution of the following
command:

: TC ;I (RET)
:

2. To record only subroutine calls in the trace buffer:

: TC ;S E (RET)
:

3. To terminate recording in the trace buffer:

: TC ;D (RET)
:

4. To store the results of program execution in the trace buffer when instructions are executed by
a CALL, GO, STEP, STEP_INTO, or VECTOR command:

: TC ;I (RET)
: B 348 (RET)
: G (RET)
Exec Instructions = 97 Cycle=387

PC=00000348 SR=00000000:**********************------**-- SP=0FF00000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 00000000

0FF00000

00000346 MOV.L R6,R5

: T —5 (RET)

00000340 MOV.L #00000000,R4

00000342 ADD.L #00000001,R4

00000344 MOV.L #0000000A,R3

00000346 MOV.L R6,R5

170

TRAP_ADDRESS

5.44 TRAP_ADDRESS

TA

Sets, displays, and clears the system call start
address

00000348 MOV.L R6,R5

:

Format

Set: TRAP_ADDRESS˘<instruction address> (RET)

Display: TRAP_ADDRESS (RET)

Clear: TRAP_ADDRESS- (RET)

Parameter

• <instruction address>
Specifies the system call start address.

Function

Sets, displays, and clears the system call start address used when the debugging object program
uses standard I/O or file I/O.

Only one address can be specified.

Description

Set: If the branch address of an executed JSR or BSR instruction is the same as the address
specified with this command, normal simulation is not performed, but rather the system
call indicated by the function code is executed.
A parameter block and an I/O buffer must be allocated within the debugging object
program.
The debugging object program must set up R0 and R1, the parameter block, and the I/O
buffer before executing the JSR or BSR instruction.
Simulation is restarted from the instruction following the JSR or BSR when the system
call processing finishes.
The contents of R0 and R1 and the other registers are shown below.
Since the contents stored in the parameter bock differ for each system call function, the
parameter block contents are described under each function.

171

TRAP_ADDRESS

Display: Displays the state of the system call start address setting.

Clear: Clears the system call start address.

Notes

1. If a JSR or BSR instruction is executed following a delayed branch instruction, an INVALID
SLOT INSTRUCTION error occurs during simulation.

2. If a JSR or BSR instruction executed as a system call, the following instruction is executed as
a normal instruction, and not as a slot instruction. Accordingly, JSR and BSR instructions
must not be followed by an instruction whose execution results differ between the cases when
it is executed as a slot instruction and when it is executed as a normal instruction.

MSB 1 byte 1 byte

H'01Register R0 Function code — —

LSB

Parameter block addressRegister R1

172

TRAP_ADDRESS

<System Call Functions>

The simulator/debugger provides functions to simulate system calls to the host system by the
debugging object program.
The table below lists the host system calls that can be used by a debugging object program.

Table 5-1 System Call Functions

Item Function code Function Description

1-1 H'21 GETC Inputs one character from standard input.

1-2 H'22 PUTC Outputs one character to standard output.

1-3 H'23 GETS Inputs a line of characters from standard input.

1-4 H'24 PUTS Outputs a line of characters to standard output.

2-1 H'25 FOPEN Opens a file.

2-2 H'26 FCLOSE Closes a file.

2-3 H'27 FGETC Inputs one byte from a file.

2-4 H'28 FPUTC Outputs one byte to a file.

2-5 H'29 FGETS Inputs a line from a file.

2-6 H'2A FPUTS Outputs a line to a file.

2-7 H0B FEOF Checks for end of file.

2-8 H'0C FSEEK Moves the file pointer.

2-9 H'0D FTELL Returns the current position of the file pointer.

173

TRAP_ADDRESS

1. Standard I/O

These functions perform I/O from standard I/O.

Character input from standard I/O during COMMAND_CHAIN execution is taken from the
command file.

1-1 GETC

<Function>
Inputs one character from standard input.

<Function code>
H'21

<Parameter block>

<Example>
To input one character from standard input (usually the keyboard):

MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

ALIGN 4
CALL_ADR DATA.L SYS_CALL
REQ_COD .DATA.L H’01210000
PAR_ADR .DATA.L PARM
PARM .DATA.L INBUF

MSB 0 15

+0

+2
Input buffer address

174

TRAP_ADDRESS

INBUF .RES.B 2
.END

1-2 PUTC

<Function>
Outputs one character to standard output.

<Function code>
H'22

<Parameter block>

<Example>
To output the character 'A' to standard output (usually the console):

MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR.DATA.L SYS_CALL
REQ_COD .DATA.L H’01220000
PAR_ADR .DATA.L PARM
PARM .DATA.L OUTDATA
OUTDATA .DATA.B "A"

.END

MSB 0 15

+0

+2
Output buffer address

175

TRAP_ADDRESS

176

TRAP_ADDRESS

1-3 GETS

<Function>
Inputs a line of characters from standard input.
A line feed character (LF) terminates the input line.
Up to 79 characters can be input in a line.
If more than 79 characters are input, the eightieth character will be converted to a line feed
(LF).

<Function code>
H'23

<Parameter block>

<Example>
To input one line from standard input (usually the keyboard):

MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR.DATA.L SYS_CALL
REQ_COD .DATA.L H’01230000
PAR_ADR .DATA.L PARM
PARM .DATA.L INBUF
INBUF .RES.B 80

.END

MSB 0 15

+0

+2
Input buffer address

177

TRAP_ADDRESS

1-4 PUTS

<Function>
Outputs a line of characters to standard output.
A line feed character (LF) terminates the output line.
Up to 131 characters can be output on a line.
If more than 131 characters are output, the 132nd character will be converted to a line feed
(LF).

<Function code>
H'24

<Parameter block>

<Example>
To output the string "Hello world" to standard output (usually the console):

MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’01240000
PAR_ADR .DATA.L PARM
PARM .DATA.L OUTDATA
OUTDATA .SDATA "Hello world"

.DATA.B H’0A

MSB 0 15

+0

+2
Output buffer address

178

TRAP_ADDRESS

.END

2. File I/O
A file number is returned when a file is opened with FOPEN.
All following operations on that file, including I/O and closing, are performed using that file
number.
Up to 16 files can be opened at the same time.

2-1 FOPEN

<Function>
Opens a file

<Function code>
H'25

<Parameter block>

• Return value (output)
0: Normal termination

–1: Error

• File number (output)
The value to be used in all processing following the open.

Start address of file name

150MSB

+0

+2

+4

+6

8

Return value

Open mode

File number

Unused

179

TRAP_ADDRESS

• Open mode (Input)
00 : "r"
01 : "w"
02 : "a"
03 : "r+"
04 : "w+"
05 : "a+"
10 : "rb"
11 : "wb"
12 : "ab"
13 : "rb+"
14 : "wb+"
15 : "ab+"

These modes are interpreted as follows.

"r" : Open for reading.
"w" : Open for writing.
"a" : Open for appending (write starting at the end of the file).
"r+" : Open for reading and writing.
"w+" : Open an empty file for reading and writing.
"a+" : Open for reading and appending.
"b" : Open in binary mode.

• Start address of file name
The first address in the area that holds the file name.

180

TRAP_ADDRESS

<Example>
To open the file "sample.src":

.EXPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR.DATA.L SYS_CALL
REQ_COD .DATA.L H’01250000
PAR_ADR .DATA.L PARM
PARM:
FOPEN_BUF.RES.B 1
FNUM .RES.B 1

.DATA.B.0

.RES.B. 1

.DATA.L FNAME
FNAME .SDATA "sample.src"

.DATA.B 0

.END

2-2 FCLOSE

<Function>
Closes a file.

<Function code>
H'06

<Parameter block>

181

TRAP_ADDRESS

• Return value (output)
0: Normal termination

–1: Error

• File number (input)
The number returned when the file was opened.

<Example>
To close the file with the file number 2:

MOV.L FNUM_ADR,R0
MOV.L #H’00000002, R1
MOV.B R1,@R0
MOV.L REQ_COD,R0
MOV.L PAR_ADR,R1
MOV.L CALL_ADR,R3
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’01060000
PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM:
FCLSE_BUF .RES.B 1
FNUM .RES.B 1

.END

2-3 FGETC

<Function>
Inputs one byte from a file.

<Function code>
H'27

<Parameter block>

150MSB

+0

8

Return value File number

182

TRAP_ADDRESS

• Return value (output)
0: Normal termination

–1: EOF detected

• File number (input)
The number returned when the file was opened.

• Input buffer start address
The start address of the buffer for writing input data.

<Example>
To read one byte of data from the file "sample.src":

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4

Start address of input buffer

150MSB

+0

+2

+4

+6

8

Return value File number

Unused

183

TRAP_ADDRESS

CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’01270000
PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM:
FGETC_BUF .RES.B 2

.RES.W 1

.DATA.L INBUF
INBUF .RES.B

.END

2-4 FPUTC

<Function>
Outputs one byte to a file.

<Function code>
H'28

<Parameter block>

• Return value (output)
0: Normal termination

–1: Error

• File number (input)
The number returned when the file was opened.

Start address of output buffer

150MSB

+0

+2

+4

+6

8

Return value File number

Unused

184

TRAP_ADDRESS

• Output buffer start address
The start address of the buffer used to hold the output data.

185

TRAP_ADDRESS

<Example>
To output one byte of data (the character 'A') to the file "sample.src":

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR.DATA.L SYS_CALL
REQ_COD .DATA.L H’01280000
PAR_ADR .DATA.L PARM
FNUM_ADR.DATA.L FNUM
PARM:
FPUTC_BUF.RES.B 2

.RES.W 1

.DATA.L OUTDATA
OUTDATA .DATA.B "A"

.END

186

TRAP_ADDRESS

2-5 FGETS

<Function>
Reads in character string data from a file. Data is read in until either a newline code or a
NULL code is read, or until the buffer is full.
A NULL code is appended to the end of the character string read from the file.

<Function code>
H'29

<Parameter block>

• Return value (output)
0: Normal termination

–1: EOF detected

• File number (input)
The number returned when the file was opened.

• Buffer size (input)
The size of the area for storing data. A maximum of 256 bytes can be stored.

• Input buffer start address (input)
The start address of the buffer for storing input data.

Start address of input buffer

150MSB

+0

+2

+4

+6

8

Return value File number

Buffer size

187

TRAP_ADDRESS

<Example>
To read character string data from the file "sample.src":

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’01290000
PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM .RES.B 2

.DATA.W 256

.DATA.L INBUF
OUTDATA .RES.B 256

.END

2-6 FPUTS

<Function>
Writes character string data to a file.
The NULL character terminating the character string is not written to the file.

<Function code>
H'2A

188

TRAP_ADDRESS

<Parameter block>

• Return value (output)
0: Normal termination

–1: Error

• File number (input)
The number returned when the file was opened.

• Output buffer start address (input)
The start address of the buffer used to hold the output data.

Start address of output buffer

150MSB

+0

+2

+4

+6

8

Return value File number

Unused

189

TRAP_ADDRESS

<Example>
To write the character string "Hello world" the file "sample.src":

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’012A0000
PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM:
FPUTS_BUF .RES.B 2

.RES.W 1

.DATA.L OUTDATA
OUTDATA .SDATA "Hollow world"

.DATA.B 0

.END

190

TRAP_ADDRESS

2-7 FEOF

<Function>
Checks for end of file.

<Function code>
H'0B

<Parameter block>

• Return value (output)
0: File pointer is not at EOF.

–1: EOF detected.

• File number (input)
The number returned when the file was opened.

<Example>
To test the file "sample.src" for EOF:

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’010B0000

150MSB

+0

8

Return value File number

191

TRAP_ADDRESS

PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM:
FEOF_BUF .RES.B 2

.END

2-8 FSEEK

<Function>
Moves the file pointer to the specified position.

<Function code>
H'0C

<Parameter block>

• Return value (output)
0: Normal termination

–1: Error

• File number (input)
The number returned when the file was opened.

• Direction (input)
0: The offset specifies the position as a byte count from the start of the file.
1: The offset specifies the position as an offset from the current file pointer.
2: The offset specifies the position as a byte count from the end of the file.

• Offset (input)

Offset (lower word)

150MSB

+0

+2

+4

+6

8

Return value

Direction

File number

Unused

Offset (upper word)

192

TRAP_ADDRESS

The byte count to be interpreted as specified by the direction parameter.

193

TYPE

5.45 TYPE

TY

Displays variable value

<Example>
To move the file pointer in "sample.src" to the H'100th byte from the start of the file:

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’010C0000
PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM:
FSEEK_BUF .RES.B 2

.DATA.B 0

.RES.B 1

.DATA.W 0

.DATA.W H’100

.END

194

TYPE

2-9 FTELL

<Function>
Returns the current position of the file pointer.

<Function code>
H'0D

<Parameter block>

Offset (upper word)

Offset (lower word)

150MSB

+0

+2

+4

+6

8

Return value File number

Unused

195

VECTOR

5.46 VECTOR

V

Executes from an interrupt vector address

• Return value (output)
0: Normal termination

–1: Error

• File number (input)
The value returned when the file was opened.

• Offset (output)
The current position of the file pointer, as a byte count from the start of the file.

<Example>
To determine the current position of the file pointer in the file "sample.src":

.IMPORT FNUM
MOV.L PAR_ADR,R1
MOV.L REQ_COD,R0
MOV.L CALL_ADR,R3
MOV.L FNUM_ADR,R2
MOV.B @R2,R4
MOV.L PAR_ADR,R2
ADD.L #01,R2
MOV.B R4,@R2
JSR @R3
NOP

STOP NOP
SYS_CALL NOP

.ALIGN 4
CALL_ADR .DATA.L SYS_CALL
REQ_COD .DATA.L H’010D0000
PAR_ADR .DATA.L PARM
FNUM_ADR .DATA.L FNUM
PARM:
FTELL_BUF .RES.B 2

.RES.W 1

.RES.W 2

.END

196

VECTOR

Format

TYPE˘<variable>[;{B|Q|D|H|A}] (RET)

Parameters

• <variable>
Specifies the variable whose value is to be displayed.

• Options

— Display format specifier {B|Q|D|H|A}
B : Display in binary.
Q : Display in octal.
D : Display in decimal.
H : Display in hexadecimal.
A : Display as an ASCII character.

Function

Displays the value of the specified variable in the specified format.

When the display format specification is omitted, pointer variables are displayed in hexadecimal,
character variables are displayed in ASCII, and other variables are displayed in decimal. However,
a period is displayed for character variables with values that cannot be displayed.

197

.<register>

5.47 .<register> Modifies register content

Examples

1. To display the value of the variable "abc" in hexadecimal:

: TY abc ;H (RET)
abc 100F
:

2. To display the value of the variable "xyz". Since the display format specifier is omitted, the
value is displayed in decimal:

: TY xyz (RET)
xyz 14770
:

3. To display the value of the static variable "efg":

: TY %file.c!efg (RET)
%file.c!efg 32768
:

198

.<register>

Format

VECTOR˘<vector number> (RET)

Parameters

• <vector number>
Specifies the interrupt vector number.

Function

Generates the vector address from the vector number and starts exception processing from the
contents of the vector address.

(1) The current PC and SR are saved on the stack.
(2) The vector address is generated from the vector number and exception processing is

initiated from the contents of the vector address.

Description

1. This command is used to test the operation of exception handlers when exceptions occur.

2. The terminating conditions are the same as those for the GO, STEP, and STEP_INTO, CALL
commands.

3. H'0 to H'FF can be specified as the vector number.

Notes

1. When the content of the vector area memory address is H'0, execution halts after steps (1) and
(2).

2. There are cases where the range of vector numbers that can be specified in the
simulator/debugger differs from the range that can be specified with the actual CPU.

199

!

5.48 ! Invokes sub-process

Example

To start execution at the address specified in vector number 1:

: VECTOR 1 (RET)

Exec Instructions = 159

PC=0000014A SR=00000000:**********************------**-- SP=0FF00000

GBR=00000000 VBR=00000000 MACH=00000000 MACL=00000000 PR=00000000

R0-7 00000000 00000000 00000000 0000000A 00000000 00000000 00000000 00000000

R8-15 00000000 00000000 00000000 00000000 00000000 00000000 0FF00000 0FF00000

00000148 MOV.L R7,R6

BREAK POINT

:

200

!

Part II CPU Information Analysis Program

Section 1 Creating the CPU Information

The simulator/debugger uses a CPU information file to load segments according to the memory
map for the corresponding SH series CPU and to assure that segments are not loaded crossing
memory type boundaries. The CPU information file is created using the CIA (CPU information
analysis) program. Note that the H-series linkage editor can also use the CPU information file to
check segment allocation. Refer to the H-Series Linkage Editor User’s Manual for details.

1.1 CIA Functions

The CIA program provides the following three functions.

1. CPU information file creation
Produces the CPU memory map information file for the SH-series CPU used.

2. CPU information file display
Allows the contents of the generated CPU information file to be checked.

3. CPU information file editing (deletion/addition)
Allows the contents of the generated CPU information file to be modified by deletion or
addition.

1.2 Invoking the CIA Program

The format of the command line used to invoke the CIA program is shown below.

% cia˘<CPU information file name> (RET)
1 2

SH SERIES CIA Ver. 1.1 (HS0700CICU1SM)
Copyright (C) Hitachi, Ltd. 1992

Licensed Material of Hitachi, Ltd.

1 The CIA invocation command.

2 Either an existent or a new CPU information file can be specified. When an existent CPU
information file is specified, the program requests the input of a name for the output CPU
information file. If the extension is omitted, the extension ".cpu" is supplied.

203

1.3 CIA Usage Procedures and Selection Menus

Figure 1-1 shows the procedure used with the CIA program.

Figure 1-1 CIA Usage Procedure

1. The following is presented as a CPU information menu.

1: SH 7000

• When '1' (SH 7000) is selected, the SH 7000 is specified.

CIA program invocation

CPU selection

Bit size and comment input processing

Memory map specification processing

Editing

CIA termination

(Continue)

(Continue)

' . ' (Exit)

' . ' (Exit)

(1)

(2)

(3)

(4)

204

2. Bit size and comment input

The bit size specifies the number of bits in addresses in the memory map, and thus defines the
settable range. For example, if a bit size of 28 is specified, locations from H'0 to H'FFFFFFF
can be used, and if a bit size of 32 is specified, locations from H'0 to H'FFFFFFFF can be
used.

A comment can be specified to identify the CPU information. A comment of up to 127
characters can be specified.

The bit size and comment are only input when creating a new CPU information file. The CIA
procedure starts with step (4), Editing, when an existent CPU information file is specified.

3. Memory map specification

The following options are presented as a CPU information input menu. Memory map
specification is iterated until a period (the exit command) is specified.

0: ROM 1: EXTERNAL 2: RAM 3: I/O .: END

• Options 0 to 3 specify a memory type, and each time one of these options is selected, the
system prompts for the start address, the end address, the number of states, and the data
bus width.

• When a period ('.') is entered, the memory map setup menu processing terminates.

4. Editing

The following options are presented as a CPU information editing menu.

1: ADD 2: DELETE 3: COMMENT 4: CIA ABORT .: CIA END

• When '1' (ADD) is selected, the memory map specification of step (3) is performed.

• When '2' (DELETE) is selected, the system prompts (by index number) for input of an
address range to be deleted.

• When '3' (COMMENT) is selected, the system inputs a new comment line.

• When '4' (CIA ABORT) is selected, CIA processing is terminated without saving the CPU
information file.

• When '.' (CIA END) is selected, the system writes out the memory map information to the
CPU information file and completes CIA processing normally.

205

1.4 CIA Sample Sessions

This section presents two sample CIA sessions. The underlined sections are user inputs.

1. Creating a new CPU information file for the SH 7000 (mode 0).

% cia shmode0.cpu (RET) ← 1

SH SERIES CIA Ver. 1.1 (HS0700CICU1SM)

Copyright (C) Hitachi, Ltd. 1992

Licensed Material of Hitachi, Ltd.

*** NEW FILE ***

*** CPU MENU ***

1:SH 7000

? 1 (RET) ← 2
BIT SIZE 32 ? :32 (RET) ← 3
COMMENT? :’93.01.25 SH SAMPLE (RET) ← 4

*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? 1 (RET)← 5
* EXTERNAL START ADDRESS? 00000000 (RET)

← 6
END ADDRESS? 00FFFFFF (RET)

← 7
STATE COUNT ? 3 (RET)←

8
DATA BUS SIZE ? 8 (RET)←

9
* EXTERNAL START ADDRESS? 01000000 (RET)

END ADDRESS? 04FFFFFF (RET)

STATE COUNT ? 2 (RET)

DATA BUS SIZE ? 8 (RET)

* EXTERNAL START ADDRESS? . (RET)←
0
*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? 3 (RET)

* I/O AREA START ADDRESS? 05000000 (RET)

END ADDRESS? 05FFFFFF (RET)

STATE COUNT ? 3 (RET)

DATA BUS SIZE ? 8 (RET)

206

* I/O AREA START ADDRESS? . (RET)

207

*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? 1 (RET)

* EXTERNAL START ADDRESS? 06000000 (RET)

END ADDRESS? 07FFFFFF (RET)

STATE COUNT ? 3 (RET)

DATA BUS SIZE ? 8 (RET)

* EXTERNAL START ADDRESS? . (RET)

*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? 2 (RET)

* RAM AREA START ADDRESS? 0F000000 (RET)

END ADDRESS? 0FFFFFFF (RET)

STATE COUNT ? 1 (RET)

DATA BUS SIZE ? 32 (RET)

* RAM AREA START ADDRESS? . (RET)

*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? . (RET) ← q
***** CPU INFORMATION *****

CPU : SH 7000← (a)

’93.01.25 SH SAMPLE ← (b)

BIT SIZE : 32← (c)

No Device Start End State Bus

1 : EXTERNAL : 00000000 - 00FFFFFF 3 8

2 : EXTERNAL : 01000000 - 04FFFFFF 2 8

3 : I/O AREA : 05000000 - 05FFFFFF 3 8

4 : EXTERNAL : 06000000 - 07FFFFFF 3 8

5 : RAM AREA : 0F000000 - 0FFFFFFF 1 32

(d) (e) (f) (g) (h) (i)

** EDIT MENU **

1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

? . (RET) ← w
*** CIA COMPLETED ***

%

Description:

1 The name of a new CPU information file is specified when the CIA program is invoked.
2 This item specifies the CPU type.
3 The bit size is specified in decimal. The displayed default is taken if the specification is

omitted.

208

4 This line is a comment. The comment field is left blank if this line is omitted. If more than
127 characters are entered, a warning message is displayed and the characters following the
first 127 are ignored.

5 The memory type is entered as a number corresponding to the input menu.
6 The start address of the corresponding memory area is entered in hexadecimal.
7 The end address of the corresponding memory area is entered in hexadecimal.
8 The number of states for the corresponding memory area is entered in decimal.
9 The data bus width for the corresponding memory area is entered in decimal.
0 Data entry for the corresponding memory area is terminated with a period ('.').
q The edit menu is automatically displayed when the input menu is terminated.

(a) The CPU type specified in item 2
(b) The comment entered in item 4
(c) The bit size specified in item 3
(d) The map number
(e) The memory type specified in item 5
(f) The start address specified in item 6
(g) The end address specified in item 7
(h) The number of states specified in item 8
(i) The data bus width specified in item 9

w This input terminates CIA processing normally. The memory map data is written to the file
specified when the CIA program was invoked.

209

2. A sample session in which an SH 7000 CPU information file is edited
Mode 0 is changed to mode 2 in this session.

% cia shmode0.cpu (RET)← 1

SH SERIES CIA Ver. 1.1 (HS0700CICU1SM)

Copyright (C) Hitachi, Ltd. 1992

Licensed Material of Hitachi, Ltd.

*** OLD FILE ***

NEW CPU FILE NAME? shmode2 (RET) ← 2

***** CPU INFORMATION *****

CPU : SH 7000

’93.01.25 SH SAMPLE

BIT SIZE : 32

No Device Start End State Bus

1 : EXTERNAL : 00000000 - 00FFFFFF 3 8

2 : EXTERNAL : 01000000 - 04FFFFFF 2 8

3 : I/O AREA : 05000000 - 05FFFFFF 3 8

4 : EXTERNAL : 06000000 - 07FFFFFF 3 8

5 : RAM AREA : 0F000000 - 0FFFFFFF 1 32

** EDIT MENU **

1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

? 2 (RET) ← 3
DELETE MAP NUMBER? 1 (RET)← 4

***** CPU INFORMATION *****

CPU : SH 7000

’93.01.25 SH SAMPLE

BIT SIZE : 32

No Device Start End State Bus

1 : EXTERNAL : 01000000 - 04FFFFFF 2 8

2 : I/O AREA : 05000000 - 05FFFFFF 3 8

3 : EXTERNAL : 06000000 - 07FFFFFF 3 8

4 : RAM AREA : 0F000000 - 0FFFFFFF 1 32

210

** EDIT MENU **

1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

? 1 (RET) ← 5

*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? 0 (RET)← 6
* ROM AREA START ADDRESS? 00000000 (RET)

END ADDRESS? 00FFFFFF (RET)

STATE COUNT ? 1 (RET)

DATA BUS SIZE ? 32 (RET)

* ROM AREA START ADDRESS? . (RET)

*** MAP MENU ***

0:ROM 1:EXTERNAL 2:RAM 3:I/O .:END

? . (RET)

***** CPU INFORMATION *****

CPU : SH 7000

’93.01.25 SH SAMPLE

BIT SIZE : 32

No Device Start End State Bus

1 : ROM AREA : 00000000 - 00FFFFFF 1 32

2 : EXTERNAL : 01000000 - 04FFFFFF 2 8

3 : I/O AREA : 05000000 - 05FFFFFF 3 8

4 : EXTERNAL : 06000000 - 07FFFFFF 3 8

5 : RAM AREA : 0F000000 - 0FFFFFFF 1 32

** EDIT MENU **

1:ADD 2:DELETE 3:COMMENT 4:CIA ABORT .:CIA END

? . (RET)

*** CIA COMPLETED ***

%

Description:

1 The name of the file to be edited is specified when the CIA program is invoked. ".cpu" is
supplied if the extension is omitted.

2 This item specifies a new file to be created when editing is done. If only (RET) is entered, the
data will be output to the file specified in item 1 . If only the extension is omitted, ".cpu" will
be supplied. The map data is automatically displayed.

3 "DELETE" is specified to delete information to be changed in the edit menu.

211

4 The information to be deleted is specified as a map number. The state of the map information
after the deletion is displayed.

5 “ADD” is specified to input the changed information.
6 The input menu is displayed, and the memory type is entered in the same manner as that used

when creating a new CPU information file. The state of the map information after the
addition is displayed.

1.5 CIA Limitations

Table 1-1 lists the limitations on data specified using the CIA program. The CIA program cannot
handle values which exceed these limitations.

Table 1-1 CIA Limitations

Item Limitation Value Notes

Input file format • CPU information files
output by the SH CIA

Bit size • Only values specified
in decimal

• The specifiable range is
from 24 to 32

Address specifications • Only values specified in The range is from H'0
hexadecimal to H'FFFFFF when the

• The specifiable range bit size is 24.
depends on the bit size

Number of states • Only values specified in Specify the number of
decimal states including the wait

• The specifiable range is states when wait states
from 1 to 65535 are inserted.

Data bus width • Only values specified in
decimal

• The specifiable values are
multiples of 8 between 8 and
65528

Comment length • Up to 127 characters

Number of map • Up to 65535 items Note that there may be
information items limitations imposed by

the memory capacity of
the system on which the
CIA program is running.
Invalid regions are also
included in the number
of items.

212

213

Appendix A Differences between Line Assemble Command
and SH-Series Cross Assembler Syntax

Table A-1 lists the differences between the syntax of the SH-series cross assembler and the syntax
of the simulator/debugger line assembly function.

Table A-1 Differences between Line Assemble Command and SH-Series Cross Assembler
Syntax

Item Line Assemble Command SH-Series Cross Assembler

Location counter Not allowed Allowed
reference Example:

MOV.L @(H'100-$,R0),R1

Use of the '-' Not allowed Allowed
character to Example: Example:
represent unitary Use 0-10 to specify -10, The notation -10
negation e.g. MOV.L #0-10,R0 can be used,

e.g. MOV.L #-H'10,R0

Use of control Allowed in .DATA only Allowed
directives

Label definition Not allowed Allowed

Data value Hexadecimal Decimal
default radix

Handling of These instructions are errors, Code is generated.
instructions that and no code is generated.
generate warnings
with the SH assembler.

An instruction following Code is generated. An error occurs and
a delay branch During simulation, no code is generated.
instruction is exception processing
branch instruction. starts.
(Invalid slot Instruction)

215

Appendix B SH-Series Assembler Mnemonics

Table B-1 lists the mnemonics that can be used with the simulator/debugger’s line assemble
commands.

Table B-1 Assembler Mnemonics Recognized by the Line Assemble Command

Type Instruction Number of Instructions

Data transfer MOV, MOVA, MOVT, SWAP, XTRCT 5

Arithmetic ADD, ADDC, ADDV, CPM/cond, 17
operation DIV1, DIV0S, DIV0U, EXTS,

EXTU, MAC, MULS, MULU, NEG,
NEGC, SUB, SUBC, SUBV

Logic operation AND, NOT, OR, TAS, TAT, XOR 6

Shift and rotate ROTL, ROTR, ROTCL, ROTCR, 10
SHAL, SHAR, SHLL, SHLR,
SHLLn, SHLRn

Branch, jump, BF, BT, BRA, BSR, JMP, JSR, 7
and return RTS

Privileged and CLRT, CLRMAC, LDC, LDS, NOP, 11
control register RTE, SETT, SLEEP, STC, STS,
manipulations TRAPA

216

Appendix C SH-Series Memory Maps

Table C-1 shows the SH7000 memory maps.

217

Mode 0
(Extended mode without ROM)

H'0x00000–
H'0x003FF

H'1x00000

H'5x00000

H'6x00000

H'8x00000

H'9x00000

H'Fx00000

H'FxFFFFF

Notes:

Table C-1 SH7000 Memory Map

1.
2.
3.
4.

The example in section 1.4.1, CPU Information File Creation Program, uses mode 0 (extended mode without ROM).
The example in section 1.4.2, CPU Information File Creation Program, uses mode 2 (extended mode with ROM).
In the SH-series, external bus spaces do not coexist with the same/csn (chip select pins).
Two internal ROM areas exist in modes 2 and 7 are actually the same area in the SH-series.

Internal RAM area
(Bus witdth: 32 bits)

External bus area/
cs1–cs6
(Bus width: 16 bits)

External bus area/cs0
(Bus width: 8/16 bits)

External bus area/cs0
(Bus width: 8 bits)

Vector area

External bus area/
cs6 and cs7
(Bus width: 8/16 bits)

External bus area/
cs1–cs4
(Bus width: 8 bits)

Internal I/O area
(Bus width: 8/16 bits)

Mode 1
(Extended mode without ROM)

H'0x00000–
H'0x003FF

H'1x00000

H'5x00000

H'6x00000

H'8x00000

H'9x00000

H'Fx00000

H'FxFFFFF

Internal RAM area
(Bus witdth: 32 bits)

External bus area/
cs1–cs6
(Bus width: 16 bits)

External bus area/cs0
(Bus width: 16 bits)

External bus area/cs0
(Bus width: 16 bits)

Vector area

External bus area/
cs6 and cs7
(Bus width: 8/16 bits)

External bus area/
cs1–cs4
(Bus width: 8 bits)

Internal I/O area
(Bus width: 8/16 bits)

Mode 2
(Extended mode with ROM)

H'0x00000–
H'0x003FF

H'1x00000

H'5x00000

H'6x00000

H'8x00000

H'9x00000

H'Fx00000

H'FxFFFFF

Internal RAM area
(Bus witdth: 32 bits)

External bus area/
cs1–cs6
(Bus width: 16 bits)

Internal bus area
(Bus width: 32 bits)

External bus area/cs0
(Bus width: 32 bits)

Vector area

External bus area/
cs6 and cs7
(Bus width: 8/16 bits)

External bus area/
cs1–cs4
(Bus width: 8 bits)

Internal I/O area
(Bus width: 8/16 bits)

Mode 7
(PROM mode)

H'0x00000–
H'0x003FF

H'1x00000

H'5x00000

H'6x00000

H'8x00000

H'9x00000

H'Fx00000

H'FxFFFFF

Internal RAM area
(Bus witdth: 32 bits)

Internal ROM area
(Bus width: 32 bits)

Internal ROM area
(Bus width: 32 bits)

Vector area

Internal I/O area
(Bus width: 8/16 bits)

M
o

d
e

0
(E

xt
en

d
ed

 m
o

d
e

w
it

h
o

u
t

R
O

M
)

H
'0

x0
00

00
–

H
'0

x0
03

F
F

H
'1

x0
00

00

H
'5

x0
00

00

H
'6

x0
00

00

H
'8

x0
00

00

H
'9

x0
00

00

H
'F

x0
00

00

H
'F

xF
F

F
F

F

N
ot

es
:

T
ab

le
 C

-1

SH
70

00
 M

em
or

y
M

ap

1.

2.

3.

4.

T
he

 e
xa

m
pl

e
in

 s
ec

tio
n

1.
4.

1,
 C

P
U

 In
fo

rm
at

io
n

F
ile

 C
re

at
io

n
P

ro
gr

am
, u

se
s

m
od

e
0

(e
xt

en
de

d
m

od
e

w
ith

ou
t R

O
M

).

T
he

 e
xa

m
pl

e
in

 s
ec

tio
n

1.
4.

2,
 C

P
U

 In
fo

rm
at

io
n

F
ile

 C
re

at
io

n
P

ro
gr

am
, u

se
s

m
od

e
2

(e
xt

en
de

d
m

od
e

w
ith

 R
O

M
).

In

 th
e

S
H

-s
er

ie
s,

 e
xt

er
na

l b
us

 s
pa

ce
s

do
 n

ot
 c

oe
xi

st
 w

ith
 th

e
sa

m
e/

cs
n

(c
hi

p
se

le
ct

 p
in

s)
.

T
w

o
in

te
rn

al
 R

O
M

 a
re

as
 e

xi
st

 in
 m

od
es

 2
 a

nd
 7

 a
re

 a
ct

ua
lly

 th
e

sa
m

e
ar

ea
 in

 th
e

S
H

-s
er

ie
s.

In
te

rn
al

 R
A

M
 a

re
a

(B
us

 w
itd

th
: 3

2
bi

ts
)

E
xt

er
na

l b
us

 a
re

a/

cs
1–

cs
6

(B
us

 w
id

th
: 1

6
bi

ts
)

E
xt

er
na

l b
us

 a
re

a/
cs

0
(B

us
 w

id
th

: 8
/1

6
bi

ts
)

E
xt

er
na

l b
us

 a
re

a/
cs

0
(B

us
 w

id
th

: 8
 b

its
)

V
ec

to
r

ar
ea

E
xt

er
na

l b
us

 a
re

a/

cs
6

an
d

cs
7

(B
us

 w
id

th
: 8

/1
6

bi
ts

)

E
xt

er
na

l b
us

 a
re

a/

cs
1–

cs
4

(B
us

 w
id

th
: 8

 b
its

)

In
te

rn
al

 I/
O

 a
re

a
(B

us
 w

id
th

: 8
/1

6
bi

ts
)

M
o

d
e

1
(E

xt
en

d
ed

 m
o

d
e

w
it

h
o

u
t

R
O

M
)

H
'0

x0
00

00
–

H
'0

x0
03

F
F

H
'1

x0
00

00

H
'5

x0
00

00

H
'6

x0
00

00

H
'8

x0
00

00

H
'9

x0
00

00

H
'F

x0
00

00

H
'F

xF
F

F
F

F

In
te

rn
al

 R
A

M
 a

re
a

(B
us

 w
itd

th
: 3

2
bi

ts
)

E
xt

er
na

l b
us

 a
re

a/

cs
1–

cs
6

(B
us

 w
id

th
: 1

6
bi

ts
)

E
xt

er
na

l b
us

 a
re

a/
cs

0
(B

us
 w

id
th

: 1
6

bi
ts

)

E
xt

er
na

l b
us

 a
re

a/
cs

0
(B

us
 w

id
th

: 1
6

bi
ts

)

V
ec

to
r

ar
ea

E
xt

er
na

l b
us

 a
re

a/

cs
6

an
d

cs
7

(B
us

 w
id

th
: 8

/1
6

bi
ts

)

E
xt

er
na

l b
us

 a
re

a/

cs
1–

cs
4

(B
us

 w
id

th
: 8

 b
its

)

In
te

rn
al

 I/
O

 a
re

a
(B

us
 w

id
th

: 8
/1

6
bi

ts
)

M
o

d
e

2
(E

xt
en

d
ed

 m
o

d
e

w
it

h
 R

O
M

)

H
'0

x0
00

00
–

H
'0

x0
03

F
F

H
'1

x0
00

00

H
'5

x0
00

00

H
'6

x0
00

00

H
'8

x0
00

00

H
'9

x0
00

00

H
'F

x0
00

00

H
'F

xF
F

F
F

F

In
te

rn
al

 R
A

M
 a

re
a

(B
us

 w
itd

th
: 3

2
bi

ts
)

E
xt

er
na

l b
us

 a
re

a/

cs
1–

cs
6

(B
us

 w
id

th
: 1

6
bi

ts
)

In
te

rn
al

 b
us

 a
re

a
(B

us
 w

id
th

: 3
2

bi
ts

)

E
xt

er
na

l b
us

 a
re

a/
cs

0
(B

us
 w

id
th

: 3
2

bi
ts

)

V
ec

to
r

ar
ea

E
xt

er
na

l b
us

 a
re

a/

cs
6

an
d

cs
7

(B
us

 w
id

th
: 8

/1
6

bi
ts

)

E
xt

er
na

l b
us

 a
re

a/

cs
1–

cs
4

(B
us

 w
id

th
: 8

 b
its

)

In
te

rn
al

 I/
O

 a
re

a
(B

us
 w

id
th

: 8
/1

6
bi

ts
)

M
o

d
e

7
(P

R
O

M
 m

o
d

e)

H
'0

x0
00

00
–

H
'0

x0
03

F
F

H
'1

x0
00

00

H
'5

x0
00

00

H
'6

x0
00

00

H
'8

x0
00

00

H
'9

x0
00

00

H
'F

x0
00

00

H
'F

xF
F

F
F

F

In
te

rn
al

 R
A

M
 a

re
a

(B
us

 w
itd

th
: 3

2
bi

ts
)

In
te

rn
al

 R
O

M
 a

re
a

(B
us

 w
id

th
: 3

2
bi

ts
)

In
te

rn
al

 R
O

M
 a

re
a

(B
us

 w
id

th
: 3

2
bi

ts
)

V
ec

to
r

ar
ea

In
te

rn
al

 I/
O

 a
re

a
(B

us
 w

id
th

: 8
/1

6
bi

ts
)

218

Appendix D Sample Programs
/***************************************/
/** FILE NAME IS sample.c **/
/***************************************/
#include "stdio.h"
struct rec_ctl {

short rec_it;
short rec_ln;
short rec_no;
struct rec_ctl *rec_nx;
};

short Print_rec(void);
void Read_rec(void);
void Bin_ascii(char *p);
void Ph_read(char *bp);
/*--*/
/* ASSEMBLER I/O SIMULATION SUBROUTINES. */
/*--*/
extern short F_open(char *name, char *mode, short f_id);
extern short F_close(short f_id);
extern short Read(char *p);
extern void Write(char *p);
extern short F_read(short f_id char *p);

struct rec_ctl rec_v0[1000];
short stop_f, phg_pos, phg_lng, rec_num, nxt_f, l_rec_no;
char log_rec[512], phg_rec[1024];
char l_buf[30] = "--------------------¥n";
char f_name[80];
short f_id;
short f_no;

void main()
{

/*: Make the file name prompt. ---*/
Write("File Name please.");
Read(f_name);

/*: Try to open INPUT file._--*/
/*: “F_open” will return 0 n : successful. The number is file ID. ----*/
/*: -1 : open failed. --------------------------*/
f_no = (short)0;
f_id == F_open(f_name, “rt”, f_no);

/*: Initialization. --*/
stop_f = (shortt)0; /*: Loop control. */
phg_pos = (shortt)-1; /*: Record extract index. (-1 = No data) */
nxt_f = (shortt)0; /*: EOF marker. */
l_rec_no = (shortt)0; /*: Record counter. */

/*:---*/
/*: Loop of record read/print process. */
/*: “Print_rec” will return 1 when ending data had been processed. */

219

/*:---*/
while (stop_f == 0)
{
stop_f = Print_rec();
}

/*: Completed. Close and exit. ---*/
/*: “F_close” will return 0 : successful. ------------------------------*/
/*: 1 : unsuccessful. ----------------------------*/
F_close(f_no);
}

/*:---*/
/*: Name : Printf_rec; Read and print records. */
/*: Func : Read and printf 1 logical record. */
/*:---*/
short Print_rec()
{
short wi, put_pos, rec_pos, rec_lng, rtncd;
char hex_buf[100], asc_buf[100],

l_char, r_char, il_char, ir_char, *hx_p;

/*: Read 1 record. “Read_rec” sets the data to "log_rec" array. --------*/
Read-rec();

/*: Save Record IT (ID), Length, and record number. --------------------*/
rec_v0[1_rec_no].rec_it = (char)(0x7f & log_rec[0]);
rec_v0[1_rec_no].rec_ln = (unsigned char)log_rec[l];
rec_v0[1_rec_no].rec_no = rec_num;

/*: Make IT characters. --*/
il_char = (char)(rec_v0[l_rec_no].rec_it >> 4);
ir_char = (char)(rec_v0[1_rec_no].rec_it & 0x0f);
Bin_ascii(&il_char);
Bin_ascii(&ir_char);

/*: Make record length characters. -------------------------------------*/
l_buf[15] = il_char;
l_buf[16] = ir_char;

/*: Print header. IT and length. ---------------------------------------*/
Write(l_buf);

/*: Ending record check. Ending record IT is 0x7F. ---------------------*/
if (rec_v0[1_rec_no}.rec_it == (char)0x7f)
{
rtncd = (short)l;
return (rtncd);
}

/*: Not a endinf record. Edit and print each 16 bytes. -----------------*/
rec_lng = (short)(

rec_v0[l_rec_no].rec_ln - (short)2); /*: length adjust. */
rec_pos = (short)2; /*: data position. */
for (wi = (short)0; wi < (short)36;

hex_buf[wi++] = (char)0x20); /*: buffer initial */
for (wi = (short)0; wi < (short)16;

asc_buf[wi++] = (char)0x20); /*: clear. */
hx_p = &hex_buf[0]; /*: */
put_pos = (short)0; /*: 1 line position. */

220

/*:---*/
/*: Edit and print loop. */
/*:---*/

while (rec_lng > 0)
{
if (put_pos == 16)
{

/*: buffer full with 16 bytes. print them via asm- I/O simulation. */
hex_buf[36] = (char)0x00; /*: Terminal NULL. */
asc_buf[16] = (char)0x0a; /*: Terminal LF and */
asc_buf[17] = (char)0x00; /*: NULL */
Write(hex_buf);
Write(" ");
Write(asc_buf);

/*: Re-initialization. ---*/
for (wi = (short)0; wi < (short)36; hex_buf[wi++] = (char)0x20);
for (wi = (short)0; wi < (short)16; asc_buf[wi++] = (char)0x20);
hx_p = &hex_buf[0];
put_pos = (short)0;
}

/*: Set 1 byte data. Hex-dump and ASCII image. -------------------------*/
1_char = (char)(log_rec[rec_pos] >> 4);
r_char = (char)(log_rec[rec_pos] & (char)0x0f);

/*: HEX-dump. --*/
Bin_ascii(&1_char);
Bin_ascii(&r_char);
*hx_p++ = 1_char;
*hx_p++ = r_char;
if ((put_pos % 4) == 3) /*: space gap for 4-bytes */
{
*hx_p++ = ' ';
}

/*: ASCII image.--*/
if (log_rec[rec_pos] >= 0x7f || log_rec[rec_pos] <= 0xlf)
{
asc_buf[put_pos] = (chart) '.';
}

else
{
asc_buf[put_pos] = log_rec[rec_pos];
}

/*: pointer increment and counter decrement. ---------------------------*/
put_pos++;
rec_pos++;
rec_lng—;
}

/*: Final printf. --*/
hex_buf[36] = (chart)0x00;
asc_buf[16] = (chart)0x0a;
asc_buf[17] = (chart)0x00;
Write(hex_buf);
Write(" ");
Write(asc_buf);

/*: Increment the record number for next read. -------------------------*/
1_rec_no++;
rtncd = (short)0;

221

return (rtncd);
}

/*:---*/
/*: Name : Read_rec; Read 1 logical record. */
/*: Func : Read 1 logical from physical record buffer. */
/*:---*/
void Read_rec()
{
short wi;

/*: Initial record reading check. --------------------------------------*/
if (phg_pos == -1)
{
Ph_read(phg_rec); /*: First 256 bytes. */
Ph_read(phg_rec+256); /*: first spare 256 bytes. */
phg_pos = (short)0; /*: Index initialize. */
rec_num = (short)0; /*: physical record number initialize. */
}

/*: Top of data. It is the record length. ------------------------------*/
phg_lng = phg_rec[phg_pos + 1];
if (phg_lng < 0)
{
phg_lng += 256; /*: Adjust to unsigned char. */
}

/*: Record extracting loop. --*/
wi = (short)0;
while (wi <phg_lng)
{
log_rec[wi++] = phg_rec[phg_pos++];
}

/*: physical record buffer arranging. ----------------------------------*/
if (phg_pos > 255)
{

/*: Set spare 256 bytes to normal extracting area. ---------------------*/
for (wi = 0; wi < (short)256; wi++)
{
phg_rec[wi] = phg_rec[wi + 256];
}

/*: Read next spare 256 bytes. ---*/
Ph_read(&phg_rec[256]);
phg_pos -= 256;
rec_num++;
}

}

/*:---*/
/*: Name : Bin_ascii; Binary —> ASCII conver. */
/*: Func : Convert 4 bit binary data to 1 ASCII character. */
/*:---*/
void Bin_ascii(p)
char *p;
{

if (*p >= (char)0x0a)
{

222

p += (char)((char)0x41 - (char)0x0a); /: 'A' - 'F' */
}

else
{
p += (char)0x30; /: '0' - '9' */
}

}

/*:---*/
/*: Name : Ph_read; physical 256 bytes read. */
/*: Func : Read 256 bytes via ASM I/O simulation subroutine. */
/*:---*/
void Ph_read(bp)
char *bp;
{

char pb[256], *pp;
short pi, pj, pcl, pcr, f_no ;

/*: Read loop. "F_read" reads 16 bytes data as 1 line INPUT. -----------*/
f_no = (short)0;
if (F_read(0, bp) != 0)
{

/*: Data less than 256 byte block. -------------------------------------*/
if (F_close(0) != 0)
{
Write("ALSO, CLOSE failed.¥n");
}

nxt_f = (short)1;
}

}

223

;**
;* SAMPLE OF SD38 I/O SIMULATION. FILE NAME IS PROG.SRC *
;* THIS PROGRAM IS DESIGNATED FOR SH........................*
;**

.EXPORT TRAP

.EXPORT _Read,_Write

.EXPORT _F_open,_F_close,_F_read
;--
; 1 LINE READ FROM CONSOLE-
;--
_Read:
;--
; REGISTER SAVING.

STS.L PR,@_R15; SAVE PR
;--
; PARAMETER BLOCK SETTING.

MOV.L R4,R0 ; INPUT AREA ADDRESS (ARGUMENT_1 =
R4)

MOV.L PARM_1,R1 ; PARAMETER ARER ADRESS
MOV.LP0, @R1 ; SET

;--
; GO TRAP.

MOV.L REQ_CD_1,R0 ; REQUEST CODE
MOV.L TRP_AD_1,R3 ; TRAP ADDRESS SET
JSR @R3 ; GO TRAP! (DELAY_BRANCH)
NOP

;---
; RETURN CODE CHECK. IF TOP OF DATA IS 0, NO DATA HAD BEEN READ.

MOV.L PARM_1,R3 ; BUFFER ADDRESS,ADRRESS
MOV.L @R3,R1 ; BUFFER ADDRESS
MOV.B @R1,R0 ; READ CHECK
CMP/EQ #0,R0 ; IF 0X00, NOTHING HAD BEEN READ
BT R_EXIT ; NORMAL

;--
; RETURN CODE SET. I/O ERROR OR EOF = 1

MOV.L #1,R0
MOV.L RTN_AD_1,R3
BRA R_RTN ; DELAY BRANCH
MOV.L R0,@R3 ; SET 1

;--
; RETURN CODE SET. NORMAL END = 0.
R_EXIT:

SUB.L R0,R0
MOV.L RTN_AD_1,R4
MOV.L R0,@R4

;--
; RETURNNING SEQUENCE
R_RTN

MOV.L RTN_AD_1,R2 ; RETURN POINTER SET
MONV.L @R2,R0 ; SET RETUTRN CODE
RTS ; DELAY RETURN
LDS.L @R15+,PR ; LOAD PR

;--
; POINTER AREA

224

;--
.align 4

PARM-_1 .DATA.L PARM
REQ_CD_1 .DATA.L H'01230000
TRP_AD_1 .DATA.L TRAP
RTN_AD_1 .DATA.L RTN_CD
;--
; 1 LINE WRITE TO CONSOLE-
;--
_Write:
;--
; REGISTER SAVING.

STS.L PR,@-R15 ; SAVE PR
;--
; PARAMETER BLOCK SETTING.

MOV.L R4,R0 ; INPUT AREA ADDRESS (ARGUMENT_1 = R4)
MOV.L PARM_2,R1
MOV.L R0,@R1

;--
; GO TRAP.

MOV.L REQ_CD_2,R0
MOV.L PARN_2,R1
MOV.L TRP_AD_2,R3
JSR @R3
NOP

;--
; RETURNNING SEQUENCE
;--
W_RTN

SUB.L R0,R0 ; SET RETURN CODE
RTS ; DELAY RETURN
LDS.L @R15+,PR ; LOAD PR

;--
; POINTER AREA
;--

.align 4
PARM_2 .DATA.L PARNM
REQ_CD_2 .DATA.L H'01240000
TRP_AD_2 .DATA.L TRAP
;--
; FILE OPEN
;--
_F_open:
;--
; REGISTER SAVING.

STS.L PR,@-R15 ; SAVE PR
;--
; PARAMETER BLOCK SETTING.

MOV.L R5,R0 ; OPEN MODE (ARGUNMENT_2 = R5)
BSR CNV_MODE ; CHAR —> MODE-ID
NOP ; (DELAY BRANCH)
MOV.L FP_ FUNUM_3,R3 ; SET
MOV.B R0,@R3
CMP/PZ R0
BF FR_ERROR ; -1,MODE-CONVERSION ERROR
MOV.L R6,R0 ; FILR NUMBER (ARGUMENT_3 = R6)

225

MOV.L FP_FNUM_3,R3
MOV.B R0,@R3 ; SET
MOV.L R4,R0 ; FILE NAME ADDRESS (ARGUMENT_1 = R4)
MOV.L FP_FNMA_3,R3 ; SET
MOV.L R0,@R3
SUB.L R0,R0
MOV.L FP_RCOD_3,R3
MOV.B R0,@R3 ; CLEAR RETURN CODE AREA

;--
; GO TRAP.

MOV.L REQ_CD_3,R0 ; REQUEST CODE
MOV.L PARM_FP_3,R1 ; PARAM AREA ADDRESS
MOV.L TRP_AD_3,R3
JSR @R3 ; GO TRAP !
NOP

;--
; RETURN CODE SAVING.

SUB.L R0,R0 ; WORK
MOV.L FP_RCOD_3,R3 ; LOAD RETURN CODE
MOV.B @R3,R0
EXTU.B R0,R0
MOV.L RTN_AD_3,R3
BRA F0_RTN ; GOTO RETURN SEQUENCE
MOV.L R0,@R3 ; SAVE RETURN CODE (DELAY BRANCH)

;--
; MODE CONVERSION ERROR. RETURN -2.
FR_ERROR:

MOV.L #H'FE,R0
MOV.L RTN_AD_3,R3
MOV.L R0,@R3

;--
; RETURNNING SEQUENCE
F0_RTN:

MOV.L RTN_AD_3,R8
MOV.L @r8,R0 ; SET RETURN CODE
RTS ; DELAY RETURN
LDS.L @R15+,PR ; LOAD PR

;--
; POINTER AREA
;--

.align 4
FP_FUNM_3 .DATA.L FP_FUNM
FP_MODE_3 .DATA.L FP_MODE
FP_FNMA_3 .DATA.L FP_FNMA
FP_RCOD_3 .DATA.L FP_RCOD
REQ_CD_3 .DATA.L H'01250000
PARNM_FP_3 .DATA.L PARM_FP
TRP_AD_3 .DATA.L TRAP
RTN_AD_3 .DATA.L RTN_CD
;--
; FILE CLOSE ..-
;--
_F_close:
;--
; REGISTER SAVING.

STS.L PR,@-R15 ; SAVE PR

226

;--
; PARAMETER BLOCK SETTING.

MOV.L R4,R0 ; FILE NUMBER (ARGUNMENT_1 = R4)
MOV.L FP_FNUM_4,R3 ; SET
MOV.B R0,@R3 ;
SUB.L R0,R0 ;
MOV.L FP_RCOD_4,R3 ;
MOV.L R0,@R3 ; CLEAR RETURN CODE AREA

;---
; GO TRAP.

MOV.L REQ_CD_4,R0 ; REQUEST CODE
MOV.L PARM_FR4,R1 ; PARAM AREA ADDRESS
MOV.L TRP_AD_4,R3 ; GO TRAP !
JSR @R3

;---
; RETURN CODE SAVING.

SUB.L 0,R0 ; WORK
MOV.L FP_RCOD_4,R3 ;
MOV.B @R3,R0 ; LOAD RETURN CODE
EXTU.B R0,R0 ;
MOV.L RTN_AD_4,R3 ; SAVE RETURN CODE
MOV.L R0,#r3 ;

;---
; RETURNNING SEQUENCE
C_RTN:

MOV.L RTN_AD_4,R2
MOV.L @R2,R0 ; SET RETURN CODE
RTS ; DELAY BRANCH
LDS.L @R15+,PR ; LOAD PR

;---
; POINTER AREA
;---

.align 4
FP_FNUM_4 .DATA.L FP_FNUM
FP_RCOD_4 .DATA.L FP_RCOD
REQ_CD_4 .DATA.L H'01060000
PARM_FP_4 .DATA.L PARM_FP
TRP_AD_4 .DATA.L TRAP
RTN_AD_4 .DATA.L RTN_CD
;---
; 1 LINE READ FROM FILE-
;---
_F_read;
;---
; REGISTER SAVING.

STS.L PR,@-R15; SAVE PR
;---
; PARAMETER BLOCK SETTING.

MOV.L R4,R0 ; FILE NUMBER (ARGUMENT_1 = R4)
MOV.L FR_FNUM_5,R3 ; SET
MOV.L R0,@R3 ;
MOV.L R14,R8 ;
ADD #H'10,R8 ; INPUT AREA ADDRESS
MOV.L @R8,R0 ; SET
MOV.L FR_BUFP_5,R3 ;

227

MOV.L R0,@R3 ;
SUB.L R0,R0 ;
MOV.L FR_RCOD_5,R3 ;
MOV.B R0,@R3 ; CLEAR RETURN CODE AREA

;--
; GO TRAP.

MOV.L REQ_CD_5,R0 ; REQUEST CODE
MOV.L PARM_FR_5,R1 ; PARAM AREA ADDRESS
MOV.L TRP_AD_5,R4 ; GO TRAP!
JSR @R4 ; DELAY BRANCH
NOP

;--
; RETURN CODE SAVING.

SUB.L R0,R0 ; WORK
MOV.L FR_RCOD5,R4 ;
MOV.B @R4,R0 ; LOAD RETURN CODE
EXTU.B R0R0 ;
CMP/EQ #0,R0 ;
BT FR_SET ; NORMAL
MOV #H'FF,R0 ; EOF

FR_SET:
MOV.L RTN_AD_5,R3 ; SAVE RETURN COD
MOV.L R0,@R3 ;

;--
; RETURNNING SEQUENCE
FR_RTN:

MOV.L RTN_AD_5,R8
MOV.L @R8,R0 ; SET RETURN CODE
RTS ; DELAY RETURN
LDS.L @R15+,PR ; LOAD PR

;--
; POINTER AREA
;--

.align 4
FR_FNUM_5 .DATA.L FR_FNUM
FR_BUFP_5 .DATA.L FR_BUFP
FR_RCOD_5 .DATA.L FR_RCOD
REQ_CD_5 .DATA.L H'01290000
PARM_FR5 .DATA.L PARM_FR
TRP_AD_5 .DATA.L TRAP
RTN_AD_5 .DATA.L RTN_CD
;--
; CONVERT MODE STRING TO BE MODE ID NUMBER. -
;--
CNV_MODE:

STS.L PR,@-R15 ; PR SAVE
MOV.L R8,@-R15 ; R8 SAVE
MOV.L SV_R1P,R8
MOV.L R1,@R8 ; R1 SAVE
MOV.L SV_R2P,R8
MOV.L R2,@R8 ; R2 SAVE
MOV.L SV_R3P,R8
MOV.L 3,@R8 ; R3 SAVE
MOV.L SV_R4P,R8
MOV.L R4,@R8 ; R4 SAVE

228

MOV.L SV_R5P,R8
MOV.L R5,@R8 ; R5 SAVE
MOV.L SV_R6P,R8
MOV.L R6,@R8 ; R6 SAVE
MOV.L SV_R7P,R8
MOV.L R7,@R8 ; R7 SAVE

;--
; LOAD USER SPECIFICATION AND CONVER TO BE lower CASE STRING.

MOV.L CNV_STR6,R2
CNV000:

MOV.B @R0,R1 ;---------------+
EXTU.B R1,R1 ; TERMINATOR +
SUB.L R4,R4 ; +
CMP/EQ R1,R4 ; +
BT CNV100 ; +
MOV #H'61,R4 ; +
CMP/GT R1,R4 ; + -- lower CHANGE LOOP
BF CNV0101 ; +
ADD #H'20,R1 ; +
EXTU.B R1R ; TO BE lower +

CNV010: ; +
MOV.B R1,@R2 ; LOCAL SAVE +
ADD.L #1,R0 ; +
BRA CNV000 ; DELAY BRANCH +
ADD.L #1,R2 ;---------------+

;--
; COMPARE WITH MODE-STRING.
CNV100:

MOV.L CNV_TBL6,ER1 ; TOP OF COMPARE STRING ADDRESS ARRAY
SUB.L R2,R2 ; LOCAL INDEX

CNV110:
MOV.L @R1,R3 ; DATA ADDRESS
SUB.L R6,R6 ; WORK 0 CLEAR
CMP/EQ R6,R3
BT CNV400 ; NULL, NO DATA MORE. IT IS AN

ERROR
MOV.L CNV_STR6,R4 ; TOP OF USER STRING

CNV120:
MOV.B @R4,R5 ; LOAD 1 CHAR
MOV.L #0,R7 ;
CMP/EQ R5,R7 ;
BT CNV300 ; NULL-CHAR, NOW COMPLETED
MOV.B @R3,R6 ; SET TO UPPER
CMP/EQ R5,R6 ; SAME?
BF CNV190 ; NO, TRY NEXT
ADD #1,R3
BRA CNV120
ADD #1,R4

;--
; TRY NEXT STRING.
CNV190:

ADD #4,R1 ; NEXT STRING TABLE ENTRY
ADD #1,R2 ; INCREMENT THE INDEX
BRA CNV110 ; TRY NEXT
EXTU.B R2,R2 ;

;--

229

; COMPARE SUCCESSFUL. ER2 HAS THE MODE-ID INDEX.
CNV300:

SUB.L R0,R0 ;
MOV.L CNV_RC6,R4 ; RESET THE RC.
MOV.L R0,@R4 ;
MOV.L MODE_TBL6,R3 ; MODE-ID NUMBER TABLE
SHLL R2 ; INDEX * 2
EXTU.B R2,R2 ;
ADD.L R2,R3 ; TABLE ENTRY
MOV.W @R3,R0 ; R0 NOW THE MODE-ID
ADD.L #2,R4 ; SAVE TEMPORARY
BRA CNV500 ; GO TO RETURN SEQUENCE
MOV.W R0,@R4

;--
; ERROR RETURN. COMPARE FAILED.
CNV400:

MOV.L #H'FF,R0
MOV.L CNV_RC6,R4
MOV.L R0,@R4

;--
; RETURNNING RESEQUENCE
CNV500:

MOV.L SV_R1P,R8 ; RELOAD REGISTER
MOV.L @R8,R1 ;
MOV.L SV_R2P,R8 ;
MOV.L @R8,R2 ;
MOV.L SV_R3P,R8 ;
MOV.L @R8,R3 ;
MOV.L SV_R4P,R8 ;
MOV.L @R8,R4 ;
MOV.L SV_R5P,R8 ;
MOV.L @R8,R5 ;
MOV.L SV_R6P,R8 ;
MOV.L @R8,R6 ;
MOV.L SV_R7P,R8 ;
MOV.L @R8,R7 ;
MOV.L CNV_RC6,R8 ; LOAD RETURN CODE
MOV.L @R8,R0 ;
MOV.L @R15+,R8 ; LOAD R8 REGISTER
RTS ; DELAY BRANCH
LDS.L @R15+,PR ; PR LOAD

;--
; POITER AREA
;--

.align 4
SV_R1P .DATA.L SV_R1
SV_R2P .DATA.L SV_R2
SV_R3P .DATA.L SV_R3
SV_R4P .DATA.L SV_R4
SV_R5P .DATA.L SV_R5
SV_R6P .DATA.L SV_R6
SV_R7P .DATA.L SV_R7
CNV_STR6 .DATA.L CNV_STR
CNV_TBL6 .DATA.L CNV_TBL
CNV_RC6 .DATA.L CNV_RC
MODE_TBL6 .DATA.L MODE_TBL

230

;--
; TRAP ADDRESS. SAY "TRAP_ADDR %PROG!TRAP"
;--
TRAP NOP
;--
; DATA AREA. PARAMETER BLOCK AND I/O BUFFER. -
;--

.section dt,data
;--
; CONSOLE I/O SIMULATION PARAMETER BLOCK. -
;--
PARM .RES.L 1 ; I/O BUFFER ADDRESS
;--
; FILE I/O SIMULATION PARAMETER BLOCK. -
;--
PARM_FP:
FP_RCOD .RES.B 1 ; RETURN CODE AREA
FP_FNUM .RES.B 1 ; FILE ID NUMBER
FP_MODE .RES.B 1 ; OPEN MODE
FP_RESV .RES.B 1 ; RESERVED
FP_FNMA .RES.L 1 ; FILE NAME AREA ADDRESS
;--
; FILE I/O SIMULATION /FILE-READ PARAMETER BLOCK. -
;--
PARM_FR:
FR_RCOD .RES.B 1 ; RETURN CODE AREA
FR_FNUM .RES.B 1 ; FILE ID NUMBER

.align 4
FR_BUFP .RES.L 1 ; FILE NAME AREA ADDRESS
FR_SIZE .DATA.W H'100 ; RESERVED

.align 4
;--
RTN_CD .RES.L 1 ; RETURN CODE SAVE AREA
;--
; OPEN MODE CONVERSION TABLE. -
;--
CNV_TBL:

.DATA.L STR_0

.DATA.L STR_1

.DATA.L STR_2

.DATA.L STR_3

.DATA.L STR_4

.DATA.L STR_5

.DATA.L STR_10

.DATA.L STR_11

.DATA.L STR_12

.DATA.L STR_13

.DATA.L STR_14

.DATA.L STR_15
STR_0 .SDATAZ "r"
STR_1 .SDATAZ "w"
STR_2 .SDATAZ "a"
STR_3 .SDATAZ "r+"
STR_4 .SDATAZ "w+"
STR_5 .SDATAZ "a+"
STR_10 .SDATAZ "rb"

231

STR_11 .SDATAZ "wb"
STR_12 .SDATAZ "ab"
STR_13 .SDATAZ "r+b"
STR_14 .SDATAZ "w+b"
STR_15 .SDATAZ "a+b"
MODE_TBL:

.DATA.W H'0000

.DATA.W H'0001

.DATA.W H'0002

.DATA.W H'0003

.DATA.W H'0004

.DATA.W H'0005

.DATA.W H'0010

.DATA.W H'0011

.DATA.W H'0012

.DATA.W H'0013

.DATA.W H'0014

.DATA.W H'0015
;--
; MODE CONVERTER REGISTER SAVE AREA -
;--
SV_R1 .RES.L 1
SV_R2 .RES.L 1
SV_R3 .RES.L 1
SV_R4 .RES.L 1
SV_R5 .RES.L 1
SV_R6 .RES.L 1
SV_R7 .RES.L 1
CNV_STR .SRES 16
CNV_RC .RES.L 1
;--

.END

232

Appendix E Limitations on Debugging Object Programs

The following type of programs cannot be loaded as debugging object programs. An error
message will be displayed on attempts to load such programs.

Condition

1. Section areas overlap

Coding example 1:
.SECTION SC1,CODE,LOCATE=0
.RES.W 1000

.SECTION SC2,CODE

.DATA 100

Since SC2 is a relocatable section, it will be loaded starting at address H'400. However, this
overlaps SC1, causing an error.

Coding example 2:
.SECTION SC3,CODE
.ORG H'1000
MOV.L R0,R1
.ORG H'2000
MOV.L R0,R2
.SECTION SC4,CODE,LOCATE=H'1500
.DATA 100
.END

The section SC3 extends from address H'400 to address H'2401 due to the use of the .ORG
control statement. As a result, section SC4 overlaps that section and generates an error.

Note that is possible to avoid this overlap by specifying an appropriate start address for the
relocatable section to the H-series linkage editor.

2. A section with the same name but with a differing attribute (CODE, DATA, STACK, or
COMMON) exists in another unit.

Coding example:
;UNIT1 ;UNIT2
.SECTION SC,CODE .SECTION SC,DATA
NOP .DATA.W 100
.END .END

233

Since the attributes of SC in unit 1 and SC in unit 2 differ, an error occurs.

3. An object module or load module has a section size of 0.

Coding example:
.SECTION SC,CODE
.END

Since SC has a section size of 0, an error occurs.

4. A section is allocated across the boundary between memory areas with differing attributes, or
an absolute address section is allocated to an invalid area.

Coding example: Assuming an SH 7000 CPU information file.
.SECTION SC,CODE,LOCATE=H'EF00000.

SDATAB H'20000,"0123456789ABCDEF"
.END

Although SC is allocated from addresses H'EF00000 to H'F0FFFFF, an error occurs since the
memory type changes at address H'F000000.The following measures can be used to avoid the
above errors.

Process

1. Review the starting addresses of absolute sections and the section sizes, and modify the
program so that overlaps do not occur.

2. Code programs so that sections with the same name have the same attribute.

3. Specify modules that have actual contents.

4. Modify the start addresses of absolute section so that section allocation across memory
boundaries does not occur. Alternatively, modify the memory map specified in the CPU
information file so that sections to not cross memory area boundaries.

234

Appendix F Messages

The simulator/debugger outputs the following two types of message.

1. Information messages
These messages inform the user of the simulator/debugger execution process.

2. Error messages
These messages inform the user that an error has occurred.

F.1 Information Messages

F.1.1 Information Messages at Instruction Execution Interruption

Table F-1 lists the messages that are displayed when execution is interrupted during instruction
execution initiated by a GO, STEP, STEP_INTO, VECTOR, or CALL command.

Table F-1 Information Messages at Instruction Execution Interruption

Error
No. Message Description

1001 BREAK ACCESS Execution was interrupted due to the occurrence
(<first location> - <last location>) of a break access condition.

1002 BREAK DATA Execution was interrupted due to the occurrence
(<break location>∆∆<data>) of a break data condition.

1003 BREAK POINT Execution was interrupted due to the occurrence
of a breakpoint condition.

1004 BREAK REGISTER Execution was interrupted due to the occurrence
(<register>∆<data>) of a break register condition.

1005 BREAK SEQUENCE Execution was interrupted due to the occurrence
of a break sequence condition.

1006 MANUAL BREAK Execution was interrupted due to <CTRL> +
<C>.

1007 SLEEP Execution was interrupted due to the execution
of a SLEEP instruction.

1008 STEP NORMAL END Execution due to a STEP or STEP_INTO
command completed normally.

1009 TRACE BUFFER FULL Execution was interrupted at the point the trace
buffer became full, since the B option was
specified to the TRACE_CONDITION command.

235

F.1.2 Information Messages during Command Analysis

Table F-2 lists the messages displayed by the simulator/debugger during command analysis.

Table F-2 Information Messages during Command Analysis

Error
No. Message Description

2001 FIXED UNRESOLVED EXTERNAL An address was allocated for an unresolved
REFERENCE SYMBOL external reference symbol.

2002 NO BREAK ACCESS There is no break access condition set.

2003 NO BREAK DATA There is no break data condition set.

2004 NO BREAK POINT There is no breakpoint condition set.

2005 NO BREAK REGISTER There is no break register condition set.

2006 NO BREAK SEQUENCE There is no break sequence condition set.

2007 NO FUNCTION CALL No function was called.

2008 NO MACRO DEFINITION No macro was defined.

2009 NO STUB POINT No stub point was set.

2010 NO TRAP ADDRESS The system call start location trap address
was not set.

236

F.2 Error Messages

F.2.1 Error Messages during Startup or Load Command Execution

Table F-3 lists the error messages displayed by the simulator/debugger during startup and during
execution of the LOAD command.

Table F-3 Error Messages during Startup or Load Command Execution

Error
No. Message Error Description and Recovery Procedure

3001 ADDRESS SPACE The section indicated by “sect” overlaps with
DUPLICATED : sect another section. Correct the program so that

sections do not overlap.

3002 CAN NOT GET MEMORY SPACE Memory space required by the simulator/
debugger could not be allocated. Increase
memory or modify the debugging object
program.

3003 CAN NOT GET TABLE AREA The table memory area required by the
simulator/debugger could not be allocated.
Increase the user memory area on the host
computer.

3004 CAN NOT GET TRACE BUFFER The required trace buffer memory area could not
be allocated.
Increase the user memory area on the host
computer.
However, commands other than the trace system
commands will operate normally.

3005 CAN NOT OPEN A file could not be opened.
Specify the correct file name.

3006 CAN NOT OPEN CPU The CPU information file could not be opened.
INFORMATION FILE Specify the correct directory and file name.

3007 CAN NOT OPEN OBJECT FILE The debugging object program file could not be
opened.
Specify the correct file name.

3008 CAN NOT READ A file could not be read.
Check the contents of the file.

3009 COMMAND LINE SYNTAX There was an error in the command line.
ERROR

237

Table F-3 Error Messages during Startup or Load Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure

3010 DEVICE TYPE IS NOT The debugging object program file identifying
CONSISTENT information (the ID that indicates whether the

program is for the SH series) does not
agree with the file identifying information from
the CPU information file (set by the CIA
program).
Check that the object program is actually
an SH-series program.

3011 ILLEGAL BLOCK TYPE The debugging object program contains one or
more errors.
Correct any errors that occurred in creating the
debugging object program.

3012 INTERNAL ERROR (nnn) An internal error occurred.
Contact your Hitachi, Ltd. sales representative.

3013 INVALID CPU INFORMATION There was an error in the CPU information file.
Check and correct the CPU information file.

3014 INVALID OBJECT FORMAT The input file exceeds the range of debugging
object programs.
Specify the correct file name.

3015 INVALID RELOCATION An invalid relocation expression occurred in
EXPRESSION the debugging object program.

Correct any errors that occurred in creating
the debugging object program.

3016 LOADING FAILED : sect The section specified by “sect” could not be
loaded.
Either modify the CPU information file or modify
the start address of the section.

3017 RELOCATION SIZE The result of relocating the section indicated
OVERFLOW : sect by “sect” exceeded the relocation size.

Review both the displacement size of the
section of the corresponding name in the
source program as well as the valid object size.

3018 SECTION NUMBER = 0 There were no executable sections in the
debugging object program.
Add code and data sections to the debugging
object program.

3019 UNDEFINED SYMBOL : symbol The symbol indicated by “symbol” was not
defined in the debugging object program.
Correct the program to define the corresponding
symbol.

238

F.2.2 Error Messages during Command Execution

Table F-4 lists the error messages displayed during simulator/debugger command execution.

Table F-4 Error Messages during Command Execution

Error
No. Message Error Description and Recovery Procedure

4001 ADDRESS EXCEEDS MEMORY It is not possible to allocate areas that exceed
SPACE BOUNDARY the boundaries of the internal ROM area, the

external bus area, the internal RAM area,
and internal I/O area.
Divide the area into multiple sections and
allocate each section within the boundaries of
a region.

4002 BREAK ACCESS ADDRESS There is already a condition set for the location
CONFLICTS specified with the BREAK_ACCESS command.

Check the current settings and specify the
address correctly.

4003 BREAK DATA ADDRESS There is already a condition set for the location
CONFLICTS specified with the BREAK_DATA command.

Check the current settings and specify the
address correctly.

4004 BREAK POINT CONFLICTS There is already a condition set for the location
specified with the BREAK command.
Check the current settings and specify the
address correctly.

4005 BREAK REGISTER CONFLICTS There is already a condition set for the register
specified with the BREAK_REGISTER command.
Check the current settings and specify the
register correctly.

4006 BREAK SEQUENCE CONFLICTS There is already a condition set for the sequence
specified with the BREAK_SEQUENCE
command.
Check the current settings and specify the
address correctly.

4007 CAN NOT ACCESS EXTERNAL An address not allocated for the memory map
MEMORY was specified.

Specify a correct address.

4008 CAN NOT CLOSE The specified file cannot be closed.
If there is inadequate user disk space, increase
the available disk space.

4009 CAN NOT OPEN The specified file could not be opened.
Specify the correct file name.

239

Table F-4 Error Messages during Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure

4010 CAN NOT READ The specified file cannot be read.
Specify the correct file name.

4011 CAN NOT WRITE The specified file cannot be written.
The disk may be full, or there may be a disk
hardware error.
Re-execute the write after checking the disk
status.

4012 COMMAND NOT FOUND A non-existent command name was specified.
Specify the command correctly.

4013 COVERAGE ALREADY STARTED An attempt was made to start coverage
measurement when coverage measurement had
already been started.
Or, an attempt was made to change the coverage
area setting.
To measure a differing range of locations,
terminate the current measurement, reset the
range, and restart the measurement.

4014 COVERAGE NOT STARTED Coverage has not been started.
Check the state of the coverage settings.

4015 COVERAGE RANGES EXCEED 16 Up to 16 coverage areas can be specified.
To add another area, first remove any
unnecessary coverage areas.

4016 COVERAGE RANGE NOT An attempt was made to start coverage
DEFINED measurement with no coverage areas defined.

Specify the coverage areas before starting
coverage measurement.

4017 DIVIDE BY ZERO A divisor of 0 appeared in an integer expression.
Modify the divisor to be a value other than 0.

4018 DUPLICATE ADDRESS The specified address was already specified.
Check the value of the address used.

4019 EXPRESSION TOO COMPLEX An expression was overly complex.
Expressions are overly complex when there are
8 or more parentheses.

4020 FLOATING POINT DATA A floating point overflow occurred in the specified
OVERFLOW precision.

Review the precision or the data values.

4021 FLOATING POINT DATA A floating point underflow occurred in the
UNDERFLOW specified precision.

Review the precision or the data values.

240

Table F-4 Error Messages during Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure

4022 FUNCTION NOT FOUND The function specified in a CALL command does
not exist. Check the name of the function.

4023 ILLEGAL EXPRESSION There was an error in an integer expression.
Re-input the command with a correct expression.

4024 ILLEGAL FLOATING POINT DATA There was an error in the format of a floating
point data item.
Review the format of the floating point data item.

4025 ILLEGAL MACRO NAME A name which cannot be specified as a macro
name was specified.
Check the macro name.

4026 ILLEGAL SYMBOL FORMAT There was a syntax error in a symbol.
Re-input the command with the correct syntax.

4027 INVALID ADDRESS The value used was invalid as an address value.
Specify a valid value.

4028 INVALID DATA The value used was invalid as an address value.
Specify a valid value.

4029 INVALID MNEMONIC An instruction mnemonic specified to the
ASSEMBLE command was incorrect.
Input a correct mnemonic.

4030 INVALID OPERAND The specified instruction operand was incorrect.
Input a correct operand.

4031 LINE NUMBER NOT FOUND The specified line number could not be found.
Check the line numbers in the source program.

4032 MACRO BUFFER OVERFLOW The macro registration buffer overflowed.
Delete any unnecessary macros.

4033 MACRO VARIABLE NOT FOUND An attempt was made to reference a macro
internal variable whose value had not been set.
Modify the macro to reference the macro internal
variable only after its value has been set.

4034 MEMORY AREA ALREADY EXISTS The specified memory area was already
allocated. (It is also possible that the address
specification was incorrect.)
Check the memory area allocations with the MAP
command and then specify a correct value.

241

Table F-4 Error Messages during Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure

4035 MEMORY AREA NOT EXIST The specified memory area has not been
allocated.
Allocate memory areas with the MAP command
as necessary, and then specify memory areas
that have already been allocated.

4036 NESTING OF COMMAND_CHAIN The command chain nesting exceeded 8 levels.
EXCEEDS 8 Revise usage of the COMMAND_CHAIN

command so that the nesting level does not
exceed 8 levels.

4037 NOT A COVERAGE FILE The specified file was not a coverage file.
Check the file.

4038 NO SCOPE SET A function name could not be found due to an
unusual value in the PC.
After checking the value of the PC, modify the
program to operate normally.

4039 NOT A SAVE_STATUS FILE The specified file was not a SAVE_STATUS file.
Alternatively, insufficient information.
Check the file.

4040 SAVE_STATUS OPTION CONFLICT The file cannot be loaded since the options used
when saving the file were different.
Check the file.

4041 STUB BUFFER OVERFLOW The STUB command registration buffer
overflowed.
Delete any unnecessary stubs.

4042 STUB POINTS EXCEED 16 Up to 16 stub points can be specified.
Delete any unnecessary stubs and retry the
command.

4043 SYMBOL NOT FOUND The specified symbol was not registered.
Specify the correct symbol name.

4044 SYNTAX ERROR The command parameters were incorrect.
Specify the parameters correctly.

4045 SYSTEM ERROR (<error number>) An OS error occurred during execution of a “!”
command. The specified OS command was not
executed. Review the system environment.

4046 TOO MANY ARGUMENTS Too many arguments were specified in a function
call.
Check the function’s specifications.

242

Table F-4 Error Messages during Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure

4047 TOO MANY BREAK ACCESS The number of break access conditions
exceeded the number supported.
Up to 2 break access conditions can be set.

4048 TOO MANY BREAK DATA The number of break data conditions exceeded
the number supported.
Up to 8 break data conditions can be set.

4049 TOO MANY BREAK POINTS The number of breakpoints exceeded the number
supported.
Up to 8 breakpoints can be set.

4050 TOO MANY BREAK REGISTERS The number of break register conditions
exceeded the number supported.
Up to 8 break register conditions can be set.

4051 TOO MANY MACRO DEFINITION The number of macro definitions exceeded the
number supported.
Up to 64 macros can be defined.
Delete any unnecessary macros and re-input the
macro definition that generated the error.

4052 TOO MANY MACRO VARIABLE The number of macro variables exceeded the
number supported.
Up to 255 macros variables can be used.

4053 TOO MANY SECTIONS The number of memory areas allocated with the
MAP command exceeded the number supported.
Up to 10 areas can be allocated.

4054 TOO MANY UNDEFINED SYMBOL There are too many undefined symbols.
Addresses can not be allocated for any other
undefined symbols.

4055 TRACE COMMAND NOT The trace command cannot be used since a
AVAILABLE trace buffer was not allocated.

Expand the user environment so that a trace
buffer can be allocated.

4056 TRAP ADDRESS CONFLICTS Only 1 system call start address can be specified.
Check the specified address by using the
TRAP_ADDRESS command.

243

Table F-4 Error Messages during Command Execution (cont)

Error
No. Message Error Description and Recovery Procedure

4057 MEMORY SPACE The size of the memory area is too small
INSUFFICIENCY to display all the functions called.

Check the size of memory available for the
simulator/debugger size.

4058 CAN NOT REFER TO The specified symbols could not be
THE SYMBOL referred due to C compiler optimization.

Specify the address or data for the symbols.

4059 ILLEGAL ADDRESS RANGE The specified memory area size is too large.
SPECIFIED Divide the memory areas and specify each.

244

F.2.3 Error Messages during Simulation

Table F-5 lists the error messages displayed during simulator/debugger simulation of a debugging
object program.

Table F-5 Error Messages during Simulation

Error
No. Message Error Description and Recovery Procedure

5001 GENERAL INVALID One of the following conditions caused a general
INSTRUCTION invalid instruction error.

1. The program attempted to execute a code
that is not an instruction.

2. An error occurred during exception
processing of general invalid instructions.

Correct the debugging object program so that the
error does not occur.

5002 INVALID SLOT One of the following conditions caused an invalid
INSTRUCTION slot instruction error.

1. The branch instruction to change PC
immediately after the branch instruction was
executed.

2. An error occurred during exception
processing of the invalid slot instruction.

Correct the debugging object program so
that the error does not occur.

5003 ADDRESS ERROR One of the following conditions caused an
address error.
1. The value of the PC became an odd number.
2. The program attempted to read an instruction

from internal I/O space.
3. An attempt was made to access a long word

data at an address other than 4n.
4. An attempt was made to access a word data

at an address other than 2n.
5. VBR and SP are not in multiples of four.

An error occurred during exception
processing of the address error.

6. Correct the debugging object program so that
the error does not occur.

245

Table F-5 Error Messages during Simulation (cont)

Error
No. Message Error Description and Recovery Procedure

5004 EXCEPTION ERROR An error occurred during exception processing.
Correct the debugging object program so that the
error does not occur.

5005 ILLEGAL OPERATION Division by zero was caused by a DIV1
instruction.
Correct the debugging object program so that the
error does not occur.

5006 MEMORY ACCESS ERROR One of the following conditions caused a memory
access error.
1. The program attempted to access a memory

area that was not allocated.
2. The program attempted to write to a memory

area that has the write-protect attribute.
3. The program attempted to read from a

memory area that has the read-protect
attribute.

4. An attempt was made to access an area with
no memory.

Either modify the memory allocation and
attributes, or correct the debugging object
program so that the corresponding memory
access error does not occur.

5007 INVALID SP INSTRUCTION The program executed the instruction to make
R15 (SP) to point to an address other than 4-byte
boundary.
Correct the debugging object program so that the
error does not occur

5008 SYSTEM CALL ERROR A system call error occurred.
Correct the error(s) in the contents of the
parameter block and/or registers R0 and R1.

246

F.3 CIA Error Messages

F.3.1 I/O Related Error Messages

Table F-6 shows the CIA error messages related to I/O.

Table F-6 I/O Related Error Messages

Error
No. Message Error Description and Recovery Procedure

6001 CAN NOT GET MEMORY SPACE The memory for CIA use could not be allocated.
Check the OS environment and assure that there
is adequate memory allocated for CIA use.

6002 CAN NOT OPEN INPUT CPU The specified existent CPU information file could
INFORMATION FILE not be opened. (See note.)

6003 CAN NOT OPEN OUTPUT CPU The specified output CPU information file could
INFORMATION FILE not be opened. (See note.)

6004 CAN NOT READ A file could not be read. (See note.)

6005 CAN NOT WRITE Write to a file failed. (See note.)

6006 CAN NOT CLOSE The output CPU information file could not be
closed. (See note.)

6007 INVALID CPU INFORMATION Errors were encountered in the CPU information
file.
Check the contents of the file and correct the
errors.

6008 SYNTAX ERROR There was an error in the file specification
syntax.
Enter the file name correctly.

Note: In these cases, if the file name was correct, the disk may be full, or there may be a disk
hardware error. After checking the disk status, re-execute the CIA program.

247

F.3.2 Keyboard Input Related Error Messages

Table F-7 lists the error messages related to keyboard input.

Table F-7 Keyboard Input Related Error Messages

Error
No. Message Error Description and Recovery Procedure

7001 COMMENT LINE TOO LONG The specified comment line exceeded 127
characters.
The comment line must be 127 chracters or less.

7002 ADDRESS RE-USE Address ranges overlap.
Check the addresses and re-enter correctly.

7003 ADDRESS SIZE OVERFLOW An address value exceeding the bit size was
specified.
Enter a correct address value.

7004 INVALID VALUE A numeric value outside the allowed range was
specified.
Correct the input to specify a value within the
allowed range.

7005 INVALID CHARACTER A character that cannot be used was input.
Input a character that corresponds to one of the
selection choices.

7006 INVALID END ADDRESS An end address smaller than the start address
was specified.
Re-enter the end address with the correct value.

248

Appendix G ASCII Code Table

Table G-1 ASCII Code Table

Upper 4 Bits

Lower 4 Bits 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

249

Appendix H Installation

The following instructions describe how to install the SH-series simulator/debugger in the host
system.

H.1 Contents of the Cartridge Tape

The simulator/debugger is provided with a cartridge tape, which contains the following files.

• file type: archive file
• file name

— Simulator/debugger: sdsh
— CPU information analysis program: cia

H.2 How to Install the Simulator/Debbuger in the Host System

To install the simulator/debugger in the host system, follow the instructions below. Underlined
sections should be input by the user.

• Making a directory

To make a directory for storing simulator/debugger files, enter the command below. The path
name is /usr/tool in this example.

% mkdir∆/usr/tool (RET) (RET): Press the return key
∆: Press the space bar or tab key

• Changing the directory

To change the current directory to the directory /usr/tool made above, enter the command
below.

% cd∆/usr/tool (RET)

• Copying files

To copy the simulator/debugger files from the cartridge tape to the directory made in the
above step, enter the command below. In this example, /dev/rst0 is the name of the cartridge
tape drive.

% tar∆-xvf∆/dev/rst0∆sdsh∆cia (RET)

250

• Setting the start-up environment

To set the start-up environment for the simulator/debugger, follow the instructions below.

— Add the following command to the file ".login" in the home directory.

% set∆path=(/usr/tool) (RET)

If a path has already been specified, add the path name "/usr/tool"
separated by a space to the path list in parentheses.

— When the Born-shell or Corn-shell is used:

Add the following command to the file ".profile" in the home directory.

% PATH =/usr/tool (RET)
% export∆PATH (RET)

If a path has already been specified, add a colon (:) and the path
name "/usr/tool" after the path list.

H.3 Equipment

The following equipment is required when using the simulator/debugger.

• Host computer: SPARC Station
• OS: SunOS (release 4.0.3 or later version)
• User memory space: 4 Mbytes or over
• Hard disk drive
• Cartridge tape drive

H.4 Special Keys

Two special keys are used by the simulator/debugger: (CTRL) + (C) and (CTRL) + (\). (CTRL) +
(C) or (CTRL) + (\) indicates pressing C or \ while the control key is being pressed. To use the
simulator/debugger, first make the following settings with the SunOS stty command.

stty intr (CTRL) + (C)
stty quit (CTRL) + (\)

• (CTRL) + (C)

When the special key (CTRL) + (C) is entered, command execution stops immediately and the
simulator/debugger returns to the command wait state.

251

(Ex. 1) During execution of the user program by a CALL, STEP,
STEP_INTO, or VECTOR command, (CTRL) + (C) stops the program
execution are returns the simulator/debugger to the command wait
state.

(Ex. 2) While the contents of memory or the trace buffer are being
displayed by a DUMP or TRACE command, (CTRL) + (C) stops the
command execution and returns the simulator/debugger to the
command wait state.

(Ex. 3) During execution of a command file by a COMMAND_CHAIN
command, (CTRL) + (C) stops the command execution and
returns the simulator/debugger to the command wait state.

Note: During interactive command input, (CTRL) + (C)
does not return the simulator/debugger to the command wait state.
To exit the interactive command input state, enter ".".

• (CTRL) + (\)

The special key (CTRL) + (\) terminates the simulator/debugger and
returns it to the SunOS command wait state.

Note: When (CTRL) + (\) is entered, SunOS creates the core file "core"
on the current directory.

252

