

MORE THAN FIFTY PROGRAMS FOR THE SEGA SC-3000

BY
MICHAEL HOWARD

GRenpsinnp

Author's Introduction

Typing in a computer program is like opening an unknown door. You do not know until you actually open the door - or, in this case, run the program - what experience is waiting for you. Of course, there is a little sign on the door which gives you some indication of what lurks behind the door, but you still don't really know!
The programs or doors, in this book range from destroying aliens to creating Purple People Eaters and from a game of Noughts \& Crosses you play against the Sega, to quadratic and linear regression! Even statistics, 3 dimensional graphics, machine code routines, and full adventure games are included, and that is but the tip of the iceberg ... as you will find out!
The object of the book is actually to forward your programming skills, as many ideas are established within these covers. When you enter each program think of what you are entering and before you can say "Merlin-the-cat" you will be an ace programmer!
Whatever you find behind each door, I guarantee you won't be disappointed.

Happy progging!

MICHAEL HOWARD AUCKLAND

1985

Graphics

No book on the SC-3000 would be complete without a smattering of graphics programs. So here is a mob of them.

Notes:

The Cats Eye
Amazing
Starburst
Kaleidoscope
Line Kaleidoscope
3D Graphics \#1

3D Graphics \#2
More Graphics
Boxes \& Cubes
Waves

Mind's Eye
Gateway
Star of Ralthuz

- Try altering the value of A in Line 10.
- Uses "intelligence" to create mazes. It takes a long time but it's worth the wait.
- Produced by accident!
- The computer doodles all over the screen.
- Similar to above, but press any key to restart.
- Uses the array P for hidden line removal. S is a sort of accuracy, a low value of s leads to fine but slow pictures, say a value of 4 ; a high value, say 20 , leads to fast but crude drawings. Lines 1000 onwards contain a few examples of equations and their S-values. Remember Lines 1000 need not be entered as REM statements are ignored by the computer. Printer modifications are also listed.
- Faster than 3D \#1, but not as flexible.
- Creates 11 intricate patterns.
- Creates random sized, random positioned cubes all over the screen until you press a key.
- Creates fascinating patterns which can be altered at the touch of a button!
- One of my favourites!
- Makes a pattern similar to looking down a tunnel.
- Named after a Dungeons \& Dragons character of mine. The program signifies the growth of a wizard, from a slow, long upbringing to full splendour. This program is connected to "Lament of the Wind Wizard", but I won't say too much just yet!

THE

AmEazimg


```
A$
```



```
B& GQSUE:二心
T&FR=INT (FND(E)*4)
```


$$
156 \quad \square C H T C>5
$$

21

二示＝GTGフ6
 $+\approx=G O T D>6$
二4女 XFA体（X，Y－1） －

Stexr Eux $5 t$


```
16
```



```
36
46
```



```
Tロ16
```



```
もら NEXTTH
```


1 CHEFEEN Z゙ッ＝CLS＝CDLDFE
26 $\quad x=12 马=Y=96$

$10,120,140$

SE FSET（X，Y）＝F：SET（ $25 S-X, Y\rangle=F \cdot S E T\langle Z S S-X, 19$ $1-Y\rangle=F=E \mathbb{E} T(X, 1 乌 I-V)$

E\＆$x=x+1=Y=Y+1=F E T U F N$
ヶ® $X=X-1=Y=Y+1=F E T$ ISAFN
$100 \quad x=x-1=$ FEETUSFN
1 1 $9 \quad x=x+1=$ FEETLIFRN
12 Z IFFND（E）\quad－ETHENFETLSFN
$13 \in x=x+1=Y=\gamma-1=F Q E T U F I N$
1． 4 IF FFND《（E）
1 sc $X=X-1$ ：$Y=Y-1=F$ IETUSFN

Zの DEFFNF゙ $(x)=I N T(F N N D(B) \pi x$ ）

$\left.40 F^{\circ} 1=F N F(3 \omega\rangle-15=M 1=F M F<36\right\rangle-15$
与6 IFF゙＋F1＜ HEN4
 M1）
BG LINE《255—F，M）－《25S—《F＋F1），M＋M1》

$160 \quad F=F+F=M=M=M+M 1$
115 IFIMKEEY非＝．＂．THEN4．TH
$12 \boxed{G y T O L}$

己心 $5=16$

（ $\because=\mathrm{F}=\mathrm{F}$
$=\pi \quad \mathbb{H}=\times \mathrm{T}$

ア6 C＝7心－AES（G）

115 NWEXTG

$1 \leftrightarrows \sigma$ GDSLJE 日G
$17 E N \mathbb{N}$

己心合 T T

$\geq 4 \pi \quad F<\mathbb{F}, 1\rangle=T$

己゙BG FCETUF゙N

1415
1． 5
1． 54 F F EMM
1． 5 F FiEM
1． $6 \Leftrightarrow$
11475
1． B
1． 105
1145
1118
$11=6$
1． 1 区
11140
1． 1.5
1 1 E． FCEM FCEM1 HCENM FRETM
$\square==\pi$

$T=E \times F<T, \frac{5}{5}=48$
$T=-E \times F=(T)<E \in$

$5=16$
$T=\langle 5 \pi N(T * 3)+\square D S(T)><4$
$T=-T ッ T<Z 6$
$\therefore \quad$ IS IN U INWE $\mathbb{S} \|$
FREFW
F゙EMい
TI $\quad \mathrm{T} 5$
I． 1

$30 \quad 1=5$

边 $1=1$

1 IG IFZホRTHENTS TH
$1 \geq \boxed{Z} \|=2$
4

$1: \square 5$
1．$\leftarrow 5$ TVEXTV＇$Y^{\prime}=X$

More Graphics - -

EOMES and Cubes
10 SCFEEN ZッZ＝CLS
20 COLDFFNND（B）＊14＝FDFF＝1T0100
 $E=F N D(B) * G O=C=\langle A+E\rangle / 1 \Leftrightarrow$
40 LINE $\langle X, Y\rangle-\langle X+A, Y+E\rangle=, E=L I N E-\langle A+X+C, E+$ $Y+C\rangle=L I N E-\langle C+X, Y+\infty\rangle=, E$
SG LINE－$(X, Y)=\mathbb{L}$ INE $(X ; Y+E)-(X+E, Y+E+\mathbb{C}=1$ II
NE $(X+A, Y)-(X+A+C, Y+C)$
GG IFINREY\＆＜$>$＂＂THENIS
フG NEXTF＝GOTCIG

Wavesi

10	DEFFNN：$(x)=I N T$（ x ）
26	SCFEEN z，$=$ CLS
≤ 6	
49	$L=F N F(255)=M=F N F<151$
56	$ப=15=V=7$
家6	G口SUEです
76	FDFE＝2TO1S＝GFG＝1 TO150
86	$N=N-1$
96	IFN＝6THENGOSUE2天6
160	LINE $(X, Y)-$（L，M），D
119	
126	IFX＋A＞25SOF：$X+A<6$ THENA $=$－
130	
140	IFL＋C＞z5SロFiL＋C＜OTHENC＝－C
156	IFM＋D＞1马1 DF：M＋D＜ETHEND＝－D
160	$X=X+A=Y=Y+E r=L=L+C=M=M 1+D$
176	NEXT G
1 日6	FOFI＝GTOEGS＝NEXTI
$1 马 6$	Cis
260	NE×T
210	
250	$A=F N F:(U)=V$
256	$E=F N F \ll u$－
246	$C=F N F(U)=V$
250	D＝FNF：（U）－V
260	$N=F N F(20)+16$
276	FEETURN

$451 \quad=N \quad 1 E x+1 \cdot I$

アE NUEXTN

1 1. NEXTM

$1 \geq 6$

NEXTH

Getwway


```
3
```



```
F:(14)
zc}\quadz=
4c*FDFA=1TQ2
```



```
\@NEXT
```



```
C
1&NTM
11\Leftrightarrow Z=-Z
1#& NEXTA
```



```
146%GOTG
```

Star of Fialthuz
$1 \Leftrightarrow$ SCFEEN $2, ~=2 L S$
z6 $\quad \mathrm{X}=\boldsymbol{6}=\mathrm{Y}=36$

SE NEXTN
$\Leftrightarrow \quad X=X+1 \sigma=Y=Y-1 \varepsilon$
フヵの IFT＝－1 WTHENEND
BG GロTロジ

Compound Interest

This program calculates compound interest on any sum of money invested at any interest rate for any number of years - so you can work out how many decades it'll take to amass $\$ 1,000,000$! That's why I wrote it, but I gave up hope of becoming a millionaire when I was predicting into the middle of the 21st century!!

For example, you wish to invest $\$ 1,000$ in one of two banks: Bank 1 offers 12.5\% interest, calculated every 6 months. Bank 2 offers 12.8% interest, calculated annually.
Which bank should you choose?
Run the program and input:

Interest \%	$=$	12.5%
Interval	$=$	6
Deposit	$=$	1000
Regular Deposit	$=$	0
Interval between dep.	$=$	0

Bank 1

The result after 10 years is $\$ 383.90$ interest.
Rerun and enter $12.8,12,1000,0,0$.
The result after 10 years is $\$ 378.40$ interest. So Bank 1 is best.
You can also enter regular deposits and regular interval deposits.

Notes:

10-120 Enter various variables.
A $=$ interest rate.
$B=$ when interest computed (in months).
$C=$ initial investment.
D = subsequent investments/withdrawals.
$\mathrm{E}=$ interval between investment/withdrawals.
130-200 Choices of whether to see interest calculated year by year, or total after a number of years, or stop program or do new problem.

210-340 Main calculating loop.
350-440 Show table of interest etc. and after another 10 years. Select how many years you want done in B mode. Goto 210.
450-490 Results of B mode. Total money invested and total profit after EC years. Goto 130.

Compound Interest

בG INFUT＂ENTEF THE $\%$ FIATE DF IMTEFEST

A
3
46

T＂INFLT INTVFVVAL EETWEEN INTEFEST CALCLLATICNS IN MONTHS＂ミE

くの FFFINT
ブぁ INFUT＂INFUT DFIGINGL DEFDSIT 事：：ロ
ヨG F゙F゙INT
ЯG INFUT＂INFUT FEGULAF DEFDSIT \＆＂
160 FFINT
11．INFLT＊INFMTV INTEFNAL EETHEEN DEFGOSTT与in＂E
$1 \geq 6 \quad$ IFE＝6TIHENE＝1S
$1 \leq 6$ Cl

SITUATIDN AFTEF A FEW YF゙S＂，，＂E，DD NEW

1 フ曰 IFA象＝＂E＂THENAZ』
1 日ぁ IFA事＝＂C＂THENIO

ごめの GロTロ15\％
210 CLS＝FFFINT＂GFRGMTH DF DAFITAL＂＝FRINT：F

3＂EVEFV＂＂E 3＂MロNTHE＂
ZSG FFEINT
246 $\quad \gamma=6=D F=\square=T M=\sigma$

IT INTEFEEST NEW DEFVSIT＂

בフ』 \mathbb{F} ロF゙G＝1 Tロ1Z

＊A＊E／ 12
ごЯ6 \quad FFTM／EE＝INT《TMノE T THENND＝ND＋D
ミQE NEXTG
 －S）ノ 1 ＠TAE（14） ND
$32 \infty \quad D \mathbb{F}=D F+\mathbb{N D}+\mathbb{F} \boldsymbol{D}$

340 IFA苓＝＂E＂T＂HEN4＂S
S与G FFIINT＝FFIINT＂FUFTTHEF IG YF゙S？（YノN＊＂

$396 \quad \gamma=Y+16$
46 ㄴ․ 5

 IKE TD SEE THE INNESTMENT ．．．Pッ
$4 \leq$ I INFUTEC
445 GOTロこ 5
 NT＂TDTAL MDNEV INNESTED क＂I INT＜DF゙＊ \mathbb{H} SGQ－S

 LIFEN＂
4EG IFINHEY名＝＂：THENABE

Forth / RPN Emulator

Forth is a language slightly similar to BASIC, that is used extensively in scientific institutions for controlling experiments. The massive radio telescope at Jodrell Bank in Cheshire, England (owned and run by the University of Manchester) is controlled by Forth. The main advantage of Forth is it is very, very fast, typically 40-50 times quicker than BASIC. This implementation of Forth allows you to mess around a bit with Forth and Reverse Polish Notation - it is by no means complete as it only lets you do simple work.
Okay, so how does Forth and RPN work? (Actually Forth works in RPN!) Image the following:

$$
2+3=5
$$

This is very simple, but in RPN it is a little different. It is:

$$
23+. \quad \text { The "." produces } 5
$$

This is how it works. Forth and RPN work on a system of manipulating an area of memory called a "stack". A stack is just an area of memory which stores numbers. When a stack is created it is empty, thus it contains just zeros. Let's say our stack can hold a maximum of 5 numbers, so it looks like this:

0	\leftarrow top of stack
0	
0	
0	
0	\leftarrow bottom of stack

Every time you enter a number, that number is "pushed" onto the stack. In our case we enter 2 and 3, so the stack goes:

2	3
0	2
0	0
0	0
0	0
2 entered	3 entered

Every time a number is entered the stack is pushed down and the number is placed on top. So now we have entered 2 and 3, our next command is + (remember $23+$.). When " + " is entered the top two elements on the stack are added together, the stack is moved up and the result is placed on the top of the stack. When "." is pressed the top of the stack is displayed on the screen. In my little program the stack (which can hold 11 elements) is always in view so "." is not used. So to recap for the sum $2+3$, which is $23+$. in RPN, the stack goes like this:

	0	2	3	5	0
Stack	0	0	2	0	0
	0	0	0	0	
	0	0	0	0	0
	0	0	0	0	0

Expression $23+$. When "." is pressed whatever is on the top of the stack is removed and printed on the screen.
See, easy!
+, -, * and / are all supported viz:

	0	0	5	0	16	5	16	0	8	0
Stack	0	0	0	0	0	16	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

Expression $511+53-13$ *
This is the same as $([5+11] /[5-3]) * 3$
Another example - let's say you want to find the average of $17,42,69$, 19 and 103. In the program (when running it) just enter:
$17 \quad 4269 \quad 19 \quad 103+++++5 /$ and out comes your answer! Of course you can do much more than this.
In Forth there is also a few commands for manipulating the stack. These are DUP, DROP, SWAP and OVER. They allow the repetition of data near the top of the stack. DUP - duplicate top number, DROP - discard top number, SWAP - swap top 2 numbers over, and OVER - copy 2nd number on stack to the top OVER the original top number. See below:
Initial Stack
30
20
10
0
0
DUP
30
30
20
10
0

DROP
20
10
0
0
0
SWAP
20
30
10
0
0
OVER
20
30
20
10
Note - The examples shown above do not follow one another - each is based on the initial stack.

There is an example:
$\begin{array}{rrrrrrrrrrrrrrrr} & 0 & 2 & 2 & 2 & 2 & 4 & 8 & 5 & 40 & 2 & 3 & 6 & 34 & 9 & 43 \\ 0 & 0 & 0 & 2 & 2 & 2 & 2 & 2 & 8 & 2 & 40 & 2 & 40 & 0 & 34 & 0 \\ 0 & 0 & 0 & 2 & 2 & 2 & 0 & 2 & 0 & 0 & 40 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
Expression 2 DUP DUP DUP * * 5 * SWAP 3 * - 9 + This is the same as $5 x^{2}-3 x+9$ where $x=2$.

You can also cube numbers. Let's say you want to know what 4^{3} is. You would enter 4 DUP DUP * * - as you can see it is fairly easy to use once.
In actual Forth you can define functions (you can't in this). Remember that cube numberthing? Well to define it you would do:

\vdots	cube	DUP DUP＊	$*$	$\dot{\uparrow}$
start define	\uparrow name	actual function	i display result	end define

To use it you would type＂4 cube＂and the result would be printed．Forth has many，many more commands than this，but this program is only meant as a demonstration，and hopefully show you that there is more to computers than BASIC．

Notes：

10－Set up．ST－stack，SP－stack pointer holds size of stack，BS －commands used．

20－30 Print title and stack．
40 Enter command S reruns program and is NOT standard Forth．
50－150 Handle commands \＆numbers．
160 Don＇t recognise command．
170 Goto 20.
180－210 Add to commands used．Make sure SP is in range 0－10．
1000 Move stack down．
1010 Move stack up．

```
FgrEh/F:FN EmLilatgr
```



```
\nu=NEXT=FFINT, =, =, 隹
4@ INFUT**S&方
SG IFAs=*S":NHENIG
```



```
GTG1日心
```



```
<1)=T=GCTD1E%
```



```
GETC1EG
```



```
ST(&)=T=GOTC1日%
```



```
ST(E)=T=GCTO1EG
```



```
ST(G)=T=SCTG1B%
```



```
14G FOFFF=1TOLEN<A$)
```



```
$(NAL(A古)
```


己1 \quad GDTD二心

$\square F^{*}=5 \%+1=F: E$ TUFIN

$1=\mathrm{Fi} E \mathrm{TLIF} N$

Wally－Simons＇Brother－in－Law

The following story is absolutely true（well，some names have been changed to protect the not－so－innocent！）．A few years ago a little electronic game called Simon got married，exactly to whom no－one really knows but it is thought that Ms Pac Man is the prime suspect．One thing that is known is that the fruits of their love was a little chappie called Pocket Simon．It is rumoured that Ms Pac Man had a brother．Well，let me tell you－she has！－and his name is Wally．One night Wally got sick of hearing an argument between Simon and his wife，so he sneaked out the back door and hid in the memory of a Sega computer．There he remained for six months，watching various programs，but he got lonely （aw ．．．！）．One night（or early morning），I was doing some research for this book when the program I was writing went bonkers and disappeared！ Perplexed（and vexed！！I listed the program and found a program calling itself＂Wally＂，Lines 1－9（now deleted，as some of the data is personal！） contained the above story and a note saying，＂Now you have found me，please don＇t tell Simon or my sister where l am！＂Well，I decided not to，but I did get him to give me a photo of himself，which has been faithfully reproduced below．

Okay，now you can stop crying－here is how the game is played．It is exactly the same as Simon．Wally sets a pattern of sound and colour and you must follow it．Simple ．．．NO！At the start it is fairly straightforward and simple，with only a few steps to remember，but it gets fiendishly hard near the end．

The computer（er ．．．Wally！）draws 4 segments of circles each of differing colour．When the pattern is generated，you must respond by pressing the appropriate cursor key（the ones with the arrows on them ．．．see them？ ．．．good！），e．g．．．．the top cursor key represents the blue semi－circle．Wally will prompt you to respond．

Notes：（This is serious now！）
10－70 Data for position and colour of sprites arranged as x, y ，colour． Set up screen．

90 Start of main loop, Q reads through pattern contained in Z-array.
$100 \quad D$ is a delay. As the game goes on the speed increases.
110-140 Display pattern. Read data from Line 10, display sprite, thus making each segment "light-up". Make a sound proportional to which segment "lights up". Delay. Switch off sprite and sound.

150 Tell the being at the keyboard to get his act together!
160 Loop which counts from 0 to $Q . Q$ don't forget, contains the length of the pattern so far.
170 Wait for response from keyboard. If it is not a cursor (look at the bottom of page 19 of the operator's manual), then go back to Line 170.

180 Turn the value of the key pushed into a number (1-9).
190 Display your choice.
200 Check to see if your response is right.
210 Make a chirp.
220 Wait for you to take your finger off the key.
230 Switch off sound and sprite.
240 Loop end.
250-260 Delete "Your reply". Small pause. Next loop (Q).
270-280 If you complete the whole pattern (most unlikely!) Wally congratulates you.

290-300 Press a key to rerun.
310-320 Ha, ha ... you made a mistake. Delay.
330-370 Play back pattern.


```
1GD&丁的1&,6E,7,140,56,5,116,115,5,54,50
|.1
```



```
FFFFFFF
```



```
1. y""
1&GFOFI=&丁口O
```



```
THENBZO
```



```
E==~GESS<FEE`
```



```
FWFIITEE, (X, Y), E% C
```



```
24< NEXXTI
```



```
T=SDLNMDE
```



```
SG0 GपT| 10%
```



```
#3%%%
```



```
5), 15
```


Rock, Scissors, Tissue

In this very old game scissors cut tissue, tissue covers rock, and rock blunts scissors. It is a game of psychology. In theory it is impossible to predict what an opponent will do next, but a computer could quite easily try to find a pattern, predict what your next move might be, then give a response which would beat you!

Information about moves is stored in the array A. In the array $1=$ rock, $2=$ scissors and $3=$ tissue.

As rock (1) beats scissors (2), scissors (2) beats tissue (3), and tissue (3) beats rock (1), you can see a pattern emerging. If the computer's move is 1 more than yours (assuming $3+1=1$), then the computer loses; therefore if the computer thinks that you are going to make' a certain move, it adds 2 to that value and wins (again!).

Notes：

10
Data for elements．
20－70 Set up variables．Initial value of array A is random．
80－90 Searches through array to find most popular move of player．
110 Calculates computer＇s response．
130 Await R，S or T．
150 Convert $\mathrm{R}=1, \mathrm{~S}=2, \mathrm{~T}=3$ ．
170－200 Find who has won and increment winner＇s score by 1.
210－250 Print who wins and update scores，make a noise，press a key． 260 Select Rock，Scissors or Tissue routine．


```
\(4 区 3\) L
```



```
以थn"
フ4 SCHEENM \(1=1=C 15\)
日6 \(\quad N=I+\cdots(Y) \quad(Y)\)
```



```
1. \(3<1 \mathrm{~K}={ }^{2}\)
```



```
F-FIMTA韦
```



```
\(=5 \square H M D\)
1 万く Aく《に
1. 3 I I
```



```
ET《列
```



```
\(T=S C H T M D=\mathbb{S E} \times T\)
```


Lunar Lander

Due to a freak accident on board your Apollo Lunar Landing Module, you must land the beast manually. To slow down increase the thrust.

Notes:

10 Set variables.
20-50 Display status.
60 Enter thrust.
70 Make sure thrust is legitimate.
80-120 Do some working out.
130 Create a random sound.
140 Successful in landing!
160 Oh dear ... you mucked up! Make explosion sound.
170 If you crash you leave a crater, the size of which is proportional to the amount of fuel left.

```
Lunat lamacler
```



```
4@ CUFSDFQ, = FFFINT"CDMFUTEFR ENTFY"\XiS
```



```
S@ CUF:SDFRO, 1Z=INFLT*THFRUST ":TH
70 IF TH<& OF TH\EGEGQTHENSGLND1.11%,15=
FDFI=GTDIGE=NEXT=SDHNDG=GOTDG@
B6 5=5+1
```



```
16%
1@@ V==V-K(TH/F)-Z)=A=A-V
11G IFAK=GANDNK5 THEN 140
12\sigma IFA<=\sigma THEN1&G
```



```
14% CUFSOFG:4 = FFFINT"CDNGFATLLLATIGNS YOU
MADE
            IT"
156 GOTO1&%
1GG CUFSGOFIB, = =FFINT"YOU CFAASHED_ - MA_ -H
A" = QUT&H\F, &HE4 = FGFE=&HFGTO&HFF=GUT&&HVF,
E=FOFI=OTO2O=NEXTI=E
```



```
    MILES WIDE*
1日G IFINKEY&=..."THENIESO
19% GOTO1%
```


Spacies

This liftle program, silly though it may be, is actually quite addictive. The object is very simple - a liftle beastie (some say UFO) will start coming down from the top of the screen. It is your job as chief "blower-upper" to smash the-innocent-litille-thingy-that-doesn't-mean-any-harm to bits! Good fun! Once you blast one, another comes along, but being a bit annoyed (that must be the understatement of the year!) he is quicker than his predecessor. You control your implement of destruction by using the P and Q keys to move, and the space bar to shoot. If you hold down the shift key, you double your speed. The game ends when a beastie lands.

Remember: "Support your local laser base, stomp on a Space Invader!"

Notes:

10-40 Set up screen, design laser base (sprite \#0). $\mathrm{X}=$ original position of your base. $S=$ speed of space invader.
50 Main loop. Governs "fall" of space invader.
60 Position base and spacie.
70 Handle keyboard entry. " $Q^{\prime \prime}=-4$, " $P^{\prime \prime}=4$, " q " $=-8$, " $p "=$ 8. Check if space is pressed.

80 Loop back.
90 You got sussed - baddies started to colonise your planet!!
100-110 Wait for key to be pressed. Rerun.
120 Laser blast and sound.
130 Check to see if a hit. If so, increase speed. Make an explosion. Next baddie.
140 Goto 80 (i.e. missed!).

马рacies: ! !


```
#5*1g6
1ヵ& IFINFEEY婁=**THAENIGG
11SGOTG
```



```
GOTC4%
146 GOTDEO
```


Computer Chit-Chat

The following program should be carrying a health warning! It is likely to drive you round the twist, or split your sides (or both). It actually follows the laws of English to produce language such as:

The Lazy Nerd Eats Slowly On Top Of A Damaged Computer
or
A Big Book Reads Awfully

Notes:

10 Data for articles.
20 Data for nouns.
30 Data for adjectives.
40 Data for verbs.
50 Data for adverbs.
60 Data for prepositions.
70 A random number function.
$80 \quad \mathrm{~A} 1=$ number of articles, $\mathrm{N} 1=$ number of nouns, etc.
90-100 Set up arrays and read data into them.
110 S\$ will hold final sentence.
120-130 Create and print SS.
140-150 Wait for a key to be pressed, create another sentence by rerunning.
1000-1030 Construct a noun phrase, by extracting a random article, selecting, optionally, a random adjective, then select a noun.

3000－3060 Select optionally an adverb，then call Line 4000 to supply a preposition．
4000－4020 Optionally select a preposition，then jump to 1000 to select a noun phrase，etc．
It is easy to alter the vocab．Just alter the appropriate data and don＇t forget to change Line 80 accordingly！

```
Conmucter Cthit-CHE&
1& D&TA&TVHE
```



```
EFA&Z, DAMAGED
4& DATANF:NTES,FNUNS, DENLMGS,FFINNTS, FEATS,FE
AD, CLIMES
```



```
r=LAZML'Y
```



```
=FEADMF(AG)=NEXT=FDFAA=1 TDDI=FEADDS(A)
```



```
118 S事=."."
```



```
15& FFFINMTS%
14% IFIHNEEV禺="#THENN14&
15%GMO116
```



```
+ ! ..
```



```
1&S6% F%ETUFこN
```



```
)** "=GOSUE4<<<<
S心心G FRETLJFNN
```



```
4&2% F:ETLJFRN
```


Chords \& Music

The following tiny program will create random, but musical, music! It won't turn your micro into a rival for Beethoven or Billy ldol but it will surely beat my vocal abominations!!

When run, there is a short pause, then the sonic harmony will start and continue until you get a power cut!

Notes:

10-30 Data for chords.
40 Read data into array A.
50 Create music by transferring data from A.
60 Play it. To speed up the tones, decrease the value of the L-loop e.g. FOR $L=0$ TO $0 \ldots$ will be very fast.


```
# =|, |E= x"H
```


16×16 Sprite Generator

Okay, let's set the record straight - no doubt you've seen many character generators for this micro. Well, 99.99% are for 8×8 generation only this little piece of code lets you produce 16×16 beasties for use in MAG 1 or MAG 3. To use, just move the cursor around the screen using the cursor keys. To enter (or erase) a point press the space bar, to restart press R, to actually generate your gizmo after entering all the points press CR. To see your handiwork press F and hold it down.

Notes:

10 Set up screen.
20 Continue to set up screen. Note the rubbish inside the quotation marks is in fact entered in ENG DIER's mode i.e. q is actually a " Γ ", 2 is "一", s is "لـ", etc.
30 Set up array. $X \& Y$ are the coordinates of the cursor.
40 Position cursor (which is ENG DIER's shift V, which is a checker board shape). Then overprint with whatever is stored at that point - this gives a flashing effect and stops the erasing of data.

50 Await keyboard entry.
60 Make a sound.
70-100 See if key pressed is $R, F, C R$ or space bar.
110-160 If a cursor key is pressed then increment or decrement x or y. Check to see if the resulting movement would take the cursor out of the 16×16 grid. If so, cause a "wrap-around" effect.
170 Jump back to 90.
180-190 This is jumped to if the space bar is pressed. It fills or deletes a point. The V's are in fact ENG DIER's V (which is the solid shape).
200 Data for binary.
210-240 To generate a 16×16 sprite. $4,8 \times 8$ sprites must be generated first. This is done by supplying coordinates for all 4 sprites and calling the routine which actually converts the info to hexadecimal. A \& B are the coordinates, C the position on the position on the screen the data is to be printed. N is the sprite no.

250-260 Place new sprite on screen. Pause, rerun.
270-290 Converts data held in AS to hexidecimal. Remember " V " is actually a solid square. QS contains the final hex data.
300-330 This part is executed if F is pushed. It flips from MAG 1 to MAG 3 and back again if you hold down a key. A is a count. If A reads 75 it causes the MAG to change, and A is set to 0 . F is the current MAG.

 （2マ9）
 FFFINT＂3

S＂₹ HEX事（A－1）＝NE \times T

 A
 DF：X，＇\quad＝FFEINTES事
馬
心↔ SOUNDD1，12GE，15：5GUNDDE

Eの \quad \＃

100 IFC事＂＂＂FHENGOSUES BG

$1 \leq 0 \quad 1 F X>16 T H E N X=1$
14Ω IFY $>16 T H E N Y=1$
15ϱ IFY＜THENY＝16
16 IKX＜ 1 THENX $=16$
176 GロTロ4曰

FETUNN
 FEETUFN
200 DATA1 ב
210 FOFA＝6Tロエ＝

240 $X=6=F A=B=T A=15=F E=E=T E=15=G O S U E=G E=G$
－17ロ2日6
$256 \times 1=\times / \Sigma=C U F S O F Z Q, X=F D F A=F A T D T A=T=\sigma=F E$
 $T=T+6!$
 マフG FFFINTTक＝＝Q EFNNS\＃$\times 1$ ，Q
 0,1

$\leq G \subseteq$ SCFEEN $2,2=A=0=F=1=M A G 1$

$=A=0$
S2＠$A=A+1=1 F I N H E Y$ क
STO SCFREEN1， $1=F E E T L F N$

Star Trelk ... The Author's View (that's me!)

In my opinion, Star Trek is the best thing since sliced bread and plug-in ROM cartridges. But little is known about the origins of the program (and films). Well, fellow computniks, I have been doing a lot of studying (and watching tellie) and at last I have found the origins to the world's best series - here goes.
In the early to mid sixties (around the time I was hatched) a not-so-young gentleman got out his computer (which turned out to be a predecessor to the SEGA SC-3000) and literally got it to write scripts for him. His name was Gene Roddenbery, and now for the big news ... I managed to pinch a copy of that very program! Without more ado, here it is ...

Notes:

10
20
30

45-47
50
55-60
1000-1070 Data for each crew member. The number at the beginning of each block, is one less than the number of sentences.
NOTE: Only bridge crew are listed. This is because other crew members such as security, don't say much. They just get killed!

Z๑ DEFFNF $\langle x$ ）＝INT（FND（B）＊x ）

$4 \sigma F E A D Q, Q \infty=Q=Q+1=A=F N F(G)=F D F E=Q T Q A=F E A$ DAF＝NE \times TE：
45 FOFA＝
事《与》＝A事：FFINTE事っ，A事
 HE END ．．．．．＂＝END
SS IFINREY末心＝＂：THENSS
© EEEF＝GロTロS®

 ＂What is it spack？＂：＂We nave motime＂＂ et phasers to stur＂
 ＂＂What are you goirng to do to my ship？＂， \because Infarm star－fiét cammand bt＿UnMora＂，＂T －the tramsparter raom＂，＂Get a 1 amdimg p arty ready＂．
 me kimd of แnkmown emergy captairn＂＂Fasc imatimg＂：＂Mast illagical＂，＂Amy one far گ́s
 ＂＂A Nitrロgen－D：ソgen atmospheres similar to that fournd on Earth＂，＂I doubt iffpas ers will workM
 take it＂，＂它以上 canmataketherstrairncap＂ r＂＂＂A11 defences aut Cap＂r＂，＂ロre more ar
 an just manage Warp 5 ．＂

 unctrarted region－．－＂
 Lt captain＿．．＂．＂I＊Ve never Seen orne ilke it＇

SSSnalke

This program has been nicked! Pirated by me! Shock, horror. Sorry about that bit of drama - the program I have listed was nicked from an old machine-code program I wrote for another computer some years ago, so it's not that bad ("Shame", I hear you say - I bet you thought you were in for a bit of excitement!).
In this game you take on the part of SSSid the SSStarved SSSnake. He must run around the screen gobbling up dots (no, this is not Pac Man), whilst leaving a trail behind him. He must not bump into his trail or the wall. You control SSSid by using the Q key to go up, Z down, P right, I left. As the game progresses you have to devour more dots and this leads to longer trails therefore making the game very hard. The actual high score set by my now deceased cat is 286 .

Notes:

10 Set screen colouring. Define a random number function, and define the shape of the objects to be gobbled. Set high score to 0.

20-30 Define shape of SSSid. TS is a variable used to detect if a screen is completed. S is the number of munchies on the screen. P is your position on the screen (roughly central). D is set to a random initial direction. Score set to 0 .
40-60 Set up display. The e"s are in fact ENG DIER's shift e (which is a chess board shape). The Vpoke places SSSid (you) on the screen.

70-100 Place munchies at random positions on screen. A holds the position. If this position is already occupied re Vpeek (a) is no \dagger a space (32), then select another random number.
110 Make a sound to warn you that the time is nigh.
120 If a key pressed $=P, Q$, I or Z then alter D1 accordingly. If D1 then $D=D 1$, this is the same as if $D 1<>0$ then $D=D 1$. Basically this means that if a key is pressed the alter D. If a key is NOT pressed then D (which holds the direction you are facing $1=$ right, $-1=$ left, $-40=$ up, $40=$ down) stays as it is. This makes the SSSnake continue in the direction it is heading.
130
Let $\mathrm{B}=$ what is in the space next to your position and your direction. If B is not a space (32) and not a bit of food (255) then you must have hit either the wall or your own trail, so jump to the death bit.

140 If $B=a$ bit of grub (255), then increase score, make a burp. If $S=S C$ then you have complete the screen - if this is true jump to 160. position．Place you on the screen by Vpoking you．Goto120．

160－180 Make a pretty sound．Increase number of food．Get ready．
190－250 Dead！Place an asterisk in your death position．The outs all help in creating an explosion．Check for new high score．Print high score，await a key to be pressed．

SSSnakg

 С事＝A事＝ $5=6=F=8 \| S D A \leq$
SG D＝SGN（FND（B）－FND（B））$=5 C=5$

G® FOFRI＝1TO18＝CUFGOFG，I＝FFFINT＂E
E＂＝NEXTT

 フ曰 FOFI＝1TOS
 σ
Ta VFGKEA，255
1 CO NEXTI

 $=\mathrm{D} 1$

 $15 \Leftrightarrow F=F+D=V F Q ト E F, 1=フ=501 \square 120$

 ＝CuJF：

，

Minefield

This is one of my favourite little games, 'cos if you make a mistake you get blown up!
The game is really easy - you guide a little chappie ("+") through a field dodging mines. You move the man by using the " P " and " G^{\prime} " keys to move right and left respectively. You move forward automatically, the speed of which is governed by the level of difficulty.
When you pass away (die), as you eventually will, your score will be displayed. A good score is around 40,000. Oh, and by the way, don't bump into the fence surrounding the field or you'll get zapped!

Notes:

Clear screen. Input the level of difficulty, make sure it is inbetween 1 and 100. The level is stored in LV.
20 Clear screen. Set a new random number pattern (see page 77 of operator's manual).
30-40 Set up border. Note, the ' i ' is not an i but ENG DIER's shift G (which is a sort of snapped chess board!).
50 Place a number of mines (determined by level [LV]) at random positions on screen.
$60 \quad \mathrm{M}$ is your y (downward) position. X is a random x (sidewards) position. Place you at the M, X position. Warn you with an audible alarm.
70 Increase score.
80 Check to see if you have bumped into anything. This is done by converting your X and M position to a memory location on the screen (see pages 143-144 of operator's manual). The mines are CHRS (233).
$90 \quad$ Place you at your position again.
100 Delay controlled by level.
110 Decrease your y position. This makes you go up the screen. If $M=Q$ you have reached the other side of the field.
$120-130$ If Q is pressed X is increased by one. If P is pressed X is decreased by 1 . Loop back to 70.
140-170 You made a boo-boo and got blown up! Make oral explosion sound.
180 Cause field to scroll up screen.
190 Tell you, you've finished that field. Increase level of difficulty by decreasing LV. Delay. Loop to 20.
200-210 Press a key routine.

Mi rater Feill

Z1＝FFFINTM＂i＂＝MEXTI

3＊＂i．${ }^{*}$ NE NTTI

$755=5+25$

 NE5

 F＂：
$1 \approx 5 \quad$ GOTDフ曰

$156 \quad$ CLS $5=5=5-2030$

$1 巴 G \mathrm{FDF} \mathrm{I}=1$ TC45＝FFRINT＝MEXTI

 ワext gon－＂ $\times T L=G O T E=0$
必世 IFINFEYY
$\approx 1 \sigma$ GOTC1G

Quadratic Regression

What a mouthful！With a title like that it should stay where I got the idea from－in a maths book！Seriously folks，regression is one of the most useful statistical methods for examining scientific，economic or social data． Basically it allows you to enter a few points and from then on you can find any point．Baffled？Well，imagine this－we all know that $212^{\circ} \mathrm{F}=$ $100^{\circ} \mathrm{C}$ ，and that $32^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}$ ，hut imagine if，even though we know this data，we want to know what $-40^{\circ} \mathrm{F}$ is in celsius．Well，this liftle program allows you to do this．Or，say we know that a lump of steel expands by 2.2% at $500^{\circ} \mathrm{C}$ and 3% at $750^{\circ} \mathrm{C}$ and 10% at $2000^{\circ} \mathrm{C}$（purely arbitary values chosen），and we want to know by how many \％that lump expands by at $-100^{\circ} \mathrm{C}$ ．Well，this gem of a program lets you do this，and much more－convert any metric to imperial sizes and vice versa，convert literally any data，so long as at least 2 points are known．
I am not going to give a rundown of how the program works because as you can see it is fairly complex．But I will give you an example of how it works．Let＇s take the temperature example．

How many points ．．． 2 ．
Enter x value 212
Enter y value 100
Enter x value 32
Enter y value
Enter a value for $x-40$
If $x=40$ then $y=-40$

Point $1 \quad 212^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}$
Point $2 \quad 32^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}$
－We want to know what $-40^{\circ} \mathrm{F}$ is． $-40^{\circ} \mathrm{F}=-40^{\circ} \mathrm{C}$

To the more mathematical minded among you，remember not only is linear regression supported but quadratic regression is also，but many more points must be entered so as to fit the quadratic curve．The form of a quadratic equation is：

$$
y=a x^{2}+b x+c
$$

This program has many possible serious applications．

```
Gu|adraticEF&gressigm
```



```
SE INNWTT"ENTEFR Y UALLIE"#Y
ZE A=A+X=E=E+Y
```



```
106 G=G+XッY
1.@ H=|HAESS<x)\cdotsTHX
1二见 NWEXTM
```



```
E-amE<M| - T
14\sigma I = < <F-AES<C, T/N\*<G-E*A/N\- (H-E*E/N
**<E-a*C<<N>><Z
```



```
176 CLS
1BG INFUUT"ENTEFR A VALUE FOFR }\times|>
1%% ELS
```



```
2こ6 GロTロ1日心
```


Bingo

This is a Granny's delight! The only problem is, is that you need a printer as cards are run off. I'm not going to explain how to play Bingo because you already know (or if you don't, find out!). It allows you to select the number of players (2 or more generally), then there is a pause as each player's cards are generated. This may take some time as the computer must check that numbers on the same card are not replicated. Then each player's cards are printed on the printer, and the game commences as the computer generates random numbers. The winner is the first to get all their numbers called up. When a winner is declared, you press "H" and you start to enter the numbers on the winner's card. If a number has not been called the game continues. Otherwise an "All okay" message appears ... we have a winner!

Notes:

10 Clear the screen. Define a random number function.
20 Enter number of players.
30 Delete old arrays. Re-dimension arrays.
40-90 Generate cards for all players. Lines 70 and 80 maka sure there is no replication.
100-130 Print cards. Z is the spacing of numbers.
140-150 Pretty title.
160 Set number of numbers so far ($C=1$).
170-190 Print a non-replicated number. Make a pretty burp.
200-210 Wait for a key to be pressed. If " H " is pressed then a winner has said his card has been completed so jump to 230 .
220 A key has been pressed, it is not " H ", so increase C and goto 170.

230-270 Check that all numbers on winner's card are correct.

[^0]\quad\textrm{M}=\textrm{M}+

```


```

zぁ心 M=M-C
ズ心 SOTOこ4%

```


至 5

CM（1＊

\(C 川 1(H)=C H 1(1 \leq 3-26\)
GロT以


CM（H）
GロTCごョ世
CM《1
NE \(X\) TR
CIS
DTV 5 ロロTC4 \(404 \leq 4\)

GOTM444



ツロTM10

\section*{Revenge of the Mutant Apples！！}

Beware，fellow cyberphiliacs，whilst you are munching on that crunchy， juicy，green apple（it＇s okay－red apples are safe！），some of our kinsmen are having to fight giant sized Mutant Apples（green ones）on the very edge of time（and sanity！）．Hold on a minute－what？Ha，ha！Well，how＇s this？You have been selected to join the force to combat the second deadliest foe in the cosmos．Whilst in space you must simply dodge the apple by using the＂\(Q\)＂and＂\(P\)＂keys to move left and right respectively， but watch out！－the Mutant Apples go around in pairs．

\section*{Notes：}

10－20 Redefine characters 254 and 33.254 ＝you， \(33=\) Mutant Apples．
30 Clear screen．Set \(X\) to rougly 3 lines down in the middle of the text screen． X will store your position on screen．
40 S holds score．（ 1 E6 \(=1,000,000\) ．）Place Mutant Apples on screen．
50 Check to see if you have crashed into a Mutant Apple．
Place you back on the screen．
70 If IS＝＂\(Q\)＂decrease \(X\)（move leff）．If is 5 ＂\(P\)＂increase \(X\)（right）．
80－90 Make sure you don＇t go off the edges．If you want to increase the speed of the game remove these lines．
100 Loop back．
110－150 You muffed it！Make a sound．Show score．Press a key．





```

! ! " = FFIMMT

```

```

↔心 NFDFREX, 25, 4

```

```

1. Ex NEXTS
```


```

, \rightarrow A

```


```

1. 5 GロTロこ6
```

\section*{Ice Cream}

Can you tell the difference between a Lolly－Munch－Cherry－Choc－Bomb and a Finger＇\(n\)＇Face－Freezin＇－Fire－Fruit－Fantasy ．．．？You can！Well this is the game you＇ve been waiting for！But you＇ll have to be a real cool customer to become the top ice cream vendor in Segasville．Up to 4 players can take part in this educational and fun－to－play buying and selling game．
Each player runs a van selling various cold delights．You are in charge for 7 days and each morning you must buy stock，but remember to keep an eye on the weather and at weekends more people are around！So keep your fingers crossed for a blistering hot Saturday and not a rainy Monday！

\section*{Notes：}

Set up arrays．RS＝ice cream remaining
\(\mathrm{RC}=\) cones remaining
RH＝choc－ice remaining
\(\mathrm{RL}=\) lolly remaining
\(\mathrm{GA}=\) ice cream sold
GD＝choc－ice sold
GE＝lollies sold
CS＝various sales
TA＝takings
PR＝profit
A＝selling potential of cones i．e．your price
\(C=\) no．of cones bought
\(D=\) selling potential of cartons
\(\mathrm{S}=\) no．of cartons bought
\(\mathrm{E}=\) selling potential of lollies
\(L=\) no．of lollies bought
\(\mathrm{PA}=\) return value of A
\(\mathrm{PB}=\) return value of B
\(\mathrm{PE}=\) return value of E
\(\mathrm{PD}=\) return value of D
\(\mathrm{X}=\) cash in hand



```

2S GOTG4SN

```

```

4% IFINNKEY韦=""THENSNO
5\& FIETMFN

```

```

C

```



```

1O\&FFA<I\}=\mathbb{O
11G NEXTI
1卫\& FRETUSNN
1ड\& FOFRに=1 TGN

```

```

01S心

```



```

1BG FDD(I)=0
15E NEXTI
Z心S FOETUFN

```




```

ZGG FFE(I)=E
2G\& NEXTI
2\checkmark心 NEETMFN

```


```

FFFINT = FFETMNFCN

```





```

O

```


```

STE FNETLIFRN
SBG DATAMDNDAY, TLIESDAY, WEDNESDAY, THLIFSDA
Y,FFRDAY,SATLIFRD,Y,GUNDDAK

```

```

TLJFNM

```


```

エMM!?""

```
\begin{tabular}{|c|c|}
\hline 426 &  \\
\hline \(4 \geq 0\) &  \\
\hline \(=\infty\) &  \\
\hline 4.46 & FGFD＝1可 \\
\hline 456 & \(D A=D A+1\) \\
\hline \(4 \leq 0\) &  \\
\hline 476 & FOFRS＝1 TOU \\
\hline 4 46 & GロSUESS日6 \\
\hline 476 & CLS \\
\hline 56 & \(\mathrm{E}=\times \times 1 \leq\) \\
\hline 51.9 & F－FINT＂＊VAM＂ \\
\hline 5 三6 &  \\
\hline \(5 \leq 9\) & GロSUE1ご心 \\
\hline 546 &  \\
\hline DO &  \\
\hline &  \\
\hline 556 &  \\
\hline こ白 & GロSLEご心＝ロロTロ5＂5 \\
\hline 576 &  \\
\hline 56 & GロSUE1276 \\
\hline 575 &  \\
\hline ¢6¢ &  \\
\hline \(\triangle 16\) & GロSLEzPG＝FFINT＝GロTDSES \\
\hline \(6 \geq 6\) &  \\
\hline 65 & GOSUE12フ6 \\
\hline 649 &  \\
\hline & \\
\hline \[
\frac{65}{76}
\] &  \\
\hline ¢6¢ & GロSUEz马G：FFPMMT＝ \\
\hline 676 &  \\
\hline ¢ \(\underbrace{6}\) & GOSUE1270 \\
\hline 696 &  \\
\hline フ0\％ &  \\
\hline 716 &  \\
\hline 726 &  \\
\hline \(7 \pm 6\) & GDSUE1家 \\
\hline 740 &  \\
\hline THIN &  \\
\hline フ旨¢ &  \\
\hline ア60 & IFAs＝＂N＂THENTEG \\
\hline 776 & \(\times(ト)=\square=60 T 0456\) \\
\hline フ曰6 &  \\
\hline 756 &  \\
\hline 日co &  \\
\hline \(\theta 1 \%\) &  \\
\hline FDF： & AN＂＝FFINT＊SCE－CFEAMM DGNE INU EENTS ？ \\
\hline ＂＇ & \\
\hline Eこの & I NTFUTM，（Kく） \\
\hline  & FFFINT＊WHAT \\
\hline A＂＝ & FFFIMT＂CHDC－IEE INA CENTS＂ \\
\hline 946 & INUVUTD（M） \\
\hline 956 &  \\
\hline A \({ }^{\prime \prime}=\) & FFFINT＂LGLLY IN EENTS＂＊ \\
\hline Ⓢ6 & INFUTE（\＃） \\
\hline \＃フ¢ &  \\
\hline YTHI &  \\
\hline \＃\＃¢ & At＝INFEYtw \\
\hline 日 96 & IFA部＝＂M＂THENS16\％ \\
\hline 765 & GロTワ®15 \\
\hline 710 &  \\
\hline アご0 &  \\
\hline ＞\(=5\) & \(3 \times 1 \leq\) \\
\hline P30 &  \\
\hline \(18=5\) & 3c（1） \\
\hline \[
\begin{aligned}
& 74 \Phi \\
& >=5 i
\end{aligned}
\] &  \\
\hline 756 & SD¢ \\
\hline \(3=5\) & ＋（1） \\
\hline 760 &  \\
\hline アプ &  \\
\hline 956 &  \\
\hline 976 &  \\
\hline &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 1680 &  \\
\hline 1616 & TUE× \(\times\) T \\
\hline 1020 & FCF゙ド＝1 TOV \\
\hline \(10 \leq 5\) &  \\
\hline 1040 &  \\
\hline 1.50 & CLS \\
\hline 1060 &  \\
\hline 1076 &  \\
\hline \multicolumn{2}{|l|}{F THE DAY＊} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{11EEY FFFINT＊ICE．．} \\
\hline \multicolumn{2}{|l|}{\(111 ¢ F F \mid\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
GA（1二 ）TAE（ \\

\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\

\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{11560 GOSUETこつ} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{12 ze CLS} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(1 \approx \leq \leq\) FGFM－} \\
\hline \(1=40 \quad 1\) & FFINNTTAES（ \\
\hline \multicolumn{2}{|l|}{X（1＜）－100} \\
\hline \multicolumn{2}{|l|}{\(1 \Xi 5 \mathrm{SO}\) NEXTH＝} \\
\hline  & END \\
\hline \multicolumn{2}{|l|}{\(1 \geq\) JE，FFIN} \\
\hline \(1 \approx \square 0\) F & FFFINT＂CASH IN HAND 事＂ \\
\hline & \\
\hline
\end{tabular}

\section*{VAN 1 MONDAY}



\section*{Slide Puzzle}

Okay, here's your chance to relieve the frustration you felt with The Cube. I actually wrote this program to try and get better at those games in which you have to move numbered tiles around so that they read 1-15 consecutively with the space being in the bottom righthand corner. Well, I'm still useless at them!

When RUN, the computer may take up to 10 seconds to set up the puzzle. This delay is due to the set-up procedure necessary to avoid impossible puzzles. Then the computer will state the number of moves it should take to do.

When replying to "WHAT IS YOUR MOVE", the player must specify first the direction of the move (left, right, up or down) and second, the number of pieces to be moved ( 3 is maximum). For convenience, only the first letter of the direction need be entered, and if the number of pieces to move is 0 or non-existant, the computer will assume you wish to move as many as possible.

\section*{Notes:}

A stores the game. It is a 16-element array. The position of the space is stored in D . N is the number of pieces to move. D is thedirection moved. AS stores the possible directions. \(M\) is the number of moves.

310-450 Set up puzzle.
520-650 Print out puzzle.
660-670 Check if puzzle is completed.

710-720 Find numeric equivalent to direction chosen.
810-820 Check vertical movement.
980-990 Check horizontal movement.
920-970 Moves pieces.

\section*{Six de Fuzz1e}

SOLVAELE IN 1 E MDVES


MCNE \# 1 WHAT IS MGUF MONE DOWN
```

SDLVAELE IN IE MONES

```


MOVE H Z WFHAT I \(\because\) Y YOMF MCNE F

\section*{}




\(=1 \mathrm{~B}(4) \times=4\)

\(=46 \quad \Leftrightarrow(1 \Leftrightarrow)=6\)
S与心 F=1
\(\Xi 6 \Leftrightarrow \quad F=F \| N F<1 \Leftrightarrow\rangle \rightarrow 1 \geq\)




\(4 \geq 4\) GIDSU1E:


\(45 N\) NEXTM
46 F FFF IINT



```

54% M=M+1
S5% FGFI=\&TOIZSTEF4
SG@ F|FIINT":":"
5フ6 FOFRJ=1 Tロ4

```

```

Tロ\&1%
5%6 IFA<I+J>< 1@THENFFINT*
"\#A(ITS) ==GO
T061E

```

```

\&15 NEXTS
Gご心 F"FI创""!"
怘淐INT":! !"
S4O NEXTI

```

```

SGG FOFI=1TO15
Gフ@ IFA(I)=ITHENNEXTI=GDTOIE4%
SEO FFFCINT
GЯ@ FFFINT"MMNE \#\#":Ms
フ®G INFUT" WHAT IS YOUF MDNE "SG名
71@ FGFI=1TO4= IFLEEFT事《Q事, 1)=MID事《A事, I, 1)
THENTBG
フこ心 NEXTI=GロTロフ\&@
フB@ FFFINT=D=D(I)
7%0 GロSLEB1%
866 GロTロ526
E16N=VAL《FNIGHT事《见贵:1》)
BZG IFF-(D*N\rangle>6 AND FF-<D*N\rangle<1> AND FN-D>G
AND F-D<1> THENE>O
BS@ IFW< \QTHENS=1 = FEETUIFN
B40 SQLIND1, 11G, 1S=FGFI=GTGZGG=NEXTI=SQUN
D@= GOTロブGO
B>6 C=1
BBG IFAES<D>=1THENGBG
896 IFN<>QTHENGZ心
アGG IFF- (C*D) >GANDF-(E*D)< < TTHENE=E+1=GO
Тロフ6%
910 N=C-1

```

```

=NE×TT
タフ@ F゙ETUF゙N
%BG E=INT((F-1) <4)*4+1

```

```

\squareF F-DDSE+S THENBSG
1@@\& IFN< < OTHENOZO
1@1G IFF-<C*D\>=E AND F-<<C*D><E+4THENC=C
+1=G口TG1G1G
16ごG N=C-1
1036 GロTロタ26
104% M=M-1
1@SG FFINNT"WELL DONE THAT TDOKK:MME"GDES"
1@GOEND

```

\section*{Edumaths}

Here is your chance to answer those critics who claim your Sega is only good for games．This program does,,\(+- \times\) and \(\div\) ，and you can set the level of difficulty．The program is straightforward and doesn＇t need any instructions．

\section*{Notes：}

20－80 Enter type of topic．
150－370 Multiplication．
380－470 Summary．
480－620 Division．
670－900．Addilition．
2000 Correct routine．
3000 Wrong routine．
4000 Input answer routine．
5000 If you make two errors the routine is called．
6000 Enter range of numbers routine．
7000 Generate random numbers dictated by 730.
8000 Print question no routine．
\(K=\) Answer．
\(\mathrm{E}, \mathrm{F}=\) Two parts to question．
\(\mathrm{W}=\mathrm{No}\) ，wrong．
C＝No，correct．
D＝Highest number range（ 0 is lowest）．
\(Q \quad=\) Question no．
G＝Entered answer．
A， 1 ＝General variables．

E＝dncomet It：

```

(1G);*2J DINISIMN*,TAEKIG);*SJADDITIGN"
*TE\&(1@) 5"4] SUETFRACTIGN"
SG CUFSGFRT, 1Q=INFUT"CHODSE A TGFIC - "\XiV多
4@ IFY婁=="1"THEN1SO
\#GIFY\&=|こ"THEN4EG
GO IFY婁=" S'"THENTGO
フ@ IFY事="4\cdotsTHENG4\&
B% GOTOS@
15% GOSUEGOQG
1马QFOFRQ=1TO1G=CLG=GOGLETGGQ

```

```

3E;* X**"F=1%=E*F
*46 GCSLIEA\&\&%%

```



```


|NEXTM

\#54 GOTCOESO
\#%GOSLJES\&O%
SEC\quadW=mW*1

```







```

it LथP - : ! "=FGFAG=GTGG=FGFES=SGOTGSEOSTEF

```


```

\leftrightharpoonsiEr IEvE1 - -

```

```

NEXTI:GDUNDEX=NEXTA=FDFA=1TOWESDUNDI, 1. 10,

```



```

40 GOTCNE
4EG, GDSLJES心\&心

```



```

F=E GOSUE4\&6%
5GG IFG< =ETHHENGSG
5% C=C+1=GOSLESG\&G
\triangle1% NEXTG
626, GOTD=8\&
G\Xi6 GDSUES\&G\&=W=W+1
646 GDSLJE46%6

```

```

GO6 GDSUEZQ@\&
心フ\& GDTDG1\&
フぁぁ, GDSLIEG心\&\&

```



```

ファ% GOSUIE46%\&

```

```

E\&CDC=C+1
B15 GDSUESGOG
BZG NEXTG=GOTDSB\&

```

```

Bア\& w=w+1

```


```

ケ%% GOTDET
ア46 GDSUE\&\&\&<

```





```

1G6c,C=C+1
1@J\& GDSLJEG\&G
1.EG NEXTGEGDTDSEC

```

```

11163W=W+1=GDSUE4GOS

```

```

116\& GOTD1\&7\&

```



```

FRN

```


```

TA=FGFA=1STGGSTEFL, 2S=SDUNDI, ,AENEXTA=CU
FSDFE, 1S:FFFINT*
ETLFN

```

```

FRN

```



```

A=15TDGSTEF-.S=SDUNDI=,AESDLNDE, AN=SDLND
S, ,A=NEXTA=FRETLNMN

```



```

|NFN

```

```

ETEJFM

```

\section*{Horror Music}

This program produces very eerie horror-style music. To operate just depress keys. To get very low notes press CTRL as well as letters, and to get very high notes hold down ENG DIER's, also shift works.

\section*{Notes:}

10 See if a key is pressed.
20 Convert the key pressed to a number. Set all 3 sound channels to highest volume and offset the tones a little to create a droning effect.
30 If a key is still being depressed go back to 30 .
40 Start to decrease the volume, if a key is pressed go back to 10.
50 Decrease volume and go back to 10.
An offshoot of the program is the next program, Lament of the Wind Wizard. You will probably be learning more of this soon, in a future program.







G NEXT=GCITGIE

Lement of the wimd 悩zard


\section*{Base 10 to any base}

This program converts numbers from base 10 to any other base. First input your number, then the base you wish to convert to. The program will then convert the number, showing its calculations.

\section*{Notes:}

10 AS will hold the converted number.
20 Enter number.
30 Enter desired base.
40 Reprint data.
50 Because A is altered its value is stored in C.
60-100 Calculate digits by dividing number by base and keeping remainder. Print base remainder.
110 Repeat if unfinished.
120 Print answer.


\section*{Prime Number Tester}

A prime number is a number not divisible by any number except 1 and itself. When you enter a number the program will tell you if it is prime or not. It does this by counting from 3,5,7 etc. up to the square root of the number in question, and trying to divide the numbers. If the result is zero, the number is not prime.

\section*{Notes:}

10 Enter number.
20 Check if number is divisible by 2 .
30 Count from 3 to square root of N . The reason for only counting up to the square root is that Mathematically, divisors of a number (if any exist) lie, one below the square root and one above. Also the program counts \(3,5,7,9 \ldots\) not \(3,4,5,6,7,8\) because even numbers need not be tested. The N MOD D bit is the same as if N MOD D <> 0 then NEXT.
40 Not prime.
50 Prime.
My highest prime number is \(9,812,811,031\) which takes about 16 minutes to evaluate. It is not possible to evaluate 11 digit numbers due to inaccuracies in the ROM (in fact the Sega is much more accurate than most home micros).
```

Frime Number Tester

```

```

SG FOFSD=STOSGF(NNSSTEFZ =IF N MDD D THENNE
*OD=GDTDE\&
4G FFINTNE: ISN=T A FFNIME.DIV EYNSD=GDTD
10

```

    \(H エ=98128110 \leq 1\)
AESOUT \(1 \Leftrightarrow\) MIN- TO WOFK OUT:

\section*{Bubble Sort}

Bubble sorting is a method of sorting into alphabetical order up to 2000 elements．It works on a simple method，image 5 elements：

MERLIN
FRED
HELLO
COMPUTER
COMPETE
Now MERLIN goes after FRED

MERLIN
FRED
HELLO
COMPUTER
COMPETE

FRED MERLIN HELLO COMPUTER COMPETE
etc
\begin{tabular}{llll} 
FRED & FRED & FRED & COMPETE \\
HELLO & HELLO & HELLO & COMPUTER \\
MERLIN & COMPUTER & COMPUTER & FRED \\
COMPUTER & MERLIN & COMPETE & HELLO \\
COMPETE & COMPETE & MERLIN & MERLIN
\end{tabular}

\section*{Notes：}

10 Set up array．\(C\) is a count of number of data．
20 Enter data．
30 Check to see if＂ 999 ＂is entered．
40 Enter \(B S\) into \(A S\) ，increment \(C\) ，goto 20.
50－100 Sort．
110 Print out re－arranged data．
```

Embble Sart

```


```

36 IFEक="タタタ"THENSG
4\& AS(C)=ES=C=C+1=G口TGZG
S@ CLS = FFFINT":SORTING _ _ _."
心@ FOFIN=1TGC

```

```

=A事《N\rangle=A事《N\rangle=工事
BS NEXTN
ヲGFGFNN=1TOC=IFA事《N-1)>A事(N)THENGG
1EE NEXTN
11@FGFN=1TGE=FF゙INTA事(NN)=NEXTN

```

\section*{Noughts \＆Crosses}

Unlike many programs of this ilk it IS possible to beat this version once in a while，although draws and losses are more probable．Some moves will be made more or less instantly，while others may take a few seconds． The strategy used is to look for a winning move or if no winning move is possible，look for a possible winning move by you and block it．If no such move is found a move is chosen at random．

\section*{Notes：}

10 Data for positioning of X＇s and O＇s on Lines screen．
20－60 Prompt and display grid．
80－140 Your go．
150－260 Computer＇s go．The essence of the computer＇s＂intelligence＂ is Lines 180 and 280．The computer reads this data and uses it to know where to place its move．E．g．if position 2 and position 1 both have a cross，then the next move will be position 3 ．
310－370 See if a win，loss or draw．
380 Erase routine．



\footnotetext{
\(1 \Phi\) DATABT，49，119，49，150，49，B7，84，1 19，84， \(156,84,87,119,119,119,15 G, 119=\) RESTOFE1G＝ EFIASE

 \(=E s(A)=\cdots \quad \because=N E \times T\)

\(4 \infty\) IFA我
与曰 CLS

4бSTEF：SG＝LINE（A，40）－（A＋Z，140），16，EFFiNEXT

 LDF4＝F．FINTHEX事（A）＝NE×T
フ心 IFA象＝＂INTHENIE心
 YOLI \(90^{\prime \prime}=\mathrm{EEEEF}\)＝EEEF
}








```

<1

```


```

My gO"=EEEF"=EEEF

```


```

 ",E=1.
    ```


```

4,5,5,5, 5, 4, 5,=

```




```

+GTF%(分()
Z\OmegaNNEXT

```

```

> =1, ,

```





```

=NEXT=FGFA=1ETGGSTEF-1=SGLNNDI=N=N=NEXT
=>0 A4=">x\times"

```

```

G

```


```

SOS NEXXT

```












\section*{The Dictator}

You are a dictator in a village for a duration of 10 years. Each year you can buy and sell land, sow your land with corn, and feed the peasants. If you do not feed your people properly -10 bags of corn per person per year - some will starve and if too many die the survivors might rebel and kill you! Charming!

Every acre requires 1 bag of corn to be sown. The harvest from the land is your only income, unless you go in for real estate - selling and buying land at different prices. Beware of rats - they love corn!

\section*{Notes:}

10 Set up variables.
20-100 Display current status.
120-200 Enter land sold.
210-280 Enter land bought.
290-430 Enter acres to be sown.
440-500 How many bags to feed peasants with?
510-590 Calculations.
600-650 Your people rebel!
660-750 10 year report.
760-770 Too little land.
780 Erase a line. Uses \(Q Q\).
790-810 Checks syntax of inputs and converts to a number.
820-830 Too little corn.
840 Print a line routine.

THIE DIETETTGFR


```

 OFOLK STAFRVED! !
    ```

```

AND 1\&TE, AEFEES DF LAND

```




HOW MARIV
1HCN MATMr







\footnotetext{
- "
}
```

G26 GロSリ正』4%

```


```

65% GOTO\&46

```



```

 ARFEES OF LAMD"
    ```

```

Q" " ACFFES DF LAND"

```







```

EMTEF゙INNGING|ITTIES_マ゙*

```

```

ブ5心 GOTD\&ご心

```

```

\#EFES DF |_G|D""

```

```

UFEN

```








```

 " = |FENTL||F|
    ```


```

\#4\&5FFFINMT"
\#-" = FIETUFINM

```

\section*{The Land of Sorcery}

In this game you must do a very simple task－save a Princess！It sounds really easy when Bing the King tells you，but you don＇t know where she is，how to find her or if she＇s still alive！You also have to fight various nasty， malevolent beings and avoid traps！Good stuff！！

The only clues l＇ll give are the following（don＇t read them if you intend to solve the game）．

1．You have to find a rare band of metal first．This enables you to see the door to the room in which the Princess is held．

2．You then have to go to a cold place with the Princess．
Okay，scalpels to the ready，let＇s dissect the program．

\section*{Notes：}

Defines a random function called R．Because random nos are used all the time it is easier to define a function and keep referring to this e．g．for a number between 1－10 we would say LET \(A=\) FNR（10）．See pages 134－135 of operator＇s manual．

30-110 Sets up the game. Of the arrays (dim statements) D\$ is the description of the various areas (see Lines 530, 540 \& 550).
M is the direction and movements from a given area. (See Lines 560 \& 570). The way this works is very simple. Look at the first 6 bits of data in Line 560. This data is the movement data for location no. 1 (a grassy meadow). It is arranged in the form of N, S, E, W, Up and Down, so if you N from location 1 you will go to location 8, south to 2, east to 3, west goes nowhere as does up and down. Okay!? Good!
OBS is the array holding all the items around the land (see Line 580).

CO\$ is the objects being carried.
The Key cannot be placed in rooms 19, 12, 7, 4 or 16 because these rooms or areas are trapped! The Princess is always in room 20.
PO is room marker - it holds your current position.
PF - if this ever equals 1, you have got the Princess.
KF - if this ever equals 1 you have found the Key.
\(D E\) - if this equals 1, you're dead!
PF, KF \& DE are called flags.
V \$ is a list of all the commands available - North, South, East, West, Up, Down and take.
MC is a count of monsters chopped up!
\(C\) holds the number of items carried.
120 Prints your current location. Remember PO and D\$? The part, if DE THEN 400 is the same as if \(D E=1\) THEN 400 . This is a check to see if you're dead.

130 Tells you what you see.
140 What exits are available. It works by scanning \(M\) and \(V S\), if the value of \(\mathrm{M}(\mathrm{PO})\) <> 0 then there is an exit and that exit is read from Vs. So VS is dual purpose!
160 If a random no. from 1-6 equals 1 a monster is encountered. Those who play Dungeons \& Dragons will recognise this as a wandering Monster roll.
170 Awaits next command. \(F=0\), if \(F\) stays as 0 the command accepted is rejected and a jump is made to Line 210.
230-290 Movement. Firstly a check is made to see if you can go in that direction. If you can the PO variable is changed to the new room or area. If PO is \(4,16,12\) or \(7, \mathrm{DE}\) is set to 1 , signifying you are dead!
If you are in room \# 20, PF = 1 signifying you have found the Princess. If you have the Princess ( \(\mathrm{PF}=1\) ) and you are in position \# 22, you have won!
300-390 Take. Firstly a check is made to see if you can take anything.

By the way，if \(\mathrm{PO}=2\) you are by the tall tree and you can＇t take that！
If you are already carrying 3 items \((C=3)\)（which is the maximum）you have to drop something．
If you have found the Key，then you can see the door to the Princesses＇cell（ \(\mathrm{M}[19,2]=20\) ），and KF is set to 1 showing you have the Key．
Line 370 looks complicated but it is just a swapping mechanism．It is a temporary string．
Line 380 checks to see if you have dropped the Key．
400－440 Death，score and another go？
450－500 Monster attacks．Select a baddy（see Line 509）．Create your hit－points and the monsters． \(\mathrm{HP}=\mathrm{Its}, \mathrm{H}=\) Yours．Line 460 dictates who strikes first．If Your／lts hit points reach 0 You／lt are no more！

\section*{510－520 Game end．}

530 Data．




```

E| \

```




```

[]|=2早==

```










)


\(M<I, J\rangle=N E \times T, T\), 1


A束
76 NUEXTII

ロビㅍ․




6
\(1 \geq 6\) FFFINT:







 ）THEMF＝I
17 TH NEXTI
 ,\(\geq 00\)
 をagern－－！＂
ここG FFFNTA来＝GDTG1フ曰
ZSO IFMKFC，F—1）
 ロ1フ6

ZGO IFFD＝4 DF FG＝1G DF FD＝12 DF FD＝フTHEN \(D E=1\)

己BG IFFD＝ここANDFFTHENSIG
マクE GDTO1 20


\(\leq 1 \mathrm{EF}\) IF E THENS 40

 176

346 FFINT＂YロLA Are carryimg too much－What
do you warit to leave behind？＂＝FロFi＝＠TOS
 F－D
צEG INFUTEIE＝INT（E）＝IFEKGORQ＞4THENGIG
SGO IFQ＝4THENIフG
 FFEINT＂DAEy－－＂


క९6 MEXTI＝GDTD1フ曰
4ヵの FFINT＂HA＿－HA＿－HA，You are dead ．．．＂
410 FFFINT＂FiMal Scare＝＂ C＊26め \(=\) IFFFTHENT \(=T+500 \Leftrightarrow\)

\(4 \leq\) IFINKEV事 I＞＂V＂THEN4IS
449 GOTOIG
 Ed by＝＂＝FESTQFESOG＝Z＝FNF（S）＝FOFA＝1TGZ＝F
 c）+5
466 IFFNF（ 10 ）＞




 IFHF ETHEMFFINT＂It doEsn＝t feei toロ gaOd
 MC＝MC＋1＝GOTE1 \(\quad\) M

 sitccmesfram the bluesty bu carty falls tothefloorgis ittchan Ges imta beamtiful Frincess：＂＝FFINT：F

与こG ENDD
与डs DATAIn a gr assy meadow，In a dark for Esty man amadi beach，Drownimg im the sea



\section*{Statistics Package}

The sheer thought of STATISTICS makes me cringe and sweat! That's why I wrote this programme. After a few hours of searching through my bedroom for a couple of stats books, and clearing away the dust, I began writing it. The result of my labours (that's a laugh for a start!) is a program that allows you to enter data, graph the data, get 2 types of deviation, the mean, sum of data and sum of data squared. If you are going to use the graph you are restricted to 25 units of data - the reason for this is to keep the data clear when displayed in graph form.

\section*{Notes:}
\(10 \quad S\) is sum of data. \(S\) is sum of data squared.
20-60 Do you want to graph the data? If you do MX (maximum amount of data) is set to 25 , else set to 1000.

70-100 Clear screen. Dimension array to hold data after erasing previous info. Set count to zero. Input data andcheck if " \(Z\) " has been entered.

110 Convert data (which is numerical) to a number and store it in the array. Add to \(S\) and SS. Increment counter. Check to see if data count is less than maximum permissible.









```

Mx+1)

```








```

s

```






```

D

```

```

CNTIIN|ME*

```

```

Z0% IFAS=="Y*THENZEO

```

```

工号心 IFINNGEYक="Y"THEN1%
2\&\& IFINHKEYक= "N"THENENDN

```


```

\#\$ FOF゙』==4TGC
SG\& IFD\&A) =TTHENT=D(A)

```



```

\approx54,1\#4)

```


```

S5% ST=2=~0, }=2=5=5T+1

```

```

~25

```


```

\#GG NEXTA
3% SCFEEN 1:1=CLS

```

```

N"

```


```

4S GOTC418
44% SCFEEN ご卫

```

```

4\&\& ECFEEN| 1.1:FETLUFN

```

\section*{Phase Change}

The following short program is designed to show constructive and destructive interference between sinusoidal wares. It uses polychrome high-resolution graphs to great effect. Imagine saying that after a few to drink! Basically, all it does is plot the result of two sin wares, which are in or out of phase, and tells you the maximum point reached. If it sounds a mouthful, just run the program and all will become clear (hopefully!).

\section*{Notes:}

10 Input distance between crests of the two waves (in radians).
20-50 Set up axis and print phase change. Note the "_"'s in Line 50 are in fact pi symbols found at the bottom right of the keyboard.

60
XF used to calculate maximum sum of waves.
70-110

120
Every tenth point, plot a heavy dot.
140 Print maximum total.
150-170 Plot heavy dot.
When the program has finished the screen will revert to the text screen. To see the graph just press SHIFT and BREAK together.

Some examples of phase change are:
0 phase change: This will cause only 2 waves to be plotted as the red \& blue waves are on top of one another. This is called "in phase".
1.5 phase change: This is called "slightly out of phase".
2.6 phase change: Nearly out of phase.

Note that as the phase change gets close to Pi (3.1415926 ...) the resulting green wave gets flatter.
```

FHasernarnge
$1 \varnothing$ INFUT "INFUT FHASE CHANEE "ミFH
26 SCREEN 2, 2:CLS

```

```

*F), $B=N E \times T=L I N E(Z G, 1 \Leftrightarrow)-(Z 心, 16 \Theta)$

```

```

$T=T-1=$ NE \times TF
Sc COLDF4 = CUFSOFSS, Z=FFINTFHS" FADIAN FH

```





```

120 IFF二人1%=INT(F,1%) THEN1SO
13G NEXT F
14\& COLGFIS=CUFSGFI@G:11=FFINN"Max - tata
1\#"3NNT((
15% FGFOG=-1TG1=FGFH=-1 TO1
1SG FSET (F+ZG+G,XSHH)=NEXTH,G
1>0 GOTO1=%

```


\section*{Morse Code Trainer}

The following short program allows you to create morse by using the keyboard. The dots and dashes are represented in binary as 0 and 1 respectively. For example, L is dot, dash, dot, dot which is 0100 in binary. This is then reversed to get 0010 and an extra bit is placed at the front, 10010, which is 18 in decimal.

\section*{Notes:}

10 Clear screen. The \(\operatorname{CHRS}(20)\) sets lower case.
20-30 Read in data to Z-array.
40-60 Wait for a key to be pressed. If it is not 0-9 or a-z then goto 40 .
\(70 \quad\) Print letter (or numeral) on screen and find data.
80 Perform binary division. This says whether a dot or dash is next.
90-100 Make a sound. \(D\) is the delay which is set at 10 if there is a dot, otherwise 38 for a dash.
110-120 Do some more division if \(\mathrm{N}<2\), then the letter has been finished.

When it comes to learning morse make sure you don＇t learn dots and dashes．Instead learn the way each letter sounds．\(\quad\) is di，dah，dit．It is much easier，and you will gain speed much quicker．
```

Mar=SEDGME Trenimer

```





```

NEXT

```


```

*多=G口丁口フ心

```


```

B6, X=N-INT (N゙心)*ご

```


```

116 N=INMT(N|,己⿱⿰㇒一大口心

```



\section*{Machine－Code Programs}

I am not going to go into the intricasies of M－code programming when I introduce the programs－I will only say that they work！They should be of use to those who want to produce games that involve scrolling the text screen in any of 4 directions．

To run them，all you do is enter them，run them－if no error message occurs SAVE them to tape．If an error does occur，check the data statements．Once the data is correct，new the program．The program （machine－code）is safe，only the BASIC goes．When you are ready to execute the machine code type in CALL\＆HFOOO and the program will do what it＇s supposed to do！

For the more adventurous amongst you，you can actually get the screen to scroll in any diagonal direction！To do this you must load in 2 scroll routines．For example，we want to scroll diagonally towards the top left． So we firstly load the Up Scroll，run it，new it．Now load in the left scroll and change Line 20 to：
\(20 \mathrm{~T}=0\) ：FOR A＝\＆HFO3B TO \＆HF069 ：etc．
Run the program，then new it．From now on when you want diagonal scrolling just type：

CALL \＆HFOOO：CALL \＆HFO3B

This will give the effect of going towards the top left! This can be done with any combination giving diagonal scrolling (except for exact opposites like up \& down).

The sound routines gives you the ability to create very fast, decreasing or increasing sound. The results can be quite spectacular. Anyone who has played "The House" will recognise the sounds, as this is the same routine I used. Enter the program, run it - if no errors occur save it to tape. From now on you can have either increasing or decreasing sound, with control of speed, tone and decay. To operate the "up" sound you call \&HF036, "down" sound call \&HF001. To take control of decay etc. you have to poke the data in. Here are the poke locations:
\begin{tabular}{llll} 
& Up & Down & Range of Values \\
& Speed & \&HFO4F & \&HFO1A \\
Spee & \(0-100\) \\
Tone & \&HFO3B & \&HFO06 & \(0-63\) (anything higher gives weird \\
Decay & \&HFO2B & \&HFO2B & \(0-63\)
\end{tabular}

The lower the speed, the quicker it runs, as with decay.
If this all seems a bit loopy, run the demo programs.
The last routine, which is loaded and run in the same way as the scroll routines, changes all the lower case letters. Exactly how l'm not going to say. Just load it, run it, type new and call \&HFOOO and look at the lower case letters.
```

M-Code Down Sc: DI

```




```

$1, \geq \leq, E 1,16, F=, 15$

```


```

NFFEINT"EFRFDF:"

```
M-Conte U口 Scral




\(1=2 \leq, C 1,1 \Leftrightarrow, F=, C M\)


NFFEINT"EFFFRFE"









Mactime Code - Figgトt sarbil









Imvert
\(1 \Leftrightarrow\) DATAF \(E S, D S, C D, Z 2,2 C, D E, E E, E \in E 1, E G, C D, 44,2 C, G\),


 NFFEINT"EFFFDF:"

\section*{Mastermind}

I know that you know how to play Mastermind, and I don't mean sitting in a black chair and getting a quick volley of brain shattering questions fired at you! I mean the peg game where you have to guess a code by using trial and error and deduction. Well this program is a faithful reproduction of that game. To play, all you have to do is guess the 4 digit code, enter your code and press the Carriage Return key, and the Sega will then evaluate your entry. If you get a result of say 2 black, 1 white, this means you have 2 of your digits in the right place, and 1 of them is the right number but in the wrong place. From this you evaluate that the other digit is completely wrong.

\section*{Notes:}

10 Print header.
20-30 Set W and B to 0 . These are the numbers of Whites and Blacks. Dimension arrays. Set up random code. When played the game produces numbers in the range \(0-5\). To increase the range, alter Line 30 to ... INT(RND[8]*10) ... this will be a much harder game, producing numbers in the range 0-9.

50－70 Enter 4 digit code．If＂R＂is pressed reveal code．If your guess is not 4 digits long，re－enter．
80－200 Evaluate blacks and whites．
210 Print results．
220 If \(\mathrm{B}=4\)（all black）jump to 260.
230 Loop back to 50 ．
240 Reveal code．
260－280 Smart aren＇t you？Press a key．







```


|

```









```

1.4<4 UHEN

```




```

1.345 |NJ==|N+1

```



```

2こ世 IFE=4THHEN二6心

```








\section*{Experiment}

The following program is meant for 1 purpose only ... to give you some ideas for your own programs. If you're anything like me, it just takes a small idea to create a program. The hardest part is getting that original idea. So hopefully this will help you.

All the program is, is a little space ship in the middle of the screen. You can rotate it by using the " \(P\) " \& " \(Q\) " keys, and move it by pressing the space bar.

You may need to consult the following bit of data. If your ship is at the point \(x, y\) then to move it in any of 8 directions the addition/subtraction to/from \(x / y\) is:


\section*{Notes:}

10 Data for all 8 directions ship will face.
20 Read in data into AS. Set x \& y.
30 Set direction \((A=0)\).
40 Set shape of ship. The shape is governed by A which is it's direction.

50 If \(B S=\) " \(P\) ", then \(B=-1\). If \(B S=\) " \(Q\) ", then \(B=1\). If space bar is pressed then go to the subroutines from Lines 100-170. The subroutine jumped to is also governed by \(A\).
```

Exper-i.ment
1@ DATA"GS@FSEFCFCSEOFOS", "161@SESCDF\RF

```










```

cs,

```







```

1.4\&

```

```

1\&\&%

```


\section*{Reverse}

You don't neeed a PhD to play this game - it's dead easy! The object is to sort a string of randomly organised digits into the form 12345 6789 in as few moves as possible. To make a move, enter a single digit in the range 1-9. The computer will then reverse that number of digits, counting from the left.

\section*{Notes:}

10 Clear screen and print heading.
20-70 Generate a random set of digits, making sure that each number appears only once.
80 Print out number 1-9.
90 Print out random arrangement.
100 Checks to see if game is completed.
110-120 Await a number in range 1-9. Change to a number.
130-150 Flip \(n\) number of numbers around.
160 Dunnit!

Feverse





```

心% GロT\ロ4%
ブG NNEXTII

```



```

01\Delta%

```





```

15% GロTロ毋も

```



\section*{Sprites}

Listed are over 20 sprites to use in your games．They will serve only as ideas．For other ideas I suggest you purchase the following programs because they are riddled with sprites！

The House！
Cube－lt
Mars Mobile
Munch Man
Here is how the data works．Let＇s say you want to define a Purple People Eater．You would write a computer program as follows：

10 PATTERNS\＃O，＂C021．．．BF87＂
20 PATERNS＂ 1 ，＂1FA7．．．4F2F＂
30 PATERNS\＃2，＂IC22．．．FOCS＂
40 PATTERNS\＃3，＂FA．．．E8＂
50 MAG1：SCREEN 2，2：CLS
Don＇t forget also that PPE＇s are always colour 13！The above program is only an example．I suggest you read pages 118－122 of the operator＇s manual．

\section*{Spider}

000000102847972 D
2F5C272828680818
0000000814E2E9B4
F43AE41414161018

\section*{Darth Vader＇s ship}

0C1830306063677C
\(6763603030180 \mathrm{C00}\)
С06R3030181898F8
Y81818303060C000

\section*{Pac ghost}

030FDF1F1119111F 1F1F1F1F1F1B1111 COFOFDF888C888F8 F8F8F8F8F8D88888

\section*{Kamikaze Combat Caterpillar} DOEDBDF0311F2E0A 0000000000000000 003078CC96468B01 000000000000000

\section*{Pac-man}

00030F1F1F3F3F3E 3E3F3F1F1FQFD300 0080E0BDF8C00000 0000C0F8F0E08000

\section*{Skull \& Crossbones}

071F1F39393F1D07
67F2FC1F07FFFC60
E0F8F8.9C9CFCB8E0
E6AF3FF8E07F3F06

\section*{Crocodile}

00000000030F3FFF
0000000000000000
0003E6ACF8F0E5FF
0000000000000000

\section*{Car}
\(0304097 F\) FFFF 1408 000000000000000 COAD 10F8FCFC5020 000000000000000

\section*{Dopy looking baddy}

6090C864670F 1919
1F1B0C0704081070 06091326E6F09898 F8D830E02010080E

\section*{Stupid Knight}

0001061D2A2A2A1F 4CF7F0180フ023EFE 188F6511C9A9B1F3 7F9F31418181F9FD

\section*{Dopy looking goody}

030F1F312D69717F
3E3F1F0000000000 80E0F018682C1CFC F8F8F00000000000

\section*{Dalek}

0307040C081F101F 103F203F607F40FF 0084FCC440E021E2 3CF310F018F808FC

\section*{Not-so-happy face}

01070D1B3F332D69 313F3C1B0F070100 80EOBOD8FCCCB496 8CFC3CD8F0ED8000

\section*{Fuzzzzzy}

48449F7F3FB36D2D
73BF3F1B24494820
42543DFEFCCEB7B6
CCFEFCA6910A924C

\section*{Smiling Face}

071F3F635DD1D1E1
FFFE5E67381C0700
E0F8FCC6BA8B8B87
FF7F7AE61C38E000

\section*{Boot}

FE828E828E828E82
8E81828480F8F7F 1
000000000000000
788402010101FEFC

\section*{Purple People Eater}

CD2143271D45BF87
1FA74F176F8F4F2F
1C228CD1614EFDC5
FACDFEC1E6E8E4E8

\section*{The Ghost}
\(0103070587 E 7 F F F F\)
FF8F870303010000
80CDEOADE1EフFFFF FFF1E1COCDC0E23C

\section*{Daft alien}

01F3D79D0F0F0D06 07070606061 E3E00 80CFEBB9F0F0B060 E0E0606060787C00
Swooping alien
80623B0F05070705 0C1C181010000000 028CB8E040CDC040 6070301010000000

\section*{Alf the alien}

C06033171F98DB78 3F041C0838000000 0C1830A0E0646C78 F080E04070000000 Tank
017F031FFF402A1F 0000000000000000 80E0FOF8FF04A8FO 000000000000000

\section*{Glossary}

ALGORTHM - The series of steps the computer follows to solve a problem. ALU - Arithmetic/logic unit, the part of the computer which does maths and where decisions are made.
ASCll - American Standard Code Information Exchange. 128 upper and lower case letters, digits and 31 special characters - literally the alphabet.
BASIC - Beginners All-purpose Symbolic Instruction Code. The most widely used computer language in use on microcomputers.
BAUD - Named after Baudot, a pioneer of telegraphic communication. Baud measures the rate of data transfer from tapes, disc drives, printers, etc. 1 Baud is 1 bit per second.
BENCHMARK - A measure of speed of a computer.
BINARY - A numbering system based on " 0 "'s and " 1 " 's.
BIT - Blnary digit. The smallest unit of data a computer can recognise. BOOLEAN LOGIC - Use of AND, OR, NOT and XOR. Developed by George Boole.
BUG - An error in a program.
BUS - A number of conductors inside a chip or computer, used for sending and receiving data.
BYTE - In Sega's case 8 bits, capable of holding a number in the range of 0-255.
CAI - Computer Aided Instruction.
CAD - Computer Aided Design.
CAL - Computer Aided Learning.
CHIP - The general term for a small black box, with lots of liftle metal legs!
CPU - Central Processing Unit. The heart of a computer.
DATA - Information.
DEBUG - The removal of bugs from a program.
DYNAMIC MEMORY - A memory unit within a computer which loses its contents when the power is turned off.
FLIP-FLOP - A circuit which maintains one electrical condition until an input signal is received, when it then becomes the opposite condition. Also called Bi-Stable Vibrator.
GRAPHICS - Pictures as opposed to words.
HEXADECIMAL - Hex, a numbering system to base 16. Digits 0-9 are used as well as A, B, C, D, E, F. A = 10, B \(=11 \ldots\) F \(=15\).
INTERFACE - Usually two "objects" (say a printer and a computer) can't "talk" to one another, so the interface acts as "interpreter". The most common interfaces are RS-232 and Centronics.

MACHINE CODE - An operation code which a processor can understand. All Basic programs are converted into machine code. A program written in M/C need not be "worked out" so it runs much quicker than a BASIC program.
MAINFRAME - Computers come in 3 sizes: Micro-computers - such as the Sega; Mini-computers - say a PDP-11; and the really big Mainframes - say CRAY-1 (which costs about USS 15 million!!).
PERIPHERAL - Anything which is joined onto a computer, and is controlled by the latter e.g. disc drives, printer, etc.
PORT - A socket through which data can be fed out of or into a computer e.g. joystick ports, TV port, etc.
PROGRAMMER - A degenerate race of social dropouts - tend to disappear for days on end, to perform a ritual called "programming". They tend to talk only to others of their species (the language, so far undeciphered by scholars, sounds like shorthand!!. They keep the coffee companies in business and baffle psychologists.
PURPLE PEOPLE EATERS - PPE's. Dangerous, evil allies of Vanessa the Vampire. They are the sworn enemies of Humankind. They can be found in The House!, but only a few remain, others have been seen in a place called "The Crazy Crypt" seeking revenge. They have 8 arms and tend towards unneeded violence.
ROUTINE - A section of a program.
SEMI-CONDUCTOR - A material that is usually an electrical insulator but under specific conditions becomes a conductor e.g. silicon and germanium.
STATIC MEMORY - A memory which preserves its contents so long as power is on, but does not require additional boosts of power to keep its memory, unlike Dynamic memory which needs "refreshing".
VDU - Video Display Unit.
VOLATILE - Refers to memory which "forgets" its contents when power is off.```


[^0]:    Eir ngo
    

    ```
 GG NEXTC,ES
    ```

    

    | 98 | 94 | 4 | 80 | 1 | 5 | 37 | 79 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | 63 | 99 | 7 | 85 | 9 | 68 | 77 | 61 |
    | 24 | 64 | 21 | 65 | 90 | 32 | 48 | 17 |

    ## Calendar

    Way, way back in the good ol' days of the Music Hall (so they say!), there was a lititle man whose act, so he claimed, was based on fabulous feats of memory. Give him the date your pet Purple People Eater was hatched and he'll tell you what DAY it was born on! Amazing stuff! No ... not really (sorry if I shattered all your ideas!!). The act is based on maths, not memory, and the artist only has to be able to mentally manipulate a couple of formulae.

    I discovered all this info from a book I found in a deep, dark, dusty and dangerously-deadly dungeon (my bedroom!), and I was urged to convert the formulae to the SEGA.
    Here we go ... in 1752 England and her colonies adopted the Gregorian calendar, so this means that any date from the 1st of January 1752 to whenever can be worked out.

    The 2 formulae used were worked out by a German mathematician called C.F. Gauss. The first formula is:

    $$
    X=\mathbb{N T}\left(\left[2.6^{*} \mathrm{M}\right]-.2+\mathrm{D}+\mathrm{Y}+\mathbb{N T}[\mathrm{Y} / 4]+\mathbb{N T}[\mathrm{C} / 4]-\left[2^{*} \mathrm{C}\right]\right)
    $$

    In this:
    $M=$ month. According to the figuration Mar $=1$, Apr $=2 \ldots$... Dec
    $=10$, Jan $=1$ and Feb $=2$, but Jan and Feb are considered as months of the previous year.
    $D=$ Day in that month re 1-31 or 1-30 or 1-28 or 1-29.
    $Y=$ Last 2 digits of year.
    $C=$ First 2 digits of year.
    Now $X$ is worked out, it will be negative, so multiples of 7 are added to $X$ until it becomes positive. Then the 2 nd formula is applied.

    $$
    Z=X-\left(7^{*} \operatorname{INT}[X / 7]\right)
    $$

    The result is then applied to days of the week. $0=$ Sunday, $1=$ Monday, etc.

    ```
 Ca|Ena!er
    ```

    
    

    ```
 <゙心CLS
    ```

    

    ```
 40. INNFUT"*ENTEFE MONN|H|"#N
    ```

    

    ```
 SO IFNN2THENM=N-2=GOTGG%
 7& IFNN=1 THENMM=11
 E& IFM=ZTHENMM=1:
    ```

    

    ```
 =~THENY=Y-1
    ```

    

    ```
 4)-(<#C)
    ```

    

    ```
 12% IFX<c\THENX=X+G
 1S@ IFX SOTHEN|ES
 14@ NEXTG
    ```

    

    ```
 1G6 CLS = FOESTGFE
    ```

    
    

    ## The Code Machine

    This code writing and cracking is a must for all you cloak-and-dagger types! It produces code which is just about impossible to decode, unless you know the secret "seed-word". Oh, by the way, you create the seed-word!

    The system is based on using this seed to start the code alphabet of the corresponding letter of the message being coded. Sounds confusing? This simple example should clarify things.

    Let's say the seed is DAVID.
    And my message is simply HELLO.
    The first letter of my message (" H ") is coded starting the alphabet at " D " not $A$ (the first letter of the seed is " $D$ " from "DAVID"). Thus "H" = " $K$ ".
    ＂$E$＂is coded using＂A＂as the start so remains unaltered．＂$E$＂＝＂$K$＂．Now ＂$L$＂is dealt with differently inasmuch as＂$L$＂being the 12 th letter of the normal alphabet，and starting our code alphabet at＂ V ＂，we run out of letters at＂Z＂！So all we do is start again at＂A＂so＂L＂＝＂G＂．The alphabet can be viewed as an endless loop or circle with＂A＂following ＂Z＂．
    We continue in this manner and the message ends up as＂KEGTR＂．When the message is longer than the seed，the whole series is repeated until the message has been coded（or decoded）．

    ## Notes：

    10－50 Set up arrays and variables．Heading select mode（1 or 2）．
    60－120 Enter seed．Search along seed，assessing each character by means of its ASCll number，discarding any not in the range ＂A＂－＂Z＂．The new seed is stored in array CB．
    140－380 Accept message（or coded message），convert all characters into ASCll numbers and store in array ML．Compute message and store in array CM ．
    390－460 Print coded or decoded message．

    ```
 Eq|E ME|E円i.me
    ```

    
    
    
    
    
    
    
    
    
    
    
    
    

    ```
 1. ¢¢ C=C-1.
    ```

    

    ```
 1二心 NExTM
 130 DNS GGTO14E, 15%
    ```

    
    
    

    ```
 1) FE FGF:J=1 TOM
    ```

    
    
    

    ```
 z18 L=L-1
    ```

    

    ```
 z=O```

