Hitachi
Single-Chip RISC
Microcomputer
SH7000 and SH7600 Series

Programming Manual

Introduction

The SH7000 and SH7600 series are new-generation RISC (Reduced instruction set computer)
microcomputers that integrate a RISC-type CPU and the peripheral functions required for system
configuration onto a single chip to achieve high-performance operation. It can operate in a power-
down state, which is an essential feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

This programming manual describes in detail the instructions for the SH7000 and SH7600 series
and is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH7000 and SH7600 series. For information on the hardware,
refer to the hardware manual for the product in question.

Related Manuals
» SH7032, SH7034 Hardware Manual (Document No. ADE-602-062).

» SH7020, SH7021 Hardware Manual (Document No. ADE-602-074)
* SH7604 Hardware Manual

For development support tools, contact your Hitachi sales office.

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items
and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Register Types and configuration of general registers,
Configuration control registers and system registers

3. Data Formats

Data formats for registers and memory

Introduction to
instructions

4. Instruction
Features

Instruction features, addressing modes, and
instruction formats

5. Instruction Sets

Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

6. Instruction
Descriptions

Operation of each instruction in alphabetical order

Architecture (2)

7. Processing States

Power-down and other processing states

8. Pipeline Operation

Pipeline flow, and pipeline flows with operation for
each instruction

Instruction code

Appendixes:
Instruction Code

Operation code map

Table 2 Subjects and Corresponding Sections
Category Topic Section Title
Introduction and CPU features 1. Features
features Instruction features 4.1 RISC-Type Instruction Set
Pipelines 8.1 Basic Configuration of
Pipelines
8.2 Slot and Pipeline Flow
Architecture Register configuration Register Configuration
Data formats 3. Data Formats
Processing states, reset state, exception 7. Processing States
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode
Pipeline operation 8. Pipeline Operation
Introduction to Instruction features 4. Instruction Features
instructions Addressing modes 42 Addressing Modes
Instruction formats 4.3 Instruction Formats
List of Instruction sets 5.1 |Instruction Set by
instructions Classification
5.2 Instruction Set in
Alphabetical Order
Appendix A.1 Instruction Set by
Addressing Mode
Appendix A.2 Instruction Set by
Instruction Format
Instruction code Appendix A.3 Instruction Set in
Order by
Instruction Code
Appendix A.4 Operation Code
Map
Detailed Detailed information on instruction Instruction Description
information on operation 8.7 Instruction Pipeline
instructions Operations
Number of instruction execution states 8.3 Number of Instruction

Execution States

Functions Listed by CPU Type

This manual is common for both the SH7000 and SH7600 series. However, not all CPUs can use
all the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type
Item SH7000 Series SH7600 Series
Instructions BF/S No Yes
BRAF No Yes
BSRF No Yes
BT/S No Yes
DMULS.L No Yes
DMULU.L No Yes
DT No Yes
MAC.L No Yes
MAC.W*! (MAC)*2 16X 16 + 42 — 16 x 16 + 64 — 64
42
MUL.L No Yes
All others Yes Yes
States for multiplication 16x 16 — 32 Executed in 1-3*3 Executed in 1-3*3states

operation

(MULS.W, MULU.W)*2

states

32x32— 32 (MUL.L) No Executed in 2—4 *3states
32x32 — 64 No Executed in 2—4 *3states
(DMULS.L, DMULU.L)

States for multiply and 16 x 16 + 42 — 42 Executed in No

accumulate operation (SH7000, MAC.W) 3/(2)*3 states
16x16 + 64 — 64 No Executed in states 3/(2)*3
(SH7600, MAC.W)
32x32+64— 64 No Executed in 2—4 states
(MAC.L) 3/(2~4)*3

Processing status Module stop mode No Yes (Supply of clock to

specified module can be
halted)

Notes: 1.

MAC.W works differently on different LSIs.

2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the
same as MULU.W.

3. The normal minimum number of execution cycles (The number in parentheses in the

number in contention with preceding/following instructions).

Contents

SeCtion 1 FEAUIES|.......o.iviiveioeeeeoee e 1
B T S i oI i T e ————————— 2
2.1 GENCTAL REZISICTSuvivviieiiiiiie ettt 2
2.2 ContIOl REZISIETSoviiviiieiiiici ettt 2
23 SYStEM REGISIEIScviiiiiiiceiiie ettt e 3
2.4 Initial Values of REZISIEISc.ooviiiiiiiiiiiie ittt 4
[Section 3 Data FOIMALS [.....cc.cccouucrrroirrrierriirnsieescrnsisss oo 5
3.1 Data Format in REGISTEISccoooviiiiiiiiiiciiecicce e 5
3.2 Data Format in MEMOTYcc.oooviiiiiiiiiiiiieiie et et 5
3.3 Immediate Data FOIMALcoooiiiiiiiiit i 6
[Section 4 INStruction FEatures|..........ccoooiciirooermiooinossoicrnsoonescnesscenes e 7
4.1 RISC-Type INStrucCtion Stc.coviiviiiiioiiiiieiiiie et 7
4.1.1 16:=Bit Fixed LeNBth .. covosmmmmmsmmasmnsras mismens e avmmorsmimonss 7

412 One INStruction/CyYCLec.ooviiiiiiii ittt 7

413 Data Lengthi...........ccoooviiiiiiii e 7

4.1.4 Load-Store ATChItECHUIC...........cviviiviiieciieeie et 7

4.1.5 Delayed Branch INStructionsccoovioiiiiiiioiii i 7

4.1.6 Multiplication/Accumulation Operationccocvevieiiviiviieieciiiieeeerie e 8

4.1.7 T BE oottt ettt b bbb 8

4.1.8 Immediate Dataccooiiiiiiiii e 8

419 ADSOIULE AQAIESS ...ttt 9

4.1.10 16-Bit/32-Bit DiSPlaCeIMENt ..o cuvvissssemomsmansmsmsmsmssmsasss s s 9

42 AddresSiNg MOMEScooiiiiiiiiiiiiie ettt e 10
43 InStruction FOTMALoccooiiiiiiiiii e 13
I R I FT 71T A Tuii - (= 7 ———————————————————————————————————— 16
5.1 Instruction Set by ClassifiCationc..ccvooiiiiiiiiiiiiiiiiie e 16
551 Data Transfer INStructionsccoovioiiiiiiiiiiii it 21

512 Arithmetic INSIUCHIONSocviviiiiiiii it 23

513 Logic Operation INStIuCtionscccvevveiiiiiiieiie et 25

514 Shift INSTIUCHONSooiviiiiiieiiiii e 26

515 Branch INStUCHONSc.coviviiiiiiiii it 27

5.1.6 System Control INSIUCHONS.............cc.coviiiiiiiiiieiccce e 28

5.2 Instruction Set in Alphabetical Order.............cc.ccoooiiiiiiiiiiiiccce e 29
[Section 6 Instruction DESCHPHONS |..o.ccccovvccvvrccrricrnscrnssrseessccrssscsnnee 37
6.1 Sample Description (Name): Classificationcccccoevvvviviiriiiieccce e 37

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44

ADD (ADD Binary): Arithmetic INnStructioncccociiiiiiiiiiii e 40

ADDC (ADD with Carry): Arithmetic InsStruction................c..ccooooviieiiiiiiiiieeccecn 41
ADDYV (ADD with V Flag Overflow Check): Arithmetic Instruction.............................. 42
AND (AND Logical): Logic Operation INStructionccooeeviievioieeierieiiecieevienns 43
BF (Branch if False): Branch INStUCtiONcc.oooiiiiiiiiie e 45
BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600)c.cc....... 46
BRA (Branch): Branch INStUCHONcccoooiiiiiiiiiic e 48
BRAF (Branch Far): Branch Instruction (SH7600)c..cccoooviiiiiiiiiiie e 49
BSR (Branch to Subroutine): Branch InStructionc..occoooveiiiiiiiiiie e 50
BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)c...cccoeoviievneennn. 52
BT (Branch if True): Branch InStructioncccooovoiiiiiiiicc e 53
BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)...............cccecu.... 54
CLRMAC (Clear MAC Register): System Control Instructionccooevvieveeniennns 56
CLRT (Clear T Bit): System Control INStruction...............ccocceeeviieiioiiviioiiciieieeeeee e 57
CMP/cond (Compare Conditionally): Arithmetic Instruction.................c.ccoovevieirieennn. 58
DIVOS (Divide Step 0 as Signed): Arithmetic Instructionc.ccooevieiiviieiiencennnn. 62
DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction..................cccoooeeveiieiennnnnn. 63
DIV1 (Divide Step 1): Arithmetic InStruction..................ccoceeevieiiiiiiiiicieee e, 64
DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH7600) 69
DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction (SH7600)... 71
DT (Decrement and Test): Arithmetic Instruction (SH7600)..........cc..ooooeeiiiieiciiiiee, 73
EXTS (Extend as Signed): Arithmetic InStructionccocoeviiiiiiieiieiceee e 74
EXTU (Extend as Unsigned): Arithmetic InStructioncccocooovieviioiiiiiiiienicieeniens 75
JMP (Jump): Branch INStrucCtion.............c.cocoooviiiiiiiiiiicieiic e 76
JSR (Jump to Subroutine): Branch InStructionc.cccooeviviioiiiiiioiiiicice e 77
LDC (Load to Control Register): System Control Instructionc.ocooeviviieniennnnnn. 79
LDS (Load to System Register): System Control Instructioncccoeceeveiieienennnn. 81
MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH7600)................... 83
MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)...........ccccoocevriennne. 86
MAC.W (Multiply and Accumulate Word): Arithmetic Instruction (SH7600)................ 87
MOV (Move Data): Data Transfer INStructioncc.oooviiiiiiiioieeee e 90
MOV (Move Immediate Data): Data Transfer Instractionc....cccoooveieiiiieieenne 95
MOV (Move Peripheral Data): Data Transfer Instructionccoocoeevieiieiieiiencennnn. 97
MOV (Move Structure Data): Data Transfer InStructioncc.coooeeeviieiiiiieeieene 100
MOVA (Move Effective Address): Data Transfer Instructioncccocooeeeiieneenan. 103
MOVT (Move T Bit): Data Transfer INStructionc..ccc..ooeeeveiiiiiiiie e 104
MUL.L (Multiply Long): Arithmetic Instruction (SH7600)cccoovviviieiiviiieeriennns 105
MULS.W (Multiply as Signed Word): Arithmetic Instructionc..ocoeeveiieiennnne. 106
MULU.W (Multiply as Unsigned Word): Arithmetic Instructionc.oceeeveenennnn. 107
NEG (Negate): Arithmetic INSTrUCHIONcoveovivviiiiieiieciee e 108
NEGC (Negate with Carry): Arithmetic InStructionccocovieiieiiiiiiiiicee e 109
NOP (No Operation): System Control INnStructionc..ccoeevvieviiiiiieiiceciee e 110

NOT (NOT—Logical Complement): Logic Operation Instructionc..ccoeveene.nn. 111

6.45 OR (OR Logical) Logic Operation INStruCtion.................ccoovvieriieiiiieniiiiecie e 112
6.46 ROTCL (Rotate with Carry Left): Shift Instruction...............cccooooiiviiiiiiiiciecec, 114
6.47 ROTCR (Rotate with Carry Right): Shift Instruction..................c.cccoevieiiieiieiicecce 115
6.48 ROTL (Rotate Left): Shift INStIUCtION.............c.oooviiiiiiiiiie e 116
6.49 ROTR (Rotate Right): Shift INStrucCtionc..ccoooviiioiiiiieiiiicecce e 117
6.50 RTE (Return from Exception): System Control Instructioncccoeveeveeviiiecneennnnn, 118
6.51 RTS (Return from Subroutine): Branch InStructionccoooviiiiiiiieii e, 119
6.52 SETT (Set T Bit): System Control InStructioncccoceoviiviiiiinioieiecie e 120
6.53 SHAL (Shift Arithmetic Left): Shift InStruction................cc.oooooviiiiiiiieeeeee 121
6.54 SHAR (Shift Arithmetic Right): Shift InStruction................cccoceoovieviiviiviiiiie e 122
6.55 SHLL (Shift Logical Left): Shift INStUCHON............c..ccooiiviiiiiiiiiiiiecee e 123
6.56 SHLLn (Shift Logical Left n Bits): Shift InStructioncccocoevvieiiieiiece e 124
6.57 SHLR (Shift Logical Right): Shift INnStructioncccocveeiiviiiiiiiiiece e 126
6.58 SHLRn (Shift Logical Right n Bits): Shift Instructionc.ccccoeveeviveiieiiciece 127
6.59 SLEEP (Sleep): System Control INStruction...............ccocooieiieiiiiiiiiiiciiecie e 129
6.60 STC (Store Control Register): System Control Instruction.................ccocoevveevieieiieeneennnnn, 130
6.61 STS (Store System Register): System Control Instructionc.cooeveeieiiiiecneennnn, 132
6.62 SUB (Subtract Binary): Arithmetic INStruCtion...............c.ccocoeeieviieiei i 134
6.63 SUBC (Subtract with Carry): Arithmetic InStructionc.cocoevvieiiveiiececiccee 135
6.64 SUBYV (Subtract with V Flag Underflow Check): Arithmetic Instruction 136
6.65 SWAP (Swap Register Halves): Data Transfer Instructioncccoocoeveiveiieeneennnnn, 137
6.66 TAS (Test and Set): Logic Operation InStruction................ccooceevvivieviioieiiecie e 138
6.67 TRAPA (Trap Always): System Control INnStructionocccoceevvieiiveiieceeiecee 139
6.68 TST (Test Logical): Logic Operation InStruction................c.cocoovviviiiiiiieieiie e, 140
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction..................cccoeceevvevvievieennennns 142
6.70 XTRCT (Extract): Data Transfer INStructioncccooeeviiiiiieie e 144
[Section 7 Processing States |...........cccoooooooioioiiiiiiiiiooeooeeeeeeee 145
7.1 State TTANSIHOMScviiiiiiiiiiit ettt ettt ee ettt esee e ene s 145
7.1.1 RESEE SHALE ... 147

7.1.2 Exception Processing Statecccocvoviivviiiiiiiiiicce et 147

7.13 Program EXeCution Statec.ooceoiiviiiiiiiiie e 147

7.1.4 PoWeEr-DOWN Stateccoooviiiiiiiiiiice e 147

7.1.5 Bus Release Statec.ouiiiiiiieiiciii e 147

7.2 POWEI-DOWIL SEALE ...ttt ettt et 148
721 1S (157 o1 (0T L — 148

7.2.2 Software Standby MOde............cccooiviiiiiiiiiicciee e 148

723 Module Standby Function (SH7600 Only)ccocviviiiiviiiiiieiceieeceve e 148

7.3 Master Mode and Slave Mode (SH7600 Series Only)ccocoveeieieiiiiiiiiciceceeee 150
|Section 8 Pipeline Operation| .. 151
8.1 Basic Configuration of PIpElinescccccoooiiviiiiiiiiiii e 151
82 Slot and Pipeline FIOW............ccooiiiiiiiiiiiii e 152

821 LT e 0T T, (o DL — 152
822 S10t SRATING ..ot 152
823 SIOtLENGhooviiiiiiiie e 153
8.3 Number of Instruction EXecution Statescccociiiiiiiiiiii e 154
84 Contention Between Instruction Fetch (IF) and Memory Access (MA)..........cccceeveenenne. 155
84.1 Basic Operation When IF and MA are in Contentioncoceevvevveevienn. 155

842 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM 01 On-Chip MEMOLYccovviiiiiiiiiieiiriee e 156

843 Relationship Between Position of Instructions Located in On-Chip

ROM/RAM or On-Chip Memory and Contention Between IF and MA 157
8.5 Effects of Memory Load Instructions on Pipelines..............c.cccoeveviiiiiiiciiciiiicecren. 158
8.6 Programming GUIAECc.oooviiviiiiiiieie ettt 159
8.7 Operation of Instruction Pipelinesc..ccovviiiiiiiiiiiiii i 160
87.1 Data, TransSfer INSENCHOTS cuvremmmmsmsms o o s i s s e S s 167
872 Arithmetic INStIUCHIONSoooiiiiiiiii it 170
873 Logic Operation INSTIUCTIONSccveovveiiriiiieieieiie e 225
874 Shift INSEUCHONS ...ttt 228
875 Branch INSIUCHONSc.coiiiiiiiiiieiie et 229
8.7.6 System Control INStIUCTIONS.............cooviiiiiiiiiiiie e 232
8.7.7 EXCeption PIOCESSINGc.ocoviiiiiiiieicieie e 244
| Appendix A Instruction Code]..................ccccoooooiiiiiioiiiiiiiiioieiieeeeeeeeeeeeeeee 247
A1 Instruction Set by Addressing Modecc.oovviviiiiiiiiiiiiiiiecc e 247
A LT NOOPCTANAooviiiiiiiiiii ittt 249
A.12 Direct Register AAAI€SSINGc.oovvivviiiiiiiiiiciiiiice et 250
A.13 Indirect Register AAAreSSINgGocoovvivviiiiiiiiiiiiiiiee ittt 253
A.1.4 Post Increment Indirect Register Addressingccoceevvvevviviiieviiieeniennnns 253
A.1.5 Pre Decrement Indirect Register Addressing................cocoevevveviiciierioiieciecienns 254
A.1.6 Indirect Register Addressing with Displacementccocooviviiineniennnns 255
A.1.7 Indirect Indexed Register AAdIeSSingccovvviiiviiiciioiiciieiecieeie e 255
A.1.8 Indirect GBR Addressing with Displacementccoccoovveeviiieiieieeniennnns 256
A.19 Indirect Indexed GBR AddIessingcccoovevviiviiviiiieiiiiiecieie e 256
A.1.10 PC Relative Addressing with Displacementc..cccooceoviieiiiniicieenienn 256
A.1.11 PCRelative Addressing With Rn ..o 257
A.1.12 PCRelative AddIesSingccocovevviiieiriiiiiiie et 257
A1:13 IMMCAIAE: covmmnommmmms s omss s S s S S e R S S 258
A2 Instruction Sets by Instruction FOrmatc..ccooiiiiiiiiiiiiiceecce e 258
A2.1 O FOIMAL ...ttt 260
A2.2 NFOIMAL ..ottt 261
A23 TN FOTMAL s s s o s S s S S S e e S 263
A24 MM FOIMALooiiiiii e 264
A25 MAFOIMAL ..ot 267
A2.6 DA FOIMAL ...ttt 267

A27 NMA FOIMAL ...t 267

A28 A TFOIMAL ...ttt 268
A2.9 AI2 FOIMAL......oiiiiiiiiieiiieiiceceee ettt 269
A2.10 NA8 FOIMAL ...ttt ettt es e 269
T T 0] 011 | — 269
VN0 B V11 05 (1| P B O O — 270
A3 Instruction Set in Order by Instruction Codec.ccoooiiiiiiiiiiiiiiiicice e, 270
A4 Operation Code MAP........c.oooviiiiiie ittt 278

Appendix B Pipeline Operation and Contention |...............c.ccccooooovvvieirrrrccrrnnn. 281

Section 1 Features

The SH7000 and SH7600 series have RISC-type instruction sets. Basic instructions are executed
in one clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH7000 and

SH7600-series CPU features.

Table 1.1

Item

SH7000 and SH7600-Series CPU Features

Feature

Architecture

Original Hitachi architecture
32-bit internal data paths

General-register machine

Sixteen 32-bit general registers
Three 32-bit control registers
Four 32-bit system registers

Instruction set

Instruction length: 16-bit fixed length for improved code efficiency

Load-store architecture (basic arithmetic and logic operations are
executed between registers)

Delayed branch system used for reduced pipeline disruption
Instruction set optimized for C language

Instruction execution time

One instruction/cycle for basic instructions

Address space

Architecture makes 4 Gbytes available

On-chip multiplier
(SH7000)

Multiplication operations (16 bits * 16 bits — 32 bits) executed in 1
to 3 cycles, and multiplication/accumulation operations (16 bits x 16
bits + 42 bits — 42 bits) executed in 3/(2)* cycles

On-chip multiplier

Multiplication operations executed in 1 to 2 cycles (16 bits x 16 bits

(SH7600) — 32 bits) or 2 to 4 cycles (32 bits x 32 bits — 64 bits), and
multiplication/accumulation operations executed in 3/(2)*cycles (16
bits % 16 bits + 64 bits — 64 bits) or 3/(2 to 4)* cycles (32 bits x 32
bits + 64 bits — 64 bits)

Pipeline » Five-stage pipeline

Processing states

Reset state

Exception processing state
Program execution state
Power-down state

Bus release state

Power-down states

Sleep mode
Standby mode
Module stop mode (SH7600 only)

Note:

The normal minimum number of execution cycles (The number in parentheses in the

mumber in contention with preceding/following instructions).

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four
32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered RO-R15, which are 32 bits in length (figure 2.1).
General registers are used for data processing and address calculation. RO is also used as an index
register. Several instructions use RO as a fixed source or destination register. R15 is used as the
hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter
(PC) in exception processing is accomplished by referencing the stack using R15.

31 0
RO*! 1. RO functions as an index register in the
R1 indirect indexed register addressing
mode and indirect indexed GBR
R2 addressing mode. In some instructions,
R3 RO functions as a fixed source register
R4 or destination register.
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer) *2| 2. R15 functions as a hardware stack
pointer (SP) during exception
processing.

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR),
and vector base register (VBR) (figure 2.2). The status register indicates processing states. The
global base register functions as a base address for the indirect GBR addressing mode to transfer

data to the registers of on-chip peripheral modules. The vector base register functions as the base
address of the exception processing vector area (including interrupts).

31 98 76543210
SR | wermn e MQI3 121110 --ST ‘ SR: Status register

N _ L,T bit: The MOVT, CMP/cond, TAS, TST,
BT (BT/S), BF (BF/S), SETT, and CLRT
instructions use the T bit to indicate
true (1) or false (0). The ADDV/C,
SUBV/C, DIVOU/S, DIV1, NEGC,
SHARI/L, SHLR/L, ROTRI/L, and
ROTCRIL instructions also use bit T
to indicate carry/borrow or overflow/
underflow
— S bit: Used by the multiply/accumulate
instruction.

» Reserved bits: Always reads as 0, and should
always be written with 0.
——» Bits 13-10: Interrupt mask bits.

»M and Q bits: Used by the DIVOU/S and
DIV1 instructions.

Global base register (GBR):
0 Indicates the base address of the indirect
GBR GBR addressing mode. The indirect GBR
addressing mode is used in data transfer
for on-chip peripheral module register
areas and in logic operations.

31

31 0 Vector base register (VBR):
VBR Indicates the base address of the exception
processing vector area.

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers
(MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The
multiply and accumulate registers store the results of multiply and accumulate operations. The
procedure register stores the return address from the subroutine procedure. The program counter
stores program addresses to control the flow of the processing.

31 9 0
(SH7000) (sign extended) MACH
MACL
31 0
(SH7600) MACH
MACL
31 0
| PR |
31 0
| PC

Multiply and accumulate (MAC)
registers high and low (MACHI/L):
Store the results of multiply and
accumulate operations. In the
SH7000, MACH is sign-extended
to 32 bits when read because only
the lowest 10 bits are valid. In the
SH7600, all 32 bits of MACH are
valid.

Procedure register (PR): Stores a
return address from a subroutine
procedure.

Program counter (PC): Indicates the
fourth byte (second instruction) after
the current instruction.

2.4

Figure 2.3 System Registers

Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

Table 2.1 Initial Values of Registers
Classification Register Initial Value
General register RO-R14 Undefined
R15 (SP) Value of the stack pointer in the vector address table
Control register SR Bits 13—10 are 1111 (H'F), reserved bits are 0, and
other bits are undefined
GBR Undefined
VBR H'00000000
System register MACH, MACL, PR Undefined
PC Value of the program counter in the vector address
table

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only a
byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed
from any address, but an address error will occur if you try to access word data starting from an
address other than 2n or longword data starting from an address other than 4n. In such cases, the
data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by
the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because
this area holds the program counter and status register. See the SH Hardware Manual for more
information on address errors.

Addressm +1 Addressm + 3
Addressm | Addressm + 2
131y 23 154 7 yOT-
Byte I Byte | Byte l Byte
Address 2n-» Word Word

Address 4n—» Longword

A Big endian A

Figure 3.2 Byte, Word, and Longword Alignment

SH7604 has a function that allows access of CS2 space (area 2) in little endian format, which
enables memory to be shared with processors that access memory in little endian format (figure
3.3). Byte data is arranged differently for little endian and the usual big endian.

Addressm +2 Address m

Address m + 3 | Address m + 1
31y 23 15 ¢ 7 y0)
Byte | Byte | Byte I Byte
Word Word < Address 2n
Longword < Address 4n

(

g Little endian A

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV,
ADD, and CMP/EQ instructions is sign-extended and calculated with registers and longword data.
Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and
calculated with longword data. Consequently, AND instructions with immediate data always clear
the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a
memory table. The memory table is accessed by an immediate data transfer instruction (MOV)
using the PC relative addressing mode with displacement. Specific examples are given in section
4.1.8, Immediate Data.

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are
executed in 50 ns at 20 MHz.

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and calculated with
longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zero -
extended for logic operations. It also is calculated with longword data.

Table4.1 Sign Extension of Word Data

SH7000/SH7600-Series CPU Description Example for Other CPU
MOV.W @(disp,PC),R1 Data is sign-extended to 32 ADD.W #H'1234,R0
ADD R1,RO bits, and R1 becomes

H'00001234. It is next
""""" operated upon by an ADD
.DATA.W H'1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 4.2).
With delayed branching, branching occurs after execution of the slot instruction. However,
instructions such as register changes etc. are executed in the order of delayed branch instruction,
then delay slot instruction. For example, even if the register in which the branch destination
address has been loaded is changed by the delay slot instruction, the branch will still be made
using the value of the register prior to the change as the branch destination address.

Table4.2 Delayed Branch Instructions

SH7000/7600-Series CPU Description Example for Other CPU

BRA TRGET Executes an ADD before ADD.W R1,RO

ADD R1,RO branching to TRGET. BRA TRGET

4.1.6 Multiplication/Accumulation Operation

SH7000: 16bit * 16bit — 32-bit multiplication operations are executed in one to three cycles.
16bit % 16bit + 42bit — 42-bit multiplication/accumulation operations are executed in two to three
cycles.

SH7600: 16bit * 16bit — 32-bit multiplication operations are executed in one to two cycles. 16bit
% 16bit + 64bit — 64-bit multiplication/accumulation operations are executed in two to three
cycles. 32bit * 32bit — 64-bit multiplication and 32bit * 32bit + 64bit — 64-bit
multiplication/accumulation operations are executed in two to four cycles.

4.1.7 TBit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 4.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table4.3 T Bit

SH7000/7600-Series CPU Description Example for Other CPU

CMP/GE R1,RO T bit is set when RO 2 R1. The CMP.W R1,RO

BT TRGETO program branches to TRGETO BGE TRGETO
when RO 2 R1 and to TRGET1

BF TRGET1 when RO < R1. BLT TRGET1

ADD #-1,R0 T bitis not changed by ADD. T SUB.W #1,R0

CMP/EQ #0,RO bit is set when RO =0. The BEQ TRGET

program branches if RO = 0.
BT TRGET

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 4.4).

Table 44 Immediate Data Accessing

Classification SH7000/7600-Series CPU Example for Other CPU
8-bit immediate MOV #H'12,R0 MOV.B #H'12,R0
16-bit immediate MOV.W @(disp, PC), RO MOV.W #H'1234,R0

.DATA.W H'1234

32-bit immediate MOV.L @(disp,PC),RO MOV.L #H'12345678,R0

.DATA.L H'12345678

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table4.S Absolute Address

Classification SH7000/7600 Series CPU Example for Other CPU

Absolute address MOV.L @(disp,PC),R1 MOV.B @H'12345678,R0
MOV.B @R1,RO

.DATA.L H'12345678

4.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

Table 4.6 Displacement Accessing
Classification SH7000/7600 Series CPU Example for Other CPU
16-bit displacement MOV.W @(disp,PC),RO MOV.W @(H'1234,R1),R2
MOV.W @(RO,R1),R2
.DATA.W H'1234
4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.

Table 4.7 Addressing Modes and Effective Addresses
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Direct Rn The effective address is register Rn. (The operandis —
register the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
register
addressing Rn > Rn
Post- @Rn + The effective address is the content of register Rn. A Rn
increment constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, or 4 for a longword executed)
addressing operation.
Byte: Rn + 1
—Rn
Word: Rn + 2
—Rn
Longword:
Rn+4 — Rn
Pre- @-Rn The effective address is the value obtained by Byte: Rn —1
decrement subtracting a constant from Rn. 1 is subtracted fora — Rn
indirect byte operation, 2 for a word operation, or 4 for a Word: Rn — 2
register longword operation. - Rn'
addressing
Longword:
Rn—-4 — Rn

Rn —1/2/4

(Instruction
executed with
Rn after
calculation)

10

Table 4.7 Addressing Modes and Effective Addresses (cont)
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +
register Rn) (disp). The value of disp is zero-extended, and disp
addressing remains the same for a byte operation, is doubled for
with a word operation, or is quadrupled for a longword Word: Rn +
displace- operation. disp x 2
et Longword:
Rn + disp x 4
disp Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO
indexed
addressing
©
Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +
GBR GBR) displacement (disp). The value of disp is zero- disp
addressing extended, and remains the same for a byte
with operation, is doubled for a word operation, or is Word: GBR +
displace- quadrupled for a longword operation. disp x 2
ment .
Longword:
GBR + disp *
dispDl ' GBRD 4
(zero-extended) + disp x 1/2/4
Indirect @(RO, The effective address is the GBR value plus RO. GBR + RO
indexed GBR)
GBR
addressing

GBR + RO

11

Table 4.7 Addressing Modes and Effective Addresses (cont)
Addressing Instruction
Mode Format Effective Addresses Calculation Formula
PC relative @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
with extended, and disp is doubled for a word operation, Longword:
displace- or is quadrupled for a longword operation. For a PC & '
ment longword operation, the lowest two bits of the PC are H'EFEFFEFEC
masked. + disp x 4
(for longword)
PC + disp x 2
or
_ PC&H'FFFFFFFC
disp + disp % 4
(zero-extended)
PC relative disp:8 The effective address is the PC value sign-extended PC + disp %2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
disp[J PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp %2

with a 12-bit displacement (disp), doubled, and
added to the PC.

dispO
(sign-extended)

PC + disp x 2

12

Table 4.7 Addressing Modes and Effective Addresses (cont)

Addressing Instruction

Mode Format Effective Addresses Calculation Formula
PC relative Rn The effective address is the register PC plus Rn. PC + Rn

addressing
(con)

PC + RO

Immediate #mm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.
#mm:8 The 8-bit immediate data (imm) for the MOV, ADD, —

and CMP/EQ instructions are sign-extended.

#mm:8 Immediate data (imm) for the TRAPA instruction is

zero-extended and is quadrupled.

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

xxxx: Instruction code
mmmm: Source register
nnnn: Destination register
iiii; Immediate data
dddd: Displacement

Table 4.8 Instruction Formats

Source Destination
Instruction Formats Operand Operand Example
0 format — — NOP
15 0
| XXXX XXXX XXXX XXXX
n format — nnnn: Direct MOVT Rn
register
15 0 Control register nnnn: Direct STS MACH,Rn
| XXXX | nnnn ‘ XXXX XXXX or system register
register

13

Table 4.8 Instruction Formats (cont)
Source Destination
Instruction Formats Operand Operand Example
n format (cont) — nnnn: Direct JMP @Rn
register
Control register ~ nnnn: Indirect pre- STC.L SR, @-Rn
or system decrement
register register
e nnnn: PC relative BRAF Rn
using Rn
m format mmmm: Direct Control register or LDC Rm, SR
register system register
15 mmmm: Indirect Control register or ILDC.L @Rmt, SR
‘ XXXX |mmmm‘ XXXX XXXX post-increment system register
register
nm format mmmm: Direct nnnn: Direct ADD Rm, Rn
register register
15 mmmm: Direct nnnn: Indirect MOV.L Rm, @Rn
’) 64.0.4 | nnnn ’mmmm| XXXX register register
mmmm: Indirect MACH, MACL MAC.W
post-increment @Rm+, @Rn+
register (multiply/
accumulate)
nnnn*: Indirect
post-increment
register (multiply/
accumulate)
mmmm: Indirect nnnn: Direct MOV.L @Rmt,Rn
post-increment register

register

mmmm: Direct

nnnn: Indirect pre-

MOV.L Rm, @-Rn

register decrement
register
mmmm: Direct nnnn: Indirect MOV.L
register indexed register Rm, @ (RO, Rn)
md format mmmmdddd: RO (Direct MOV.B
15 indirect register register) @(disp,Rm),RO
XXXX XXXX ’mmmm| dddd with
displacement
nd4 format RO (Direct nnnndddd: MOV.B
15 0 register) Indirect register RO, @ (disp, Rn)
XXXX XXxX | nnnn | dddd with displacement
Note: In multiply/accumulate instructions, nnnn is the source register.

14

Table 4.8 Instruction Formats (cont)

Source Destination
Instruction Formats Operand Operand Example
nmd format mmmm: Direct nnnndddd: Indirect Mov.L
15 0 register register with Rm, @ (disp, Rn)

displacement

| XXXX | nnnn ‘mmmml dddd

mmmmdddd: nnnn: Direct MOV.L
Indirect register register @(disp,Rm),Rn
with
displacement
d format dddddddd: RO (Direct register) Mov.L
15 0 Indirect GBR @(disp, GBR),R0O
XxxX xxxx | dddd dddd W.'th
displacement
RO(Direct dddddddd: Indirect Mov.L
register) GBR with RO, @(disp, GBR)

displacement

dddddddd: PC RO (Direct register) MovA
relative with @(disp, PC),RO
displacement

— dddddddd: PC BF label
relative
d12 format — dddddddddddd: BRA label
15 0 PC relative (label = disp +
xxxx | dddd dddd dddd EC)
nd8 format dddddddd: PC nnnn: Direct MOV.L
15 0 relative with register @(disp, PC),Rn
| XXXX ’ nnnn ‘ dddd dddd diEplacemet
i format jiiiiiii: Immediate Indirect indexed AND.B
GBR #imm, @ (RO, GBR)
15 0 iiiiiiii. Immediate RO (Direct register) AND #imm, RO
XXXX XXXX | iiii iiii
iiiiiii: Immediate — TRAPA #imm
ni format jiiiiiii: Immediate nnnn: Direct ADD #imm, Rn
15 0 register
‘xxxx‘nnnn| piii i

15

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

16

Table 5.1 Classification of Instructions

Applicable
Instructions
Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions
Data transfer 5 MOV Data transfer O O 39

Immediate data transfer
Peripheral module data transfer
Structure data transfer

MOVA Effective address transfer 0 |

MOVT T-bit transfer 0 |

SWAP Swap of upper and lower bytes [O

XTRCT Extraction of the middle of | 0
registers connected

Arithmetic 21 ADD Binary addition O O 33
operations ADDC Binary addition with carry 0 0

ADDV Binary addition with overflow O O
check

CMP/cond Comparison O O

DIVA1 Division | 0

DIVOS Initialization of signed division O O

DIvVou Initialization of unsigned O O
division

DMULS Signed double-length O
multiplication

DMULU Unsigned double-length O
multiplication

DT Decrement and test |

EXTS Sign extension O O

EXTU Zero extension 0 |

MAC Multiply/accumulate, double- O O
length multiply/accumulate
operation*1

MUL Double-length multiplication O O

MULS Signed multiplication O O

MULU Unsigned multiplication O O

NEG Negation O O

NEGC Negation with borrow O O

SUB Binary subtraction O O

SUBC Binary subtraction with borrow [O

SUBV Binary subtraction with O O

underflow check

Notes 1. Double-length multiply/accumulate is an SH7600 function.

17

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions
Logic 6 AND Logical AND O 0 14
operations NOT Bit inversion 0 O
OR Logical OR O 0
TAS Memory test and bit set O 0
TST Logical AND and T-bit set O 0
XOR Exclusive OR O 0
Shift 10 ROTL One-bit left rotation 0 0 14
ROTR One-bit right rotation O 0
ROTCL One-bit left rotation with T bit O 0
ROTCR One-bit right rotation with T bit O 0
SHAL One-bit arithmetic left shift O 0
SHAR One-bit arithmetic right shift O 0
SHLL One-bit logical left shift O 0
SHLLn n-bit logical left shift O 0
SHLR One-bit logical right shift O 0
SHLRn n-bit logical right shift O 0
Branch 9 BF Conditional branch, conditional O d 1M1
branch with delay*2 (T = 0)
BT Conditional branch, conditional O O
branch with delay*2 (T = 1)
BRA Unconditional branch O 0
BRAF Unconditional branch O
BSR Branch to subroutine procedure 0 0
BSRF Branch to subroutine procedure 0
JMP Unconditional branch O 0
JSR Branch to subroutine procedure 0 0
RTS Return from subroutine O 0
procedure

Notes 2 Conditional branch with delay is an SH7600 function.

18

Table 5.1 Classification of Instructions (cont)

Applicable
Instructions
Operation SH SH No. of
Classification Types Code Function 7600 7000 Instructions
System 11 CLRT T-bit clear O O 31
control CLRMAC MAC register clear 0 0
LDC Load to control register 0 O
LDS Load to system register O O
NOP No operation O O
RTE Return from exception 0 O
processing
SETT T-bit set 0 0
SLEEP Shift into power-down mode O O
STC Storing control register data O O
STS Storing system register data 0 O
TRAPA Trap exception processing O O
Total: 62 142

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.

19

TableS5.2 Instruction Code Format

Item Format

Explanation

Instruction OP.Sz SRC,DEST
mnemonic

OP: Operation code
Sz: Size

SRC: Source

DEST: Destination

Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement*

Instruction MSB « LSB
code

mmmm: Source register
nnnn: Destination register
0000: RO
0001: R1

1111: R15
iiii. Immediate data
dddd: Displacement

Operation -, — Direction of transfer
summary (xx) Memory operand
M/Q/T Flag bits in the SR
& Logical AND of each bit
| Logical OR of each bit
A Exclusive OR of each bit
~ Logical NOT of each bit
<<n, >>n n-bit left/right shift
Execution Value when no wait states are inserted
cycle
Instruction The execution cycles shown in the table are minimums.
execution The actual number of cycles may be increased:
cycles 1. When contention occurs between instruction fetches
and data access, or
2. When the destination register of the load instruction
(memory — register) and the register used by the next
instruction are the same.
T bit Value of T bit after instruction is executed

No change

Note: Scaling (x1, x2, x4) is performed according to the instruction operand size. See "6.
Instruction Descriptions" for details.

20

51.1

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.

Data Transfer Instructions

Table 5.3 Data Transfer Instructions
Execu-
tion T
Instruction Instruction Code Operation State Bit
MoV #imm, Rn 1110nnnniiiiiiii imm — Sign extension — 1 —
Rn
MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp x2 + PC) — Sign 1 —
extension — Rn
MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp x 4 + PC) — Rn 1 —
MoV Rm, Rn 011 0nnnnmmmm0011 Rm — Rn 1 —
MOV.B Rm, QRn 001 0nnnnmmmm0000 Rm — (Rn) 1 —
MOV.W Rm, GRn 001 0nnnnmmmm0001 Rm — (Rn) 1 —
MOV.L Rm, GRn 001 0nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B (@Rm,Rn 0110nnnnmmmm0000 (Rm) — Sign extension —» 1 —
Rn
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) — Sign extension —» 1 —
Rn
MOV.L (@Rm,Rn 0110nnnnmmmm0010 (Rm) — Rn 1 —
MOV.B Rm,@-Rn 001 0nnnnmmmm0100 Rn-1 — Rn, Rm — (Rn) 1 —
MOV.W Rm, @-Rn 001 0nnnnmmmm0101 Rn-2 — Rn, Rm — (Rn) 1 —
MOV.L Rm,@-Rn 001 0nnnnmmmm0110 Rn-4 — Rn, Rm — (Rn) 1 —
MOV.B @Rm+,Rn 0110nnnnmmmm0100 (Rm) — Sign extension —» 1 —
Rn,Rm+1 —Rm
MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — Sign extension —» 1 —
Rn,Rm+2 — Rm
MOV.L (@Rm+,Rn 0110nnnnmmmm0110 (Rm)— RnRm+4 -Rm 1 —
MOV.B RO,Q@(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO,Q(disp,Rn) 10000001nnnndddd RO — (disp * 2 + Rn) 1 —
MOV.L Rm,Q(disp,Rn) 000 Innnnmmmmdddd Rm — (disp % 4 + Rn) 1 —
MOV.B @(disp,Rm),RO 10000100mmmmdddd (disp + Rm) — Sign 1 —
extension — RO
MOV.W @(disp,Rm),RO 10000101mmmmdddd (disp x 2 + Rm) — Sign 1 —
extension — RO
MOV.L (@(disp,Rm),Rn 010 1nnnnmmmmdddd (disp X4 + Rm) — Rn 1 —
MOV.B Rm,@(RO,Rn) 0000nnnnmmmm0100 Rm — (RO + Rn) 1 —
MOV.W Rm,@(RO,Rn) 0000nnnnmmmm0101 Rm — (RO + Rn) 1 —

21

Table 5.3 Data Transfer Instructions (cont)
Execu -
tion T
Instruction Instruction Code Operation State Bit
MOV.L Rm,@(RO,Rn) 0000nnnnNmmmm0110 Rm — (RO + Rn) 1 —
MOV.B @(RO,Rm),Rn 0000nnnnmmmm1100 (RO + Rm) — Sign 1 —
extension — Rn
MOV.W @(RO,Rm),Rn 0000nnnnNmmmm1101 (RO + Rm) — Sign 1 —
extension — Rn
MOV.L @(RO,Rm),Rn 0000nnnnNmmmm1110 (RO +Rm)— Rn 1 —
MOV.B RO, @ (disp, GBR) 11000000dddddddd RO — (disp + GBR) 1 =
MOV.W RO, @Q(disp,GBR) 11000001dddddddd RO — (disp x 2 + GBR) 1 —
MOV.L RO, @ (disp, GBR) 11000010dddddddd RO — (disp * 4+ GBR) 1 —
MOV.B @(disp,GBR),RO 11000100dddddddd (disp + GBR) — Sign 1 —
extension — RO
MOV.W @(disp,GBR),RO 11000101dddddddd (disp *2 + GBR) — Sign 1 —
extension — RO
MOV.L @(disp,GBR),R0O 11000110dddddddd (disp x4 + GBR) — RO 1 =
MOVA @ (disp, PC),RO 11000111dddddddd dispx 4+ PC —- RO 1 —_
MOVT Rn 0000nnnn00101001 T—Rn 1 —
SWAP.B Rm,Rn 0110nnnnmmmml 000 Rm — Swap upper and 1 =
lower 2 bytes— Rn
SWAP.W Rm,Rn 0110nnnnmmmml 001 Rm — Swap upper and 1 —
lower word — Rn
XTRCT Rm,Rn 0010nnnnmmmml 101 Center 32 bits of Rmand 1 —

Rn— Rn

22

5.12 Arithmetic Instructions
Table 5.4 Arithmetic Instructions
Execution
Instruction Instruction Code Operation State T Bit
ADD Rm, Rn 0011nnnnmmmml1100 Rn+ Rm — Rn 1 —
ADD #imm, Rn 0lllnnnniiiiiiii Rn+imm— Rn 1 —
ADDC Rm, Rn 0011lnnnnmmmml110 Rn+Rm+ T — Rn, 1 Carry
Carry —» T
ADDV Rm, Rn 0011lnnnnmmmmllll Rn+ Rm — Rn, 1 Overflow
Overflow —T
CMP/EQ #imm, RO 10001000iiiiiiii HRO=imm,1 =T 1 Compariso
n result
CMP/EQ Rm,Rn 001 1nnnnmmmm0000 IfRn=Rm, 1 - T 1 Compariso
n result
CMP/HS Rm,Rn 001 1lnnnnmmmm0010 If RnZRm with 1 Compariso
unsigned data, 1 —» T n result
CMP/GE Rm,Rn 0011lnnnnmmmmO0011 If Rn 2 Rm with 1 Compariso
signed data, 1 - T n result
CMP/HI Rm,Rn 0011lnmnnmmm0110 If Rn > Rm with 1 Compariso
unsigned data, 1 —» T n result
CMP/GT Rm,Rn 0011lnmnnmmm0111 If Rn > Rm with 1 Compariso
signed data, 1 - T n result
CMP/PL Rn 0100nnnn00010101 IfRn>0,1 -»T 1 Compariso
n result
CMP/PZ Rn 0100nnnn00010001 IfRn20,1—-T 1 Compariso
n result
CMP/STR Rm,Rn 0010nnnnmmmm1100 If Rnand Rmhave an 1 Compariso
equivalent byte, 1 — n result
T
DIV1 Rm, Rn 001 1nnnnmmmm0100 Single-step division 1 Calculation
(Rn/Rm) result
DIVOS Rm, Rn 0010nnnnmmmm0111 MSB of Rh — Q, 1 Calculation
MSB of Rm— M, M~ result
Q-T
DIVOU 0000000000011001 0 - M/QT 1 0

23

Table 5.4

Instruction

Arithmetic Instructions (cont)

Instruction Code

Operation

Execution
State T Bit

DMULS.L Rm, Rn*?

001 Innnnmmmm1101

Signed operation of
Rn x Rm — MACH,
MACL

32 x 32 — 64 bits

2 to 4*1 —

DMULU.L Rm,Rn*?

001 Innnnmmmm0101

Unsigned operation of
Rn x Rm — MACH,
MACL

32 x 32 — 64 bits

2 to 4*1 .

DT Rn*?

0100nnnNn00010000

Rn -1 — Rn, when
Rnis 0,1 — T. When
Rnis nonzero, 0 —» T

1 Compariso

n result

EXTS.B Rm,Rn

0110nnnnmmmm1110

A byte in Rm is sign-
extended — Rn

EXTS.W Rm,Rn

0110nnnnmmmml1111

A word in Rmis sign-
extended — Rn

EXTU.B Rm,Rn

0110nnnnmmmm1 100

A byte in Rm is zero-
extended — Rn

EXTU.W Rm,Rn

0110nnnnmmmm1101

A word in Rmis zero-
extended — Rn

MAC.L @Rm+, @Rn+

*2

0000nnnnmmmm1111

Signed operation of
(Rn) x (Rm) + MAC
— MAC

32 x 32 + 64 — 64 bits

3/(2to 4 —

MAC.W @QRm+, @Rn+

0100nnnnmmmm1111

Signed operation of
(Rn) x (Rm) + MAC
— MAC

(SH7600) 16 x 16 +
64 — 64 bits

(SH7000) 16 x 16 +
42 — 42 bits

3/(2)1 —

MUL.L Rm, Rn*?

0000nnnnmmmMm0111

Rnx Rm — MACL,
32 x 32 — 32 bits

2 to 4*1 —

MULS.W Rm,Rn

0010nnnnmmmm1111

Signed operation of
Rn x Rm — MAC

16 x 16 — 32 bits

1to 3*1 —

Notes: 1.

The normal minimum number of execution states (The number in parentheses is the

number of states when there is contention with preceding/following instructions)
2. SH7600 instructions

24

Table 5.4 Arithmetic Instructions (cont)
Execution
Instruction Instruction Code Operation State T Bit
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned operation of 1 to 3*1 —
Rn % Rm — MAC
16 x 16 — 32 bits
NEG Rm, Rn 0110nnnnmmmml011 0-Rm — Rn 1 —
NEGC Rm, Rn 0110nnnnmmmml010 0-Rm-T — Rn, 1 Borrow
Borrow — T
SUB Rm, Rn 001 1nnnnmmmml 000 Rn—-Rm — Rn 1 —
SUBC Rm, Rn 001 1nnnnmmmml010 Rn—-Rm-T — Rn, 1 Borrow
Borrow — T
SUBV Rm, Rn 001 1nnnnmmmml011 Rn-Rm — Rn, 1 Underflow

Underflow — T

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Execution
Instruction Instruction Code Operation State T Bit
AND Rm, Rn 001 O0nnnnmmmml001 Rn & Rm — Rn 1 —
AND #imm, RO 11001001iidiiiididi RO & imm — RO 1 =
AND.B #imm, @(RO,GBR) 11001101iiiiiiii (RO + GBR)&imm — 3 —
(RO + GBR)
NOT Rm, Rn 0110nnnnmmmm0111 ~Rm — Rn 1 —
OR Rm, Rn 001 0nnnnmmmm1011 Rn|Rm— Rn 1 —
OR #imm, RO 11001011iidi4iiidid RO | imm — RO 1 =
OR.B #imm,Q@(RO,GBR) 11001111iiiiiiii (RO+ GBR)|imm — 3 —
(RO + GBR)
TAS.B @Rn 0100nnnn00011011 If(Rn)is0,1 = T;1— 4 Test
MSB of (Rn) result
TST Rm, Rn 001 O0nnnnmmmm1 000 Rn & Rm; if the resultis 1 Test
0,1->T result
TST #imm, RO 11001000iididiiididi RO & imm:; if the result 1 Test
is0,1->T result

25

TableS.5 Logic Operation Instructions (cont)
Execution

Instruction Instruction Code Operation State T Bit
TST.B #imm,@(RO,GBR) 11001100iiiiiiii (RO + GBR) & imm:; if 3 Test

theresultis0, 1 —>T result
XOR Rm, Rn 0010nnnnmmmm1 010 Rn*Rm — Rn 1 —
XOR #imm, RO 11001010iiiidididid RO *imm — RO 1 —
XOR.B #imm, @ (RO, GBR) 11001110iiiidididid (RO + GBR) A imm — 3 —

(RO + GBR)
5.1.4 Shift Instructions
Table 5.6 Shift Instructions
Instruction Instruction Code Operation Execution State T Bit
ROTL Rn 0100nnnn00000100 T —Rn< MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB - Rn T 1 LSB
ROTCL Rn 0100nnnn00100100 T—Rn<T 1 MSB
ROTCR Rn 0100nnnn00100101 T—-Rn->T 1 LSB
SHAL Rn 0100nnnn00100000 T—Rn<0 1 MSB
SHAR Rn 0100nnnn00100001 MSB— Rn—-T 1 LSB
SHLL Rn 0100nnnn00000000 T—Rn<0 1 MSB
SHLR Rn 0100nnnn00000001 0—->Rn ->T 1 LSB
SHLI2 Rn 0100nnnn00001000 Rn<<2 —Rn 1 —
SHLR2 Rn 0100nnnn00001001 Rn>>2 —Rn 1 —_
SHLIS8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —
SHLRS Rn 0100nnnn00011001 Rn>>8 — Rn 1 —
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —_
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —

26

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Execution
Instruction Instruction Code Operation State T Bit
BF label 10001011dddddddd IfT=0,dispx2+PC —-PC; ifT= 3/1*3 —

1, nop (where label is disp X 2 + PC)

BF/S label*? 10001111dddddddd Delayed branch, if T=0, disp x 2+ 2/1*3 —
PC — PC; if T=1, nop

BT label 10001001dddddddd fT=1dispx2+PC —-PC; ifT= 3/1*3 —
0, nop (where label is disp + PC)

BT/S label*? 10001101dddddddd Delayed branch, if T=1, disp x 2+ 2/1*3 —
PC — PC; if T=0, nop

BRA label 1010dddddddddddd ~ Delayed branch, disp *x2 + PC — 2 s

PC

BRAF Rn*? 0000nnnn00100011 Delayed branch, Rn + PC — PC 2 —

BSR label 1011dddddddddddd Delayed branch, PC — PR, dispx2 2 —
+PC —- PC

BSRF Rn*? 0000nNNN00000011 Delayed branch, PC — PR, Rn + 2 —
PC — PC

JMP @Rn 0100nnnn00101011 Delayed branch, Rn — PC 2 s

JSR @Rn 0100nnnNn00001011 Delayed branch, PC — PR, Rnh — 2 —
PC

RTS 0000000000001011 Delayed branch, PR — PC 2 =

Notes: 2. SH7600 instruction
3. One state when it does not branch

27

5.1.6 System Control Instructions
Table 5.8 System Control Instructions

Execution T
Instruction Instruction Code Operation State Bit
CLRT 0000000000001000 0—-T 1 0
CLRMAC 0000000000101000 0 — MACH, MACL 1 .
1IDC Rm, SR 0100mmmO0001110 Rm — SR 1 LSB
IDC Rm, GBR 0100mmmO00011110 Rm — GBR 1 —
IDC Rm, VBR 0100mmmO00101110 Rm — VBR 1 .
IDC.L QRmt, SR 0100mmmm00000111 (Rm)— SR, Rm+4 —Rm 3 LSB
IDC.I. @Rm+,GBR 0100mmm00010111 (Rm)— GBR, Rm+4 -Rm 3 -
IDC.L @Rm+,VBR 0100mmm00100111 (Rm)— VBR, Rm+4 -Rm 3 —
1DS Rm, MACH 0100mmmO0001010 Rm — MACH 1 —
1DS Rm, MACL 0100mmmO00011010 Rm — MACL 1 —
1DS Rm, PR 0100mmmO00101010 Rm — PR 1 .
LDS.I. @Rm+,MACH 0100mmmm00000110 (Rm)— MACH, Rm+ 4 — 1 —

Rm
I1DS.L @Rm+,MACL 0100mmm00010110 (Rm)— MACL, Rm+4 —Rm 1 —
1DS.L @Rm+,PR 0100mmm00100110 (Rm)— PR, Rm+ 4 —Rm 1 -
NOP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, stack area —» 4 LSB
PC/SR

SETT 0000000000011000 1-T 1 1
SLEEP 0000000000011011 Sleep 34 —
STC SR, Rn 0000nnNNn00000010 SR — Rn 1 —
STC GBR, Rn 0000nnNn00010010 GBR — Rn 1 —_
STC VBR, Rn 0000nnnNn00100010 VBR — Rn 1 —
STC.L SR, @Rn 0100nnnn00000011 Rn—4 — Rn, SR — (Rn) 2 —
STC.L GBR, @-Rn 0100nnnn00010011 Rn—4 — Rn, GBR — (Rn) 2 —
STC.L VBR, @-Rn 0100nnnn00100011 Rn—4 — Rn, VBR — (Rn) 2 —
STS MACH, Rn 0000nnNn00001010 MACH — Rn 1 —
STS MACL, Rn 0000nnnNn00011010 MACL — Rn 1 —_
STS PR, Rn 0000nnnn00101010 PR — Rn 1 —

28

Table 5.8 System Control Instructions (cont)
Execution T
Instruction Instruction Code Operation State Bit
STS.L MACH, @-Rn 0100nnnn00000010 Rn—-4 — Rn, MACH — (Rn) 1 —
STS.L MACL,@-Rn 0100nnnn00010010 Rn—4 — Rn, MACL — (Rn) 1 —
STS.L PR,@-Rn 0100nnnn00100010 Rn—4 — Rn, PR — (Rn) 1 —
TRAPA #imm 11000011iiiiiiii PC/SR — stack area, (immx 8 —
4 +VBR)— PC

Notes: 4. The number of execution states before the chip enters the sleep state

The above table lists the minimum execution cycles. In practice, the number of execution
cycles increases when the instruction fetch is in contention with data access or when the
destination register of a load instruction (memory — register) is the same as the register
used by the next instruction.

5.2 Instruction Set in Alphabetical Order
Table 5.9 alphabetically lists instruction codes and number of execution cycles for each
instruction.
Table5.9 Instruction Set
Execu-
tion
Instruction Instruction Code Operation State T Bit
ADD #imm, Rn 0lllnnnniiiiiiii Rn+imm— Rn 1 —
ADD Rm, Rn 0011lnnnnmmmml1100 Rn+ Rm— Rn 1 —
ADDC Rm,Rn 001lnnnnmmmml1110 Rn+ Rm+ T — Rn, 1 Carry
Carry —»T
ADDV Rm,Rn 001lnnnnmmmml11l Rn+ Rm — Rn, 1 Overflow
Overflow —T
AND #imm, RO 11001001ididiidiiddi RO & imm — RO 1 —
AND Rm, Rn 0010nnnnmmmm1001 Rn & Rm — Rn 1 —
AND.B #imm, @ (RO, GBR) 11001101iiiiiiii (RO + GBR)&imm 3 —
— (RO + GBR)
BF label 10001011dddddddd ~ If T=0,disp*x 2+ 3/1*3 —
PC—- PC; ifT=1,
nop
BF/S label*? 10001111dddddddd IfT=0,disp x2+ 2/1*3 —

PC — PC; if T =1,
nop

29

Table 5.9

Instruction Set (cont)

Execu -
tion
Instruction Instruction Code Operation State T Bit
BRA label 1010dddddddddddd Delayed branch, 2 —
dispx 2+ PC —
PC
BRAF Rn*? 0000nnnn00100011 Delayed branch, Rn 2 —
+PC - PC
BSR label 1011dddddddddddd Delayed branch, 2 —
PC — PR, disp x 2
+PC - PC
BSRF Rn*? 0000nnnn00000011 Delayed branch, 2 —
PC —- PR, Rn+PC
—PC
BT label 10001001dddddddd IfT=1, disp x2+ 3/1%3 —
PC — PC; if T =0,
nop
BT/S label*? 10001101dddddddd fT=1 dispx 2+ 2/1*3 —
PC — PC; if T =0,
nop
CLRMAC 0000000000101000 0 — MACH, MACL 1 —
CLRT 0000000000001000 0-T 1 0
CMP/EQ #imm, RO 10001000iiiiiiii IfRO=imm, 1 —-T 1 Comparison
result
CMP/EQ Rm,Rn 001 Innnnmmmm0000 IfRhn=Rm, 1 ->T 1 Comparison
result
CMP/GE Rm,Rn 001 1nnnnmmmm0011 If Rn 2 Rm with 1 Comparison
signed data, 1 > T result
CMP/GT Rm,Rn 001 Innnnmmmm0111 If Rn > Rm with 1 Comparison
signed data, 1 - T result
CMP/HI Rm,Rn 001 Innnnmmmm0110 If Rn > Rm with 1 Comparison
unsigned data, 1 — result
T
CMP/HS Rm,Rn 001 1nnnnmmmm0010 If Rn 2 Rm with 1 Comparison
unsigned data, 1 — result
T
CMP/PL Rn 0100nnnn00010101 IfRn>0,1 —>T 1 Comparison
result
CMP/PZ Rn 0100nnnn00010001 fRn20,1->T 1 Comparison
result

Notes: 2. SH7600 instructions

3. One state when it does not branch

30

Table 5.9

Instruction

Instruction Set (cont)

Instruction Code

Operation

Execu-
tion
State

T Bit

CMP/STR Rm,Rn

001 0nnnnmmmm1 100

If Rn and Rm have
an equivalent byte,
1 -T

Comparison
result

DIVOS Rm, Rn

0010nnnnmmmm0111

MSB of Rn — Q,
MSB of Rm — M, M
AQ-T

Calculation
result

DIVOU

0000000000011001

0 - M/QT

0

DIV1 Rm, Rn

001 Innnnmmmm0100

Single-step division
(Rn/Rm)

Calculation
result

DMULS.L Rm,Rn*?

001 1nnnnmmmm1101

Signed operation of
Rn x Rm — MACH,
MACL

2 to 4*1

DMULU.L Rm,Rn*?

001 1Innnnmmmm0101

Unsigned operation
of Rn XxRm —
MACH, MACL

2 to 4*1

0100nnnn00010000

Rn -1 — Rn, when
Rnis0,1 —T.
When Rn is
nonzero, 0 - T

Comparison
result

EXTS.B Rm, Rn

0110nnnnmmmml110

A byte inRmiis
sign-extended —
Rn

EXTS.W Rm, Rn

0110nnnnmmmml111

A word in Rm is
sign-extended —
Rn

EXTU.B Rm, Rn

0110nnnnmmmml 100

A byte inRmiis
zero-extended —
Rn

EXTU.W Rm, Rn

0110nnnnmmmml101

A word in Rm s
zero-extended —
Rn

JMP C@Rn

0100nnnn00101011

Delayed branch, Rn
— PC

Notes: 1. The normal minimum number of execution states
2. SH7600 instructions

Table5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
JSR @Rn 0100nnnn00001011 Delayed branch, 2 —
PC - PR,Rn—
PC
1IDC Rm, GBR 0100mmmO00011110 Rm — GBR 1 —
IDC Rm, SR 0100mmmO0001110 Rm — SR 1 LSB
IDC Rm, VBR 0100mmmO00101110 Rm — VBR 1 —
IDC.L @Rmt,GBR 0100mmmm00010111 (Rm)— GBR, Rm 3 —
+4 — Rm
IDC.L @Rmt, SR 0100mmmm00000111 (Rm)— SR, Rm+ 3 LSB
4 —-Rm
IDC.L @Rmt,VBR 0100mmmm00100111 (Rm)— VBR, Rm 3 —
+4 - Rm
1DS Rm, MACH 0100mmmO0001010 Rm — MACH 1 —
1DS Rm, MACL 0100mmmO00011010 Rm — MACL 1 —
1DS Rm, PR 0100mmmO00101010 Rm— PR 1 —
IDS.L @Rmt,MACH 0100mmmm00000110 (Rm) — MACH, 1 —
Rm+4 —Rm
IDS.L @Rmt,MACL 0100mmmm00010110 (Rm) — MACL, Rm 1 —
+4 - Rm
IDS.L @Rmt, PR 0100mmmm00100110 (Rm)— PR,Rm+ 1 —
4 —-Rm
MAC.L QRmt, @Rn+*? 0000nnnnmmmm1111 Signed operation of 3/(2to —
(Rn) x (Rm) + MAC 4)*!
— MAC
MAC.W QRmt, @Rn+ 0100nnnnmmmm1111 Signed operation of 3/2*' —
(Rn) x (Rm) + MAC
— MAC
MoV #imm, Rn 1110nnmnniiiiiiii imm — Sign 1 —
extension — Rn
MoV Rm, Rn 011 0nnnnmmmm001 1 Rm — Rn 1 —
Notes: 1. The normal minimum number of execution states (the number in parentheses is the

number of states when there is contention with preceding/following instructions)
2. SH7600 instructions

32

Table5.9 Instruction Set (cont)
Execu-
tion

Instruction Instruction Code Operation State T Bit

MOV.B @(disp,GBR),RO 11000100dddddddd (disp + GBR) — 1 —
Sign extension —
RO

MOV.B @ (disp,Rm),RO 10000100mmmmdddd (disp + Rm) — Sign 1 —
extension — RO

MOV.B @ (RO,Rm),Rn 000 0nnnnmmmml 100 (RO+Rm)— Sigh 1 —
extension — Rn

MOV.B @Rmt,Rn 011 0nnnnmmmm0100 (Rm) — Sign 1 —
extension — Rn,
Rm+1 —Rm

MOV.B @Rm,Rn 011 0nnnnmmmm0000 (Rm) — Sign 1 —
extension — Rn

MOV.B RO, (@(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 .

MOV.B RO, @(disp,Rn) 10000000nnnndddd RO — (disp+Rn) 1 =

MOV.B Rm, @(RO,Rn) 000 0nnnnmmmm0100 Rm — (RO + Rn) 1 —

MOV.B Rm,@-Rn 001 O0nnnnmmmm0100 Rn-1 = Rn, Rm — 1 —
(Rn)

MOV.B Rm, @Rn 001 O0nnnnmmmm0000 Rm — (Rn) 1 —

MOV.L @(disp,GBR),RO 11000110dddddddd (disp x4 + GBR) — 1 —
RO

MOV.L @(disp,PC),Rn 1101nnnndddddddd (disp x4+ PC) —» 1 —
Rn

MOV.L @Q(disp,Rm),Rn 010 Innnnmmmmdddd (disp x4+ Rm)— 1 —
Rn

MOV.L @Q(RO,Rm),Rn 0000nnnnmmmml 110 (RO+Rm) — Rn 1 —

MOV.L QRmt+,Rn 0110nnnnmmmm0110 (Rm)— Rn,Rm+4 1 —
— Rm

MOV.L QRm,Rn 0110nnnnmmmm0010 (Rm) — Rn 1 —

MOV.L RO, @(disp,GBR) 11000010dddddddd RO — (dispx 4 + 1 .
GBR)

MOV.L Rm,@(disp,Rn) 000 Innnnmmmmdddd Rm — (disp x 4 + 1 —
Rn)

MOV.L Rm, @(RO,Rn) 0000nnnnmmmm0110 Rm — (RO + Rn) 1 —

MOV.L Rm,@-Rn 001 0nnnnmmmm0110 Rn—-4 — Rn, Rm — 1 —
(Rn)

MOV.L Rm,@Rn 001 0nnnnmmmm0010 Rm — (Rn) 1 —

MOV.W @ (disp,GBR),R0O 11000101dddddddd (disp X2+ GBR) — 1 —

Sign extension —
RO

33

Table5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp*2+PC) - 1 —
Sign extension —
Rn
MOV.W Q(disp,Rm),RO 100001 01mmmmdddd (disp *2+Rm)— 1 —
Sign extension —
RO
MOV.W @(RO,Rm),Rn 0000nnnNmMMMM1101 (RO +Rm) — Sign 1 —
extension — Rn
MOV.W QRm+,Rn 0110nnnnmmmm0101 (Rm) — Sign 1 —
extension — Rn,
Rm+2 — Rm
MOV.W QRm,Rn 0110nnnnmmmm0001 (Rm) — Sign 1 —
extension — Rn
MOV.W RO, @ (disp,GBR) 11000001dddddddd RO — (disp x 2+ 1 o
GBR)
MOV.W RO, @ (disp,Rn) 10000001nnnndddd RO — (disp *x 2 + 1 e
Rn)
MOV.W Rm, @ (RO, Rn) 0000nnnmmMmm0101 Rm — (RO + Rn) 1 —
MOV.W Rm, @-Rn 001 0nnnnmmmm0101 Rn—-2 - Rn, Rm - 1 —
(Rn)
MOV.W Rm, @Rn 0010nnnnmmmMm0001 Rm — (Rn) 1 —
MOVA @(disp, PC),RO 11000111dddddddd dispx4+PC - R0 1 —
MOVT Rn 0000nnNnn00101001 T—Rn 1 =
MUL.L Rm,Rn*? 0000nnnNmmmMm0111 Rnx Rm — MACL 2to4*! —
MULS.W Rm,Rn 0010nnnnmmmm1111 Signed operation of 1to3*! —
Rnx Rm — MAC
MULU.W Rm,Rn 0010nnnnmmmm1 110 Unsigned operation 1to3*! —
of Rn x Rm — MAC
NEG Rm, Rn 0110nnnnmmmm1011 0-Rm — Rn 1 —
NEGC Rm, Rn 0110nnnnmmmml010 0-Rm-T — Rn, 1 Borrow
Borrow — T
NOP 0000000000001001 No operation 1 —
NOT Rm, Rn 0110nnnnmmmm0111 ~Rm — Rn 1 O
OR #imm, RO 11001011iididiiiid RO | imm — RO 1 —
OR Rm, Rn 0010nnnnmmmmm1011 Rn|Rm — Rn 1 —
Notes: The normal minimum number of execution states

2. SH7600 instructions

34

Table5.9 Instruction Set (cont)
Execu -
tion
Instruction Instruction Code Operation State T Bit
OR.B #imm, @ (RO, GBR) 110011114iiiiiiii (RO + GBR) | imm 3 —
— (RO + GBR)
ROTCL Rn 0100nnnn00100100 T—Rn<T 1 MSB
ROTCR Rn 0100nnnn00100101 T->Rn->T 1 LSB
ROTL Rn 0100nnnn00000100 T —Rn <~ MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB - Rn —-»T 1 LSB
RTE 0000000000101011 Delayed branch, 4 LSB
stack area —
PC/SR
RTS 0000000000001011 Delayed branch, 2 —
PR — PC
SETT 0000000000011000 1T 1 1
SHAL Rn 0100nnnn00100000 T—Rn<0 1 MSB
SHAR Rn 0100nnnn00100001 MSB— Rn—T 1 LSB
SHLL Rn 0100nnnn00000000 T—Rn<0 1 MSB
SHLL2 Rn 0100nnnn00001000 Rn<<2 —Rn 1 —
SHLLS Rn 0100nnnn00011000 Rn<<8 — Rn 1 —
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —
SHLR Rn 0100nnnn00000001 0—-Rn—->T 1 LSB
SHLR2 Rn 0100nnnn00001001 Rn>>2 —Rn 1 —
SHLRS Rn 0100nnnn00011001 Rn>>8 — Rn 1 —
SHLR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —
SLEEP 0000000000011011 Sleep 3 —
STC GBR, Rn 0000nnNnNn00010010 GBR — Rn 1 —
STC SR, Rn 0000nnNnNn00000010 SR — Rn 1 —
STC VBR, Rn 0000nnNnn00100010 VBR — Rn 1 —
STC.L GBR, @-Rn 0100nnnn00010011 Rn—-4 — Rn, GBR 2 —
— (Rn)
STC.L SR, @-Rn 0100nnnn00000011 Rn—4 — Rn, SR—> 2 —
(Rn)
STC.L VBR, @-Rn 0100nnnn00100011 Rn—4 — Rn, VBR 2 —
— (Rn)
STS MACH, Rn 0000nnNnNn00001010 MACH — Rn 1 —

35

Table5.9 Instruction Set (cont)
Execu-
tion
Instruction Instruction Code Operation State T Bit
STS MACL,Rn 0000nnNn00011010 MACL — Rn 1 —
STS PR, Rn 0000nnNn00101010 PR — Rn 1 —
STS.I. MACH, @-Rn 0100nnnn00000010 Rn-4 — Rn, 1 —
MACH — (Rn)
STS.I. MACL, @-Rn 0100nnnn00010010 Rn-4 — Rn, MACL 1 —
— (Rn)
STS.I. PR, @Rn 0100nnnn00100010 Rn-4 - Rn, PR > 1 —
(Rn)
SUB Rm, Rn 001 1nnnnmmmml 000 Rn-Rm — Rn 1 —
SUBC Rm, Rn 001 1nnnnmmmml010 Rn-Rm-T — Rn, 1 Borrow
Borrow —T
SUBV Rm, Rn 001 1nnnnmmmml 011 Rn-Rm — Rn, 1 Underflow
Underflow —» T
SWAP.B Rm,Rn 0110nnnnmmmml 000 Rm — Swap upper 1 —
and lower 2 bytes —
Rn
SWAP.W Rm,Rn 0110nnnnmmmml 001 Rm — Swap upper 1 —
and lower word—
Rn
TAS.B G@Rn 0100nnnn00011011 If(Rn)is0,1 —-T; 4 Test
1 — MSB of (Rn) result
TRAPA #imm 11000011iiiiiiid PC/SR — stack 8 —
area, (immx 4 +
VBR) — PC
TST #imm, RO 11001000iiidiiiidi RO & imm; if the 1 Test
resultis0,1—-T result
TST Rm, Rn 001 0nnnnmmmml 000 Rn & Rm; if the 1 Test
resultis0,1—-T result
TST.B #imm, @(RO, GRR) 110011004iididiiiii (RO + GBR) & imm; 3 Test
ifthe resultis 0, 1 result
—T
XOR #imm, RO 1100101044iiiididi RO A imm — RO 1 —
XOR Rm, Rn 001 0nnnnmmmm1 010 Rn”*Rm — Rn 1 —
XOR.B #Hirm, @(RO, GRR) 1100111044iiiidid (RO+ GBR)Aimm 3 —
— (RO + GBR)
XTRCT Rm, Rn 0010nnnnmmmml 101 Center 32 bits of 1 —

Rmand Rn — Rn

36

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
6.1. The actual descriptions begin at section 6.2.

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code State T Bit
Assembler input format; A brief description of Displayed in Number of The value of
imm and disp are operation order MSB " LSB states when T bit after the
numbers, expressions, there is no instruction is
or symbols wait state executed

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read Byte(unsigned long Addr);
unsigned short Read Word(unsigned long Addr);
unsigned long Read Long(unsigned long Addr);

Writes data of each length to address Addr. An address error will occur if word data is written to
an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write Byte(unsigned long Addr, unsigned long Data);
unsigned short Write Word(unsigned long Addr, unsigned long Data);

unsigned long Write Long(unsigned long Addr, unsigned long Data);

Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4):,
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as illegal slot instruction (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, IMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay Slot(unsigned long Addr);

37

+ List registers:

unsigned long R[16];
unsigned long SR,GBR,VBR;
unsigned long MACH,MACL, PR;

unsigned long PC;
* Definition of SR structures:

struct SRO {
unsigned long dummy0:22;
unsigned long MO:1;
unsigned long Q0:1;
unsigned long I0:4;
unsigned long dummyl:2;
unsigned long S0:1;
unsigned long TO0:1;

}i

* Definition of bits in SR:

#define M ((* (struct SRO *) (&SR)) .MO)
#define Q ((* (struct SRO *) (&SR)) .Q0)
#define S ((* (struct SRO *) (&SR)).S0)
#define T ((* (struct SRO *) (&SR)).TO)

* Error display function:
Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe state before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User's Manual.

38

.org
.data.w
.data.l
.sdata
.align 2
.align 4
.arepeat 16
.arepeat 32

.aendr

Location counter set

Securing integer word data
Securing integer longword data
Securing string data

2-byte boundary alignment
2-byte boundary alignment
16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Note: The SH-series cross assembler version 1.0 does not support the conditional assembler
functions.

Notes: 1. Inthe assembler descriptions in this manual for addressing modes that involve the
following displacements (disp), the value prior to scaling (x1, x2, x4) according to the
operand size is written. This is done to show clearly the operation of the LSI; see the
assembler notation rules for the actural assembler descriptions.

2. Amo

(@(disp:4, Rn): Register indirect with displacement
(@(disp:8, GBR): GBR indirect with displacement
@(disp 8, PC): PC relative with displacement
disp:8, disp:12: PC relative

ng the 16 bits of the instruction code, a code not assigned as an instruction is

treated as a general illegal instruction, and will result in illegal instruction exception
processing, This includes the case where an instruction code for the SH7600 series

only

is executed on the SH7000 series.

Example 1: HFFF [General illegal instruction in both SH7000 and

SH 7600]

Example 2: H'3105 (=DMUL.L RO, R1)[Illegal instruction in SH7000]

3. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a
general illegal instruction or a branch instruction (known as a slot illegal instruction),
illegal instruction exception processing will be performed.

Example 1

BRA Label
data. W H'FFFF « Slotillegal instruction
[H'FFF is fundamentally a general illegal
instruction]

Example 2 RTE

BT/S Label « Slotillegal instruction

39

6.2 ADD (ADD Binary): Arithmetic Instruction

Format Abstract Code State T Bit
ADD Rm, Rn Rm+ Rn — Rn 001 1nnnnmmmml 100 1 —
ADD #imm, Rn Rn + imm — Rn 011lnnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. The contents
of Rn can also be added to 8-bit immediate data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD (long m, long n) /* ADD Rm,Rn */
{

R[n]+=R[m];

PC+=2;

}

ADDI (long i,long n) /* ADD #imm,Rn */
{

if ((1&0x80)==0) R[n]+=(0x000000FF & (long)i):
else R[n]+=(0xFFFFFFO0 | (long)i):;
PC+=2;
}
Examples:
ADD RO,R1 Before execution RO = H'7FFFFFFF, R1 = H'00000001

After execution R1=H'80000000

ADD #H'01,R2 Before execution R2 =H'00000000
After execution R2 =H'00000001

ADD #H'FE,R3 Before execution R3 =H'00000001
After execution R3 = HFFFFFFFF

40

6.3 ADDC (ADD with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

ADDC Rm, Rn Rn+Rm+T— Rn,carry - T 001llnnnnmmmml110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */
{
unsigned long tmpO, tmpl;

tmpl=R[n]+R[m] ;
tmpO=R [n] ;
R[n]=tmpl+T;

if (tmpO>tmpl) T=1;
else T=0;

if (tmpl>R[n]) T=1;

PC+=2;
}
Examples:

CLRT RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)

ADDC R3,R1 Before execution T =0, R1=H'00000001, R3 = HFFFFFFFF
After execution T=1,R1=H'0000000

ADDC R2,RO Before execution T =1, RO =H'00000000, R2 = H'00000000
After execution T =0, RO =H'00000001

41

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction
Format Abstract Code State T Bit

ADDV Rm, Rn Rn + Rm — Rn, overflow — T 001 lnnnnmmmm1111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV (long m, long n) /*ADDV Rm,Rn */
{

long dest, src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

srct=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {
if (ans==1) T=1;
else T=0;

}

else T=0;

PC+=2;

}
Examples:

ADDV RO,RL Before execution RO =H'00000001, R1 = H'7FFFFFFE, T =0
After execution R1=H"7FFFFFFF, T=0

ADDV RO,RL Before execution RO =H'00000002, R1 = H'7FFFFFFE, T =0
After execution R1=H'80000000, T =1

42

6.5 AND (AND Logical): Logic Operation Instruction

Format Abstract Code State T Bit

AND Rm, Rn Rn &Rm — Rn 001 0nnnnmmmm1 001 1 —_

AND #imm, RO RO & imm — RO 110010014iiiidiii 1 —

AND.B #imm,@(RO,GBR) (RO+ GBR)&imm — (RO+ 11001101iiiiiiii 3 —
GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.
Operation:

AND (long m, long n) /* AND Rm,Rn */
{

R[n] &=R[m]

PC+=2;
}

ANDI (long i) /* BND #imm,RO */
{
R[0] &=(0x000000FF & (long)i);
PC+=2;
}

ANDM (long i) /* BAND.B #imm, @ (RO,GBR) */
{
long temp;

temp= (long)Read Byte (GBR+R[0]) ;
temp&=(0x000000FF & (long)i);
Write Byte (GBR+R[0], temp) ;
PC+=2;

43

Examples:

AND RO,R1

AND #H' OF, RO

AND.B #H'80, @ (RO, GBR)

Before execution

After execution

Before execution

After execution

Before execution

After execution

44

RO=H'AAAAAAAA, R1 =H'55555555
R1 =H'00000000

RO = HFFFFFFFF
RO =H'0000000F

@(RO,GBR) =H'AS5
@(RO,GBR) = H'80

6.6 BF (Branch if False): Branch Instruction
Format Abstract Code State T Bit

BF label WhenT=0,disp x2+ PC — PC; 10001011dddddddd 31 —
When T =1, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:
BF (long d) /* BF disp */
{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFFO0O | (long)d):;
if (T==0) PC=PC+ (disp<<l)+4;
else PC+=2;

}

Example:

CLRT T is always cleared to O
BT TRGET T Does not branch, because T =0
BF TRGET F Branches to TRGET F, because T = 0

NOP
NOP —The PC location i1s used to calculate
the
branch destination address of the BF
instruction
TRGET F: «— Branch destination of the BF instruction

45

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit
BF/S When T =0, disp x2+ PC — PC; 10001111dddddddd 211 —_—
label When T =1, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BF executes the
next instruction. If T = 0, it branches after executing the next instruction. The branch destination is
an address specified by PC + displacement. The PC points to the starting address of the second
instruction after the branch instruction. The 8-bit displacement is sign-extended and doubled.
Consequently, the relative interval from the branch destination is —256 to +254 bytes. If the
displacement is too short to reach the branch destination, use BF/S with the BRA instruction or the
like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed
before the branch. Between the time this instruction and the instruction immediately after are
executed, address errors or interrupts are not accepted. When the instruction immediately after is a
branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.
Operation:

BFS (long d) /* BFS disp */
{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d):
else disp=(0xFFFFFFO0 | (long)d);

if (T==0) {

PC=PC+ (disp<<l)+4;
Delay Slot(temp+2);

}
else PC+=2;

46

Example:

CLRT

BT/S TRGET T

NOP

BF/S TRGET_F

ADD
NOP

TRGET F:

RO, Rl

T is always 0

Does not branch, because T = 0

Branches to TRGET, because T = 0
Executed before branch

«— The PC location is used to calculate the branch destination
address of the BF/S instruction

« Branch destination of the BF/S instruction

47

6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRA label dispx 2 +PC — PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is
—4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA (long d) /* BRA disp */
{
unsigned long temp;

long disp;
if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF000 | d);
temp=PC;
PC=PC+ (disp<<1)+4;
Delay Slot(temp+2);
}

Example:

BRA TRGET Branches to TRGET
ADD RO,R1 Executes ADD before branching

NOP «— The PC location is used to calculate the branch destination address
of the BRA instruction
TRGET: « Branch destination of the BRA instruction

48

6.9 BRAF (Branch Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BRAF Rn Rn+PC — PC 0000nnnn00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRAF (long n) /* BRAF Rn */
{
unsigned long temp;

temp=PC;

PC+=R[n];

Delay Slot (temp+2);
}

Example:

MOV.L # (TRGET-BSRF PC),RO Sets displacement

BRAF (@RO Branches to TRGET
ADD RO, R1 Executes ADD before branching
BRAF PC: « The PC location is used to calculate
the branch destination address of
the BRAF instruction
NOP
TRGET: «— Branch destination of the BRAF instruction

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed
branch instruction, then delay slot instruction. For example, even if the register in which the
branch destination address has been loaded is changed by the delay slot instruction, the
branch will still be made using the value of the register prior to the change as the branch
destination address.

49

6.10 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSR label PC — PR, dispx 2+ PC —-PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(long d) /* BSR disp */
{
long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);
else disp=(0xFFFFF000 | d);

PR=PC;

PC=PC+ (disp<<1)+4;

Delay Slot (PR+2);

50

Example:

TRGET:

BSR
MOV

MOV
RTS

MOV

TRGET
R3,R4
RO,R1

Branches to TRGET
Executes the MOV instruction before branching

«— The PC location is used to calculate the branch destination
address of the BSR instruction (return address for when the
subroutine procedure is completed (PR data))

«— Procedure entrance

Returns to the above ADD instruction
Executes MOV before branching

51

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH7600)

Class: Delayed branch instruction

Format Abstract Code State T Bit

BSRF Rn PC - PR,Rn+PC — PC 0000nnnNn00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine procedure call in combination with
RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:
BSRF (long n) /* BSRF Rn */
{
PR=PC;
PC+=R[n];
Delay Slot (PR+2);
}

Example:
MOV.L # (TRGET-BSRF PC),RO Sets displacement
BRSF QRO Branches to TRGET
MOV R3,R4 Executes the MOV instruction before
branching
BSRF PC: « The PC location is used to
N calculate the branch destination
with BSRF
ADD RO,R1
TRGET: «— Procedure entrance
MOV R2,R3
RTS Returns to the above ADD instruction
MOV #1,RO Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

52

6.12 BT (Branch if True): Branch Instruction

Format Abstract Code State T Bit
BT label When T =1, disp x2+PC — 10001001dddddddd 31 —_
PC;

When T =0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC + displacement.
The PC points to the starting address of the second instruction after the branch instruction. The 8-
bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch
destination is —256 to +254 bytes. If the displacement is too short to reach the branch destination,
use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:
BT (long d) /* BT disp */
{
long disp;
if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFFO0 | (long)d):;
if (T==1) PC=PC+ (disp<<l)+4;

else PC+=2;
}
Example:
SETT T is always 1
BF TRGET F Does not branch, because T = 1
BT TRGET T Branches to TRGET T, because T =1
NOP
NOP «— The PC location is used to calculate the branch destination
address of the BT instruction
TRGET T: « Branch destination of the BT instruction

53

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH7600)

Format Abstract Code State T Bit
BT/S label When T=1, disp x2+PC — 10001101dddddddd 21 —
PC;

When T =0, nop

Description: Reads the T bit, and conditionally branches with delay slot. If T = 1, BT/S branches
after the following instruction executes. If T = 0, BT/S executes the next instruction. The branch
destination is an address specified by PC + displacement. The PC points to the starting address of
the second instruction after the branch instruction. The 8-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —256 to +254 bytes. If
the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or
the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed before
the branch. Between the time this instruction and the immediately after instruction are executed,
address errors or interrupts are not accepted. When the immediately after instruction is a branch
instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles;
when not branching, one cycle.

Operation:

BTS (long d) /* BTS disp */
{

long disp;

unsigned long temp;

temp=PC;
if ((d&0x80)==0) disp=(0x000000FF & (long)d):
else disp=(0xFFFFFFO0 | (long)d);
if (T==1) {
PC=PC+ (disp<<1l)+4;
Delay Slot(temp+2);
}
else PC+=2;

54

Example:

SETT

BF/S TRGET_F

NOP

BT/S TRGET_ T

ADD
NOP

TRGET T:

RO, Rl

T is always 1
Does not branch, because T =1

Branches to TRGET, because T = 1
Executes before branching.

«— The PC location is used to calculate the branch destination
address of the BT/S instruction

«— Branch destination of the BT/S instruction

55

6.14 CLRMAC (Clear MAC Register): System Control Instruction
Format Abstract Code State T Bit

CLRMAC 0 — MACH, MACL 0000000000101000 1 —

Description: Clears the MACH and MACL registers.
Operation:

CLRMAC () /* CLRMAC */

{
MACH=0;
MACL=0;
PC+=2;
}

Example:

CLRMAC Initializes the MAC register
MAC.W @RO+, @R1+ Multiply and accumulate operation
MAC.W @RO+, QR1+

56

6.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract

Code

State

T Bit

CLRT 0-T

0000000000001000

1

0

Description: Clears the T bit.
Operation:

CLRT() /* CLRT */

Example:

CIRT Before execution

After execution

57

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code State T Bit

CMP/EQ Rm,Rn WhenRn=Rm, 1 —>T 001 1nnnnmmmm0000 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn 2 001 1nnnnmmmmO011 1 Comparison
Rm,1—-T result

CMP/GT Rm,Rn When signed and Rn > 001 InnnnmmmmO0111 1 Comparison
Rm, 1T result

CMP/HI Rm,Rn When unsigned and Rn > 001 InnnnmmmmO0110 1 Comparison
Rm,1—-T result

CMP/HS Rm,Rn When unsigned and Rn 2 001 1nnnnmmmm0010 1 Comparison
Rm,1—-T result

CMP/PL Rn WhenRn>0,1—->T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn WhenRn20,1->T 0100nnNn00010001 1 Comparison
result

CMP/STR Rm, Rn When a byte in Rn equals 001 0nnnnmmmm1100 1 Comparison
abyteinRm 1->T result

CMP/EQ #imm,RO WhenRO=imm, 1 —-T 100010004iiiiiiidi 1 Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to O if the condition is not satisfied. The Rn data
does not change. The following eight conditions can be specified. Conditions PZ and PL are the
results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 6.1 shows the
mnemonics for the conditions.

58

Table 6.1 CMP Mnemonics

Mnemonics Condition
CMP/EQ Rm, Rn fRn=Rm, T=1
CMP/GE Rm, Rn If Rn 2 Rm with signed data, T =1
CMP/GT Rm, Rn If Rn > Rm with signed data, T =1
CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1
CMP/HS Rm, Rn If Rn 2 Rm with unsigned data, T =1
CMP/PL Rn fRn>0T=1
CMP/PZ Rn fRn20, T=1
CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T =1
CMP/EQ #imm, RO IfRO=imm, T =1
Operation:

CMPEQ (long m, long n) /* CMP_EQ Rm,Rn */

{
if (R[n]==R[m]) T=1;
else T=0;
PC+=2;

}

CMPGE (long m,long n) /* CMP_GE Rm,Rn */
{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;
}

CMPGT (long m,long n) /* CMP_GT Rm,Rn */
{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

59

CMPHI (long m, long n) /* CMP_HI Rm,Rn */

{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;
else T=0;
PC+=2;

CMPHS (long m,long n) /* CMP_HS Rm,Rn */

{
if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;
else T=0;
PC+=2;

CMPPL (long n) /* CMP PL Rn */
{

if ((long)R[n]>0) T=1;

else T=0;

PC+=2;

CMPPZ (long n) /* CMP PZ Rn */
{
if ((long)R[n]>=0) T=1;
else T=0;
PC+=2;

60

CMPSTR (long m, long n) /* CMP_STR Rm,Rn */
{

unsigned long temp;

long HH,HL,I1H,LL;

temp=R[n] *"R[m] ;
HH= (temp&0xFF000000) >>12;
HL= (temp&0x00FF0000) >>8;
IH= (temp&0x0000FF00) >>4;
LL=temp&0x000000FF;
HH=HH&&HL&&LH&&LL;
if (HH==0) T=1;
else T=0;
PC+=2;

}

CMPIM (long i) /* CMP_EQ #imm,RO */
{

long imm;

if ((1i&0x80)==0) imm=(0x000000FF & (long 1i));
else imm=(0xXFFFFFFOO0 | (long 1))
if (R[O]==imm) T=1;

else T=0;
PC+=2;
}

Example:
CMP/GE RO, R1 RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET T Does not branch because T = 0
CMP/HS RO, R1 RO = H'7FFFFFFF, R1 = H'80000000
BT TRGET T Branches because T = 1
CMP/STR R2,R3 R2=“ABCD”,R3 =“XYCZ”
BT TRGET T Branches because T = 1

61

6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code State T Bit
DIVOS Rm,Rn MSB of Rn — Q, MSB of Rm — 0010nnnnmmmm0111 1 Calculation
M MQ =T result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOS (long m, long n) /* DIVOS Rm,Rn */
{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=! (M==Q) ;

PC+=2;
}

Example: See DIVI.

62

6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction
Format Abstract Code State T Bit

DIVOU 0 - M/QT 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:
DIVOU () /* DIVOU */
{
M=Q=T=0;
PC+=2;

}

Example: See DIV1.

63

6.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code State T Bit
DIV1 Rm, Rn 1-step division (Rn + Rm) 001 1nnnnmmmm0100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient

bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a

division, first find the quotient using a DIV1 instruction, then find the remainder as follows:
(Dividend) — (divisor)] (quotient) = (remainder)

with the SH7600 series in which a divider is installed as a peripheral function, the remainder can

be found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

64

Operation:

DIV1 (long m, long n) /* DIV1 Rm,Rn */
{
unsigned long tmpO;

unsigned char old g, tmpl;

old g=0Q:

Q= (unsigned char) ((0x80000000 & R[n]) !=0);
R[n]l<<=1;

R[n] |=(unsigned long)T;
switch(old qg) {
case 0O:switch (M) {
case 0:tmpO=R[n];
R[n]-=R[m];
tmpl=(R[n]>tmp0) ;
switch (Q) {
case 0:Q=tmpl;
break;
case 1:Q0=(unsigned char) (tmpl==0);
break;
}
break;
case 1:tmpO=R[n];
R[n]+=R[m];
tmpl=(R[n] <tmpO) ;
switch (Q) {
case 0:Q=(unsigned char) (tmpl==0);
break;
case 1:Q=tmpl;
break;
}
break;
}

break;

65

case l:switch(M) {
case 0:tmpO=R[n];
R[n]+=R[m];
tmpl=(R[n]<tmp0) ;
switch (Q) {
case 0:Q=tmpl;
break;
case 1:0=(unsigned char) (tmpl==0) ;
break;
}
break;
case 1l:tmpO=R[n];
R[n]-=R[m];
tmpl=(R[n]>tmp0) ;
switch (Q) {
case 0:0Q0=(unsigned char) (tmpl==0) ;
break;
case 1:Q=tmpl;
break;
}
break;
}
break;
}
T=(Q==M) ;
PC+=2;

66

Example 1:

R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned

SHLL16 RO Upper 16 bits = divisor, lower 16 bits =0

TST RO, RO Zero division check

BT ZERO DIV

CMP/HS RO, R1 Overflow check

BT OVER DIV

DIVOU Flag initialization

.arepeat 16

DIV1 RO,R1 Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 R1 = Quotient
Example 2:

R1:R2 (64 bits)/R0O (32 bits) = R2 (32 bits): Unsigned

TST RO, RO Zero division check
BT ZERO DIV

CMP/HS RO,R1 Overflow check

BT OVER DIV

DIVOU Flag initialization
.arepeat 32

ROTCL R2 Repeat 32 times
DIVl RO,R1

.aendr

ROTCL R2 R2 = Quotient

67

Example 3:

SHLL16
EXTS.W
XOR
MoV
ROTCL
SUBC
DIVOS
.arepeat
DIVl
.aendr
EXTS.W
ROTCL
ADDC

EXTS.W

Example 4:

MOV
ROTCL
SUBC
XOR
SUBC

DIVOS
.arepeat
ROTCL
DIVl
.aendr
ROTCL
ADDC

RO
R1,R1
R2,R2
R1,R3
R3

R2,R1
RO, R1
16

RO, R1

R1,R1
Rl
R2,R1l

R1,R1

R2,R3

R1,R1
R3,R3
R3,R2

RO, R1

R2
RO,R1

R2
R3,R2

R1 (16 bits)/RO (16 bits) = R1 (16 bits):Signed
Upper 16 bits = divisor, lower 16 bits =0
Sign-extends the dividend to 32 bits

R2=0

Decrements if the dividend is negative
Flag initialization

Repeat 16 times

R1 = quotient (one’ s complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1

R1 = quotient (two’s complement)

R2 (32 bits) / RO (32 bits) = R2 (32 bits): Signed

Sign-extends the dividend to 64 bits (R1:R2)

R3=0

Decrements and takes the one’s complement if the dividend is
negative

Flag initialization

Repeat 32 times

R2 = Quotient (one’s complement)

Increments and takes the two’s complement if the MSB of the
quotient is 1. R2 = Quotient (two’s complement)

68

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic
Instruction (SH7600)

Format Abstract Code State T Bit
DMULS.L Rm,Rn With signed, Rn ¥ Rm — 001 1nnnnmmmm1 101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is a signed arithmetic
operation.

Operation:

DMULS (long m,long n) /* DMULS.L Rm,Rn */

{
unsigned long RnL,RnH, Rml, RmH, Res0,Resl,Res2;
unsigned long tempO, templ, temp2, temp3;
long tempm, tempn, fnlml;

tempn= (long)R[n] ;

tempm= (long)R[m] ;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long) (R[n]”"R[m])<0) fnIml=-1;
else fnImL=0;

templ=(unsigned long) tempn;
temp2=(unsigned long) tempm;

RnlL=templ&0x0000FFFF;
RnH= (templ>>16) &§0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH= (temp2>>16) §0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

69

Res2=0
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Resl<<16) &0xXFFFF0000;
ResO=tempO+templ;
if (ResO<tempO) Res2++;

Res2=Res2+ ((Res1l>>16) &0x0000FFFF) +temp3;

if (fnImi<0) {
Res2=~Res2;
if (Res0==0)
Res2++;
else
ResO=(~Res0)+1;
}

MACH=Res2;

MACL=ResO;

PC+=2;
}

Example:
DMULS RO,R1 Before execution RO = H'FFFFFFFE, R1 =H'00005555
After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH, RO Operation result (top)
STS MACL, RO Operation result (bottom)

70

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic
Instruction (SH7600)

Format Abstract Code State T Bit
DMULU.L Rm,Rn Without signed, Rn XRm — 001 1nnnnmmmm0101 2to4 —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH registers. The operation is an unsigned
arithmetic operation.

Operation:

DMULU (long m,long n) /* DMULU.L Rm,Rn */
{
unsigned long RnL,RnH, Rml, RmH, Res0,Resl,Res2;

unsigned long tempO, templ, temp2, temp3;

RnI=R[n] &0x0000FFFF;
RnH=(R[n]>>16) &0x0000FFFF;

RmL=R[m] &0x0000FFFF';
RmH= (R[m] >>16) &0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0

Resl=templ+temp?2;

if (Resl<templ) Res2+=0x00010000;
templ=(Resl<<16) &§0xXFFFF0000;
ResO=tempO+templ;

if (ResO<tempO) Res2++;

Res2=Res2+ ((Res1l>>16) &0x0000FFFF) +temp3;

71

MACH=Res2;

MACL=ResO;

PC+=2;
}

Example:
DMULU RO,R1 Before execution RO = H'FFFFFFFE, R1 =H'00005555
After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH, RO Operation result (top)
STS MACL, RO Operation result (bottom)

72

6.22 DT (Decrement and Test): Arithmetic Instruction (SH7600)

Format Abstract Code State T Bit
DT Rn Rn-1— Rn; 0100nnnn00010000 1 Comparison
When Rnis 0,1 —T, result

when Rnis nonzero, 0 - T

Description: The contents of general register Rn is decremented by 1 and the result is compared to
0 (zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:
DT (long n) /* DT Rn */
{
R[n]--;
if (R[n]==0) T=1;
else T=0;
PC+=2;
}
Example:
MOV #4,R5 Sets the number of loops.
LOOP:
ADD RO, R1
DT RS Decrements the RS value and checks whether it has become 0.
BF Loop Branches to LOOP if T=0. (In this example, loops 4 times.)

73

6.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code State T Bit
EXTS.B Rm,Rn Sign-extended Rm from byte — 0110nnnnmmmm1 110 1 —
EXTS.W Rm,Rn Rn 0110nnnnmmmm1 111 1 —
Sign-extended Rm from word —
Rn

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn. If word length is specified, the
bit 15 value of Rm is transferred to bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */
{
R[n]=R[m];
if ((R[m] &0x00000080)==0) R[n]&=0x000000FF;
else R[n] |=0xFFFFFF00;
PC+=2;
}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{
R[n]=R[m];
if ((R[m] &0x00008000)==0) R[n]&=0x0000FFFF;
else R[n] |=0xFFFF0000;

PC+=2;
}
Examples:
EXTS.B RO,R1 Before execution RO =H'00000080
After execution R1 = HFFFFFF80
EXTS.W RO,R1 Before execution RO =H'00008000
After execution R1 = HFFFF8000

74

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code State T Bit
EXTU.B Rm, Rn Zero-extend Rm from byte - Rn 0110nnnnmmmm1100 1 —
EXTU.W Rm, Rn Zero-extend Rm fromword — Rn 0110nnnnmmmm1101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0 is transferred to bits 8 to 31 of Rn. If word length is specified, 0 is transferred to bits
16 to 31 of Rn.

Operation:

EXTUB (long m, long n)
{

/* EXTU.B Rm,Rn */

R[n]=R[m];
R[n] &=0x000000FF;
PC+=2;

}

EXTUW (long m, long n)
{

/* EXTU.W Rm,Rn */

R[n]=R[m];
R[n] &=0x0000FFFF;
PC+=2;

}

Examples:

EXIU.B RO,R1l

EXIUW RO,R1

Before execution
After execution
Before execution

After execution

RO = H'FFFFFF80
R1 =H'00000080
RO = HFFFF8000
R1=H'00008000

75

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JMP @Rn Rn— PC 0100nnnn00101011 2 —

Description: Delayed-branches unconditionally to the address specified with register indirect. The
branch destination is an address specified by the 32-bit data in general register Rn.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts or address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JMP (long n) /* JMP QRn */
{
unsigned long temp;

temp=PC;

PC=R[n]+4;

Delay Slot(temp+2);
}

Example:
MOV.L JMP TABLE,RO Address of RO = TRGET
JMP @RO Branches to TRGET
MOV RO, R1 Executes MOV before branching
.align 4
JMP TABLE: .data.l TRGET Jump table
TRGET: ADD #1,R1 « Branch destination

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will still
be made using the value of the register prior to the change as the branch destination address.

76

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

JSR @Rn PC - PR,Rn — PC 0100nnnn00001011 2 —

Description: Delayed-branches to the subroutine procedure at a specified address after executing
the instruction following this JSR instruction. The PC value is stored in the PR. The jump
destination is an address specified by the 32-bit data in general register Rn. The PC points to the
starting address of the second instruction after JSR. The JSR instruction and RTS instruction are
used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

JSR(long n) /* JSR @Rn */
{

PR=PC;

PC=R[n]+4;

Delay Slot (PR+2) ;

77

Example:

MOV.L JSR TABLE, RO RO = Address of TRGET

JSR QRO Branches to TRGET
XOR R1,R1 Executes XOR before branching
ADD RO, R1 « Return address for when the
subroutine procedure is completed
(PR data)
align 4
JSR TABLE: .data.l TRGET Jump table
TRGET: NOP «— Procedure entrance
MOV R2,R3
RTS Returns to the above ADD instruction
MOV #70,R1 Executes MOV before RTS

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

78

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
LDC Rm, SR Rm— SR 0100mmmm00001110 1 LSB
LDC Rm, GBR Rm— GBR 0100mmmm00011110 1 —_
DC Rm, VBR Rm— VBR 0100mmmm00101110 1 —
LDC.L QRmt, SR (Rm)— SR, Rm+4 —Rm 0100mmmm00000111 3 LSB
IDC.L @Rm+,GBR (Rm)— GBR,Rm+4 —Rm 0100mmmm00010111 3 —
IDC.L @Rm+,VBR (Rm)— VBR, Rm+4 —Rm 0100mmmm00100111 3 —

Description: Stores the source operand into control registers SR, GBR, or VBR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

LDCSR (long m) /* LDC Rm, SR */
{

SR=R[m] §0x000003F3;

PC+=2;

}

LDCGBR (long m) /* LDC Rm,GBR */

{
GBR=R [m] ;
PC+=2;

}
LDCVBR (long m) /* LDC Rm,VBR */
{

VBR=R [m] ;

PC+=2;

79

ILDCMSR (long m)
{

SR=Read Long (R[m]) &0x000003F3;

R[m]+=4;
PC+=2;
}

LDCMGBR (long m)
{

GBR=Read Long(R[m]) ;

R[m]+=4;
PC+=2;
}

LDCMVBR (long m)
{

VBR=Read Long(R[m]) ;

R[m]+=4;
PC+=2;

}

Examples:

1DC RO, SR

ILDC.L (@R15+,GBR

Before execution

After execution

Before execution

After execution

/* LDC.L @Rmt+,SR */

/* 1LDC.L @Rm+,GBR */

/* 1LDC.L QRm+,VBR */

RO = H'FFFFFFFF, SR = H'00000000
SR =H'000003F3

R15 =H'10000000
R15 =H'10000004, GBR = @H'10000000

80

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
DS Rm, MACH Rm — MACH 0100mmmm00001010 1 —
DS Rm, MACL Rm — MACL 0100mmmm00011010 1 —_
DS Rm, PR Rm — PR 0100mmmm00101010 1 —
1DS.L @Rm+,MACH (Rm)— MACH, Rm+4 —-Rm 0100mmmm00000110 1 —
I1DS.L @Rm+,MACL (Rm)— MACL, Rm+4 —Rm 0100mmmm00010110 1 —
I1DS.L QRmt,PR (Rm)— PR, Rm+4 —Rm 0100mmmm00100110 1 —

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

For the SH7000, the lower 10 bits are stored in MACH. For the SH7600, 32 bits are stored in
MACH.

Operation:

LDSMACH (long m) /* 1LDS Rm,MACH */

{

MACH=R [m] ;

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH7000 (these 2 lines
else MACH|=0xFFFFFCO00; not needed for SH7600)

PC+=2;
}
LDSMACL (long m) /* LDS Rm,MACL */
{

MACL=R[m] ;

PC+=2;
}
LDSPR (long m) /* LDS Rm, PR */
{

PR=R[m] ;

PC+=2;

81

LDSMMACH (long m) /* LDS.L QRm+,MACH */
{
MACH=Read Long(R[m]) ;

if ((MACH&0x00000200)==0) MACH&=0x000003FF; For SH7000 (these 2 lines
else MACH|=0xFFFFFCO00; not needed for SH7600)
R[m]+=4;
PC+=2;

}

LDSMMACL (long m) /* LDS.L @Rmt+,MACL */

{
MACI=Read Long(R[m]) ;
R[m]+=4;
PC+=2;
}
LDSMPR (long m) /* LDS.L @Rm+,PR */

{
PR=Read Long (R[m]);

R[m]+=4;
PC+=2;
}
Examples:
LDS RO, PR Before execution RO = H'12345678, PR = H'00000000
After execution PR =H'12345678
IDS.L QR15+,MACL Before execution R15 =H'10000000

After execution R15=H'10000004, MACL = @H'10000000

82

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
(SH7600)

Format Abstract Code State T Bit

MAC.L @Rmt,@Rnt+ Signed operation, (Rn) * (Rm)+ 0000nnnnmmmm1111 3/(2to —
MAC — MAC 4)

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by
four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation at the 48th
bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL
registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL (long m, long n) /* MAC.L @Rmt+,@Rn+*/

{
unsigned long RnL, RnH, RmL, RmH, ResO,Resl,Res2;
unsigned long tempO, templ, temp2, temp3;
long tempm, tempn, fnlml;

tempn=(long)Read Long(R[n]) ;
R[n]+=4;
tempm= (long) Read Long (R[m]) ;
R[m]+=4;

if ((long) (tempn”tempm)<0) fnlml=-1;
else fnImL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

templ=(unsigned long) tempn;
temp2=(unsigned long) tempm;

83

RnlL=templ&0x0000FFFF;
RnH= (templ>>16) &0x0000FFFF;
RolL=temp2 &0x0000FFFF;
RoH= (temp2>>16) &0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmIL.*RnH;
temp3=RmH*RnH;

Res2=0;
Resl=templ+temp?2;
if (Resl<templ) Res2+=0x00010000;

templ=(Resl<<16) &0xXFFFF0000;
ResO=tempO+templ;
if (ResO<tempO) Res2++;

Res2=Res2+ ((Res1l>>16) &0x0000FFFF) +temp3;

if (fnLm<0) {
Res2=~Res2;
if (Res0==0) Res2++;
else ResO=(~Res0)+1;

}

if (S==1) {
ResO0=MACIL+ResO;
if (MACL>Res0) Res2++;
Res2+=(MACH&0x0000FFFF) ;

1f (((long)Res2<0) && (Res2<0xFFFF8000)) {
Res2=0x00008000;
Res0=0x00000000;

}

1if (((long)Res2>0) && (Res2>0x00007FFF)) {
Res2=0x00007FFF;
ResO=0xFFFFFFFF;

i

84

MACH=Res2;
MACL~=ResO;
}
else {
ResO0=MACIL+ResO;
if (MACL>Res0) Res2++;

Res2+=MACH
MACH=Res2;
MACIL=ResO;

}

PC+=2;

}
Example:
MOVA TBLM, RO Table address
MOV RO,R1
MOVA TBLN, RO Table address
CLRMAC MAC register initialization
MAC.L @RO+, @R1+
MAC.L @RO+, GR1+
STS MACL, RO Store result into RO
align 2

TBIM .data.l H'1234ABCD
.data.l H'5678EF01
TBLN .data.l H'0123ABCD
.data.l H'4567DEFO

85

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH7000)

Format Abstract Code State T Bit
MAC.W @Rmt+, @Rn+ With signed, (Rn) x (Rm)+ MAC 0100nnnnmmmm1111 3/(2) —
— MAC

Description (SH7000): Multiplies 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final
result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by
two.

When the S bit is cleared to 0, the 42-bit result is stored in the coupled MACH and MACL
registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1, addition to the MAC register is a saturation operation. For the saturation
operation, only the MACL register is enabled and the result is limited to a range of H'80000000
(minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3; however, this instruction can be executed
in two cycles according to the succeeding instruction.

86

6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction
(SH7600)

Format Abstract Code State T Bit

MAC.W @Rmt+,@Rn+ Signed operation, (Rn) * (Rm)+ 0100nnnnmmmml111 3/(2) —
MAC @Rm+, GRn+ MAC — MAC

Description (SH7600): Signed-multiplicates 16-bit operands obtained using the contents of
general registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC
register, and the final result is stored in the MAC register. Everytime an operand is read, they
increment Rm and Rn by two.

When the S bit is cleared to 0, the operation is 16 * 16 + 64 — 64-bit multiply and accumulate and
the 64-bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the operationis 16 * 16 + 32 — 32-bit multiply and accumulate and
addition to the MAC register is a saturation operation. For the saturation operation, only the
MACL register is enabled and the result is limited to a range of H'80000000 (minimum) to
H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1. The result is stored in the MACL
register, and the result is limited to a value between H'80000000 (minimum) for overflows in the
negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: When the S bit is 0, the SH7600 series performs a 16 * 16 + 64 — 64 bit multiply and
accumulate operation and the SH7000 series performs a 16 % 16 + 42 — 42 bit multiply and
accumulate operation.

Operation:

MACW (long m, long n) /* MAC.W @Rm+, @Rn+*/
{
long tempm, tempn, dest, src, ans;
unsigned long templ;
tempn=(long) Read Word(R[n]) ;
R[n]+=2;
tempm= (long) Read Word (R[m]) ;
Rm]+=2;
templ=MACL;

tempm=((long) (short) tempn* (long) (short) tempm) ;

87

if ((long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0 ({
src=0;
tempn=0;
}
else {
src=1;
tempn=0xFFFFFFFF;
}
srct=dest;
MACL+=tempm;
if ((long)MACL>=0) ans=0;
else ans=1;
anst=dest;
if (s==1) {
if (ans==1) {

if (src==0 || src==2)

MACH|=0x00000001;

if (src==0) MACL=0xX7FFFFFFF;
if (src==2) MACL=0x80000000;

}
else {
MACH+=tempn;
if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0)
MACH&=0x000003FF;
else MACH|=0xFFFFFCO0O;

}
PC+=2;

88

For SH7000 (these 2 lines
not needed for SH7600)

For SH7000 (these 3 lines
not needed for SH7600)

Example:

TBIM

TBLN

TBIM, RO
RO,R1
TBLN, RO

QRO+, @RI+
QRO+, @RI+
MACL, RO

Table address
Table address

MAC register initialization

Store result into RO

89

6.32 MOV (Move Data): Data Transfer Instruction

Format Abstract Code State T Bit
MOV Rm, Rn Rm — Rn 011 O0nnnnmmmmO011 1 —
MOV.B Rm, @Rn Rm — (Rn) 0010nnnnmmmmO000 1 —
MOV.W Rm, @Rn Rm — (Rn) 0010nnnnmmmm0001 1 —
MOV.L Rm, @Rn Rm — (Rn) 0010nnnnmmmm0010 1 —
MOV.B @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmmm0000 1 —
MOV.W @Rm,Rn (Rm) — sign extension — Rn 0110nnnnmmmm0001 1 —
MOV.L @Rm,Rn (Rm)— Rn 0110nnnnmmmm0010 1 —
MOV.B Rm, @-Rn Rn—-1— Rn, Rm — (Rn) 0010nnnnmmmm0100 1 —
MOV.W Rm, @-Rn Rn -2 — Rn, Rm — (Rn) 0010nnnnmmmm0101 1 —
MOV.L Rm,@-Rn Rn—-4 — Rn, Rm — (Rn) 0010nnnnmmmm0110 1 —
MOV.B @Rm+t,Rn (Rm) — sign extension — Rn, Rm 0110nnnnmmmm0100 1 —
+1—Rm
MOV.W @Rm+,Rn (Rm) — sign extension — Rn, Rm 0110nnnnmmmm0101 1 —
+2— Rm
MOV.L @Rm+t,Rn (Rm)— Rn,Rm+4 — Rm 0110nnnnmmmm0110 1 —
MOV.B Rm, @ (RO, Rn) Rm — (R0 + Rn) 0000nnnmmmm0100 1 —
MOV.W Rm, @ (RO, Rn) Rm — (R0 + Rn) 0000nnnnmmmm0101 1 -
MOV.L Rm, @ (RO,Rn) Rm — (RO + Rn) 0000nnnnmmmm0110 1 —
MOV.B Q(RO,Rm),Rn (RO + Rm)— sign extension — 0000nnnnmmmm1100 1 —
MOV.W @(RO,Rm),Rn RN 0000nnnnmmram1 101 1 —
MOV.T, @(RO,Rm),Rn (RO +Rm)— signextension — (0400 mnmmmi110 1 -

Rn
(RO+Rm)— Rn

Description: Transfers the source operand to the destination. When the operand is stored in

memory, the transferred data can be a byte, word, or longword. When the source operand is in
memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

MOV (long m, long n)

/* MOV Rm,Rn */

90

MOVBS (long m, long n) /* MOV.B Rm, @Rn */
{
Write Byte(R[n],R[m]);
PC+=2;
}
MOVWS (long m,long n) /* MOV.W Rm, @Rn */
{
Write Word(R[n],R[m]);
PC+=2;
}
MOVLS (long m, long n) /* MOV.L Rm, @Rn */
{
Write Long(R[n],R[m]);
PC+=2;
}
MOVBL (long m, long n) /* MOV.B @Rm,Rn */
{
R[n]=(long)Read Byte(R[m])
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n] |=0xFFFFFFO00;
PC+=2;
}
MOVWL (long m, long n) /* MOV.W @Rm,Rn */
{
R[n]=(long)Read Word(R[m]) ;
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n] |=0xFFFF0000;
PC+=2;
}
MOVLL (long m, long n) /* MOV.L @Rm,Rn */

{
R[n]=Read Long(R[m]);
PC+=2;

91

MOVEM (long m, long n) /* MOV.B Rm, @-Rn */
{

Write Byte(R[n]-1,R[m]);

R[n]—=1;

PC+=2;

MOVWM (long m, long n) /* MOV.W Rm, @-Rn */
{

Write Word(R[n]-2,R[m]);

R[n]—=2;

PC+=2;

MOVIM (long m, long n) /* MOV.L Rm,@-Rn */
{

Write Long(R[n]-4,R[m]);

R[n]—=4;

PC+=2;
}

MOVBP (long m, long n) /* MOV.B @Rm+,Rn */
{
R[n]=(long)Read Byte(R[m]) ;
if ((R[n]&0x80)==0) R[n]&0x000000FF;
else R[n] |=0xFFFFFF00;
if (n'=m) R[m]+=1;

PC+=2;

MOVWP (long m, long n) /* MOV.W @Rmt+,Rn */
{
R[n]=(long)Read Word(R[m]) ;
if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
else R[n] |=0xFFFF0000;
if (n'=m) R[m]+=2;

PC+=2;

92

MOVLP (long m, long n) /* MOV.L @Rmt,Rn */
{

R[n]=Read Long(R[m]) ;

if (n!=m) R[m]+=4;

PC+=2;

MOVBSO (long m, long n) /* MOV.B Rm,@(RO,Rn) */
{

Write Byte(R[n]+R[0],R[m]);

PC+=2;

MOVWSO (long m, long n) /* MOV.W Rm,@(RO,Rn) */
{

Write Word (R[n]+R[0],R[m]);

PC+=2;
}

MOVLSO (long m, long n) /* MOV.L Rm,@(RO,Rn) */
{

Write Long (R[n]+R[0],R[m]);

PC+=2;
}

MOVBLO (long m, long n) /* MOV.B @(RO,Rm),Rn */
{

R[n]=(long)Read Byte (R[m]+R[0]) ;

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n] |=0xFFFFFFO00;

PC+=2;

MOVWLO (long m, long n) /* MOV.W Q@(RO,Rm),Rn */
{

R[n]=(long)Read Word (R[m]+R[0]) ;

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n] |=0xFFFF0000;

PC+=2;

93

MOVLLO (long m, long n)
{
R[n]=Read Long(R[m]+R[0]);

PC+=2;
}
Example:

MoV RO,R1 Before execution
After execution

MOV.W RO, QR1 Before execution
After execution

MOV.B @RO,R1 Before execution
After execution

MOV.W RO,@-R1 Before execution
After execution

MOV.L @RO+,R1 Before execution
After execution

MOV.B R1,Q(RO,R2) Before execution
After execution

MOV.W @Q(RO,R2),R1 Before execution

After execution

/* MOV.L Q(RO,Rm),Rn */

RO = HFFFFFFFF, R1 = H'00000000
R1 = HFFFFFFFF

RO = HFFFF7F80
@R1 =H'7F80

@RO =H'80, R1 =H'00000000
R1 = H'FFFFFF80

RO =H'AAAAAAAA, R1 =HFFFF7F80
R1=HFFFF7F7E, @R1 =H'AAAA

RO =H'12345670
RO =H'12345674, R1 = @H'12345670

R2 =H'00000004, RO = H'10000000
R1 = @H'10000004

R2 =H'00000004, RO = H'10000000
R1 = @H'10000004

94

6.33 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code State T Bit

MoV #imm, Rn imm — sign extension — Rn 1110nnnniiiiiiii 1 —

MOV.W Q@(disp,PC),Rn (disp X2+ PC) — sign 1001nnnndddddddd 1 —
extension — Rn

MOV.L. Q(disp,PC),Rn (disp X4+ PC) = Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:
MOVI (long i,long n) /* MOV #imm,Rn */
{
if ((1&0x80)==0) R[n]=(0x000000FF & (long)i);
else R[n]=(0xXxFFFFFFOO | (long)i):;
PC+=2;
}
MOVWI (long d,long n) /* MOV.W @(disp,PC),Rn */
{
long disp;

95

disp=(0x000000FF & (long)d);
R[n]=(long)Read Word (PC+ (disp<<1));
if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n] |=0xFFFF0000;
PC+=2;

}

MOVLI (long d,long n) /* MOV.L @(disp,PC),Rn */
{
long disp;

disp=(0x000000FF & (long)d);
R[n]=Read Long ((PC&O0XFFFFFFFC)+ (disp<<2))

PC+=2;
}
Example:

Address

1000 MOV #H'80,R1 R1 =H'FFFFFF80

1002 MOV.W IMM, R2 R2 = H'FFFF9ABC, IMM means @(H'08.PC)

1004 ADD #-1,R0

1006 TST RO, RO «— PC location used for address calculation for the
MOV.W instruction

1008 MOVT R13

100A BRA NEXT Delayed branch instruction

100C MOV. L @(4,PC),R3 R3 =H'12345678

100E IMM .data.w H'9ABC

1010 .data.w H'1234

1012 NEXT JMP @R3 Branch destination of the BRA instruction

1014 CMP/EQ #0,RO «— PC location used for address calculation for the
MOV.L instruction

.align 4
1018 .data.l H'12345678

96

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV.B Q(disp,GBR),RO (disp + GBR) — sign 11000100dddddddd 1 —
extension — RO

MOV.W (@(disp,GBR),RO (disp x 2 + GBR) — 11000101dddddddd 1 —_

sigh extension — RO
MOV.L @(disp,GBR),RO (disp * 4+ GBR) - R0 11000110dddddddd
MOV.B RO, @(disp,GBR) RO — (disp + GBR) 11000000dddddddd
MOV.W RO, @ (disp,GBR) RO — (disp *x 2+ GBR) 11000001dddddddd
MOV.L RO, @(disp,GBR) RO — (disp * 4 + GBR) 11000010dddddddd

- A A

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but the
register is fixed to RO.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the 8-bit displacement is zero-extended. Consequently, an address within +255 bytes can be
specified. When the peripheral module data is a word, the 8-bit displacement is zero-extended and
doubled. Consequently, an address within +510 bytes can be specified. When the peripheral
module data is a longword, the 8-bit displacement is zero-extended and is quadrupled.
Consequently, an address within +1020 bytes can be specified. If the displacement is too short to
reach the memory operand, the above @(R0,Rn) mode must be used after the GBR data is
transferred to a general register. When the source operand is in memory, the loaded data is stored
in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0O. RO cannot be accessed by the next
instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1
will give better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 6.1 Using RO after MOV

97

Operation:

MOVBLG (long d) /* MOV.B @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read Byte (GBR+disp) ;
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0] |=0xFFFFFFO00;
PC+=2;

}

MOVWLG (long d) /* MOV.W @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(long)Read Word (GBR+ (disp<<1l))

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0] |=0xFFFF0000;

PC+=2;

MOVLLG (long d) /* MOV.L @(disp,GBR),R0 */

{
long disp;

disp=(0x000000FF & (long)d);
R[0]=Read Long (GBR+ (disp<<2));
PC+=2;

MOVBSG (long d) /* MOV.B RO, @(disp,GBR) */

{
long disp;

98

disp=(0x000000FF & (long)d);
Write Byte (GBR+disp,R[0]);
PC+=2;

}

MOVWSG (long d) /* MOV.W RO, @(disp,GBR) */

{
long disp;

disp=(0x000000FF & (long)d);
Write Word (GBR+ (disp<<1),R[0]);
PC+=2;

}

MOVLSG (long d) /* MOV.L RO, @(disp,GBR) */

{
long disp;

disp=(0x000000FF & (long)d);
Write Long (GBR+ (disp<<2),R[0]);

PC+=2;
}
Examples:
MOV.L @(2,GBR),RO Before execution @(GBR + 8) =H'12345670
After execution RO = @H'12345670
MOV.B RO,@(1,GBR) Before execution RO = H'FFFF7F80

After execution @(GBR + 1) = HFFFF7F80

99

6.35 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code State T Bit

MOV.B RO,Q@(disp,Rn) RO — (disp + Rn) 10000000nnnndddd 1 —

MOV.W RO,Q(disp,Rn) RO — (disp * 2+ Rn) 10000001nnnndddd 1 —

MOV.L Rm,Q(disp,Rn) Rm — (disp * 4 + Rn) 000 Innnnmmmmdddd 1 —

MOV.B @(disp,Rm),R0 (disp + Rm)— sign 1000010 0mmmmdddd 1 —
extension — RO

MOV.W @(disp,Rm),R0O (disp ¥ 2+ Rm) — sign 1000010 1mmmmdddd 1 —
extension — RO

MOV.L @(disp,Rm),Rn (disp ¥4+ Rm)— Rn 010 1nnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register is fixed. When the data is a byte, the 4-bit displacement is
zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word,
the 4-bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes
can be specified. When the data is a longword, the 4 -bit displacement is zero-extended and
quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too
short to reach the memory operand, the aforementioned @(R0.Rn) mode must be used. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to a
longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be
accessed by the next instruction until the load instruction is finished. Changing the instruction
order in figure 6.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 6.2 Using RO after MOV

100

Operation:

MOVBS4 (long d, long n) /* MOV.B RO, @(disp,Rn) */
{
long disp;

disp=(0x0000000F & (long)d);
Write Byte(R[n]+disp,R[0]);
PC+=2;

}

MOVWS4 (long d, long n) /* MOV.W RO, @(disp,Rn) */
{
long disp;

disp=(0x0000000F & (long)d);
Write Word (R[n]+ (disp<<1),R[0]);
PC+=2;

}

MOVLS4 (long m,long d,long n)
/* MOV.L Rm, @ (disp,Rn) */

long disp;

disp=(0x0000000F & (long)d);
Write Long (R[n]+ (disp<<2),R[m]);
PC+=2;

MOVBL4 (long m, long d) /* MOV.B @(disp,Rm),R0O */
{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read Byte (R[m]+disp)

if ((R[0]&0x80)==0) R[0] &=0x000000FF;
else R[0] |=0xFFFFFFO00;
PC+=2;

101

MOVWLA4 (long m,long d)
{
long disp;

disp=(0x0000000F &

/* MOV.W Q(disp,Rm),RO */

(long)d) ;

R[0]=Read Word(R[m]+ (disp<<1));
if ((R[0]&0x8000)==0) R[0] &=0x0000FFFF;
else R[0] |=0xFFFF0000;

PC+=2;
}

MOVLL4 (long m,long d,long n)

/* MOV.L @Q(disp,Rm),Rn */

long disp;

disp=(0x0000000F &

(long)d) ;

R[n]=Read Long(R[m]+ (disp<<2));

PC+=2;
}

Examples:

MOV.L @(2,R0),R1

MOV.L RO,Q(H'F,R1)

Before execution @(RO + 8) =H'12345670
After execution R1 = @H'12345670

Before execution RO = H'FFFF7F80
After execution @(R1 + 60) = HFFFF7F80

102

6.36 MOVA (Move Effective Address): Data Transfer Instruction
Format Abstract Code State T Bit

MOVA @(disp,PC),RO disp x4 +PC — RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0O. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOVA instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA (long d) /* MOVA @(disp,PC),R0O */
{
long disp;

disp=(0x000000FF & (long)d);
R[0]=(PC&OXFFFFFFFC)+ (disp<<2) ;

PC+=2;
}
Example:

Address .org H'1006

1006 MOVA STR, RO Address of STR — RO

1008 MOV.B @RO,R1 R1=%“X" « PC location after correcting the lowest
two bits

100A RDD R4,R5 « Original PC location for address calculation for the
MOVA instruction

.align 4

100c STR: .sdata “XYzZpP12”

2002 BRA TRGET Delayed branch instruction

2004 MOVA @(0,pPC),RO Address of TRGET +2 £ RO

2006 NOP

103

6.37 MOVT (Move T Bit): Data Transfer Instruction
Format Abstract Code State T Bit

MOVT Rn T—Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

Operation:

MOVT (long n) /* MOVT Rn */
{
R[n]=(0x00000001 & SR);

PC+=2;
}
Example:

XOR R2,R2 R2=0
CMP/PZ R2 T=1
MOVT RO RO=1
CLRT T=0
MOVT R1 R1=0

104

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH7600)
Format Abstract Code State T Bit

MUL.L Rm,Rn Rn*x Rm — MACL 0000nnnNmMMMmO0111 2to4 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL (long m, long n) /* MUL.L Rm,Rn */
{
MACL=R[n] *R[m] ;

PC+=2;
}
Example:
MULL RO,R1 Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = H'FFFF5556
STS MACL,RO Operation result

105

6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code State T Bit
MULS.W Rm,Rn Signed operation, Rn * Rm — 0010nnnnmmmm1111 1to3 —
MULS Rm, Rn MACL

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS (long m, long n) /* MULS Rm,Rn */

{
MACL=((long) (short)R[n]* (long) (short)R[m]) ;
PC+=2;

}

Example:

MULS RO,RL Before execution RO = H'FFFFFFFE, R1 = H'00005555
After execution MACL = HFFFF5556

STS MACL,RO Operation result

106

6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code State T Bit
MULU.W Rm,Rn Unsigned, Rn x Rm — MAC 0010nnnnmmmm1110 1t03 —
MULU Rm, Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU (long m,long n) /* MULU Rm,Rn */
{
MACL=((unsigned long) (unsigned short)R[n]
* (unsigned long) (unsigned short)R[m]);
PC+=2;
}

Example:

MULU RO,R1 Before execution RO =H'00000002, R1 = HFFFFAAAA
After execution MACL =H'00015554

STS MACL,RO Operation result

107

6.41 NEG (Negate): Arithmetic Instruction
Format Abstract Code State T Bit

NEG Rm, Rn 0—-Rm —Rn 0110nnnnmmmm1 011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG (long m, long n) /* NEG Rm,Rn */
{

R[n]=0-R[m];

PC+=2;

}

Example:

NEG RO,R1 Before execution RO =H'00000001
After execution R1 = HFFFFFFFF

108

6.42 NEGC (Negate with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

NEGC Rm, Rn 0—-Rm-T— Rn, Borrow - T 0110nnnnmmmml010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC (long m, long n) /* NEGC Rm,Rn */
{
unsigned long temp;

temp=0-R[m] ;
R[n]=temp-T;
if (O<temp) T=1;
else T=0;
if (temp<R[n]) T=1;
PC+=2;

}

Examples:

CLRT Sign inversion of R1 and RO (64 bits)

NEGC R1,R1 Before execution R1=H'00000001, T=0
After execution R1=H'FFFFFFFF, T=1

NEGC RO,RO Before execution RO =H'00000000, T =1
After execution RO = H'FFFFFFFF, T=1

109

6.43 NOP (No Operation): System Control Instruction
Format Abstract Code State T Bit

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /* NOP */

{
PC+=2;

}
Example:

NOP Executes in one cycle

110

6.44 NOT (NOT—Logical Complement): Logic Operation Instruction
Format Abstract Code State T Bit

NOT Rm, Rn ~Rm — Rn 0110 O:L151. 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT (long m, long n) /* NOT Rm,Rn */
{

R[n]=~R[m];

PC+=2;

}
Example:

NOT RO,R1 Before execution RO=H'AAAAAAAA
After execution R1 =H'55555555

111

6.45 OR (OR Logical) Logic Operation Instruction

Format Abstract Code State T Bit

OR Rm, Rn Rn|Rm — Rn 001 0nnnnmmmml1 011 1 —

OR #imm, RO RO | imm — RO 1100101144iiiidii 1 o

OR.B #imm,Q@(RO,GBR) (RO + GBR)|imm — (RO + 110011114i4idiiiid 3 —
GBR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */
{

R[n]|=R[m];

PC+=2;
}

ORI (long i) /* OR #imm,RO */

{
R[0] |=(0x000000FF & (long)i):
PC+=2;

}

ORM (long i) /* OR.B #imm, @ (RO,GBR) */
{
long temp;

temp= (long)Read Byte (GBR+R[0]) ;
temp | =(0x000000FF & (long)i):;
Write Byte (GBR+R[0], temp) ;
PC+=2;

112

Examples:

CR RO,R1

OR #H'FO, RO

OR.B #H'50,@(RO,GBR)

Before execution

After execution

Before execution

After execution

Before execution

After execution

113

RO =H'AAAAS5555, R1 =H'55550000
R1=H'FFFF5555

RO = H'00000008
RO = H'000000F8
@(R0,GBR) = H'A5
@®RO.GBR) = HF5

6.46 ROTCL (Rotate with Carry Left): Shift Instruction
Format Abstract Code State T Bit

ROTCL Rn T—RneT 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

MSB LSB

ROTCL H h

Figure 6.3 Rotate with Carry Left
Operation:

ROICL(long n) /* ROTCL Rn */
{

long temp;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;

R[n]l<<=1;

if (T==1) R[n]|=0x00000001;

else R[n] &=0xFFFFFFFE;
if (temp==1) T=1;
else T=0;
PC+=2;

}

Example:

ROTCL RO Before execution RO =H'80000000, T=0
After execution RO =H'00000000, T =1

114

6.47 ROTCR (Rotate with Carry Right): Shift Instruction
Format Abstract Code State T Bit

ROTCR Rn T->Rn—>T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

MSB LSB

ROTCR |—> _’

Figure 6.4 Rotate with Carry Right
Operation:

ROTCR(long n) /* ROTCR Rn */

{
long temp;

if ((R[n]&0x00000001)==0) temp=0;
else temp=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n] &=0x7FFFFFFF;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Examples:

ROTCR RO Before execution RO =H'00000001, T=1
After execution RO =H'80000000, T =1

115

6.48 ROTL (Rotate Left): Shift Instruction

Format Abstract Code State T Bit
ROTL Rn T <~ Rn < MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL

Figure 6.5 Rotate Left

Operation:

ROTL (long n) /* ROTL Rn */
{

if ((R[n]&0x80000000)==0) T=0;
else T=1;

R[n]l<<=1;

if (T==1) R[n]|=0x00000001;

else R[n] &=0xFFFFFFFE;
PC+=2;
}

Examples:

ROTL RO Before execution RO =H'80000000, T=0
After execution RO =H'00000001, T=1

116

6.49 ROTR (Rotate Right): Shift Instruction
Format Abstract Code State T Bit

ROTR Rn LSB - Rn —-T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

o 1

Figure 6.6 Rotate Right

Operation:

ROTR (long n) /* ROTR Rn */
{

if ((R[n]&0x00000001)==0) T=0;
else T=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n] &=0x7FFFFFFF;
PC+=2;
}

Examples:

ROTR RO Before execution RO =H'00000001, T=0
After execution RO =H'80000000, T =1

117

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTE Stack area — PC/SR 0000000000101011 4 LSB

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack,
and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTE() /* RTE */
{
unsigned long temp;

temp=PC;
PC=Read Long(R[15])+4;
R[15]+=4;
SR=Read Long(R[15]) &0x000003F3;
R[15]+=4;
Delay Slot(temp+2);

}

Example:
RTE Returns to the original routine
ADD #8,R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

118

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code State T Bit

RTS PR — PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No address errors and interrupts are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

RTS() /* RTS */

{
unsigned long temp;

temp=PC;

PC=PR+4;

Delay Slot (temp+2);
}

Example:
MOV. T TABLE, R3 R3 = Address of TRGET
JSR @R3 Branches to TRGET
NOP Executes NOP before JSR
ADD RO, R1 «— Return address for when the subroutine procedure is
completed (PR data)

TABLE: .data.l TRGET Jump table

TRGET: MOV R1,RO « Procedure entrance
RTS PR data — PC
MOV #12,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction.
However, instructions such as register changes etc. are executed in the order of delayed branch
instruction, then delay slot instruction. For example, even if the register in which the branch
destination address has been loaded is changed by the delay slot instruction, the branch will
still be made using the value of the register prior to the change as the branch destination
address.

119

6.52 SETT (Set T Bit): System Control Instruction
Format Abstract Code

State

T Bit

SETT 1 -T 0000000000011000

1

1

Description: Sets the T bit to 1.
Operation:

SETT() /* SETT */
{

T=1;

PC+=2;
}

Example:

SETT Before execution T=0
After execution T=1

120

6.53 SHAL (Shift Arithmetic Left): Shift Instruction
Format Abstract Code State T Bit

SHAL Rn T—Rn«20 0100nnNnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.7).

MSB LSB

SHAL «—0

Figure 6.7 Shift Arithmetic Left
Operation:

SHAL (long n) /* SHAL Rn (Same as SHLL) */
{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]l<<=1;

PC+=2;
}

Example:

SHAL RO Before execution RO = H'80000001, T=0
After execution R0 =H'00000002, T=1

121

6.54 SHAR (Shift Arithmetic Right): Shift Instruction
Format Abstract Code State T Bit

SHAR Rn MSB —- Rn—T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.8).

MSB LSB

SHAR

Figure 6.8 Shift Arithmetic Right
Operation:

SHAR (long n) /* SHAR Rn */
{
long temp;

if ((R[n]&0x00000001)==0) T=0;
else T=1;
if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]>>=1;
if (temp==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Example:

SHAR RO Before execution RO =H'80000001, T=0
After execution RO =H'C0000000, T=1

122

6.55 SHLL (Shift Logical Left): Shift Instruction
Format Abstract Code State T Bit

SHLL Rn T—Rn«20 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

MSB LSB

SHLL 0

Figure 6.9 Shift Logical Left

Operation:

SHLL (long n) /* SHLL Rn (Same as SHAL) */
{
if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
PC+=2;
}

Examples:

SHLL RO Before execution RO =H'80000001, T=0
After execution RO =H'00000002, T =1

123

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code State T Bit
SHLI2 Rn Rn<<2 —Rn 0100nnnn00001000 1 —
SHLIS8 Rn Rn<<8 —Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 —Rn 0100nnnn00101000 1 —_

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

MSB LSB
SHLL2 |
¥
o
MSB LSB
sHiLs | |
| <o
MSB LSB
SHLL16 | |

Figure 6.10 Shift Logical Left n Bits
Operation:

SHLL2 (long n) /* SHLL2 Rn */

R[n]<<=2;
PC+=2;

124

SHLIS8 (long n)
{
R[n]<<=8;
PC+=2;
}

SHLL16 (long n)

{
R[n]l<<=16;
PC+=2;

}
Examples:

SHLL2 RO

SHLL8 RO

SHLL16 RO

/* SHLLS Rn */

/* SHLL16 Rn */

Before execution

After execution

Before execution

After execution

Before execution

After execution

RO =H'12345678
RO =H'48D159E0

RO =H'12345678
RO =H'34567800

RO =H'12345678
RO =H'56780000

125

6.57 SHLR (Shift Logical Right): Shift Instruction
Format Abstract Code State T Bit

SHLR Rn 0 —-Rn—->T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

MSB LSB

SHLR 0—?

Figure 6.11 Shift Logical Right

Operation:

SHLR (long n) /* SHLR Rn */
{
if ((R[n]&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
R[n] &=0x7FFFFFFF;
PC+=2;
}

Examples

SHLR RO Before execution RO =H'80000001, T=0
After execution RO =H'40000000, T =1

126

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code State T Bit
SHLR2 Rn Rn>>2 —Rn 0100nnnn00001001 1 —
SHLRS Rn Rn>>8 — Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 — Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

MSB LSB
SHLR2
o
MSB LSB
SHLRS8 | ‘
\
o
MSB LSB
SHLR16 | ‘

‘\\\\\\\\\L‘\\\\\\\\\L
o o |

Figure 6.12 Shift Logical Right n Bits

Operation:

SHLR2 (long n) /* SHLR2 Rn */
{

R[n]>>=2;

R[n] &=0x3FFFFFFF;

PC+=2;

127

SHLR8 (long n) /* SHLR8 Rn */
{

R[n]>>=8;

R[n] &=0x00FFFFFF;

PC+=2;
}

SHLR16 (long n) /* SHLR16 Rn */
{

R[n]>>=16;

R[n] &=0x0000FFFF;

PC+=2;
}
Examples:
SHLR2 RO Before execution
After execution
SHLRS RO Before execution

After execution
SHLR16 RO Before execution

After execution

RO =H'12345678
RO =H'048DI159E
RO =H'12345678
RO =H'00123456
RO =H'12345678
RO =H'00001234

128

6.59 SLEEP (Sleep): System Control Instruction
Format Abstract Code State T Bit

SLEEP Sleep 0000000000011011 3 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.
Operation:

SLEEP () /* SLEEP */

{

PC-=2;

Error (“Sleep Mode.”);
}

Example:

SLEEP Transits power-down mode

129

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STEC SR, Rn SR — Rn 0000nnnn00000010 1 —_
STC GBR, Rn GBR — Rn 0000nnnn00010010 1 —
STC VBR, Rn VBR — Rn 0000nnnn00100010 1 —
STC.L SR, @-Rn Rn-4— Rn, SR — (Rn) 0100nnnNN00000011 2 —
STC.L GBR,@-Rn Rn-4 — Rn, GBR — (Rn) 0100nnnn00010011 2 —
STC.IL VBR,@-Rn Rn—-4 — Rn, VBR — (Rn) 0100nnnn00100011 2 —

Description: Stores control registers SR, GBR, or VBR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

Operation:

STCSR (long n) /* STC SR,Rn */
{

R[n]=SR;

PC+=2;
}

STCGBR (long n) /* STC GBR,Rn */
{

R[n]=GBR;

PC+=2;
}
STCVBER (long n) /* STC VBR,Rn */
{

R[n]=VBR;

PC+=2;

130

STCMSR (long n) /* STC.L SR,@-Rn */
{

R[n]-=4;

Write Long(R[n],SR);

PC+=2;
}

STCMGBR (long n) /* STC.L GBR,@-Rn */
{

R[n]-=4;

Write Long(R[n],GBR) ;

PC+=2;
}

STCMVBR (long n) /* STC.L VBR,@-Rn */
{

R[n]-=4;

Write Long(R[n],VBR) ;

PC+=2;
}
Examples
STC SR, RO Before execution RO = H'FFFFFFFF, SR = H'00000000
After execution RO =H'00000000
STC.L GBR,Q@-R15 Before execution R15=H'10000004
After execution R15 =H'10000000, @R15 = GBR

131

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

Format Abstract Code State T Bit
STS MACH, Rn MACH — Rn 0000nnnn00001010 1 —_
STS MACL, Rn MACL — Rn 0000nnnn00011010 1 —
SIS PR, Rn PR — Rn 0000nnnn00101010 1 —
STS.L MACH,@-Rn Rn-4 — Rn, MACH — (Rn) 0100nnnn00000010 1 —
STS.L MACL,@-Rn Rn-4 — Rn, MACL — (Rn) 0100nnnn00010010 1 —
STS.L PR, @-Rn Rn—-4 — Rn, PR — (Rn) 0100nnnn00100010 1 —

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Note: No interrupts are accepted between this instruction and the next instruction. Address errors
are accepted.

If the system register is MACH in the SH7000 series, the value of bit 9 is transferred to and stored
in the higher 22 bits (bits 31 to 10) of the destination. With the SH7600 series, the 32 bits of
MACH are stored directly.

Operation:

STSMACH (long n) /* STS MACH,Rn */
{

R[n]=MACH;
if ((R[n]&0x00000200)==0) For SH7000 (these 2 lines
R[n] &=0x000003FF; not needed for SH7600)

else R[n] |=0xFFFFFCO00;

PC+=2;
}

STSMACL (long n) /* STS MACL,Rn */

{
R[n]=MACL;
PC+=2;

132

STSPR (long n) /* STS PR,Rn */
{

R[n]=PR;

PC+=2;
}

STSMMACH (long n) /* STS.L MACH,@-Rn */

{
R[n]—=4;

if ((MACH&0x00000200)==0)
Write Long (R[n],MACH&0x000003FF) ; For SH7000

else Write Long
(R[n],MACH| OXFFFFFCO0O0)

Write Long(R[n], MACH); For SH7600

PC+=2;
}

STSMMACL (long n) /* STS.L MACL,@-Rn */

{
R[n]—=4;
Write Long(R[n],MACL);
PC+=2;

}

STSMPR (long n) /* STS.L PR,@-Rn */
{

R[n]—=4;

Write Long (R[n],PR);

PC+=2;
}

Example:

STS MACH,RO Before execution RO = HFFFFFFFF, MACH = H'00000000
After execution RO =H'00000000

STS.L PR,Q@-R15 Before execution R15=H'10000004
After execution R15 =H'10000000, @R15 = PR

133

6.62 SUB (Subtract Binary): Arithmetic Instruction
Format Abstract Code State T Bit

SUB Rm, Rn Rn—-Rm — Rn 001 1nnnnmmmml 000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m, long n) /* SUB Rm,Rn */
{

R[n]-=R[m];

PC+=2;

}
Example:

SUB RO,R1 Before execution RO =H'00000001, R1 =H'80000000
After execution R1 = H'7FFFFFFF

134

6.63 SUBC (Subtract with Carry): Arithmetic Instruction
Format Abstract Code State T Bit

SUBC Rm, Rn Rn—Rm-T — Rn, Borrow - T 001 1lnmmnmmmml010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn, and stores the result
in Rn. The T bit changes according to the result. This instruction is used for subtraction of data
that has more than 32 bits.

Operation:

SUBC (long m, long n) /* SUBC Rm,Rn */
{
unsigned long tmpO, tmpl;

tmpl=R[n]-R[m] ;
tmpO=R [n] ;
R[n]=tmpl-T;

if (tmpO<tmpl) T=1;
else T=0;

if (tmpl<R[n]) T=1;

PC+=2;
}
Examples:

CLRT RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)

SUBC R3,R1 Before execution T =0, R1=H'00000000, R3 = H'00000001
After execution T =1, R1 = HFFFFFFFF

SUBC R2,RO Before execution T =1, RO=H'00000000, R2 = H'00000000
After execution T = 1, RO = HFFFFFFFF

135

6.64 SUBYV (Subtract with V Flag Underflow Check): Arithmetic

Instruction
Format Abstract Code State T Bit
SUBV Rm,Rn Rn—Rm — Rn, Underflow - T 001 1nnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV (long m, long n) /* SUBV Rm,Rn */
{

long dest, src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
srct=dest;
R[n]-=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
anst=dest;
if (src==1) {
if (ans==1) T=1;
else T=0;
}
else T=0;
PC+=2;
}

Examples:

SUBV RO,R1 Before execution RO =H'00000002, R1 = H'80000001
After execution R1=H"7FFFFFFF, T=1

SUBV R2,R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE
After execution R3 =H'80000000, T =1

136

6.65 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code State T Bit

SWAP.B Rm,Rn Rm — Swap upper and lower 0110nnnnmmmm1 000 1 s
halves of lower 2 bytes — Rn

SWAP.W Rm,Rn Rm — Swap upper and lower 0110nnnnmmmm1 001 1 —

word — Rn

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are

swapped for bits 16 to 31.

Operation:

SWAPB (long m,long n) /* SWAP.B Rm,Rn */

{
unsigned long tempO, templ;

tempO=R[m] §0x£f£££0000;

templ=(R[m] §0x000000£ff) <<8;

R[n]=(R[m] §0x0000££00)>>8;
R[n]=R[n] | templ | tempO;
PC+=2;

}

SWAPW (long m,long n) /* SWAP.W Rm,Rn */

{
unsigned long temp;
temp=(R[m]>>16) &0x0000FFFF;
R[n]=R[m]<<16;
R[n] |=temp;
PC+=2;

}

Examples

SWAP.B RO,R1 Before execution

After execution

SWAP.W RO,R1 Before execution

After execution

RO =H'12345678
R1=H'12347856

RO =H'12345678
R1=H'56781234

137

6.66 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code State T Bit
TAS.B QRn When(Rn)is0,1 —-T,1 - MSBof(Rn) 0100nnnn00011011 4 Test
results

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:
TAS (long n) /* TAS.B @Rn */
{
long temp;
temp=(long)Read Byte(R[n]) /* Bus Lock enable */

if (temp==0) T=1;

else T=0;

temp |=0x00000080;

Write Byte(R[n],temp); /* Bus Lock disable */

PC+=2;
}
Example:
_LOOP TAS.B @R7 R7=1000
BF _LOOP Loops until data in address 1000 is 0

138

6.67 TRAPA (Trap Always): System Control Instruction

Format Abstract Code State T Bit
TRAPA #imm PC/SR — Stack area, (imm x 4 + 11000011iiiiiiidi 8 —
VBR) — PC

Description: Starts the trap exception processing. The PC and SR values are stored on the stack,
and the program branches to an address specified by the vector. The vector is a memory address
obtained by zero-extending the 8-bit immediate data and then quadrupling it. The PC points the
starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

TRAPA (long i) /* TRAPA #imm */
{

long imm;

imm= (0x000000FF & 1i);

R[15]-=4;
Write Long(R[15],SR);
R[15]-=4;

Write Long(R[15],PC-2);
PC=Read Long (VBR+ (1imm<<2))+4;

}

Example:
Address
VBR+H'80 .data.1 10000000
TRAPA #H'20 Branches to an address specified by data in address VBR +
H'80
TST #0, RO «— Return address from the trap routine (stacked PC value)
100000000 XOR RO, RO « Trap routine entrance
100000002 RTE Returns to the TST instruction
100000004 NOP Executes NOP before RTE

139

6.68 TST (Test Logical): Logic Operation Instruction

Format Abstract Code State T Bit
TST Rm, Rn Rn & Rm, when resultis 001 0nnnnmmmm1000 1 Test
0,1 ->T results
TST #imm, RO RO & imm, when resultis 11001000iiiiiiii 1 Test
0,1 ->T results
TST.B #imm, @ (RO, GBR) (RO + GBR) & imm, when 11001100iiiiiiii 3 Test
resultis0,1 =T results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register RO can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The RO and memory data do not change.

Operation:
TST (long m, long n) /* TST Rm,Rn */
{
if ((R[n]&R[m])==0) T=1;
else T=0;
PC+=2;

}

TSTI (long i) /* TEST #imm,RO */
{
long temp;

temp=R[0] & (0xO000000FF & (long)i):;
if (temp==0) T=1;
else T=0;
PC+=2;
}

TSTM(long i) /* TST.B #imm, @ (RO,GBR) */
{
long temp;

140

temp= (long)Read Byte (GBR+R[0]) ;
temp&=(0x000000FF & (long)i);
if (temp==0) T=1;

else T=0;
PC+=2;
}
Examples:
TST RO, RO Before execution
After execution
TST #H'80, RO Before execution
After execution

TST.B #H'A5,RQ(RO,GBR) Before execution

After execution

141

RO =H'00000000
T=1

RO = HFFFFFF7F
T=1

@(RO,GBR) = H'A5
T=0

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code State T Bit
XOR Rm, Rn Rn”*Rm — Rn 001 0nnnnmmmm1 010 1 —
XOR #imm, RO RO A imm — RO 11001010iiiiiiidi 1 —
XOR.B #imm, @ (RO, GBR) (RO+GBR)"imm — (RO 11001110iiiiiiii 3 —

+ GBR)

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR (long m, long n) /* XOR Rm,Rn */
{

R[n]"=R[m];

PC+=2;

}

XORI (long 1) /* XOR #imm,RO */
{
R[0]"*=(0x000000FF & (long)i):
PC+=2;

}

XORM (long 1) /* XOR.B #imm, @ (RO,GBR) */

{
long temp;

temp= (long)Read Byte (GBR+R[0]) ;
temp”=(0x000000FF & (long)i);
Write Byte (GBR+R[0], temp) ;
PC+=2;

142

Examples:

XOR RO,R1

XOR #H'FO,RO

XOR.B #H'A5, @ (RO, GBR)

Before execution

After execution

Before execution

After execution

Before execution

After execution

143

RO =H'AAAAAAAA, R1 =H'55555555
R1 = HFFFFFFFF

RO = HFFFFFFFF
RO = HFFFFFFOF

@(RO,GBR) = H'A5
@(RO,GBR) = H'00

6.70 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code State T Bit
XTRCT Rm, Rn Center 32 bits of Rmand Rn — 0010nnnnmmmm1 101 1 —
Rn

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.13).

MSB LSB MSB LSB
Rm ‘ ‘ Rn

Rn

Figure 6.13 Extract
Operation:

XTRCT (long m, long n) /* XTRCT Rm,Rn */

{
unsigned long temp;

temp=(R[m] <<16) &0xFFFF0000;
R[n]=(R[n]>>16) &0x0000FFFF;
R[n] [=temp;
PC+=2;

}

Example:

XTRCT RO,R1 Before execution RO =H'01234567, R1 = H'89ABCDEF
After execution R1=H'456789AB

144

Section 7 Processing States

7.1 State Transitions

The CPU has five processing states: reset, exception processing, bus release, program execution
and power-down. The transitions between the states are shown in figure 7.1. In the SH7600 series,
the transitions in the bus release state are indicated for master mode. For more information, see the
SH Hardware Manual.

145

From any state when
RES =0 and NMI =1

From any state when
RES =0and NMI =0

RES =0, NMI =0
—»

Power-on reset state

RES =1,
NMI = 1

When an interrupt source
or DMA address error occurs

Bus request

47
RES =0, NMI =1

Manual reset state

RES =1
NMI =0

Exception processing state

Reset states

NMI interrupt
source error

cleared Bus request
generated
Exception Exception
L rocessin
Bu‘s release state = processing p p—, g
source occurs
Bus request Bus request
Bus request generated cleared
generated A
Bus request Program execution state
cleared SBY bit set
SEYIDn for SLEEP
cleared for MSTP MSTP instruction
. SLEEP bit cleared bit set
instruction
Sleep mode Standby mode

Module standby
(SH7600 only)

Power-down state

Figure 7.1 Transitions Between Processing States

146

7.1.1 Reset State

In the reset state, the CPU is reset. This occurs when the RES pin level goes low. When the NMI
pin is high, the result is a power-on reset; when it is low, a manual reset will occur.

In the power-on reset, all CPU internal states and on-chip peripheral module registers are
initialized. During manual reset, all on-chip peripheral module registers and CPU internal states,
with the exception of the bus state controller (BSC) and pin function controller (PFC), are
initialized. During manual reset the BSC is not initialized, allowing the refresh operation to
continue.

7.1.2 Exception Processing State
The exception processing state is a transient state that occurs when the CPU’s processing state
flow is altered by exception processing sources such as resets or interrupts.

For a reset, the initial values of the program counter PC (execution start address) and stack pointer
SP are fetched from the exception processing vector table and stored; the CPU then branches to
the execution start address and execution of the program begins.

For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and status
register (SR) are saved to the stack area. The exception service routine start address is fetched
from the exception processing vector table; the CPU then branches to that address and the program
starts executing, thereby entering the program execution state.

7.1.3 Program Execution State

In the program execution state, the CPU sequentially executes the program.

7.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has two modes: sleep mode and
standby mode. See section 7.2 for more details. The SH7600 also has a module standby function.

7.1.5 Bus Release State

In the bus release state, the CPU releases access rights to the bus to the device that has requested
them.

147

7.2 Power-Down State

In addition to the ordinary program execution states, the CPU also has a power-down state in
which CPU operation halts and power consumption is lowered (table 7.1). There are two power-
down state modes: sleep mode and standby mode.

7.2.1 Sleep Mode

When standby bit SBY (in the standby control register SBYCR) is cleared to 0 and a SLEEP

instruction executed, the CPU moves from the program execution state to sleep mode. In the sleep
mode, the CPU halts and the contents of its internal registers and the data in on-chip cache (RAM)
are maintained. The on-chip peripheral modules other than the CPU do not halt in the sleep mode.

To return from sleep mode, use a reset, any interrupt, or a DMA address error; the CPU returns to
the ordinary program execution state through the exception processing state.

7.2.2 Software Standby Mode

To enter the standby mode, set the standby bit SBY (in the standby control register SBYCR) to 1
and execute a SLEEP instruction. In standby mode, all CPU, on-chip peripheral module and
oscillator functions are halted. CPU internal register contents and on-chip cache(RAM) data are
held.

To return from standby mode, use a reset or an external NMI interrupt. For resets, the CPU returns
to the ordinary program execution state through the exception processing state when placed in a
reset state after the oscillator stabilization time has elapsed. For NMI interrupts, the CPU returns to
the ordinary program execution state through the exception processing state after the oscillator
stabilization time has elapsed. In this mode, power consumption declines markedly, since the
oscillator stops.

7.2.3 Module Standby Function (SH7600 Only)

The module standby function is available for the multiplier MULT), divider (DIVU), 16-bit free-
running timer (FRT), serial communication interface (SCI), and the DMA controller (DMAC) for
the on-chip peripheral modules.

The supply of the clock to these on-chip peripheral modules can be halted by setting the
corresponding bits 4-0 (MSTP4-MSTPO) in the standby control register (SBYCR). Using this
function can reduce the power consumption in sleep mode.

148

The external pins of the on-chip peripheral modules in module standby are reset and all registers
except DMAC, MULT, and DIVU are initialized. (The master enable bit (bit 0) of the DMAC's
DMA operation register (DMAOR) is initialized to 0.)

Module standby function is cleared by clearing the MSTP4-MSTPO bits to 0.

Table 7.1 Power-Down State
State
On-Chip
Peripheral CPU 1/10
Mode Condition Clock CPU Module Register RAM Port Canceling
Sleep Executes Run Halt Run Held Held Held 1. Interrupt
mode SLEEP 2 DMA
|n§truct|on _ sddress
with SBY bit —
clearedto 0
in SBYCR 3. Power-
on reset
4. Manual
reset
Standby Executes Halt Halt Haltand Held Held Heldor 1. NMI
mode _SLEEP_ initialize h|g1h— 5 BPower-
|n§truct|on _ Va on reset
with SBY bit
setto 1in 3. Manual
SBYCR resel
Module Sets Run Halt Supply of Held Held Held Clears
standby MSTP4- clock to MSTP4-
function MSTPO bits affected MSTPO bits
(SH7600 of SBYCR module is of SBYCR
only) to 1 halted and to0
module is
initialized.*2
Notes: 1. Depends on the peripheral module and pin. For details, see the Hardware Manual.

2. Interrupt vectors maintain their settings.

149

7.3 Master Mode and Slave Mode (SH7600 Series Only)

The SH7600 series has two master modes and a slave mode for bus rights that can be selected with
the MDS5 pin. The master modes consist of a total master mode and a partial-share naster mode,
which are specified using the MDS5 pin and the partial-share space specification bit (PSHR) in bus
control register 1 (BCR1). When the slave mode is selected with the MDS5 pin, the device enters
total slave mode. When the master mode is selected with the MDS5 pin and partial space share is
specified with the PSHR bit, the device enters the partial-share master mode. When partial space
share is not specified with the PSHR bit, the device enters the total master mode.

The master mode has rights to bus use. External devices can be accessed freely. When a slave
CPU requests the bus right, the master CPU can give the bus right to the slave CPU.

The total slave mode does not have rights to bus use. To access an external device, bus rights have
to be requested to the master CPU, permission to use the bus gained, and then the external device
accessed.

The partial-share master mode lacks bus rights only for CS2 space. To access the CS2 space, bus
rights have to be requested to the master CPU, permission granted and then the CS2 space can be
accessed. This mode has bus rights for all other space and does not need to request the bus when
accessing them.

Table 7.2 Master Modes and Slave Mode (SH7600)

MD5 (Total Slave Mode PSHR

Specification Pin) (Partial-Share

Mode Bit) Function

Total slave 1 (Not used) Has no bus rights. To use a bus,

mode requests the bus and receive
permission from the master CPU to
access.

Partial-share 0 1 Has bus rights to CS0, CS1, and CS3

master spaces. Lacks continuing bus rights

mode only to CS2. To access CS2, first
requests and be granted bus rights.

Total master 0 0 Always has bus rights. Gives bus rights

mode to slave CPUs.

150

Section 8 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

8.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

+ IF (Instruction fetch) Fetches an instruction from the memory in which the program is
stored.
* ID (Instruction decode) Decodes the instruction fetched.

EX (Instruction execution) Performs data operations and address calculations according to the
results of decoding.

*+ MA (Memory access) Accesses data in memory. Generated by instructions that involve
memory access, with some exceptions.

* WB (Write back) Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some
exceptions.

As shown in figure 8.1, these stages flow with the execution of the instructions and thereby
constitute a pipeline. At a given instant, five instructions are being executed simultancously. All
instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as
well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is
as shown in figure 8.1; some pipelines differ, however, because of contention between IF and MA.
In figure 8.1, the period in which a single stage is operating is called a slot.

> 4> 4> 4> > 4> 4> <> «»> <> . Sot

Instruction 1 IF ID EX MA WB inetructionr]
Instruction 2 IF ID EX MA WB stream
Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB
Instruction 6 IF ID EX MA WB

—%

Time

Figure 8.1 Basic Structure of Pipeline Flow

151

8.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

8.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 8.2), with exception of WB and MA. Since WB
is executed immediately after MA, however, some instructions may execute MA and WB within
the same slot.

P —> 4> 4> 4> > > <> <> Sot
Instruction 1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Note: ID and EX of instruction 1 are being executed in the same slot.

Figure 8.2 Impossible Pipeline Flow 1

8.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 8.3).

“r 4 O O > D> 4> > > <> St
Instruction 1 IF ID EX MA WB
Instruction 2 IF ID EX MA WB

Instruction 3 IF ID EX MA WB
Instruction 4 IF ID EX MA WB
Instruction 5 IF ID EX MA WB

Note: Same stage of another instruction is being executed in same slot.

Figure 8.3 Impossible Pipeline Flow 2

152

8.2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

+ S = (the cycles of the stage with the highest number of cycles of all instruction stages contained
in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

+ The number of execution cycles for each stage:

— IF The number of memory access cycles for instruction fetch
— ID Always one cycle

— EX Always one cycle

— MA The number of memory access cycles for data access

— WB Always one cycle

As an example, figure 8.4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled.

“—> «“—> 4> «———p 4> <> : Sot

(2) (2) 1) (3 (1) (1) < Number ofC]
Instructon1 IF IF ID — EX MA MA MA WB cycles
Instruction 2 IF IF ID EX — — MA WB

Figure 8.4 Slots Requiring Multiple Cycles

153

8.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX
stages. The number of states between the start of the EX stage for instruction 1 and the start of the
EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 8.5, the EX stage interval between
instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the
interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2
is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as
the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4,
using an MOV Rm, Rn that follows instruction 3. (In the case of figure 8.5, the execution time of
instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of
instruction 4 are in contention. For operation during the contention between the MA and IF, see
section 8.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution
time between instructions 1 and 3 in figure 8.5 is seven states (5 + 1 + 1).

+“—r ¢+—r> «—» <« > <4» <> : Slot
2) (2) (2) (4) (1 ™)
Instruction1 IF IF D — — MA MA MA WB
Instruction 2 F IF D — — — —
Instruction 3 F IF — — — ID MA
(Instruction 4: MOV Rm, Rn IF ID)

Figure 8.5 How Instruction Execution States Are Counted

154

8.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

8.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultancously. When the IF
and MA stages both try to access memory within the same slot, the slot splits as shown in figure
8.6. When there is a WB, it is executed immediately after the MA ends.

A B C D E F G
> > 4> > 4> <> 4> <> <> Slot

Instruction 1 IF ID EX WB MA of instruction 1 and IF of instruction 40

Instruction 2 IF 1D EX WB contend at D

T F D EX MA of instruction 2 and IF of instruction 50
contend at E

Instruction 4 ID EX

Instruction 5 ID EX

When MA and IF are in contention, the following occurs:

A B C D E F G
> 4> 4> ¢“—> «—>» <> <> Sot
Instruction 1 IF ID EX WB SplitatD
Instruction 2 IF ID — EX WB Split at E
Instruction 3 IF — ID — EX
Instruction 4 — D EX
Instruction 5 D EX

Figure 8.6 Operation When IF and MA Are in Contention

The slots in which MA and IF contend are split. MA is given priority to execute in the first half
(when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed
simultaneously in the latter half. For example, in figure 8.6 the MA of instruction 1 is executed in
slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed
simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of
instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thercafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of
memory access cycles for the MA and the number of memory access cycles for the IF.

155

8.4.2 The Relationship Between IF and the Location of Instructions in On-Chip
ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the SH
microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH
microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a
single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 =0 and A0 = 0) also fetch two instructions. The IF of the next
instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower
case as ‘if’. These ‘if’s always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is A1 =1, A0 = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 8.7 illustrates
these operations.

156

32 bits

< > <> 4> 4> <> <> <> <> <> <> <> : Sot
instruc-|l instruc- | -+ Instruction 4 ID EX

tion1 || tion 2 Instruction 2 if ID EX

instruc-l| instruc- | -+ Instruction 3 ID EX

tion3 || tion 4 Instruction 4 if ID EX

instruc-| Instruc- | -+ Instruction 5 ID EX

tion 5 || tion 6 Instruction 6 if ID EX

(On-chip memory

-chi h
or on-chip cache) . Bus cycle generated

if : No bus cycle

Fetching from an instruction (instruction 1) located on a longword boundary

> 4> > 4> 4> 4> 4> <> <> <> : Sot

Instruc-
tion 2 || -+ Instruction 2 ID EX
.- Instruction 3 ID EX
Instruc-|| Instruc- . .
tion 3 || tion 4 Instruction 4 if ID EX
.- Instruction 5 ID EX
Instruc-|| Instruc- Instruction 6 if D EX
tion5 || tion6 nstruction '

: Bus cycle generated
if : No bus cycle

Fetching from an instruction (instruction 2) located on a word boundary

Figure 8.7 Relationship Between IF and Location of Instructions in On-Chip Memory

8.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM or
On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are
instruction fetch stages (‘if” written in lower case) that do not generate bus cycles as explained in
section 8.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when
an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such
slots execute in the number of states the MA requires for memory access, as illustrated in figure
8.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the

157

position when the bottom 2 bits of instruction address are 00 is A1 =0 and A0 = 0) because the
MA of the instruction falls in the same slot as ifs that follow.

32 bits o
Instruc-|| Instruc- | =
tion 1 tion 2
Instruc-|| Instruc- | =
tion 3 tion 4
Instruc-|| Instruc- |
tion 5 tion 6
(On-chip memory

or on-chip cache)

Instruction 1
Instruction 2
Instruction 3
Instruction 4

- Instruction 5

Instruction 6

IF ID — EX
fif i — ID EX
ID
if

[IF] : Splits

| if 1 : Does not split

MA in slot A is in contention with an if, so no split occurs.
MA in slot B is in contention with an IF, so it splits.

EX
ID EX

Figure 8.8 Relationship Between the Location of Instructions in On-Chip Memory and
Contention Between IF and MA

8.5 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the
WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load
instruction 1) will thus come after the EX stage of the instruction that immediately follows it
(instruction 2).

When instruction 2 uses the same destination register as load instruction 1, the contents of that
register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2
will split. The destination register of load instruction 1 is the same as the destination (not the

source) of instruction 2, so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by
instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

* When instruction 2 is a load instruction and its destination is the same as that of load
instruction 1.

* When instruction 2 is Mac @Rm+ , @Rn+, and the destination of load instruction 1 are the

same.

158

The number of states in the slot generated by the split is the number of MA cycles plus the number
of IF (or if) cycles, as illustrated in figure 8.9. This means the execution speed will be lowered if
the instruction that will use the results of the load instruction is placed immediately after the load
instruction. The instruction that uses the result of the load instruction will not slow down the
program if placed one or more instructions after the load instruction.

<> 4> 4> «—>» 4> <> Sot
Load instruction 1 (MOV.W @RO, R1) IF ID EX WB

Instruction 2 (ADD R1, R2) IF ID —
Instruction 3 IF — ID EX -
Instruction 4 IF ID -

Figure 8.9 Effects of Memory Load Instructions on the Pipeline

8.6 Programming Guide

To improve instruction execution speed, consider the following when programming;

+ To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 =0 and AO = 0) wherever possible.

+ The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction.

+ Locate instructions that use the multiplier nonconsecutively.

159

8.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
states can be calculated.

In the following figures, “Instruction A” refers to the instruction being described. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is contention
between IF and MA, the slot will split, but the manner of the split is not described in the tables,
with a few exceptions. When a slot has split, see section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given

there.

Table 8.1 lists the format for number of instruction stages and execution states:

Table 8.1 Format for the Number of Stages and Execution States for Instructions
Type Category Stage State Contention Instruction
Functional Instructions Number Number Contention that Corresponding instructions
types are catego- of of occurs represented by mnemonic
rized stages execu-
based on inan tion
operations instruc- states
tion when
no
conten-
tion
occurs
Table 8.2 Number of Instruction Stages and Execution States
Type Category Stage State Contention Instruction
Data Register- 3 1 — MoV #imm, Rn
’_cransfer_ register MOV Rm, Rn
instructions transfer .
instructions MOvA @(disp, PC), RO
MOVT Rn

SWAP.B Rm,Rn
SWAP.W Rm,Rn
XTRCT Rm,Rn

160

Table 8.2 Number of Instruction Stages and Execution States (cont)
Type Category Stage State Contention Instruction
Data Memory 5 1 + Contention occurs Mov.W @(disp,PC),Rn
’_cransfer_ !oad _ if the instruction MOV.I @(disp,PC),Rn
instructions instructions placed
(cont) immediately after MOV.B @Rm,Rn
this one usesthe Mov.W @Rm,Rn
same destination MOV.L @Rm,Rn
register
MA contends with YovuE GRmt.hn
IF MOV.W @Rmt+,Rn
MOV.L @Rmt,Rn
MOV.B @(disp,Rm),RO
MOV.W @(disp,Rm),RO
MOV.L @(disp,Rm),Rn
MOV.B @(RO,Rm),Rn
MOV.W @(RO,Rm),Rn
MOV.L @(RO,Rm),Rn
MOV.B @(disp,GBR),RO
MOV.W @(disp,GBR),RO
MOV.L @(disp,GBR),RO
Memory 4 1 * MA contends with MOV.B Rm, QRn
store I MOV.W Rm, @Rn
instructions
MOV.L Rm, @Rn
MOV.B Rm, @-Rn
MOV.W Rm, @-Rn
MOV.L Rm, @-Rn
MOV.B RO, @(disp,Rn)
MOV.W RO, @(disp,Rn)
MOV.L Rm,@(disp,Rn)
MOV.B Rm,@(RO,Rn)
MOV.W Rm,@(RO,Rn)
MOV.L Rm,@(RO,Rn)
MOV.B RO, @ (disp,GBR)
MOV.W RO, Q@ (disp,GBR)
Mov.L RO, Q@ (disp,GBR)

161

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction

Arithmetic Arithmetic 3 1 — ADD Rm, Rn

instructions instructions ADD B4 v, R
between
registers ADDC Rm, Rn
(except ADDV Rm, Rn
multiplic- .
ation CMP/EQ #1irmm, RO
instruc- CMP/EQ Rm, Rn
tions)

CMP/HS Rm, Rn
CMP/GE Rm, Rn
CMP/HI Rm, Rn
CMP/GT Rm, Rn
CMP/PZ Rn

CMP/PL Rn

CMP/STR Rm, Rn

DIV1 Rm, Rn
DIVOS Rm, Rn
DIVOU

DT Rn*?

EXTS.B Rm, Rn
EXTS.W Rm, Rn
EXTU.B Rm, Rn
EXTU.W Rm, Rn

NEG Rm, Rn
NEGC Rm, Rn
SUB Rm, Rn
SUBC Rm, Rn
SUBV Rm, Rn
Multiply/ 7/8*1 3/(2)*2 + Multiplier contention MAC.W GRm+, GRn+
accumulate occurs when an
instructions instruction that uses the

multiplier follows a
MAC instruction

* MA contends with IF

Notes 1. Inthe SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6
stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply
instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions)

3. SH7600 instructions

162

Table 8.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Arithmetic Double- 9 3/(2to « Multiplier MAC.L @Rm+, @Rn+**
instructions length 4y-2 contention occurs
(cont) multiply/ when an
accumulate instruction that
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction
* MA contends with
IF
Multiplic- 6/7*1 1t03*2 « Multiplier MULS.W Rm, Rn
_atlon _ contentlo_n OCCUTS \TU. W Rm,Rn
instructions when an instruc-
tion that uses the
multiplier follows a
MUL instruction
* MA contends with
IF
Double- 9 2to 42« Multiplier DMULS.L Rm,Rn*3
Ieng’_ch contention occurs DMULU.L Rm, Rn*>
multiply/ when an "
accumulate instruction that MUL.L Rm, Rn*
instruction uses the multiplier
(SH7600 follows a MAC
only) instruction
* MA contends with
IF
Logic Register- 3 1 — AND Rm, Rn
operation register AND 54 0. RO
instructions logic !
operation NOT Rm, Rn
instructions OR Rm, Rn
OR #imm, RO
TST Rm, Rn
TST #imm, RO
XOR Rm, Rn
XOR #imm, RO

Notes 1.

In the SH7600, multiply/accumulate instructions are 7 stages, multiply instructions 6

stages; in the SH7000, multiply/accumulate instructions are 8 stages, multiply

instructions 7 stages

2. The normal minimum number of execution states (The number in parentheses is the
number of cycles when there is contention with following instructions)

3. SH7600 instructions

163

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
Logic Memory logic 6 3 * MA contends AND.B #imm, @ (RO, GBR)
pperatign pperatiqns with IF OR.B #imm, @ (RO, GER)
instructions instructions
(cont) TST.B #imm, @ (RO, GBR)
XOR.B #imm, @ (RO, GBR)
TAS 6 4 * MA contends TAS.B (@Rn
instruction with IF
Shift Shift 3 1 — ROTL Rn
instructions instructions ROTR i
ROTCL Rn
ROTCR Rn
SHAL Rn
SHAR Rn
SHLL Rn
SHLR Rn
SHLIL2 Rn
SHLR2 Rn
SHLL8 Rn
SHLR8 Rn
SHLL16 Rn
SHLR16 Rn
Branch Conditional 3 3/1%4 — BF label
instructions _branch _ BT Tel]
instructions
Delayed 3 2/1*4 — BF/S label*?
conditional BT/S 1abel*3
branch

instructions
(SH7600 only)

Unconditional 3 2 — BRA label
branch
instructions

BRAF Rn*3
BSR label
BSRF Rn*3

JMP @Rn
JSR @Rn
RTS

Notes 3. SH7600 instruction
4. One state when there is no branch

164

Table 8.2

Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
System System 3 1 — CLRT
_control _ control IDC Rm, SR
instructions ALU
instructions LDC Rm, GBR
LDC Rm, VBR
DS Rm, PR
NOP
SETT
STC SR, Rn
STC GBR, Rn
STC VBR, Rn
STS PR, Rn
STC.L 4 2 MA contends with STC.L SR, @-Rn
instructions IF STC.I GBR, @-Rn
STC.L VBR,@-Rn
LDS.L 5 1 Contention occurs IDS.L @Rm+, PR
instructions when an
(PR) instruction that
uses the same
destination
register is placed
immediately after
this instruction
MA contends with
IF
STS.L 4 1 MA contends with STS.L PR, @-Rn
instruction IF
(PR)

165

Table 8.2 Number of Instruction Stages and Execution States (cont)

Type Category Stage State Contention Instruction
System Register - 4 1 + Contention occurs CLRMAC
(:or:trolt L\/IACf with multiplier IDS Rm, MACH
instructions transfer :
* MA contends with
(cont) instruction IF LDs Rm, MACL
Memory — 4 1 » Contentionoccurs ILDS.L QRmt+,MACH
MAC with multiplier IDS.I @Rm#,MACL
transfer « MA contends with
instructions IF
MAC — 5 1 * Contentionoccurs STS MACH, Rn
register with multiplier STS MACL, Rn
’_cransfer_ * Contention occurs
instruction when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction
* MA contends with
IF
MAC — 4 1 * Contentionoccurs STS.L MACH, @-Rn
memory with multiplier STS.IL MACL, @-Rn
transfer « MA contends with
instruction IF
RTE 5 4 — RTE
instruction
TRAP 9 8 — TRAPA #imm
instruction
SLEEP 3 3 — SLEEP
instruction

166

8.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

« MOV #imm, Rn

« MOV Rm, Rn

+ MOVA @(disp, PC), RO
« MOVT Rn

« SWAPB Rm, Rn
« SWAP.W Rm, Rn
« XTRCT Rm, Rn

<> 4> <> 4> <> <> Sot
linstructionA IF 1D EX]
Next instruction IF ID EX -
Third instruction IF ID EX .-

Figure 8.10 Register-Register Transfer Instruction Pipeline

Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX
stage via the ALU.

167

Memory Load Instructions: Include the following instruction types:

« MOV.W @(disp, PC), Rn

+ MOVL @(disp, PC), Rn
+ MOV.B @Rm, Rn

+ MOV.W @Rm, Rn

+ MOV.L @Rm, Rn

+ MOV.B @Rm+, Rn

« MOV.W @Rm+, Rn

+ MOV.L @Rm+, Rn

« MOV.B (@(disp, Rm), RO
« MOV.W @(disp, Rm), RO
« MOV.L @(disp, Rm), Rn
+ MOV.B @(RO, Rm), Rn

+ MOV.W @(RO, Rm), Rn

+ MOV.L @(RO, Rm), Rn

+ MOV.B @(disp, GBR), RO
« MOV.W (@(disp, GBR), RO
+ MOV.L @(disp, GBR), RO

<> 4> <> 4> <> <> Sot
linstruction A IF 1D EX MB WB]|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.11 Memory Load Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.11). If an instruction
that uses the same destination register as this instruction is placed immediately after it, contention
will occur. (See Section 8.5, Effects of Memory Load Instructions on Pipelines.)

168

Memory Store Instructions: Include the following instruction types:

+ MOV.B Rm, @Rn

+ MOV.W Rm, @Rn

+ MOVL Rm, @Rn

+ MOV.B Rm, @-Rn

+ MOV.W Rm, @-Rn

+ MOVL Rm, @-Rn

- MOVB RO, @(disp, Rn)

« MOV.W RO, @(disp, Rn)

+ MOVL Rm, @(disp, Rn)
+ MOVB Rm, @(RO, Rn)

+ MOV.W Rm, @(RO, Rn)

+ MOV.L Rm, @(RO, Rn)

+ MOVB RO, @(disp, GBR)
+ MOV.W RO, @(disp, GBR)
+ MOV.L RO, @(disp, GBR)

<> 4> <> 4> <> <> Sot
lnstruction A IF 1D EX MA]|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.12 Memory Store Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.12). Data is not returned to
the register so there is no WB stage.

169

8.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the
following instruction types:

« ADD Rm, Rn
« ADD #imm, Rn
« ADDC Rm, Rn
« ADDV Rm, Rn

*+ CMP/EQ #imm, RO
+ CMP/EQ Rm, Rn
« CMP/HS Rm, Rn
« CMP/GE Rm, Rn
« CMP/HI Rm, Rn
« CMP/GT Rm, Rn
+ CMP/PZ Rn

+ CMP/PL Rn

« CMP/STR Rm, Rn

+ DIVI Rm, Rn
« DIVOS Rm, Rn

« DIVOU

.« DT Rn (SH7600 only)
.« EXTS.B Rm, Rn

« EXTS.W Rm, Rn
« EXTU.B Rm, Rn
« EXTUW Rm, Rn

* NEG Rm, Rn
* NEGC Rm, Rn
+ SUB Rm, Rn
 SUBC Rm, Rn
« SUBV Rm, Rn

170

<> 4> <> 4> 4P <> : Sot
IF_ID EX MA]

[Instruction A

Next instruction
Third instruction

Figure 8.13 Pipeline for Arithmetic Instructions between Registers Except Multiplication
Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is

completed in the EX stage via the ALU.

171

Multiply/Accumulate Instruction (SH7000): Includes the following instruction type:

- MAC.W @Rm+, @R+

> 4> <> 4> <> > <> <> Sot
[MACW IF ID EX MA MA mm mm mm]
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.14 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14).
The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of
slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of
the MAC. W instruction, when they contend with IF, split the slots as described in section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC. W instruction, the MAC. W
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC. W instruction is located immediately after another MAC. W instruction
When a MULS. W instruction is located immediately after a MAC. W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC. W instruction
When an LDS (register) instruction is located immediately after a MAC. W instruction
When an LDS L (memory) instruction is located immediately after a MAC.W instruction

O W =

172

1.

When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a
preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W
instructions, multiplier contention between MAC instructions does not cause stalls (figure
8.15).

<> 4> 4> 4> 4> 4> «——> 4P <> <> Slot

[MACW IF ID EX MA MA mm mm mm:

MAC.W F — ID EX MA M—A mm mm mm

Third instruction F — ID EX — MA ...

> 4> 4> 4> 4> P> P> <> 4> <> <> <> Sot

[MACW IF ID EX MA MA mm mm :mm:

Other instruction IF — ID EX MA WB
MAC.W F ID EX MA MA: mm mm mm -

Figure 8.15 Unrelated Instructions between MAC.W Instructions

Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF
contention causes misalignment of instruction execution. Figure 8.16 illustrates a case of this
type. This figure assumes MA and IF contention.

> 4> > D > D P> <—— P> 4> <4+——p <> Slot
IMACW if ID EX MA

MAC.W IF — ID
MAC.W if
MAC.W

Figure 8.16 Consecutive MAC.Ws without Misalignment

173

When the second MA of the MAC.W instruction is extended until the mm ends, contention
between MA and IF will split the slot, as usual. Figure 8.17 illustrates a case of this type. This

figure assumes MA and IF contention.

O O D > 4> P 4> 4> > > <> Sot

MAC.W if — —
Other instruction
Other instruction
Other instruction

Figure 8.17 MA and IF Contention

174

When a MULS. W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.18) to create a
single slot. When two or more instructions not related to the multiplier come between the
MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. When the MULS.W MA and IF contend, the slot is split.

+“r > 4> > >

<+ > 4> 4> 4> 4> <> <> Slot

|MAC.W IF ID EX MA MA :mm mm mm:
MULS.W IF — ID EX M—— A mm mm mm
Other instruction IF ID EX — — MA ...

P> 4> P D D > P> > > > P> > <> Sot
|MAC.W IF ID EX MA MA mm :mm mm:
Other instruction IF — ID EX
MULS.W IF ID EX: M—A :mm mm mm
Other instruction IF ID EX — MA ..
> > > > > > > 4> > > <> <> > <> Sot

[MAC.W

IF ID EX MA MA

mm

Other instruction
Other instruction

MULS.W
Other instruction

IF

ID EX
IF ID
IF

MA
EX

Figure 8.18 MULS.W Instruction Immediately After a MAC.W Instruction

175

When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.19) to create a single slot. The MA of the STS contends with the IF. Figure 8.19
illustrates how this occurs, assuming MA and IF contention.

4> 4> 4> 4¢P 4> 4+ —— p 4> <“P><>4><> St

IMACW IF ID EX MA — MA mm._ mm. mm
STS f — — ID EX M—A WB
Other instruction IF D — — — EXMA
Other instruction f — — — ID EX

Other instruction

[MAC.W

if

STS
Other instruction
Other instruction
Other instruction

Figure 8.19

STS (Register) Instruction Immediately After a MAC.W Instruction

176

When an STS.L (memory) instruction is located immediately after a MAC. W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one state after the mm ends (the M—A shown in the dotted
line box in figure 8.20) to create a single slot. The MA of the STS contends with the IF.
Figure 8.20 illustrates how this occurs, assuming MA and IF contention.

> 4> > —> > < —> 4> <> 4> <><>: Slot
[MACW IF ID EX MA —
STS.L if — — ID
Other instruction IF
Other instruction f — — — — ID EX
Other instruction IF ID EX -.....

O D D > > > 4P P> P> > <> <> Sot

[MACW if ID EX MA MA mm mm mm]
STS.L IF — ID —
Other instruction if —

Other instruction

Other instruction

Figure 8.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

177

When an LDS (register) instruction is located immediately after a MAC. W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.21) to create a single slot. The MA of this LDS contends with IF. Figure 8.21
illustrates how this occurs, assuming MA and IF contention.

> P> P> P> 4> p 4> 4> > <> <> Slot

[IMACW IF ID EX MA — MA mm mm mm
LDsS f — — ID EX M—A |
Other instruction IF D — — — EXMA
Other instruction f — — — ID EX
Other instruction IF ID EX -

> 4 > > C— P> “——p 4> <> <> 4> <> <> Sot

IMACW if ID EX MA MA mm mm_mm

LDS IF — ID — EX M—A:
Other instruction if — ID EX
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 8.21 LDS (Register) Instruction Immediately After a MAC.W Instruction

178

When an LDS L (memory) instruction is located immediately after a MAC. W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.22) to create a
single slot. The MA of the LDS contends with IF. Figure 8.22 illustrates how this occurs,
assuming MA and IF contention.

4> 4> 4> 4> 4> +———— P 4> 4P 4P 4> 4> Slot

|MAC.W IF ID EX MA — MA mm mm mm:
LDS.L if — — ID EX{M———A_
Other instruction F D — — — EX
Other instruction f — — — ID EX
Other instruction IF ID EX -

> P> P > > > > > > <> <> > Sot
[MACW if
LDS.L
Other instruction

Other instruction

Other instruction

Figure 8.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

179

Multiply/Accumulate Instruction (SH7600): Includes the following instruction type:

- MAC.W @Rm+, @R+

<> 4> <> 4> 4> 4> <> > Slot
[MACW IF ID EX MA MA mm mm]|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.23 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 8.23). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the slots as described in Section 8.4, Contention
Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC. W instruction, the MAC. W
instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.W
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC. W instruction is located immediately after another MAC. W instruction
When a MAC L instruction is located immediately after a MAC.W instruction

When a MULS. W instruction is located immediately after a MAC. W instruction

When a DMULS.L instruction is located immediately after a MAC.W instruction

When an STS (register) instruction is located immediately after a MAC.W instruction
When an STS.L (memory) instruction is located immediately after a MAC. W instruction
When an LDS (register) instruction is located immediately after a MAC. W instruction

S AR O A

When an LDS L (memory) instruction is located immediately after a MAC.W instruction

180

1. When a MAC.W instruction is located immediately after another MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction.

4> 4> 4> D> DO D> 4> > > 4> 4> Sot
IMACW IF 1D EX MA MA mm
MAC.W IF — D EX MA MA:

Third instruction IF — ID

Figure 8.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction

Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by
MA and IF contention. Figure 8.25 illustrates a case of this type. This figure assumes MA and
IF contention.

D 4> D D D > D D > > <> <> Slot
IMACW if ID EX MA MA mm mm]

MAC.W IF — ID EX MA — MA mm mm
MAC.W if — — ID EX MA MA mm mm
MAC.W IF — ID EX MA MA mm -

Figure 8.25 Consecutive MAC.Ws with Misalignment

181

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual.
Figure 8.26 illustrates a case of this type. This figure assumes MA and IF contention.

4> 4> 4> P 4> 4> 4> 4—p 4> 4> <> <> Sot

MACW IF ID EX MA — MA mm:mm:

MAC.W f — — ID EX MA MA:mm mm
Other instruction IF — ID — EX MA
Other instruction if — ID EX

Other instruction

IF

Figure 8.26 MA and IF Contention

2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a
preceding multiplication instruction (figure 8.27).

4> 4> 4> 4> 4> 4> 4> 4> P> <> 4> Slot

[MAC.W

IF ID EX MA MA mm :mm;

MAC.L
Third instruction

IF — ID EX MA MA: mm mm mm mm

IF — ID EX MA

Figure 8.27 MAC.L Instructions Immediately After a MAC.W Instruction

182

When a MULS. W instruction is located immediately after a MAC. W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC. W instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.28) to
create a single slot. When one or more instructions not related to the multiplier come between
the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause
stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is
operating (mm). When the MULS.W MA and IF contend, the slot is split.

<> 4> 4> 4> 4> > 4> 4> 4> 4> <> 4> <> Slot

MACW IF ID EX MA MA mm mm:
MULS.W IF — ID EX :M—A mm mm

Other instruction IF ID EX — MA

MACW IF ID EX MA MA mm:mm:

Other instruction IF — ID EX
MULS.W IF ID EX :MA:mm mm
Other instruction IF ID EX MA

Figure 8.28 MULS.W Instruction Immediately After a MAC.W Instruction
When a DMULS L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no
DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When
the DMULS.L MA and IF contend, the slot is split (figure 8.29).

4> 4> 4> 4D > D > P> 4> 4> <> <> <> <> Slot

MACW IF ID EX MA MA mm:mm:
DMULS.L IF — ID EX MA MA:mm mm mm mm

Other instruction IF — ID EX MA

Figure 8.29 DMULS.L Instructions Immediately After a MAC.W Instruction

183

When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.30) to create a single slot. The MA of the STS contends with the IF. Figure 8.30
illustrates how this occurs, assuming MA and IF contention.

> 4> P> C—— P> 4> P 4P 4> 4> <> <> Sot

MACW IF ID EX MA — MA:mm mm:
STS f — — ID EX:M—A WB
Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

MACW if ID EX MA MA mm:mm:

STS IF — ID — EX:MA:WB
Other instruction if — ID EX
Other instruction IF ID EX MA
Other instruction if ID EX

Figure 8.30 STS (Register) Instruction Immediately After a MAC.W Instruction

184

When an STS.L (memory) instruction is located immediately after a MAC. W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled.

Figure 8.31 illustrates how this occurs, assuming MA and IF contention.

<> P> P P> > P > <> 4> <> <> <> Slot

STS.L f — — ID EX M—A:

Other instruction IF ID — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX

STS.L IF — ID — EX:MA:

Other instruction f — ID EX
Other instruction IF ID EX
Other instruction if ID EX

Figure 8.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction

185

7.

When an LDS (register) instruction is located immediately after a MAC. W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.32) to create a single slot. The MA of this LDS contends with IF. Figure 8.32
illustrates how this occurs, assuming MA and IF contention.

> 4> 4> C—— > 4> P 4> 4> <> <> <> Sot

MACW IF ID EX MA — MA :mm mm:

LDS f — — ID EXM—A:
Other instruction IF ID — — EX MA
Other instruction f — — ID EX

Other instruction IF ID EX

P> P D D> P <> 4> 4> > <> <> <> Slot
MAC.W if
LDS
Other instruction

Other instruction
Other instruction

Figure 8.32 LDS (Register) Instruction Immediately After a MAC.W Instruction

186

When an LDS L (memory) instruction is located immediately after a MAC. W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.33) to create a
single slot. The MA of the LDS contends with IF. Figure 8.33 illustrates how this occurs,
assuming MA and IF contention.

> > > > > 4P 4> 4> <> 4> <> Slot

MACW IF ID EX MA — MA :mm mm:

LDS.L f — — ID EX M—A:
Other instruction IF ID — — EX
Other instruction f — — ID EX
Other instruction IF ID EX

> 4> 4> 4> C—— > 4> <> <> 4> 4> 4> <> Slot

MACW if ID EX MA MA mm:mm:
LDS.L F — ID — “MA
Other instruction if —
Other instruction
Other instruction

Figure 8.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

187

Double-Length Multiply/Accumulate Instruction (SH7600): Includes the following instruction
type:

- MACL @Rm+, @Ru+ (SH7600 only)

> 4> <> 4> <> > <> <> <> | Slot
| MACL IF ID EX MA MA mm mm mm mm |
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.34 Multiply/Accumulate Instruction Pipeline

Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure
8.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the
multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a
slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of
the MAC.L instruction, when they contend with IF, split the slots as described in Section 8.4,
Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA.
In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline
operates normally. When an instruction that uses the multiplier comes after the MAC.L
instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the
following cases:

When a MAC.L instruction is located immediately after another MAC.L instruction
When a MAC. W instruction is located immediately after a MAC.L instruction

When a DMULS.L instruction is located immediately after a MAC.L instruction

When a MULS. W instruction is located immediately after a MAC.L instruction

When an STS (register) instruction is located immediately after a MAC L instruction
When an STS.L (memory) instruction is located immediately after a MAC.L instruction
When an LDS (register) instruction is located immediately after a MAC.L instruction

S AR O A

When an LDS L. (memory) instruction is located immediately after a MAC.L instruction

188

When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 8.35) to create a single slot. When two or more
instructions that do not use the multiplier occur between two MAC.L instructions, the stall
caused by multiplier contention between MAC.L instructions is eliminated.

4> 4> 4> > 4> 4> ——p 4> 4> <> <> Slot

[MACL IF ID EX MA MA mm:mm _mm mm:

MAC.L IF — ID EX MA: M——A :mm mm mm mm

Third instruction IF — ID EX — — MA -

<> 4> <> 4 <> <> > <> <> 4> 4> <> <> Sot

|MAC.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA mm mm mm mm

Figure 8.35 MAC.L Instruction Immediately After Another MAC.L Instruction

Sometimes consecutive MAC.Ls may have less multiplier contention even when there is
misalignment of instruction execution caused by MA and IF contention. Figure 8.36 illustrates
a case of this type, assuming MA and IF contention.

> D O D P> — > 4> «———p 4> <> Slot

[MACL if ID EX MA MA mm mm:mm mm:

MAC L F — ID EX MA — i M—A :mm mm mm mm
MAC.L f — — ID EX — MA M——--~A mm mm mm mm
MAC.L F — ID EX — — — MA

Figure 8.36 Consecutive MAC.Ls with Misalignment

189

When the second MA of the MAC.L instruction is extended to the end of the mm, contention
between the MA and IF will split the slot in the usual way. Figure 8.37 illustrates a case of
this type, assuming MA and IF contention.

4> 4> > 4“—P 4> 4> «———p 4> 4> <> Slot

|MAC,L IF ID EX MA — MA mm:mm mm_ mm:
MAC L f — — ID EX MA: M———A :mm mm mm mm
Other intruction F — D — — — EX
Other intruction f — — — D
Other intruction IF

Figure 8.37 MA and IF Contention

190

When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the
previous multiplication instruction, the MA bus cycle is extended until the mm ends (the M—
A shown in the dotted line box in figure 8.38) to create a single slot. When two or more
instructions that do not use the multiplier occur between the MAC.L and MAC. W
instructions, the stall caused by multiplier contention between MAC.L instructions is
eliminated.

<> > > > > > <4«————p 4> <> Slot

[MACL IF ID EX MA MA mm mm mm mm:

MAC.W IF — ID EX MA:MA———A mm mm

Third instruction F — ID EX — — MA -

> O > > > > > 4> 4> > <> Slot

|MAC.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA MA mm mm

Figure 8.383 MAC.W Instruction Immediately After a MAC.L Instruction

191

When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm), the
MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.39) to
create a single slot. When two or more instructions not related to the multiplier come between
the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not cause
stalling. When the DMULS.L MA and IF contend, the slot is split.

> 4> 4> 4> 4> 4> <P 4> 4> 4> <> <> Sot
|MAC.L IF ID EX MA MA mm:mm mm mm:
DMULS.L F — ID EX MA: M——A ‘mm mm mm mm
Other instruction F — ID — — EX MA -
<> 4> 4> 4> 4> 4> <> <4» <4» : Slot

|MAC.L IF ID EX MA MA
Other instruction IF — ID EX
DMULS.L IF ID
Other instruction IF — ID —

mm mm

<> <4» <4» Slot

> > > > >

IMAC.L IF ID EX MA MA

Other instruction IF — ID EX
Other instruction IF ID
DMULS.L IF

Other instruction

MA WB

EX MA MA mm mm

Figure 8.39 DMULS.L Instruction Immediately After a MAC.L Instruction

192

When a MULS. W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA
is extended until the mm ends (the M—A shown in the dotted line box in figure 8.40) to
create a single slot. When three or more instructions not related to the multiplier come
between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

193

“—r 4> > > >

[MACL IF ID EX MA MA

MULS.W IF ID EX
Other instruction IF

+“r 4> > > >

> “—————p 4> <> <> 4> <> Slot

|MAC.L IF ID EX MA MA mm:mm_ mm mm:
Other instruction IF — ID EX

MULS.W IF ID EX M——— A imm mm
Other instruction IF ID EX — — MA -

+“r 4> 4> > >

mm

|MAC.L IF ID EX MA MA
Other instruction IF — ID EX
Other instruction IF ID
MULS.W IF

Other instruction

“r 4> 4> O >

MA

mm

|MAC.L IF ID EX MA MA
Other instruction IF — ID EX
Other instruction IF ID
Other instruction IF

MULS.W
Other instruction

WB

MA
EX
ID
IF

Figure 8.40 MULS.W Instruction Immediately After a MAC.L Instruction

194

When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.41) to create a single slot. The MA of the STS contends with the IF. Figure 8.41
illustrates how this occurs, assuming MA and IF contention.

> 4> > P> > pe4P>e4P><4> <> Sot

[MACL IF ID EX MA —

STS f — — ID EX:

Other instruction IF

Other instruction

Other instruction

> 4> > > <—> < > <> <> <> <> Slot
[MAC.L if ;
STS IF — ID — EX M——A 'WB
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction f — — ID EX -

Figure 8.41 STS (Register) Instruction Immediately After a MAC.L Instruction

195

When an STS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA

of the STS contends with the IF. Figure 8.42 illustrates how this occurs, assuming MA and IF
contention.

<> 4> 4> —> <> < > 4> <> <> <> Slot
[MACL IF ID EX MA — MA mm mm mm mm.
STS.L f — — ID EX:M—m8m—9 A

Other instruction F D — — — — EX MA

Other instruction f — — — — ID EX

Other instruction IF ID EX -

4 > > P> P 4P 4> 4> 4> > Sot
| MAC.L if

STS.L

Other instruction

Other instruction

Other instruction

Figure 8.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction

196

When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as

described later.

When the MA of the LDS instruction contends with the operating multiplier

(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.43) to create a single slot. The MA of this LDS contends with IF. Figure 8.43
illustrates how this occurs, assuming MA and IF contention.

> 4> > —> > < » <> <4><4P><> Slot

[MAC.L

IF ID EX MA

LDS
Other instruction
Other instruction
Other instruction

if — —

[MAC.L

if

LDS
Other instruction
Other instruction
Other instruction

Figure 8.43

LDS (Register) Instruction Immediately After a MAC.L Instruction

197

When an LDS L. (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.44) to create a
single slot. The MA of the LDS contends with IF. Figure 8.44 illustrates how this occurs,
assuming MA and IF contention.

> 4> > > <> < > <> <> <> <> Slot
[MACL IF ID EX MA
LDS.L if — —
Other instruction

Other instruction

Other instruction

[MACL if ID EX MA MA mm:mm mm mm:

LDS.L F — ID — EX:M—A
Other instruction f — ID EX
Other instruction IF ID — — EX
Other instruction f — — ID EX -

Figure 8.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

198

Multiplication Instructions (SH7000): Include the following instruction types:

* MULS.W Rm, Rn
+ MULU.W Rm, Rn

> 4> <> 4> 4> > <> > Slot
[IMULSW IF ID EX MA mm mm mm]
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.45 Multiplication Instruction Pipeline

Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The
MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates
for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when
it contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction
Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS. W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
comes after the MULS. W instruction, however, contention occurs with the multiplier, so operation
is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS. W instruction

When a MULS. W instruction is located immediately after another MULS.W instruction
When an STS (register) instruction is located immediately after a MULS. W instruction
When an STS.L (memory) instruction is located immediately after a MULS. W instruction
When an LDS (register) instruction is located immediately after a MULS. W instruction

S W & =

When an LDS.L (memory) instruction is located immediately after a MULS. W instruction

199

When a MAC.W instruction is located immediately after a MULS. W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS. W and
MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions

does not cause stalls (figure 8.46).

> 4> > > 4> —> 4> > > > <> Sot

[MULSW IF ID EX ;
MAC.W IF ID
Third instruction IF

<> 4> <> 4> > <> <> <> <> 4> <> <> Sot

|MULS.W IF ID EX MA mm mm :mm:
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA MA' mm mm mm -

Figure 8.46 MAC.W Instruction Immediately After a MULS.W Instruction

200

When a MULS. W instruction is located immediately after another MULS. W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS. W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.47) to create a single slot. When two or more instructions not related to the multiplier
are located between the two MULS. W instructions, contention between the MULS.Ws does
not cause stalling. When the MULS.W MA and IF contend, the slot is split.

4O > > > P 4> > 4> > 4> 4> <> Slot

MULS.W IF ID EX: M—————A :mm mm mm

Other instruction IF ID EX — — MA -

> 4> 4> 4> 4> 4P 4> 4> 4> 4> <> <> <«»: Sot
|MULS.W IF ID EX MA mm:mm mm: |

Other instruction IF ID EX
MULS.W IF ID EX :M—A ' mm mm mm
Other instruction IF ID EX — MA .

> > 4> 4> 4> > > > > 4> 4> 4> <«> <> Slot
|MULS.W IF ID EX MA mm mm :mm:

Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB

MULS.W IF ID EX:MA:mm mm mm
Other instruction IF ID EX MA -

Figure 8.47 MULS.W Instruction Immediately After Another MULS.W Instruction

201

When the MA of the MULS.W instruction is extended until the mm ends, contention between

MA and IF will split the slot, as is normal. Figure 8.48 illustrates a case of this type, assuming
MA and IF contention.

> 4> 4> >4 4> 4> 4> <> <> <> Sot
|MULS.W IF ID EX MA:mm mm mm:

MULS.W if ID EX: M——A ‘mm mm mm
Other instruction F D — — — EX MA -
Other instruction f — — — ID EX -
Other instruction IF ID -

Figure 8.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA Contention)

202

When an STS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.49) to create a single slot. The MA of the STS contends with the IF. Figure 8.49
illustrates how this occurs, assuming MA and IF contention.

> > > P> C—— P 4> 4> > 4> <> <> Slot

STS if ID EX M—A :WB
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULSW if ID EX MA mm:mm_ mm:

STS IF ID — EX M—AWB
Other instruction f — ID EX
Other instruction IF ID —
Other instruction f — ID EX -

Figure 8.49 STS (Register) Instruction Immediately After a MULS.W Instruction

203

4. When an STS.L (memory) instruction is located immediately after a MULS. W instruction
When the contents of a MAC register are loaded from memory using an STS instruction, an
MA stage for accessing the multiplier and writing to memory is added to the STS instruction,
as described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until one cycle after the mm ends (the M—A shown in the dotted
line box in figure 8.50) to create a single slot. The MA of the STS contends with the IF.
Figure 8.50 illustrates how this occurs, assuming MA and IF contention.

> > > <> < > <> 4> 4> > <> <> Slot
[MULSWIF D EX MA:
STS.L if :
Other instruction EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX -
> > > P> > 4> > 4> > > > <> Slot
[MULS.W if
STS.L IF ID — EX:M—A
Other instruction if — ID EX
Other instruction IF b — — EX
Other instruction f — — ID EX -

Figure 8.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

204

When an LDS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. Figure 8.51 illustrates how this
occurs, assuming MA and IF contention.

> > > P> 4> 4> > 4> <> <> Slot

LDS if 1D EX:M———A
Other instruction IF D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

|MULS.W if ID EX MA mm:mm_ mm:
LDS IF ID —
Other instruction if —
Other instruction

Other instruction

Figure 8.51 LDS (Register) Instruction Immediately After a MULS.W Instruction

205

When an LDS L (memory) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.52) to create a
single slot. The MA of the LDS contends with IF. Figure 8.52 illustrates how this occurs,
assuming MA and IF contention.

P> 4> > > C— P 4> 4> <> 4> <> <> Sot

[MULSW IF ID EX MA :mm mm mm:

LDS.L if ID EX: M—A :
Other instruction F D — — — EX MA
Other instruction f — — — ID EX
Other instruction IF ID EX -

[MULS. W if
LDS.L
Other instruction
Other instruction IF ID — EX
Other instruction if — ID EX -

Figure 8.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

206

Multiplication Instructions (SH7600): Include the following instruction types:

* MULS.W Rm, Rn
+ MULU.W Rm, Rn

> 4> 4> 4> <> 4> <> <> Slot
[MULSW IF ID EX MA mm mm]
Next instruction IF ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.53 Multiplication Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it
contends with IF, splits the slot as described in Section 8.4, Contention Between Instruction Fetch
(IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS. W instruction, the
MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
is located after the MULS. W instruction, however, contention occurs with the multiplier, so
operation is not as normal. This occurs in the following cases:

When a MAC.W instruction is located immediately after a MULS. W instruction

When a MAC L instruction is located immediately after a MULS. W instruction

When a MULS. W instruction is located immediately after another MULS. W instruction
When a DMULS L instruction is located immediately after a MULS. W instruction

When an STS (register) instruction is located immediately after a MULS. W instruction
When an STS.L (memory) instruction is located immediately after a MULS. W instruction
When an LDS (register) instruction is located immediately after a MULS. W instruction

T -l

When an LDS.L (memory) instruction is located immediately after a MULS. W instruction

207

1. When a MAC.W instruction is located immediately after a MULS. W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a

preceding multiplication instruction.

> 4> <>

<> 4> 4> 4> <> 4> <> <> . Sot

[MULSW IF ID EX

MA mm mm]

MAC.W IF ID
Third instruction IF

EX MA MA mm mm
— ID EX MA ...

Figure 8.54 MAC.W Instruction Immediately After a MULS.W Instruction

2. When a MAC.L instruction is located immediately after a MULS.W instruction

The second MA of a MAC.W instruction does not contend with the mm generated by a

preceding multiplication instruction.

<+ 4> <>

<> 4> 4> 4> <> <> <> <> . Sot

[MULSW IF ID EX

MA mm mm]

MAC.L IF ID
Third instruction IF

EX MA MA mm mm mm mm
— ID EX MA ...

Figure 8.55 MAC.L Instruction Immediately After a MULS.W Instruction

208

3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of another MULS. W
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.56) to create a single slot. When one or more instructions not related to the multiplier
is located between the two MULS.W instructions, contention between the MULS. Ws does not
cause stalling. When the MULS.W MA and IF contend, the slot is split.

O 4> > > 4> 4> > 4> > 4> <> <> Sot

[MULSW F_ID EX MA mm mm]

MULS.W IF ID EX:M—A mm mm

Other instruction IF ID EX — MA -

[MULSW F_ID EX MA mm.mm]

Other instruction IF ID EX
MULS.W IF ID EX:MA: mm mm
Other instruction IF ID EX MA -

Figure 8.56 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS. W instruction is extended until the mm ends, contention between
the MA and IF will split the slot in the usual way. Figure 8.57 illustrates a case of this type,
assuming MA and IF contention.

> 4> > P> 4P 4> 4> <> 4> <> <> Sot

[MULSW IF

MULS.W
Other instruction IF D — — EX MA -
Other instruction if — — D EX o
Other instruction IF ID -

Figure 8.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and
MA contention)

209

When a DMULS.L instruction is located immediately after a MULS. W instruction

MULS.W instructions have an MA stage for accessing the multiplier. The MA of the
MULS.W instruction does not contend with the operating multiplier (mm) of the DMULS.L
instruction.

> > > > P> 4> D > 4> > <> <> <> Sot
[MULSW IF ID EX MA mm mm |
DMULS.L IF ID EX MA MA mm mm mm mm
Other instruction IF — ID EX MA -

Figure 8.58 DMULS.L Instruction Immediately After a MULS.W Instruction

210

When an STS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.59) to create a single slot. The MA of the STS contends with the IF. Figure 8.59
illustrates how this occurs, assuming MA and IF contention.

+“r 4> 4> >

<“————p 4> 4> <> <> <> <> Slot

|MULS.W IF ID EX MA:mm. mm:
STS if 1D EX:M—A WB
Other instruction IF D — — EX
Other instruction f — — ID
Other instruction IF

|MULS.W if ID EX MA mm:mm:
STS IF ID — EX :MA: WB
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX o

Figure 8.59 STS (Register) Instruction Immediately After a MULS.W Instruction

211

When an STS.L (memory) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.60 illustrates how this occurs, assuming MA and IF
contention.

<> 4> 4> 4> 4—————p 4> <> <> <> <> <> Slot

[MULSW IF_ID EX MA mm mm]

STS.L if 1D EX:M——A
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> 4 > P 4> <> 4> > > <> > <> St

|MULS.W if ID EX MA mm:mm:

STS.L IF ID —
Other instruction if —
Other instruction IF ID EX
Other instruction if ID EX -

Figure 8.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction

212

When an LDS (register) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figures illustrates
how this occurs, assuming MA and IF contention.

> 4P 4> 4> 4—————p 4> 4P <> 4> <> <P Sot

[MULSW IF ID EX MAmm mm:

LDS if ID EX:M—A :
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> 4P 4> —> 4> 4> 4> > > 4> 4> 4> Sot

|MULS.W if ID EX MA mm:mm:

LDS IF ID — EX :MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 8.61 LDS (Register) Instruction Immediately After a MULS.W Instruction

213

8.

When an LDS L (memory) instruction is located immediately after a MULS. W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.62) to create a
single slot. The MA of the LDS contends with IF. Figure 8.62 illustrates how this occurs,
assuming MA and IF contention.

> 4P 4> P> 4“—————p 4> 4> <> <> <> <> Sot

[MULSW IF ID EX MA mm mm:

LDS.L if ID EX:M—A:
Other instruction IF D — — EX MA
Other instruction f — — ID EX
Other instruction IF ID EX -

> 4> 4> 4— > 4> 4> 4> 4> 4> > 4> <> Sot

|MULS.W if ID EX MA mm:mm:

LDS.L IF ID — EX MA:
Other instruction if — ID EX
Other instruction IF ID EX
Other instruction if ID EX -

Figure 8.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

214

Double-Length Multiplication Instructions (SH7600): Include the following instruction types:

« DMULS.L Rm, Rn (SH7600 only)
« DMULU.L Rm, Rn (SH7600 only)
« MULL Rm, Rn (SH7600 only)

P> D 4> > D D > P> P> <> <> Sot
[DMULSL IF ID EX MA MA mm mm mm mm]|
Next instruction IF — ID EX MA WB
Third instruction IF ID EX MA WB

Figure 8.63 Multiplication Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 8.63). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
four cycles after the MA ends, regardless of a slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS L instruction, when they contend with IF, split the
slot as described in section 8.4, Contention Between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal. This occurs in the following cases:

When a MAC L instruction is located immediately after a DMULS.L instruction

When a MAC.W instruction is located immediately after a DMULS.L instruction

When a DMULS L instruction is located immediately after another DMULS.L instruction
When a MULS. W instruction is located immediately after a DMULS.L instruction

When an STS (register) instruction is located immediately after a DMULS.L instruction
When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
When an LDS (register) instruction is located immediately after a DMULS L instruction
When an LDS L (memory) instruction is located immediately after a DMULS.L instruction

e AL

215

When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a preceding
multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M—A
shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS L
and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L
instructions does not cause stalls (figure 8.64).

> > 4> > > > P <> <> <> > Sot

[DMULSL IF ID EX MA MA mm : ;
MAC.L IF — ID EX MA

Third instruction IF — ID

<> 4P 4> 4D <D P> D> <> P> <> 4P <> <> Sot

IDMULS.L IF ID EX MA MA mm mm mm:mm}

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.L IF ID EX MA:MA:mm mm mm mm

Figure 8.64 MAC.L Instruction Immediately After a DMULS.L Instruction

216

2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a
preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends
(the M—A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L
and MAC. W instructions, multiplier contention between the DMULS.L and MAC. W
instructions does not cause stalls (figure 8.65).

4> 4> > > 4> 4> ¢ p 4> 4> <«> 4> Slot

[DMULSL IF ID EX MA MA mm :mm mm . mm.

MAC.W IF — ID EX MA: M—A ‘mm mm

Third instruction IF — ID EX — — MA -

4 4> 4 O 4> > > > P> 4> 4> > <> Sot

IDMULS.L IF ID EX MA MA mm mm mm:mm:

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
MAC.W IF ID EX MA:MA:mm mm

Figure 8.65 MAC.W Instruction Immediately After a DMULS.L Instruction

217

When a DMULS L instruction is located immediately after another DMULS.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the
DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L
instruction, the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.66) to create a single slot. When two or more instructions not related to the multiplier
are located between two DMULS.L instructions, contention between the DMULS.Ls does not
cause stalling. When the DMULS.LL MA and IF contend, the slot is split.

> 4> 4> > > P> > 4> <> <> > <> Sot
| DMULS.L ID EX MA MA mm :mm_mm._ mm.
DMULS.L IF — ID EX MA: M———A ' mm mm mm mm
Other instruction F — ID EX — — MA -
> > 4> > > > > P> > <> <> 4> <> Sot
| DMULS.L ID EX MA MA mm mm:mm mm:
Other instruction IF — ID EX
DMULS.L IF ID EX MA: M—A: mm mm mm mm
Other instruction F — ID EX — MA -
> 4> > D 4> > > P> P> 4> <> > <> > Sot
[DMULSL IF ID EX MA MA mm_ mm mm .mm:
Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
DMULS.L IF ID EX MA:MA: mm mm mm mm
Other instruction IF — ID EX MA ...

Figure 8.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

218

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.67 illustrates a case of
this type, assuming MA and IF contention.

> > > > > > < > <> <> <> :Slot
[DMULSL IF ID EX MA MA —
DMULS.L f — EX — ID
Other instruction IF

Other instruction
Other instruction

Figure 8.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF
and MA Contention)

219

4. 'When a MULS. W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the
MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L instruction,
the MA is extended until the mm ends (the M—A shown in the dotted line box in figure 8.68)
to create a single slot. When three or more instructions not related to the multiplier are located
between the DMULS.L instruction and the MULS.W instruction, contention between the

DMULS.L and MULS.W does not cause stalling. When the MULS. W MA and IF contend,
the slot is split..

<> 4> > > <> < > <> <> <> <> <> Slot
MULS.W F — ID EX M—— A 'mm mm
Other instruction IF D EX — — — MA ...

> 4 4> O 4> > > 4> > 4> 4> 4> 4> <> Sot
[DMULSL IF ID EX MA MA mm mm mm . mm.

Other instruction IF — ID EX MA WB
Other instruction IF ID EX MA WB
Other instruction IF ID EX MA WB
MULS.W IF ID EX:MA: MA mm mm
Other instruction IF ID EX MA .-

Figure 8.68 MULS.W Instruction Immediately After a DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention
between the MA and IF will split the slot in the usual way. Figure 8.69 illustrates a case of
this type, assuming MA and IF contention.

4O 4> P> 4—P> 4¢P 4> 4> 4> <> Sot

[DMULSL IF ID EX MA — MA mm.mm._mm_mm.]|
MULS.W f — — ID EX M—— A mmmm
Other instruction IF D — — — — EXMA- .-
Other instruction f — — — — ID EX -
Other instruction IF ID -

Figure 8.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and MA
Contention)

220

When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS
instruction, an MA stage for accessing the multiplier is added to the STS instruction, as
described later. When the MA of the STS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box in
figure 8.70) to create a single slot. The MA of the STS contends with the IF. Figure 8.70
illustrates how this occurs, assuming MA and IF contention.

4P 4P AP 4 P 4P C———————— pa4P<P>e>P>>. Sot

DMULSL IF ID EX MA — MA:mm mm mm mm:

STS if — — ID EXiM——AWB
Other instruction IF D — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX -

DMULS.L if ID EX MA MA mm: mm mm mm:

STS IF — ID — EX:M——AWB
Other instruction if — ID EX
Other instruction IF D — — EX
Other instruction f — — ID EX

Figure 8.70 STS (Register) Instruction Immediately After a DMULS.L Instruction

221

When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA
stage for accessing the multiplier and writing to memory is added to the STS instruction, as
described later. However, with the SH7600 series, unlike the SH7000 series, the MA of the
STS does not contend with the multiplier operation (mm) when the cache is enabled. The MA
of the STS contends with the IF. Figure 8.71 illustrates how this occurs, assuming MA and IF
contention.

<> 4> 4> 4“—> 4> < > 4> <> 4> 4> <«». Slot

STS.L f — — ID EX_-M——A:
Other instruction F D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX

DMULS.L if ID EX MA MA mm: mm mm mm:
STS.L IF — ID
Other instruction if

Other instruction
Other instruction

Figure 8.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction

222

7.

When an LDS (register) instruction is located immediately after a DMULS L instruction

When the contents of a MAC register are loaded from a general-purpose register using an
LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as
described later. When the MA of the LDS instruction contends with the operating multiplier
(mm), the MA is extended until the mm ends (the M—A shown in the dotted line box below)
to create a single slot. The MA of this LDS contends with IF. The following figure illustrates
how this occurs, assuming MA and IF contention.

4P 4P P 4P PP 4> 4> > <> <> Slot

DMULS.L IF ID EX MA — MA:mm mm mm mm:

LDS if — — ID EXIM——A:
Other instruction IF D — — — — EXMA
Other instruction f — — — — ID EX
Other instruction IF ID EX

DMULS.L if ID EX MA MA mm: mm mm mm:

LDS IF — ID — EXM—A:
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction f — — ID EX

Figure 8.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction

223

When an LDS L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an
MA stage for accessing the multiplier is added to the LDS instruction, as described later.
When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is
extended until the mm ends (the M—A shown in the dotted line box in figure 8.73) to create a
single slot. The MA of the LDS contends with IF. Figure 8.73 illustrates how this occurs,
assuming MA and IF contention.

> > > 4—> >« > 4> <4> 4> <> <« Slot

LDS.L f — — ID EX.:M——A:
Other instruction F D — — — — EX MA
Other instruction f — — — — ID EX
Other instruction IF ID EX

DMULS.L if ID EX MA MA mm: mm mm mm:

LDS.L IF — ID — EX:M———A:
Other instruction if — ID EX
Other instruction IF ID — — EX
Other instruction f — — ID EX

Figure 8.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

224

8.7.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

« AND Rm, Rn
e AND #imm, RO
« NOT Rm, Rn
*« OR Rm,Rn
« OR #imm, RO
« TST Rm, Rn
e TST #imm, RO
* XOR Rm, Rn
¢ XOR #imm, RO

<> <> <> 4> <> <> Sot
linstructionA IF 1D EX|
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.74 Register-Register Logic Operation Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is
completed in the EX stage via the ALU.

225

Memory Logic Operation Instructions: Include the following instruction types:

- ANDB #imm, @(R0, GBR)
-« ORB #imm, @(R0, GBR)
« TSTB #imm, @(RO, GBR)
- XORB #imm, @(R0, GBR)

> 4> 4> 4> 4> <> 4> <> <> Slot
[IinstructionA IF_ID EX MA EX MA|
Next instruction IF — — ID EX -
Third instruction IF ID EX -

Figure 8.75 Memory Logic Operation Instruction Pipeline

Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.75).
The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

226

TAS Instruction: Includes the following instruction type:

- TASB @Rn

P> 4> 4> 4> 4> 4> <> <> 4> Slot
[Instruction A IF 1D EX MA EX MA]
Next instruction F — — — ID EX -
Third instruction IF ID EX -

Figure 8.76 TAS Instruction Pipeline

Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 8.76). The ID of the
next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

227

8.7.4

Shift Instructions

Shift Instructions: Include the following instruction types:

ROTL
ROTR
ROTCL
ROTCR
SHAL
SHAR
SHLL
SHLR
SHLL2
SHLR2
SHLLS
SHLRS
SHLL16
SHLR16

gggegeggpgegpegreee

<> 4> 4> 4> 4> <> 4> <> <> Slot

[Instructon A IF D EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.77 Shift Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.77). The data operation is
completed in the EX stage via the ALU.

228

8.7.5 Branch Instructions
Conditional Branch Instructions: Include the following instruction types:

« BF label
« BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 8.78).

> 4> 4> 4> 4> 4> 4> <> <> Sot
[Instruction A IF__ID__EX]

Next instruction IF — (Fetched but discarded)
Third instruction IF — (Fetched but discarded)
Branch destination — IF ID EX .-
...... 1= D EX -

Figure 8.78 Branch Instruction When Condition is Satisfied
2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.79).

<> 4> 4> 4> 4> <> 4> <> 4> Sot
[Instruction A IF__ID__EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX -

Figure 8.79 Branch Instruction When Condition is Not Satisfied

229

Delayed Conditional Branch Instructions (SH7600 only): Include the following instruction
types:

* BF/S label (SH7600 only)
« BT/S label (SH7600 only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in
the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 8.80).

<+ 4> 4> 4> > 4> <> 4> <> Sot
[Instructon A IF 1D EX]

Next instruction IF ID — EX MA WB
Third instruction IF — (Fetched but discarded)
Branch destination IF ID EX -
...... IF ID EX .-

Figure 8.80 Branch Instruction When Condition is Satisfied
2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 8.81).

<+ 4> > 4> > 4> <> 4> <> Sot
[Instruction A IF ID EX]

Next instruction IF ID EX -
Third instruction IF ID EX -
...... IF ID EX -

Figure 8.81 Branch Instruction When Condition is Not Satisfied

230

Unconditional Branch Instructions: Include the following instruction types:

* BRA label

* BRAF Rn (SH7600 only)
*« BSR label

* BSRF Rn (SH7600 only)
« IMP @Rn

+ JSR @Rn

* RTS

<P 4> 4> P> 4> P> 4> 4> <> ;. Slot
[Instruction A IF ID EX]

Delay slot IF — ID EX MA WB
Branch destination IF ID EX -
..... IF ID EX .-

Figure 8.82 Unconditional Branch Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.82). Unconditional branch
instructions are delayed branch. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is fetched and not discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch

destination instruction starts its fetch from the slot after the slot that has the EX stage of instruction
A

231

8.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

« CLRT

- LDC Rm, SR
- LDC Rm, GBR
- LDC Rm, VBR
- LDS Rm, PR
- NOP

« SETT

« STC SR,Rn

.« STC GBR,Rn
.« STC VBR,Rn
.+ STS PR, Rn

4> 4> > 4> > P> 4> <> <> Slot
LinstructonA IF D EX]
Next instruction IF ID EX -
Third instruction IF ID EX -

Figure 8.83 System Control ALU Instruction Pipeline

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.83). The data operation is
completed in the EX stage via the ALU.

232

LDC.L Instructions: Include the following instruction types:

-« LDCL @Rm+, SR
-« LDCL @Rm+ GBR
« LDCL @Rm+ VBR

> 4> > 4> 4> <> <> 4> <> Sot
LinstructonA IF D EX MA EX]|
Next instruction F — — ID EX -
Third instruction IF ID EX -

Figure 8.84 LDC.L Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 8.84). The ID of the
following instruction is stalled for two slots.

233

STC.L Instructions: Include the following instruction types:

« STCL SR, @-Rn
- STCL GBR,@-Rn
- STCL VBR, @-Rn

5 N2

> 4> > > 4> <> <> 4> <> Slot
Linstructon A IF D EX MA]
Next instruction IF — ID EX -
Third instruction IF ID EX -

Figure 8.85 STC.L Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.85). The ID of the next
instruction is stalled for one slot.

234

LDS.L Instruction (PR): Includes the following instruction type:

- LDSL @Rm+ PR

> 4> > > 4> 4> <> <> <> Sot
[Instruction A

IF ID EX MA WB]
IF ID EX

Next instructon ~ IF ID EX .-

Third instruction IF ID EX

Figure 8.86 LDS.L Instruction (PR) Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.86). It is the same as
an ordinary load instruction.

235

STS.L Instruction (PR): Includes the following instruction type:

- STSL PR, @-Rn

<> > > > > <> <> <> <> Sot
[Instruction A

IF ID EX MA]
IF ID EX
IF ID EX

Next instruction

Third instruction

Figure 8.87 STS.L Instruction (PR) Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.87). It is the same as an
ordinary store instruction.

236

Register — MAC Transfer Instructions: Include the following instruction types:

« CLRMAC
« LDS Rm, MACH
- LDS Rm, MACL

<+ 4> 4> 4> 4> 4> 4> <> <4P> ;. Slot
[Instructon A IF ID EX MA]

Next instruction IF ID EX

Third instruction IF ID EX

Figure 8.88 Register — MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.88). The MA is a stage for
accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store

instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

237

Memory — MAC Transfer Instructions: Include the following instruction types:

« LDSL @Rm+ MACH
« LDSL @Rm+ MACL

<> 4> 4> 4> 4> <> 4> <> <> Slot

[Instructon A IF_ID EX MA]
Next instruction IF ID EX

Third instruction IF

Figure 8.89 Memory — MAC Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.89). The MA contends
with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as

ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

238

MAC — Register Transfer Instructions: Include the following instruction types:

+ STS MACH. Rn
+ STS MACL,Rn

<> 4> 4> 4> 4> <> 4> <> 4> Sot

[Instructon A IF_ ID EX MA WB]
Next instruction IF ID EX

Third instruction IF

Figure 8.90 MAC — Register Transfer Instruction Pipeline

Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 8.90). The MA is a
stage for accessing the multiplier. The MA contends with the IF. This makes it the same as

ordinary load instructions. Since the multiplier contends with the MA, see the section for the MAC
and MUL instructions.

239

MAC — Memory Transfer Instructions: Include the following instruction types:

« STSL MACH, @-Rn
« STSL MACL, @-Rn

S A

<> 4> 4> 4> 4> <> 4> <> <> Slot

[Instructon A IF_ ID EX MA WB]
Next instruction IF ID EX

Third instruction IF

Figure 8.91 MAC — Memory Transfer Instruction Pipeline

Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 8.91). The MA is a stage for
accessing the multiplier. The MA contends with IF. This makes it the same as ordinary store

instructions. Since the multiplier contends with the MA, see the section for the MAC and MUL
instructions.

240

RTE Instruction: Includes the following instruction type:

* RTE

P> 4> > 4> > P> > <> <> Sot
IRTE_IF_ID EX MA MA]
Delay slot F — — — ID EX .-
Branch destination IF ID EX -

Figure 8.92 RTE Instruction Pipeline

The pipeline has five stages: IF, ID, EX, MA, and MA (figure 8.92). The MAs contend with the
IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3
slots. The IF of the branch destination instruction starts from the slot following the MA of the

RTE.

241

TRAP Instruction: Includes the following instruction type:

« TRAPA #imm

> 4 4> > 4 4> 4> D > > 4> <> <> Sot
[TRAPA IF ID EX EX MA MA MA EX EX]
Next instruction IF
Third instruction IF
Branch destination IF ID EX -

Figure 8.93 TRAP Instruction Pipeline

The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.93). The MAs
contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the
TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch
destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

242

SLEEP Instruction: Includes the following instruction type:

+ SLEEP

> 4> 4> 4> > > > > > Slot
[SLEEP IF ID EX]
Next instruction IF

Figure 8.94 SLEEP Instruction Pipeline

Operation: The pipeline has three stages: IF, ID and EX (figure 8.94). It is issued until the IF of
the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or
standby mode.

243

8.7.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

+ Interrupt exception processing

<> > <> 4> > > D> <> > > > <> <> Sot

[interrupt IF_ID. EX EX MA MA EX MA EX EX]
Next instruction IF
Branch destination IF ID EX -

...... IF ID ...

Figure 8.95 Interrupt Exception Processing Pipeline

Operation: The interrupt is received during the ID stage of the instruction and everything after the
ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages:
IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.95). Interrupt exception processing is
not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch
destination instructions, the IF starts from the slot that has the final EX in the interrupt exception
processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip
peripheral module interrupts.

244

Address Error Exception Processing: Includes the following instruction type:

+ Address error exception processing

> > > > 4> 4> 4> > 4> > 4> > > Sot

[interrupt IF_ ID. EX EX MA MA EX MA EX EX]
Next instruction IF
Branch destination IF ID EX ...

....... IF ID ...

Figure 8.96 Address Error Exception Processing Pipeline

Operation: The address error is received during the ID stage of the instruction and everything
after the ID stage is replaced by the address error exception processing sequence. The pipeline has
ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 8.96). Address error exception
processing is not a delayed branch. In address error exception processing, an overrun fetch (IF)
occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the
address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on-chip peripheral register
causes an instruction fetch address error. Accessing word data from other than a word boundary,
accessing longword data from other than a longword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause a read or write address error.

245

Illegal Instruction Exception Processing: Includes the following instruction type:

+ Illegal instruction exception processing

> 4> 4> 4> O 4 4> 4> 4> 4> 4> <> <> . Slot

|IIIegaI instruction :IF ID: EX EX MA MA MA EX EX

Next instruction IF
(Third instruction IF)
Branch destination IF ID EX ..

Figure 8.97 Illegal Instruction Exception Processing Pipeline

Operation: The illegal instruction is received during the ID stage of the instruction and everything
after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline
has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 8.97). Illegal instruction
exception processing is not a delayed branch. In illegal instruction exception processing, an
overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that
as well depends on the instruction that was to be executed. In branch destination instructions, the
IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot
instructions. When undefined code placed somewhere other than the slot directly after the delayed
branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception
processing occurs. When undefined code placed in the delay slot is decoded or when an instruction
placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction
occurs.

246

Appendix A Instruction Code
See “6. Instruction Descriptions™ for details.

A.1 Instruction Set by Addressing Mode

Table A.1 lists instruction codes and execution states by addressing modes.

247

Table A.1

Instruction Set by Addressing Mode

Types
Addressing Mode Category Sample Instruction SH SH
7600 7000
No operand — NOP 8 8
Direct register Destination operand only MOVT Rn 18 17
addressing
Source and destination ADD Rm, Rn 34 31
operand
Load and store with control 1LDC Rm, SR 12 12
register or system register STS MACH. Rn
Indirect register Destination operand only JMP @Rn
addressing Data transfer with direct MOV.L Rm, @Rn 6
register addressing
Post increment indirect Multiply/accumulate MAC.W @Rmt+, GRn+ 2 1
register addressing operation
Data transfer from direct MOV.L @Rmt,Rn 3 3
register addressing
Load to control register or LDC.L @Rm+, SR 6 6
system register
Pre decrement indirect Data transfer from direct MOV.L Rm,@-Rn 3 3
register addressing register addressing
Store from control register STC.L SR, @-Rn 6 6
or system register
Indirect register Data transfer with direct MOV.L Rm,@(disp,Rn) 6 6
addressing with register addressing
displacement
Indirect indexed register Data transfer with direct MOV.L Rm,@Q@(RO,Rn) 6 6
addressing register addressing
Indirect GBR addressing Data transfer with direct MOV.L R,Q@(disp,GBR) 6 6
with displacement register addressing
Indirect indexed GBR Immediate data transfer AND.B #imm, @ (RO, GBR) 4 4
addressing
PC relative addressing Data transfer to direct MOV.L @(disp,PC),Rn 3 3
with displacement register addressing
PC relative addressing Branch instruction BRAF Rn 2 0
with Rn
PC relative addressing Branch instruction BRA label 6
Immediate addressing Arithmetic logical ADD #imm, Rn
operations with direct
register addressing
Specify exception TRAPA #imm 1 1

processing vector

248

Total: 142 133

A.1.1 No Operand
Table A.2 No Operand

Instruction Code Operation State T Bit
CLRT 0000000000001000 0—-T 1 0
CLRMAC 0000000000101000 0 — MACH, MACL 1 —
DIVOU 0000000000011001 0 — M/QT 1 0
NOP 0000000000001001 No operation 1 —
RTE 0000000000101011 Delayed branch, Stack area 4 LSB
— PC/SR

RTS 0000000000001011 Delayed branch, PR — PC 2 —
SETT 0000000000011000 1T 1 1
SLEEP 0000000000011011 Sleep 3 =

249

A.1.2 Direct Register Addressing

Table A.3 Destination Operand Only
Instruction Code Operation State T Bit
CMP/PL Rn 0100nnnn00010101 Rn>01->T 1 Comparison result
CMP/PZ Rn 0100nnnn00010001 Rnz20,1->T 1 Comparison result
DT Rn* 0100nnnn00010000 Rn—-1— Rn 1 Comparison result
When Rnis 0,1 - T,
when Rn is nonzero,
0->T
MOVT Rn 0000nnnn00101001 T—Rn 1 —
ROTL Rn 0100nnNnn00000100 T —Rn« MSB 1 MSB
ROTR Rn 0100nnnn00000101 LSB - Rn —T 1 LSB
ROTCL Rn 0100nnnn00100100 T—Rn<T 1 MSB
ROTCR Rn 0100nnnn00100101 T—->Rn->T 1 LSB
SHAL Rn 0100nnNnn00100000 T—Rn<0 1 MSB
SHAR Rn 0100nnnn00100001 MSB —- Rn—T 1 LSB
SHLL Rn 0100nnNnn00000000 T—Rn<0 1 MSB
SHIR Rn 0100nnNnn00000001 0—-Rn—-T 1 LSB
SHLL2 Rn 0100nnNnn00001000 Rn<<2 —Rn 1 —
SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —
SHLLS8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —
SHLRS8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —
SHLL16 Rn 0100nnnn00101000 Rn<<16 — Rn 1 —_
SHILR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 —
Note: SH7600 instruction
Table A4 Source and Destination Operand
Instruction Code Operation State T Bit
ADD Rm, Rn 001 Innnnmmmml1 100 Rn+Rm — Rn 1 —
ADDC Rm, Rn 001 1nnnnmmmml 110 Rn+Rm+ T — Rn, 1 Carry
carry - T
ADDV Rm, Rn 001 1nnnnmmmml 111 Rn+ Rm — Rn, 1 Overflow
overflow —» T
AND Rm, Rn 001 0nnnnmmmm1001 Rn & Rm — Rn 1 —

250

Table A4

Source and Destination Operand (cont)

Instruction Code Operation State T Bit
CMP/EQ Rm,Rn 001 Innnnmmmm0000 WhenRn=Rm,1—->T 1 Comparison
result
CMP/HS Rm,Rn 001 1nnnnmmmm0010 When unsigned and Rn 1 Comparison
ZRm, 1 —-»T result
CMP/GE Rm,Rn 001 1nnnnmmmm0011 When signed and Rnz 1 Comparison
Rm,1—->T result
CMP/HI Rm,Rn 0011nnnnmmmm0110 When unsigned and Rn 1 Comparison
>Rm,1—->T result
CMP/GT Rm,Rn 0011nnnnmmmm0111 When signed and Rn > 1 Comparison
Rm,1—-T result
CMP/STR Rm, Rn 0010nnnnmmmm1100 When a byte in Rn 1 Comparison
equals bytes in Rm, 1 result
—-T
DIV1 Rm, Rn 001 1nnnnmmmm0100 1-step division (Rn + 1 Calculation
Rm) result
DIVOS Rm, Rn 0010nnnnmmmm0111 MSB of Rn — Q, MSB 1 Calculation
of Rm— M M*"Q —T result
DMULS.L Rm,Rn*? 001lnnnnmmmmll01 Signed, Rn * Rm — 2t04*1 —
MACH, MACL
DMULU.L Rm,Rn*? 001lnnnnmmmm0101 Unsigned, Rn * Rm — 2to4*! —
MACH, MACL
EXTS.B Rm,Rn 0110nnnnmmmml 110 Sign — extends Rm 1 —
from byte — Rn
EXTS.W Rm,Rn 0110nnnnmmmml 111 Sigh — extends Rm 1 —
from word — Rn
EXTU.B Rm,Rn 0110nnnnmmmml 100 Zero — extends Rm 1 —
from byte — Rn
EXTU.W Rm,Rn 0110nnnnmmmml 101 Zero — extends Rm 1 —
from word — Rn
MoV Rm, Rn 0110nnnnmmmm001 1 Rm — Rn 1 —
MUL.I. Rm,Rn*? 0000nnnnmmmm0111 Rn % Rm — MACL 2t0 41 —
MULS.W Rm, Rn 0010nnnnmmmm1111 Signed, Rn * Rm — 1031 —
MAC
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn * Rm — 1to3*! _
MAC
NEG Rm, Rn 0110nnnnmmmml 011 0-Rm —Rn 1 —
NEGC Rm, Rn 0110nnnnmmmml 010 0-Rm-T—Rn, 1 Borrow
Borrow — T
Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

251

Table A4

Source and Destination Operand (cont)

Instruction Code Operation State T Bit
NOT Rm, Rn 0110nnnnmmmm0111 ~Rm — Rn 1 —
OR Rm, Rn 001 0nnnnmmmm1 011 Rn|Rm — Rn 1 —
SUB Rm, Rn 001 Innnnmmmml 000 Rn—Rm — Rn 1 =
SUBC Rm, Rn 001 1nnnnmmmml 010 Rn—-Rm-T — Rn, 1 Borrow
Borrow — T
SUBV Rm, Rn 001 1nnnnmmmml 011 Rn—-Rm — Rn, 1 Underflow
Underflow — T
SWAP.B Rm,Rn 0110nnnnmmmml000 Rm — Swap upper and 1 —
lower halves of lower 2
bytes — Rn
SWAP.W Rm,Rn 0110nnnnmmmml001 Rm — Swap upper and 1 —
lower word — Rn
TST Rm, Rn 001 0nnnnmmmm1 000 Rn & Rm, when result is 1 Test results
0,1 ->T
XOR Bm,Rn 0010nnnnmmmml010 Rn*Rm — Rn 1 —
XTRCT Rm, Rn 001 0nnnnmmmml1 101 Center 32 bits of Rmand 1 —
Rn — Rn
Table A.S Load and Store with Control Register or System Register
Instruction Code Operation State T Bit
LDC Rm, SR 0100mmmO00001110 Rm— SR 1 LSB
LDC Rm, GBR 0100mmm00011110 Rm— GBR 1 —
LDC Rm, VBR 0100mmm00101110 Rm— VBR 1 —
DS Rm, MACH 0100mmmO00001010 Rm — MACH 1 —_
DS Rm, MACL 0100mmm00011010 Rm — MACL 1 —
DS Rm, PR 0100mmm00101010 Rm— PR 1 —
STC SR, Rn 0000nnNnn00000010 SR — Rn 1 —_
STEC GBR, Rn 0000nnNnn00010010 GBR — Rn 1 —
STC VBR, Rn 0000nnNnn00100010 VBR — Rn 1 —
STS MACH, Rn 0000nnNnn00001010 MACH — Rn 1 —_
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR, Rn 0000nnnn00101010 PR — Rn 1 =

252

A.1.3 Indirect Register Addressing

Table A.6 Destination Operand Only

Instruction Code

Operation

State

T Bit

JMP @Rn 0100nnnn00101011

Delayed branch, Rn — PC

JSR C@Rn 0100nnnn00001011

Delayed branch, PC — PR,
Rn — PC

TAS.B @Rn 0100nnnn00011011

When (Rn)is 0,1 -T,1 —
MSB of (Rn)

Test results

Table A.7 Data Transfer with Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,GRn 0010nnnnmmmm0000 Rm — (Rn) 1 —

MOV.W Rm,@Rn 0010nnnnmmmm0001 Rm — (Rn) 1 —

MOV.L Rm,GRn 0010nnnnmmmm0010 Rm — (Rn) 1 —

MOV.B @Rm,Rn 011 0nnnnmmmm0000 (Rm) — sign extension — Rn 1 —

MOV.W @Rm,Rn 0110nnnnmmmmO001 (Rm) — sign extension — Rn 1 —

MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) = Rn 1 —

A.1.4 Post Increment Indirect Register Addressing

Table A.8 Multiply/Accumulate Operation

Instruction Code Operation State T Bit

MAC.L @Rmt,@Rn+*? 0000nnnnmmmml111 Signed, (Rn) * (Rm) + MAC 32todf! —
— MAC

MAC.W @Rm+, @Rn+ 0100nnnnmmmm1111 Signed, (Rn) *x (Rm)+ MAC 3/(2)*! —

— MAC

Notes: 1. The normal minimum number of execution states (The number in parentheses is the
number of states when there is contention with preceding/following instructions).

2. SH7600 instruction

253

Table A.9

Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B @Rmt,Rn 0110nnnnmmmm0100 (Rm) — sign extension — 1 —
Rn,Rm+1— Rm

MOV.W @Rm+,Rn 0110nnnnmmmm0101 (Rm) — sign extension — 1 —
Rn,Rm+2 — Rm

MOV.L @Rm+t,Rn 0110nnnnmmmm0110 (Rm)— Rn,Rm+4 — Rm 1 —

Table A.10 Load to Control Register or System Register

Instruction Code Operation State T Bit

IDC.L QRmt, SR 0100mmmm00000111 (Rm)— SR, Rm+4 —Rm 3 LSB

IDC.L QRm#,GBR 0100mmmm00010111 (Rm) —» GBR, Rm+ 4 — Rm 3 —

ILDC.L G@Rm+,VBR 0100mmmm00100111 (Rm) - VBR, Rm+ 4 — Rm 3 —

ILDS.L @Rm#,MACH 0100mmmm00000110 (Rm) - MACH, Rm+4 -Rm 1 —

ILDS.L QRm#,MACL 0100mmm00010110 (Rm) > MACL,Rm+4 -Rm 1 —

1DS.L @Rm+, PR 0100mmmm00100110 (Rm) > PR, Rm+ 4 — Rm 1 —

A.1.5 Pre Decrement Indirect Register Addressing

Table A.11 Data Transfer from Direct Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm,@-Rn 0010nnnnmmmm0100 Rn—-1— Rn, Rm — (Rn) 1 —

MOV.W Rm, @-Rn 0010nnnnmmmm0101 Rn -2 — Rn, Rm — (Rn) 1 —

MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn -4 — Rn, Rm — (Rn) 1 —

254

Table A.12 Store from Control Register or System Register

Instruction Code Operation State T Bit

STC.L SR, @Rn 0100nnnn00000011 Rn-4 — Rn, SR — (Rn) 2 —

STC.L GBR, @-Rn 0100nnnn00010011 Rn-4— Rn,GBR — (Rn) 2 —

STC.L VBR, @-Rn 0100nnnn00100011 Rn-4—Rn, VBR— (Rn) 2 —

STS.L MACH, @-Rn 0100nnnn00000010 Rn—-4 — Rn, MACH — (Rn) 1 —

STS.L MACL, @-Rn 0100nnnn00010010 Rn-4 — Rn, MACL — (Rn) 1 —

STS.L PR, @Rn 0100nnnn00100010 Rn-4 — Rn, PR — (Rn) 1 —

A.1.6 Indirect Register Addressing with Displacement

Table A.13 Indirect Register Addressing with Displacement

Instruction Code Operation State T Bit

MOV.B RO, Q(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —

MOV.W RO, Q(disp,Rn) 10000001nnnndddd RO — (disp x 2+ Rn) 1 —

MOV.L Rm,Q(disp,Rn) 000 Innnnmmmmdddd Rm — (disp x4+ Rn) 1 —

MOV.B @ (disp,Rm),RO 100001 00mmmmdddd (disp + Rm) — sign 1 —

extension — RO
MOV.W @ (disp,Rm),RO 1000010 1mmmmdddd (disp % 2+ Rm) — sign 1 —
extension — RO

MOV.L (@(disp,Rm),Rn 010 1nnnnmmmmdddd (disp *4+Rm) - Rn 1 —

A.1.7 Indirect Indexed Register Addressing

Table A.14 Indirect Indexed Register Addressing

Instruction Code Operation State T Bit

MOV.B Rm, @ (RO, Rn) 0000nnNNmmMmm0 100 Rm — (RO + Rn) 1 —

MOV.W Rm, @ (RO, Rn) 0000nnNNmmMmm0101 Rm — (RO + Rn) 1 —

MOV.L Rm,@(RO,Rn) 0000nNNNmMmMm0110 Rm — (RO + Rn) 1 —

MOV.B @(RO,Rm),Rn 0000nnnnmmmm1 100 (RO + Rm) — sign extension 1 —
—Rn

MOV.W @ (RO,Rm),Rn 0000nnnNmmmm1101 (RO + Rm) — sign extension 1 —
—Rn

MOV.L Q(RO,Rm),Rn 0000nnnnmmrmmlll10 (RO+Rm)— Rn 1 —

255

A.18

Indirect GBR Addressing with Displacement

Table A.15 Indirect GBR Addressing with Displacement

Instruction Code Operation State T Bit
MOV.B RO, Q(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 =
MOV.W RO, Q(disp,GBR) 11000001dddddddd RO — (disp *x 2 + 1 —
GBR)
MOV.L RO,Q(disp,GBR) 11000010dddddddd RO — (disp x 4 + 1 —
GBR)
MOV.B Q(disp,GBR),RO 11000100dddddddd ~ (disp + GBR) — sign 1 —
extension — RO
MOV.W @(disp,GBR),RO 11000101dddddddd (disp x 2+ GBR) —» 1 =
sigh extension — RO
MOV.L @(disp,GBR),RO 11000110dddddddd (disp x4+ GBR) —» 1 —
RO
A.19 Indirect Indexed GBR Addressing
Table A.16 Indirect Indexed GBR Addressing
Instruction Code Operation State T Bit
AND.B #imm, @ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm — 3 —
(RO + GBR)
OR.B #imm, @ (RO, GBR) 110011114iiidiiiid (RO+ GBR)|imm — (RO 3 —
+ GBR)
TST.B #imm, @ (RO, GBR) 110011004iiiddiid (RO + GBR) & imm, when 3 Test
resultis0,1—->T results
XOR.B #imm, @ (RO, GBR) 11001110iiiidiiid (RO+GBR)"»imm — (RO 3 —
+ GBR)
A.1.10 PC Relative Addressing with Displacement
Table A.17 PC Relative Addressing with Displacement
Instruction Code Operation State T Bit
MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp x 2+ PC) —sign 1 —
extension — Rn
MOV.L @Q(disp,PC),Rn 1101nnnndddddddd (disp x 4+ PC) — Rn 1 —
MOVA @(disp,PC),RO 11000111dddddddd disp x4+ PC — R0 1 —

256

A.1.11 PC Relative Addressing with Rn
Table A.18 PC Relative Addressing with Rn

Instruction Code Operation State T Bit
BRAF Rn*? 0000nnnn00100011 Delayed branch, Rn + PC — PC 2 —
BSRF Rn*? 0000nnnn00000011 Delayed branch, PC — PR, Rn+ PC 2 —

— PC
Notes: 2. SH7600 instruction
A.1.12 PC Relative Addressing
Table A.19 PC Relative Addressing
Instruction Code Operation State T Bit
BF label 10001011dddddddd When T =0, disp x2 + PC — PC; 3/1*3 —

When T =1, nop

BF/S label*? 10001111dddddddd When T =0, disp x2 + PC — PC; 2/1%3
When T =1, nop

BT label 10001001dddddddd When T =1, disp ¥ 2+ PC — PC; 3/1*3
When T =0, nop

BT/S label*? 10001101dddddddd When T =1, disp x2 + PC — PC; 2/1%3
When T =0, nop

BRA label 1010dddddddddddd Delayed branch, dispx 2+ PC — 2 —
PC

BSR label 1011dddddddddddd Delayed branch, PC — PR, disp*x 2 —
2+PC—PC

Notes: 2. SH7600 instruction
3. One state when it does not branch

257

A.1.13 Immediate

Table A.20 Arithmetic Logical Operation with Direct Register Addressing

Instruction Code Operation State T Bit

ADD #imm,Rn O0lllnnnniiiiiiii Rn +imm — Rn 1 —

AND #imm,RO 11001001iiiiiiii RO & imm — RO 1 —

CMP/EQ #imm,RO 10001000iiiiiiii When RO=imm, 1 =T 1 Comparison

result

MoV #imm,Rn 1110nnnniiiiiiii imm — sign extension — Rn 1 —

OR #imm,RO 11001011iiiiiiii RO | imm — RO 1 —

TST #imm,RO 11001000iiiidididii RO & imm, when result is 0, 1 Test results
15T

XOR #imm,RO 110010104iiiidiiii RO A imm — RO 1 —

Table A.21 Specify Exception Processing Vector

Instruction Code Operation State T Bit

TRAPA #imm 11000011iiiiiiii PC/SR — Stack area, (imm x4+ 8 —

VBR) — PC

A2

Instruction Sets by Instruction Format

Tables A.22 to A.48 list instruction codes and execution states by instruction formats.

258

Table A.22 Instruction Sets by Format

Types
Format Category Sample Instruction SH SH
7600 7000
0 — NOP 8 8
Direct register addressing MOVT Rn 18 17
Direct register addressing (store with control ~ STS MACH, Rn 6 6
or system registers)
Direct register addressing JMP @Rn 3 3
Pre decrement indirect register addressing STC.L SR, @-Rn 6 6
PC relative addressing with Rn BRAF Rn 2 0
m Direct register addressing (load with control ~ LbcC Rm, SR 6 6
or system registers)
Post increment indirect register addressing IDC.L @Rmt+, SR 6 6
nm Direct register addressing ADD Rm, Rn 34 31
Indirect register addressing MOV.L Rm, @Rn 6 6
Post increment indirect register addressing MAC.W QRmt+, QRn+ 2 1
(multiply/accumulate operation)
Post increment indirect register addressing MOV.L @QRmt,Rn 3 3
Pre decrement indirect register addressing MOV.L Rm,@-Rn 3 3
Indirect indexed register addressing MOV.L Rm,@Q@(RO,Rn) 6 6
md Indirect register addressing with MOV.B @ (disp,Rm),RO 2 2
displacement
nd4 Indirect register addressing with MOV.B RO,@(disp,Rn) 2 2
displacement
nmd Indirect register addressing with MOV.L Rm,@(disp,Rn) 2 2

displacement

d Indirect GBR addressing with displacement MOV.L RO, @(disp,GBR) 6 6
Indirect PC addressing with displacement MOVA @(disp,PC),RO 1 1
PC relative addressing BF label 4 2
d12 PC relative addressing BRA label 2 2
nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2
i Indirect indexed GBR addressing AND.B #imm, @ (RO, GBR) 4 4
Immediate addressing (arithmetic and logical 2AND #imm, RO 5 5

operations with direct register)

Immediate addressing (specify exception TRAPA #imm 1 1
processing vector)

ni Immediate addressing (direct register ADD #imm, Rn 2 2
arithmetic operations and data transfers)

Total: 142 133

259

A.21 0 Format

Table A.23 0 Format

Instruction Code Operation State T Bit

CLRT 0000000000001000 0—-T 1 0

CLRMAC 0000000000101000 0 — MACH, MACL 1 —

DIVOU 0000000000011001 0 — M/QT 1 0

NOP 0000000000001001 No operation 1 —

RTE 0000000000101011 Delayed branching, stack 4 LSB
area — PC/SR

RTS 0000000000001011 Delayed branching, PR —» 2 —
PC

SETT 0000000000011000 1-T 1 1

SLEEP 0000000000011011 Sleep 3+4 —

Notes: 4. This is the number of states until a transition is made to the Sleep state.

260

A.2.2

n Format

Table A.24 Direct Register Addressing

Instruction Code Operation State T Bit

CMP/PL Rn 0100nnnn00010101 Rn>0,1->T 1 Comparison result

CMP/PZ Rn 0100nnnn00010001 Rnz20,1->T 1 Comparison result

DT Rn*? 0100nnnn00010000 Rn-1— Rn; 1 Comparison result
IfRnis0,1—T,ifRn
isnonzero, 0 - T

MOVT Rn 0000nnnn00101001 T—Rn 1 —

ROTL Rn 0100nnNnn00000100 T —Rn~ MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB - Rn —»T 1 LSB

ROTCL Rn 0100nnnn00100100 T—Rn<T 1 MSB

ROTCR Rn 0100nnnn00100101 T—->Rn->T 1 LSB

SHAL Rn 0100nnnn00100000 T—Rn<0 1 MSB

SHAR Rn 0100nnnn00100001 MSB —- Rn —T 1 LSB

SHLL Rn 0100nnNnn00000000 T—Rn<0 1 MSB

SHIR Rn 0100nnnn00000001 0—-Rn—-T 1 LSB

SHLL2 Rn 0100nnnn00001000 Rn<<2 —Rn 1 —

SHIR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —

SHLLS8 Rn 0100nnnn00011000 Rn<<8 — Rn 1 —

SHIRS8 Rn 0100nnnn00011001 Rn>>8 — Rn 1 —

SHIL16 Rn 0100nnnn00101000 Rn<<16 —Rn 1 —

SHIR16 Rn 0100nnnmn00101001 Rn>>16 — Rn 1 —

Notes: 2. SH7600 instruction.

Table A.25 Direct Register Addressing (Store with Control and System Registers)

Instruction Code Operation State T Bit
STC SR,Rn 0000nnNNn00000010 SR — Rn 1 —
STC GBR, Rn 0000nnNnNn00010010 GBR — Rn 1 —
STC VBR, Rn 0000nnnNn00100010 VBR — Rn 1 —
STS MACH, Rn 0000nnNnNn00001010 MACH — Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STS PR,Rn 0000nnnn00101010 PR — Rn 1 —

261

Table A.26 Indirect Register Addressing

Instruction Code

Operation State

T Bit

JMP @Rn 0100nnnn00101011

Delayed branch, Rn — PC 2

JSR @Rn 0100nnnn00001011

Delayed branch, PC — PR, 2

Rn — PC

TAS.B @Rn 0100nnnn00011011

When (Rn)is 0,1 -»T,1 — 4

MSB of (Rn)

Test results

Table A.27 Pre Decrement Indirect Register

Instruction Code Operation State T Bit
STC.L SR, @-Rn 0100nnnn00000011 Rn—-4 — Rn, SR — (Rn) 2 —
STC.L GBR,@-Rn 0100nNNn00010011 Rn-4 - Rn,GBR — (Rn) 2 —
STC.L VBR, @-Rn 0100nNNn00100011 Rn-4 - Rn, VBR — (Rn) 2 —
STS.L MACH, @-Rn 0100nnnn00000010 Rn—-4 — Rn, MACH — (Rn) 1 —
STS.L MACL, @-Rn 0100nnnn00010010 Rn—-4 — Rn, MACL — (Rn) 1 —
STS.L PR,@-Rn 0100nNNn00100010 Rn—-4 — Rn, PR — (Rn) 1 —
Table A.28 PC Relative Addressing With Rn

Instruction Code Operation State T Bit
BRAF Rn*? 0000nnnn00100011 Delayed branch, Rn+ PC — PC 2 —

BSRF Rn*? 0000nnnn00000011

— PC

Delayed branch, PC — PR, Rn+ PC 2

Notes: 2. SH7600 instruction

262

A.2.3 m Format

Table A.29 Direct Register Addressing (Load with Control and System Registers)

Instruction Code Operation State T Bit
DC Rm, SR 0100mmmmO00001110 Rm— SR 1 LSB
DC Rm, GBR 0100mmmmO00011110 Rm— GBR 1 —

LDC Rm, VBR 0100mmmm00101110 Rm— VBR 1 —

DS Rm, MACH 0100mmmmO00001010 Rm — MACH 1 —

DS Rm, MACL 0100mmmmO00011010 Rm — MACL 1 —

DS Rm, PR 0100mmmm00101010 Rm— PR 1 —
Table A.30 Post Increment Indirect Register

Instruction Code Operation State T Bit
ILDC.L @Rmt,SR 0100mmmm00000111 (Rm)— SR,Rm+ 4 —Rm 3 LSB
IDC.L @Rm#+,GBR 0100mmmm00010111 (Rm)— GBR,Rm+4 -Rm 3 —
IDC.L @Rm#+,VBR 0100mmmm00100111 (Rm) - VBR, Rm+ 4 —Rm 3 —
ILDS.L Q@Rm#+,MACH 0100mmmm00000110 (Rm) - MACH, Rm+4 - Rm 1 —
ILDS.L @Rm#+,MACL 0100mmmm00010110 (Rm) » MACL, Rm+ 4 —Rm 1 —
1DS.L QRmt,PR 0100mmmm00100110 (Rm) - PR,Rm+ 4 —Rm 1 —

263

A24

nm Format

Table A.31 Direct Register Addressing

Instruction Code Operation State T Bit
ADD Rm, Rn 001 1nnnnmmmml 100 Rn+Rm — Rn 1 —
ADDC Rm, Rn 001 lnnnnmmmm1 110 Rn+Rm+T— Rn,carry 1 Carry
—-T
ADDV Rm, Rn 001 1nnnnmmmml 111 Rn+Rm — Rn, overflow 1 Overflow
—-T
AND Rm, Rn 001 0nnnnmmmm1001 Rn & Rm — Rn 1 —
CMP/EQ Rm, Rn 001 Innnnmmmm0000 WhenRn=Rm, 1 —>T 1 Comparison
result
CMP/HS Rm, Rn 001 Innnnmmmm0010 When unsigned and Rn2 1 Comparison
Rm,1—->T result
CMP/GE Rm, Rn 001 Innnnmmmm0011 When signed and Rn 2 1 Comparison
Rm,1—-T result
CMP/HI Rm, Rn 001 Innnnmmmm0110 When unsigned and Rn > 1 Comparison
Rm,1—->T result
CMP/GT Rm, Rn 001 1Innnnmmmm0111 When signed and Rn > 1 Comparison
Rm,1—->T result
CMP/STR Rm,Rn 001 0nnnnmmmm1 100 When a byte in Rn equals 1 Comparison
abyteinRm1—-T result
DIV1 Rm, Rn 001 Innnnmmmm0100 1-step division (Rn+Rm) 1 Calculation
result
DIVOS Rm, Rn 001 0nnnnmmmm0111 MSB of Rn — Q, MSB of 1 Calculation
Rm— M M*"Q —T result
DMULS.L Rm,Rn*? 001lnnnnmmmml101 Signed, Rn x Rm — 2t0 41 —
MACH, MACL
DMULU.L Rm,Rn*? 001lnnnnmmmm0101 Unsigned, Rnx Rm — 2to 41 —
MACH, MACL
EXTS.B Rm, Rn 0110nnnnmmmml 110 Sign-extends Rm from 1 —
byte —Rn
EXTS.W Rm, Rn 0110nnnnmmmml1 111 Sign-extends Rm from 1 —
word — Rn
EXTU.B Rm, Rn 011 0nnnnmmmml 100 Zero-extends Rm from 1 —
byte —Rn
EXTU.W Rm, Rn 0110nnnnmmmml101 Zero-extends Rm from 1 —
word — Rn
MoV Rm, Rn 011 0nnnnmmmm0011 Rm — Rn 1 —
Notes: 1. The normal minimum number of execution states

2

SH7600 instruction

264

Table A.31 Direct Register Addressing (cont)

Instruction Code Operation State T Bit

MUL.I. Rm,Rn*?2 0000nnnnmmmm0111 Rn % Rm — MACL 2t0 41 —

MULS.W Rm,Rn 0010nnnnmmmm1111 Sighed, Rnx Rm —- MAC 1to3*" —

MULU.W Rm, Rn 0010nnnnmmmm1110 Unsigned, Rn * Rm — 1t0 31 __
MAC

NEG Rm, Rn 0110nnnnmmmml 011 0-Rm —Rn 1 —

NEGC Rm, Rn 0110nnnnmmmml 010 0—-Rm-T — Rn, borrow 1 Borrow
—-T

NOT Rm, Rn 0110nnnnmmmm0111 ~Rm — Rn 1 —

OR Rm, Rn 0010nnnnmmmm1011 Rn|Rm— Rn 1 —

SUB Rm, Rn 001 1nnnnmmmml 000 Rn—-Rm — Rn 1 —

SUBC Rm, Rn 0011nnnnmmmml010 Rn—Rm-T — Rn, 1 Borrow
borrow — T

SUBV Rm, Rn 0011nnnnmmmml 011 Rn —Rm — Rn, underflow 1 Underflow
—-T

SWAP.B Rm, Rn 0110nnnnmmmm1 000 Rm — Swap upper and 1 —
lower halves of lower 2
bytes — Rn

SWAP.W Rm, Rn 0110nnnnmmmml 001 Rm — Swap upper and 1 —
lower word — Rn

TST Rm, Rn 001 0nnnnmmmm1 000 Rn & Rm, when result is 1 Test results
0,1->T

XOR Rm, Rn 0010nnnnmmmm1010 Rn?*Rm — Rn 1 —

XTRCT Rm,Rn 0010nnnnmmmml 101 Center 32 bits of Rmand 1 —
Rn — Rn

Notes: 1. The normal minimum number of execution cycles.
2. SH7600 instructions

Table A.32 Indirect Register Addressing

Instruction Code Operation State T Bit
MOV.B Rm, GRn 0010nnnnmmmm0000 Rm — (Rn) 1 —
MOV.W Rm, GRn 0010nnnnmmmm0001 Rm — (Rn) 1 —
MOV.L Rm, GRn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B @Rm,Rn 0110nnnnmmmmO000 (Rm) — sign extension — Rn 1 —
MOV.W @Rm,Rn 0110nnnnmmmm0001 (Rm) — sign extension — Rn 1 —
MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) = Rn 1 —

265

Table A.33 Post Increment Indirect Register (Multiply/Accumulate Operation)

Instruction Code Operation State T Bit

MAC.L QRmt,@Rn+*? 0000nnnnmmmmllll Signed, (Rn) * (Rm) + 3(2to —
MAC — MAC 4

MAC.W @Rm+, GRn+ 0100nnnnmmmm111l Signed, (Rn) % (Rm) + R —

MAC — MAC

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the
number of cycles when there is contention with preceding/following instructions).

2. SH7600 instruction.

Table A.34 Post Increment Indirect Register

Instruction Code Operation State T Bit

MOV.B @Rmt,Rn 011 0nnnnmmmm0100 (Rm) — sign extension — 1 —
Rn,Rm+1— Rm

MOV.W @Rmt,Rn 0110nnnnmmmm0101 (Rm) — sign extension — 1 —
Rn,Rm+2 — Rm

MOV.L QRmt,Rn 0110nnnnmmmm0110 (Rm)— Rn,Rm+ 4 — Rm 1 —

Table A.35 Pre Decrement Indirect Register

Instruction Code Operation State T Bit

MOV.B Rm, @-Rn 0010nnnnmmmm0100 Rn—-1— Rn,Rm — (Rn) 1 —

MOV.W Rm, @-Rn 0010nnnnmmmm0101 Rn -2 — Rn, Rm — (Rn) 1 —

MOV.L Rm,@-Rn 0010nnnnmmmm0110 Rn -4 — Rn, Rm — (Rn) 1 —

Table A.36 Indirect Indexed Register

Instruction Code Operation Cycles T Bit

MOV.B Rm, @(RO,Rn) 0000nnNNmmMm0100 Rm— (RO + Rn) 1 —

MOV.W Rm, @ (RO, Rn) 0000nnnnmmMm0101 Rm— (RO + Rn) 1 —

MOV.L Rm, @(RO,Rn) 00000110 Rm — (RO + Rn) 1 —

MOV.B @(RO,Rm),Rn 0000nnnnmmmml 100 (RO + Rm) — sign extension 1 —

—Rn
MOV.W @ (RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — sign extension 1 —
—Rn
MOV.L @(RO,Rm),Rn 0000nnnnmmmml110 (RO +Rm)— Rn 1 _—

266

A.2.5 md Format
Table A.37 md Format

Instruction Code Operation State T Bit
MOV.B Q(disp,Rm),RO 10000100mmmmdddd (disp + Rm) — sign 1 —
extension — RO
MOV.W @Q(disp,Rm),RO 10000101 mmmmdddd (disp x2+Rm)— 1 —
sign extension —
RO
A.2.6 nd4 Format
Table A.38 nd4 Format
Instruction Code Operation State T Bit
MOV.B RO, @(disp, Rn) 10000000nnnndddd RO — (disp + Rn) 1 —
MOV.W RO, @(disp, Rn) 10000001nnnndddd RO — (disp* 2+ Rn) 1 —
A.2,7 nmd Format
Table A.39 nmd Format
Instruction Code Operation State T Bit
MOV.L Rm,Q(disp,Rn) 000 Innnnmmmmdddd Rm — (disp % 4 + Rn) 1 —
MOV.L (@(disp,Rm),Rn 010 1nnnnmmmmdddd (disp ¥ 4+ Rm) — Rn 1 —

267

A.2.8 d Format

Table A.40 Indirect GBR with Displacement

Instruction Code Operation State T Bit
MOV.B RO, Q(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —
MOV.W RO, Q(disp,GBR) 11000001dddddddd RO — (disp * 2 + 1 —
GBR)
MOV.L RO,Q(disp,GBR) 11000010dddddddd RO — (disp * 4 + 1 —
GBR)
MOV.B Q(disp,GBR),RO 11000100dddddddd ~ (disp + GBR) — sign 1 —
extension — RO
MOV.W @(disp,GBR),RO 11000101dddddddd (disp * 2 + GBR) — 1 —
sigh extension — RO
MOV.L @(disp,GBR),RO 11000110dddddddd (disp * 4 + GBR) — 1 —
RO
Table A.41 PC Relative with Displacement
Instruction Code Operation State T Bit
MOVA @(disp,PC),RO 11000111dddddddd dispx 4+ PC — RO 1 —
Table A.42 PC Relative Addressing
Instruction Code Operation State T Bit
BF label 10001011dddddddd When T =0, disp x 2+ PC — PC; 3/1%3 —
When T =1, nop
BF/S label*? 10001111dddddddd When T =0, disp x 2+ PC — PC; 2/1*3 —
When T =1, nop
BT label 10001001dddddddd When T =1, disp ¥ 2+ PC — PC; 3/1%3 —
When T =0, nop
BI/S label*? 10001101dddddddd When T =1, disp x 2 + PC — PC; 2/1%3 —

When T =0, nop

Notes: 2. SH7600 instruction

3. One state when it does not branch

268

A.2.9 d12 Format

Table A.43 d12 Format

Instruction Code Operation State T Bit

BRA label 1010dddddddddddd Delayed branch, disp x2+ PC - PC 2 =

BSR label 1011dddddddddddd Delayed branching, PC — PR, disp*x2 2 —

+PC —- PC

A.2.10 nd8 Format

Table A.44 nd8 Format

Instruction Code Operation State T Bit

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp x 2 + PC) — sign 1 —

extension — Rn

MOV.L. Q(disp,PC),Rn 1101nnnndddddddd (disp x4+ PC) — Rn 1 —

A.2.11 iFormat

Table A.45 Indirect Indexed GBR Addressing

Instruction Code Operation State T Bit

AND.B #imm, @ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm — 3 —
(RO + GBR)

OR.B #imm, @ (RO, GBR) 11001111iiiiiiii (RO + GBR)|imm — 3 —
(RO + GBR)

TST.B #imm, @ (RO, GBR) 11001100iiiiiiii (RO + GBR) & imm, 3 Test
whenresultis0,1 =T results

XOR.B #imm, @ (RO, GBR) 1100111044iiiidid (RO + GBR) A imm — 3 —

(RO + GBR)

269

Table A.46 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

Instruction Code Operation State T Bit

AND #imm, RO 11001001idiiididdi RO & imm — RO 1 —_

CMP/EQ #imm, RO 10001000iiiidiidid When RO =imm, 1 =T 1 Comparison

results
OR #imm, RO 11001011i4diididd RO | imm — RO 1 =
TST #imm, RO 11001000iiiididiii RO & imm, when result 1 Test results
is0,1->T
XOR #imm, RO 11001010iiiidididid RO~ imm — RO 1 —

Table A.47 Immediate Addressing (Specify Exception Processing Vector)

Instruction Code Operation State T Bit
TRAPA #imm 11000011iiiiiiii PC/SR — Stack area, (imm x4+ 8 =

VBR) — PC
A.2.12 ni Format
Table A48 ni Format
Instruction Code Operation State T Bit
ADD #imm, Rn 0lllnnnniiiiiiii Rn +imm — Rn 1 —
MOV #imm, Rn 1110nnnniiiiiiii imm — sign extension — Rn 1 —
A3 Instruction Set in Order by Instruction Code
Table A.49 lists instruction codes and execution states in order by instruction code.
Table A.49 Instruction Set by Instruction Code
Instruction Code Operation State T Bit
CLRT 0000000000001000 0 -T 1 0
NOP 0000000000001001 No operation 1 —
RTS 0000000000001011 Delayed branch, PR —» 2 =

PC

SETT 0000000000011000 1T 1 1
DIVOU 0000000000011001 0 - M/QT 1 0

270

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SLEEP 0000000000011011 Sleep 3 —
CLRMAC 0000000000101000 0 — MACH, MACL 1 —
RTE 0000000000101011 Delayed branch, stack 4 LSB
area — PC/SR
STC SR, Rn 0000nnnn00000010 SR — Rn 1 —
BSRF Rn*< 0000nnnn00000011 Delayed branch, PC — 2 —
PR, Rn+ PC — PC
STS MACH, Rn 0000nnnn00001010 MACH — Rn 1 —
STC GBR, Rn 0000nnnn00010010 GBR — Rn 1 —
STS MACL, Rn 0000nnnn00011010 MACL — Rn 1 —
STC VBR, Rn 0000nnnn00100010 VBR — Rn 1 —
BRAF Rn*? 0000nnnn00100011 Delayed branch, Rn+ 2 —
PC — PC
MOVT Rn 0000nnnn00101001 T—Rn 1 —
STS PR,Rn 0000nnnn00101010 PR — Rn 1 —
MOV.B Rm, @(RO,Rn) 0000nNNNMmMmMmO0100 Rm — (RO + Rn) 1 —
MOV.W Rm, @(RO,Rn) 0000nnnNmmmMm0101 Rm— (RO + Rn) 1 —
MOV.L Rm, @(RO,Rn) 0000nNNNmMmMmM0110 Rm — (RO + Rn) 1 —
MUL.L Rm, Rn*? 0000nnnnmmrm0111 Rnx Rm — MACL 2 —
(to 4)*1
MOV.B @(RO,Rm),Rn 0000nnnnmmmm1100 (RO + Rm) — sign 1 —
extension — Rn
MOV.W @(RO,Rm),Rn 0000nnnnmmmm1101 (RO + Rm) — sign 1 —
extension — Rn
MOV.L Q(RO,Rm),Rn 0000nnNNmMmMmM1110 (RO + Rm) — Rn 1 —
MAC.L QRm+, @Rn+*? 0000nnnnmmmm1111 Signed, (Rn)x (Rm)+ 3/(2 —
MAC — MAC to 4)*1
MOV.L Rm,@(disp,Rn) 000lnnnnmmmmdddd Rm — (disp x4+ Rn) 1 —
MOV.B Rm, QRn 001 0nnnnmmmm0000 Rm — (Rn) 1 —
MOV.W Rm, QRn 001 0nnnnmmmm0001 Rm — (Rn) 1 —
Notes: 1. The normal minimum number of execution states (The humber in parentheses is the

number of states when there is contention with preceding/following instructions)

2. SH7600 instruction

271

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
MOV.L Rm, @Rn 0010nnnnmmmm0010 Rm — (Rn) 1 —
MOV.B Rm, @-Rn 001 0nnnnmmmm0100 Rn-1— Rn,Rm— 1 —
(Rn)
MOV.W Rm, @-Rn 0010nnnnmmmm0101 Rn-2 —- Rn, Rm — 1 —
(Rn)
MOV.L Rm, @-Rn 0010nnnnmmmm0110 Rn-4 —- Rn, Rm — 1 —
(Rn)
DIVOS Rm, Rn 0010nnnnmmmm0111 MSB of Rn — Q, MSB 1 Calculation
ofRmMm— M M"*"Q — result
T
TST Rm, Rn 0010nnnnmmmm1 000 Rn & Rm, when result 1 Test results
is0,1 T
AND Rm, Rn 001 0nnnnmmmm1 001 Rn & Rm — Rn 1 —
XOR Rm, Rn 0010nnnnmmmm1 010 Rn*Rm — Rn 1 —
OR Rm, Rn 0010nnnnmmmm1011 Rn|Rm — Rn 1 —
CMP/STR Rm,Rn 0010nnnnmmmm1100 When a byte in Rn 1 Comparison
equals a byte in Rm, 1 result
—-T
XTRCT Rm, Rn 0010nnnnmmmml 101 Center 32 bits of Rm 1 —
and Rn —Rn
MULU.W Rm,Rn 0010nnnnmmmm1110 Unsigned, Rn * Rm — 1to3*" _
MAC
MULS.W Rm,Rn 0010nnnrmmmm1 111 Signed, Rn* Rm — 1031 —
MAC
CMP/EQ Rm,Rn 001 1nnnnmmmm0000 When Rn=Rm,1—->T 1 Comparison
result
CMP/HS Rm,Rn 001 1nnnnmmmm0010 When unsigned and 1 Comparison
RnzZRm, 1 =T result
CMP/GE Rm,Rn 0011nnnnmmmm0O011 When signed and Rn2 1 Comparison
Rm,1—-T result
DIV1 Rm, Rn 001 1nnnnmmmm0100 1-step division (Rn + 1 Calculation
Rm) result
DMULU.L Rm, Rn*2 0011nnnnmmmm0101 Unsigned, Rn x Rm — 2 to 4*!
MACH, MACL
Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

212

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

CMP/HI Rm, Rn 001 1Innnnmmmm0110 When unsigned 1 Comparison
and Rn>Rm, 1 result
—T

CMP/GT Rm, Rn 001 1nnnnmmmm0111 When signed and 1 Comparison
Rn>Rm, 1 —-T result

SUB Rm, Rn 001 1nnnnmmmml 000 Rn—Rm — Rn 1 —

SUBC Rm, Rn 001 1nnnnmmmml 010 Rn—-Rm-T — 1 Borrow
Rn, borrow —» T

SUBV Rm, Rn 001 1nnnnmmmml011 Rn—Rm — Rn, 1 Underflow
underflow —T

ADD Rm, Rn 001 1nnnnmmmml 100 Rm+Rn — Rn 1 —

DMULS.L Rm, Rn*? 001 Innnnmmmm1 101 Signed, RnxRm 2to4*! —
— MACH, MACL

ADDC Rm, Rn 001 Innnnmmmml 110 Rn+Rm+T — 1 Carry
Rn, carry —T

ADDV Rm, Rn 001 1nnnnmmmml111 Rn + Rm — Rn, 1 Overflow
overflow —» T

SHLL Rn 0100nnnn00000000 T—Rn<0 1 MSB

SHLR Rn 0100nnnn00000001 0—-Rn-—>T 1 LSB

STS.L MACH, @-Rn 0100nnnn00000010 Rn—-4 — Rn, 1 —
MACH — (Rn)

STC.L SR, @-Rn 0100nnnn00000011 Rn-4—>Rn, SR 2 —
— (Rn)

ROTL Rn 0100nnnn00000100 T — Rn < MSB 1 MSB

ROTR Rn 0100nnnn00000101 LSB - Rn —-T 1 LSB

1DS.L @Rm+, MACH 0100mmm00000110 (Rm) — MACH, 1 —
Rm+4 — Rm

LDC.L @Rm+, SR 0100mmmm00000111 (Rm)— SR,Rm 3 LSB
+4 -5 Rm

SHLL2 Rn 0100nnnn00001000 Rn<<2 —Rn 1 —

SHLR2 Rn 0100nnnn00001001 Rn>>2 — Rn 1 —

LDS Rm, MACH 0100mmmm00001010 Rm — MACH 1 —

Notes: 1. The normal minimum number of execution states

2. SH7600 instruction

273

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
JSR @Rn 0100nnnn00001011 Delayed branch, PC 2 —
— PR, Rn— PC
LDC Rm, SR 0100mmmO00001110 Rm— SR 1 LSB
DT Rn*? 0100nnnNn00010000 Rn-1—= Rn;ifRnis 1 Comparison
0,1 —>T,ifRnis result
nonzero, 0 — T
CMP/PZ Rn 0100nnnn00010001 Rn20,1->T 1 Comparison
result
STS.L. MACL,@Rn 0100nnnn00010010 Rn—-4 — Rn, MACL 1 —
— (Rn)
STC.L. GBR,@-Rn 0100nnnn00010011 Rn—-4—-Rn, GBR - 2 —
(Rn)
CMP/PL Rn 0100nnnn00010101 Rn>01->T 1 Comparison
result
IDS.I. @Rm#+,MACL 0100mmm00010110 (Rm)— MACL, Rm+ 1 —
4 —-Rm
IDC.L @Rmt,GBR 0100mmmm00010111 (Rm)— GBR,Rm+4 3 —
— Rm
SHLIS8 Rn 0100nnnn00011000 Rn<<8 —Rn 1 =
SHLRS Rn 0100nnnn00011001 Rn>>8 — Rn 1 —
DS Rm, MACL 0100mmm00011010 Rm — MACL 1 =
TAS.B @Rn 0100nnnn00011011 When (Rn)is 0,1 — 4 Test results
T, 1 — MSB of (Rn)
LDC Rm, GBR 0100mmmO00011110 Rm — GBR 1 .
SHAL Rn 0100nnnn00100000 T—Rn<0 1 MSB
SHAR Rn 0100nnnn00100001 MSB —- Rn—>T 1 LSB
STS.I. PR, @-Rn 0100nnnn00100010 Rn—-4 — Rn, PR —> 1 —
(Rn)
STIC.I. VBR,@-Rn 0100nnnn00100011 Rn-4—-Rn VBR— 2 —
(Rn)
ROTCL Rn 0100nnnn00100100 T—Rn<T 1 MSB
ROTCR Rn 0100nnnn00100101 T—-Rn—->T 1 LSB
IDS.L @Rmt, PR 0100mmmm00100110 (Rm)— PR, Rm + 4 1 —
— Rm
IDC.L @Rmt,VBR 0100mmmm00100111 (Rm)— VBR,Rm+4 3 —
— Rm
Notes: 2. SH7600 instruction

274

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit
SHLL16 Rn 0100nnNnNn00101000 Rn<<16 —Rn 1 —
SHIR16 Rn 0100nnnn00101001 Rn>>16 — Rn 1 =
1IDS Rm, PR 0100mmmmO00101010 Rm— PR 1 —
JMP @Rn 0100nnnn00101011 Delayed branch, Rn 2 —
— PC
IDC Rm, VBR 0100mmmmO00101110 Rm — VBR 1 —
MAC.W @Rmt+, GRn+ 0100nnnnmmmm1111 Signed, (Rn) x (Rm) 3/2!' —
+ MAC — MAC
MOV.L @(disp,Rm),Rn 010 1Innnnmmmmdddd (disp + Rm) — Rn 1 —
MOV.B @Rm,Rn 011 0nnnnmmmm0000 (Rm) — sign 1 —
extension — Rn
MOV.W @Rm,Rn 0110nnnnmmmmO0001 (Rm) — sign 1 —
extension — Rn
MOV.L @Rm,Rn 0110nnnnmmmm0010 (Rm) — Rn 1 —
MoV Rm, Rn 011 0nnnnmmmm0011 Rm — Rn 1 —
MOV.B @Rmt+,Rn 011 0nnnnmmmm0100 (Rm) — sign 1 —
extension — Rn, Rm
+1—Rm
MOV.W @Rmt+,Rn 011 0nnnnmmmm0101 (Rm) — sign 1 —
extension — Rn, Rm
+2—Rm
MOV.L @Rmt+,Rn 0110nnnnmmmm0110 (Rm)—Rn,Rm+4 1 —
— Rm
NOT Rm, Rn 0110nnnnmmmm0111 ~Rm — Rn 1 —
SWAP.B Rm,Rn 011 0nnnnmmmml 000 Rm — Swap upper 1 —
and lower halves of
lower 2 bytes — Rn
SWAP.W Rm,Rn 0110nnnnmmmm1 001 Rm — Swap upper 1 —
and lower word — Rn
NEGC Rm, Rn 011 0nnnnmmmml 010 0—-Rm-T—= Rn, 1 Borrow
borrow — T
NEG Rm, Rn 0110nnnnmmmml011 0—Rm —Rn 1 —
Notes: 1 The normal minimum number of execution states (The number in parentheses is the

number in contention with preceding/following instructions)

275

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

EXTU.B Rm,Rn 0110nnnnmmmml 100 Zero-extends Rm 1 —
from byte — Rn

EXTU.W Rm,Rn 0110nnnnmmmml 101 Zero-extends Rm 1 —
from word — Rn

EXTS.B Rm,Rn 0110nnnnmmmml 110 Sign-extends Rm 1 —
from byte — Rn

EXTS.W Rm,Rn 0110nnnnmmmml 111 Sign-extends Rm 1 —
from word — Rn

ADD #imm, Rn 01llnnnniiiiiiii Rn +imm — Rn 1 —

MOV.B RO,@(disp,Rn) 10000000nnnndddd RO — (disp + Rn) 1 —

MOV.W RO, @(disp,Rn) 10000001nnnndddd RO — (dispx 2 + 1 —
Rn)

MOV.B @(disp,Rm),RO 10000100mmmmdddd (disp + Rm) — sign 1 —
extension — RO

MOV.W @(disp,Rm),R0O 1000010 1mmrmdddd (disp x 2 + Rm) — 1 —
sigh extension — RO

CMP/EQ #imm, RO 100010004iiiiiii When RO = imm, 1 1 Compariso
T n results

BT label 10001001dddddddd When T =1, disp %2 31—
+PC — PC;
When T =0, nop.

BT/S label* 10001101dddddddd When T =1, disp %2 211 —
+PC — PC;
When T =1, nop.

BF label 10001011dddddddd When T =0, disp x2 318 —
+PC — PC;
When T =0, nop

BF/S label* 10001111dddddddd When T =0, disp *2 201 —
+PC — PC;
When T =1, nop

MOV.W @(disp,PC),Rn 1001nnnndddddddd (disp 2 +PC) — 1 —
sigh extension — Rn

BRA label 1010dddddddddddd Delayed branch, 2 —

dispx 2 + PC — PC

Notes: 2. SH7600 instruction
3. One state when it does not branch

276

Table A.49 Instruction Set by Instruction Code (cont)

Instruction Code Operation State T Bit

BSR label 1011dddddddddddd Delayed branch, PC 2 —
— PR, dispx 2+ PC
— PC

MOV.B RO, (@(disp,GBR) 11000000dddddddd RO — (disp + GBR) 1 —

MOV.W RO, @(disp,GBR) 11000001dddddddd RO — (disp *x 2 + 1 —
GBR)

MOV.L RO, (@(disp,GBR) 11000010dddddddd RO — (disp * 4 + 1 —
GBR)

TRAPA #imm 1100001 iiddddid PC/SR — Stack 8 —
area, (immx 4 +
VBR) — PC

MOV.B Q(disp,GBR),RO 11000100dddddddd ~ (disp + GBR) — sign 1 —
extension — RO

MOV.W @(disp,GBR),RO 11000101dddddddd (disp x2 + GBR) — 1 —
sigh extension — RO

MOV.L @(disp,GBR),RO 11000110dddddddd (disp x4 + GBR) — 1 —
RO

MOVA @ (disp, PC) ,RO 11000111dddddddd dispx 4+ PC - RO 1 —

TST #imm, RO 110010004iiiiiii RO & imm, when Test results
resultis0,1—-T

AND #imm, RO 11001001iiidiiiii RO & imm — RO 1 —

XOR #imm, RO 11001010iiiiiiid RO A imm — RO 1 =

OR #imm, RO 1100101 idddd444 RO | imm — RO 1 —

TST.B #imm, @ (RO, GBR) 11001100iiiiiiii (RO + GBR) & imm, 3 Test results
when resultis 0, 1 —
T

AND.B #imm, @ (RO, GBR) 11001101iiiiiiii (RO + GBR) & imm 3 =
— (RO + GBR)

XOR.B #imm, @ (RO, GBR) 11001110iiiiiiii (RO+ GBR)"imm — 3 —
(RO + GBR)

OR.B #imm, @ (RO, GBR) 11001111iiiiiiii (RO+ GBR)|imm— 3 —
(RO + GBR)

MOV.L Q@(disp,PC),Rn 1101nnnndddddddd ~ (disp x4 + PC) - Rn 1 —

MoV #imm, Rn 1110nmnniiiiiiii imm — sign 1 —

extension — Rn

277

A4

Operation Code Map

Table A.50 is an operation code map.

Table A.50 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

0000 |Rn Fx 0000

0000 |Rn Fx 0001

0000 |Rn Fx 0010 |sTC SR,Rn* |STC GBR,Rn |STC VBR,Rn

0000 |Rn Fx 0011 |BSRF Rn* BRAF Rn*

0000 |Rn Rm |01MD|Mov.B MOV.W MOV.L MUL.L
Rm, @ (RO, Rn) Rm, @ (RO, Rn) Rm, @ (RO, Rn) Rm, Rn*

0000 |0000 |Fx 1000 |CLRT SETT CLRMAC

0000 |0000 |Fx 1001 | NOP DIVOU

0000 |0000 |Fx 1010

0000 |0000 |Fx 1011 | RTS SLEEP RTE

0000 |Rn Fx 1000

0000 |Rn Fx 1001 MOVT Rn

0000 |Rn Fx 1010 |STS MACH,Rn |STS MACL,Rn |STS PR,Rn

0000 |Rn Fx 1011

0000 |Rn Fx 11MD | MOV . B MOV.W MOV.L MAC.L
@ (RO, Rm) ,Rn @ (RO, Rm) ,Rn @ (RO, Rm) ,Rn @Rm+, QRn+*

0001 |Rn Rm disp |MOV.L Rm, @(disp:4,Rn)

0010 |Rn Rm |OOMD|MOV.B Rm,@Rn |[MOV.W Rm,@Rn |MOV.L Rm,Q@Rn

0010 |Rn Rm |01MD|Mov.B MOV . W MOV.L DIVOS Rm,Rn
Rm, @-Rn Rm, @-Rn Rm, @-Rn

0010 |Rn Rm |10MD|TST Rm,Rn |AND Rm,Rn |XOR Rm,Rn |OR Rm, Rn

0010 |Rn Rm |11MD|cMP/STR XTRCT Rm,Rn |MULU.W Rm,Rn |MULS.W Rm,Rn
Rm, Rn

0011 |Rn Rm |0OMD|CMP/EQ Rm,Rn CMP/HS Rm,Rn |CMP/GE Rm,Rn

0011 |Rn Rm |01MD|DIVl Rm,Rn |DMULU.L CMP/HI Rm,Rn |CMP/GT Rm,Rn

Rm, Rn*
0011 |Rn Rm |10MD|SUB Rm,Rn SUBC Rm,Rn |SUBV Rm,Rn
0011 |Rn Rm |11MD|ADD Rm,Rn |DMULS.L ADDC Rm,Rn |ADDV Rm,Rn
Rm, Rn*
0100 |Rn Fx 0000 |SHLL Rn DT Rn* SHAL, Rn
0100 |Rn Fx 0001 |[SHLR Rn CMP/PZ Rn SHAR Rn

278

Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111
MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11
0100 |Rn Fx 0010 |sTs.L STS.L STS.L
MACH, @-Rn MACL, @-Rn PR, @-Rn
0100 |Rn Fx 0011 |sTC.L STC.L STE. L
SR, @-Rn GBR, @-Rn VBR, @-Rn
0100 |Rn Fx 0100 |ROTL Rn ROTCL Rn
0100 (Rn Fx 0101 |ROTR Rn CMP/PL Rn ROTCR Rn
0100 |Rm |Fx 0110 |IDS.L IDS.L IDS.L
@Rm+, MACH @QRm+, MACL @QRm+, PR
0100 |Rm |Fx 0111 |IDC.L IDC.L LDC.L
@Rm+, SR @Rm+, GBR @QRm+, VBR
0100 |Rn Fx 1000 | SHLL2 Rn SHLLS Rn SHLL16 Rn
0100 |Rn Fx 1001 | SHLR2 Rn SHLRS Rn SHLR16 Rn
0100 |Rm |Fx 1010 |IDS Rm,MACH |LDS Rm,MACL |LDS Rm, PR
0100 |Rn Fx 1011 | ISR @Rn TAS.B @Rn JMP @Rn
0100 |Rm |Fx 1100
0100 |Rm |Fx 1101
0100 |Rn Fx 1110 | LDC Rm, SR LDC Rm, GBR |ILDC Rm, VBR
0100 |Rn Rm 1111 |MAC.W QRm+, @Rn+
0101 |Rn Rm |disp |MOV.L @Q(disp:4,Rm),Rn
0110 |Rn Rm [OOMD|MOV.B Rm,Rn |MOV.W @Rm,Rn |MOV.L @Rm,Rn |MOV Rm, Rn
0110 |Rn Rm |01MD|MOV.B Rm+,Rn |MWV.W @Rm,Rn [MWV.L @m+,Rn | NOT Rm, Rn
0110 |Rn Rm 10MD | SWAP.B SWAP.W NEGC Rm,Rn NEG Rm, Rn
Rm, Rn Rm, Rn
0110 |Rn Rm 11MD | EXTU.B Rm,Rn |EXTU.W Rm,Rn |EXTS.B Rm,Rn |EXTS.W Rm,Rn
0111 |Rn imm ADD #imm: 8, Rn
1000 |0OMD |Rn disp |MW.B RO, MWV.W RO,
Q(disp:4,Rn) @(disp:4,Rn)
1000 |0O1MD|Rm |disp |MOV.B MOV.W
Q(disp:4, Q(disp:4,
Rm) ,RO Rm) ,RO
1000 |1OMD| imm/disp |CMP/EQ BT label:8 BF label:8
#imm:8, RO
1000 |{11MD| imm/disp BT/S BF/S
label:8* label:8*

279

Table A.50 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011-1111

MSB LSB |MD: 00 MD: 01 MD: 10 MD: 11

1001 |Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label:12

1011 disp BSR label:12

1100 |0OMD| imm/disp |[MOV.B RO, MOV.W RO, MOV.L RO, TRAPA #imm:8
@(disp:8, @Q(disp:8, @(disp:8,
GBR) GBR) GBR)

1100 |01MD diSp MOV.B MOV.W MOV.L MOVA
@(disp:8, @(disp:8, @(disp:8, @(disp:8,
GBR) , RO GBR), RO GBR), RO PC), RO

1100 |10MD imm TST AND XOR OR
#imm: 8, RO #imm: 8, RO #imm: 8, RO #imm: 8, RO

1100 |11MD imm TST«B AND.B XOR.B OR.B
#imm:8, #imm: 8, #imm: 8, #imm: 8,
@ (RO, GBR) @ (RO, GBR) @ (RO, GBR) @ (RO, GBR)

1101 |Rn disp MOV.L @(disp:8,PC),RO

1110 |Rn imm MoV #imm: 8, Rn

1111

Note: SH7600 instructions

280

Appendix B Pipeline Operation and Contention

The SH7000 series is designed so that basic instructions are executed in one state. Two or more
states are required for instructions when, for example, the branch destination address is changed by
a branch instruction or when the number of states is increased by contention between MA and IF.
Table B.1 gives the number of execution states and stages for different types of contention and
their instructions. Instructions without contention and instructions that require 2 or more cycles
even without contention are also shown.

Instructions experience contention in the following ways:
+ Operations and transfers between registers are executed in one state with no contention.
» No contention occurs, but the instruction still requires 2 or more cycles.

+ Contention occurs, increasing the number of execution states. Contention combinations are as
follows:

— MA contends with IF

— MA contends with IF and sometimes with memory loads as well

— MA contends with IF and sometimes with the multiplier as well

— MA contends with IF and sometimes with memory loads and sometimes with the multiplier

281

Table B.1 Instructions and Their Contention Patterns

Contention State Stage Instruction

None 1 3 Transfer between registers

Operation between registers (except
multiplication instruction)

Logical operation between registers
Shift instruction
System control ALU instruction

2 3 Unconditional branche

31+3 3 Conditional branche

3 3 SLEEP instruction

4 5 RTE instruction

8 9 TRAP instruction
MA contends with IF 1 4 Memory store instruction and STS.L

instruction (PR)

2 4 STC.L instruction

3 6 Memory logic operations

4 6 TAS instruction
MA contends with IF and 1 5 Memory load instructions and LDS.L
sometimes with memory loads as instruction (PR)
el 3 5 LDC.L instruction
MA contends with IF and 1 4 Register to MAC transfer instruction,
sometimes with the multiplier as memory to MAC transfer instruction and
well MAC to memory transfer instruction

1to 3*2 6/7*! Multiplication instruction

3/2+2 7/8*1 Multiply/accumulate instruction

3/(2to 9 Double-length multiply/accumulate
4y+2 instruction (SH7600 only)
2t042 9 Double-length multiplication instruction
(SH7600 only)
MA contends with IF and 1 5 MAC to register transfer instruction

sometimes with memory loads
and sometimes with the multiplier

Notes: 1. With the SH7600, multiply/accumulate instructions are 7 stages and multiplication
instructions are 6 stages, while with the SH7000, multiply/accumulate instructions are 8
stages and multiplication instructions are 7 stages.

2. The normal minimum number of execution states (The number in parentheses is the
number in contention with preceding/following instructions).

3. One stage when it does not branch.

282

